This code compiles summary information about the gene POU1f1. This gene encodes a member of the POU family of transcription factors that regulate mammalian development. The protein regulates expression of several genes involved in pituitary development and hormone expression. Mutations in this genes result in combined pituitary hormone deficiency. Multiple transcript variants encoding different isoforms have been found for this gene.
Key information use to make this script can be found here: - Refseq Gene: https://www.ncbi.nlm.nih.gov/gene/2993 - Refseq Homologene: https://www.ncbi.nlm.nih.gov/homologene/48076
Other resources consulted includes - Neanderthal genome: http://neandertal.ensemblgenomes.org/index.html
Other interesting resources and online tools include: - REPPER: https://toolkit.tuebingen.mpg.de/jobs/7803820 - Sub-cellular locations prediction: https://wolfpsort.hgc.jp/
Load necessary packages:
Download and load drawProteins from Bioconductor
library(BiocManager)
## Bioconductor version '3.13' is out-of-date; the current release version '3.14'
## is available with R version '4.1'; see https://bioconductor.org/install
#install("drawProteins")
library(drawProteins)
Load other packages
# github packages
library(compbio4all)
library(ggmsa)
## Registered S3 methods overwritten by 'ggalt':
## method from
## grid.draw.absoluteGrob ggplot2
## grobHeight.absoluteGrob ggplot2
## grobWidth.absoluteGrob ggplot2
## grobX.absoluteGrob ggplot2
## grobY.absoluteGrob ggplot2
# CRAN packages
library(rentrez)
library(seqinr)
library(ape)
##
## Attaching package: 'ape'
## The following objects are masked from 'package:seqinr':
##
## as.alignment, consensus
library(pander)
library(ggplot2)
# Bioconductor packages
## msa
### The msa package is having problems on some platforms
### You can skip the msa steps if necessary. The msa output
### is used to make a distance matrix and then phylogenetics trees,
### but I provide code to build the matrix by hand so
### you can proceed even if msa doesn't work for you.
## Biostrings
library(Biostrings)
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind, colnames,
## dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
## grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
## union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
## expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: XVector
## Loading required package: GenomeInfoDb
##
## Attaching package: 'Biostrings'
## The following object is masked from 'package:ape':
##
## complement
## The following object is masked from 'package:seqinr':
##
## translate
## The following object is masked from 'package:base':
##
## strsplit
library(msa)
##
## Attaching package: 'msa'
## The following object is masked from 'package:BiocManager':
##
## version
library(drawProteins)
library(HGNChelper)
Accession numbers were obtained from RefSeq, Refseq Homlogene, UniProt and PDB. UniProt accession numbers can be found by searching for the gene name. PDB accessions can be found by searching with a UniProt accession or a gene name, though many proteins are not in PDB.
A protein BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) was carried out to find more species, since the HomoloGene search only yielded 2 species. The gene not appears to be primate-only.
OPTIONAL: Use the function to confirm the validity of your gene name and any aliases
# this is optional
HGNChelper::checkGeneSymbols(x = c("POU1F1"))
## Maps last updated on: Thu Oct 24 12:31:05 2019
## x Approved Suggested.Symbol
## 1 POU1F1 TRUE POU1F1
Not available: - Drosophila
# RefSeq Uniprot PDB sci name common name gene name
POU1F1_table_vector<-c("NP_001116229.1", "P28069", "5WC9", "Homo sapiens" , "Human", "POU1F1",
"XP_001145917.1", "NA", "NA", "Pan troglodytes" , "Chimpanzee", "POU1F1",
"NP_001036325.1", "NA", "NA", "Macaca mulatta", "Rhesus monkey", "POU1F1",
"NP_001006950.1", "NA", "NA", "Canis lupus familiaris", "Dog", "POU1F1",
"NP_777004.1", "NA", "NA", "Bos taurus", "cattle", "POU1F1",
"NP_032875.1", "NA", "NA", "Mus musculus", "house mouse", "POU1F1",
"NP_037140.2", "NA", "NA", "Rattus norvegicus", "Norway rat", "POU1F1",
"XP_003831560.1", "NA", "NA", "Pan paniscus", "pygmy chimpanzee", "POU1F1",
"XP_003893855.1", "NA", "NA", "Papio anubis", "olive baboon", "POU1F1",
" XP_011782975.1 ", "NA", "NA", "Colobus angolensis palliatus", "Angolan black-and-white colobus", "POU1F1")
POU1F1_matrix <- matrix( POU1F1_table_vector, ncol = 6, byrow = TRUE)
POU1F1_df <- data.frame( POU1F1_matrix )
colnames( POU1F1_df ) <- c("ncbi.protein.accession", "UniProt.id", "PDB", "species", "common.name",
"gene.name")
The finished table
pander::pander( POU1F1_df )
| ncbi.protein.accession | UniProt.id | PDB | species |
|---|---|---|---|
| NP_001116229.1 | P28069 | 5WC9 | Homo sapiens |
| XP_001145917.1 | NA | NA | Pan troglodytes |
| NP_001036325.1 | NA | NA | Macaca mulatta |
| NP_001006950.1 | NA | NA | Canis lupus familiaris |
| NP_777004.1 | NA | NA | Bos taurus |
| NP_032875.1 | NA | NA | Mus musculus |
| NP_037140.2 | NA | NA | Rattus norvegicus |
| XP_003831560.1 | NA | NA | Pan paniscus |
| XP_003893855.1 | NA | NA | Papio anubis |
| XP_011782975.1 | NA | NA | Colobus angolensis palliatus |
| common.name | gene.name |
|---|---|
| Human | POU1F1 |
| Chimpanzee | POU1F1 |
| Rhesus monkey | POU1F1 |
| Dog | POU1F1 |
| cattle | POU1F1 |
| house mouse | POU1F1 |
| Norway rat | POU1F1 |
| pygmy chimpanzee | POU1F1 |
| olive baboon | POU1F1 |
| Angolan black-and-white colobus | POU1F1 |
All sequences were downloaded using a wrapper compbio4all::entrez_fetch_list() which uses rentrez::entrez_fetch() to access NCBI databases.
# download FASTA sequences
POU1F1_list <- compbio4all::entrez_fetch_list( db = "protein",
id = POU1F1_df$ncbi.protein.accession,
rettype = "fasta"
)
Number of FASTA files obtained
length( POU1F1_list )
## [1] 10
The first entry
POU1F1_list[[1]]
## [1] ">NP_001116229.1 pituitary-specific positive transcription factor 1 isoform beta [Homo sapiens]\nMSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTVPSILSLIQTPKCLCTHFSVTTL\nGNTATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPIHQPLLAEDPTAADFKQELRRK\nSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNAC\nKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLE\nKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR\n\n"
# output should be the FASTA sequence with header information and newlines still included
Remove FASTA header
for(i in 1:length(POU1F1_list)){
POU1F1_list[[i]] <- compbio4all::fasta_cleaner(POU1F1_list[[i]], parse = F)
}
Specific additional cleaning steps will be as needed for particular analyses
For code see https://rpubs.com/lowbrowR/drawProtein
P28069_json <- drawProteins::get_features("P28069")
## [1] "Download has worked"
my_prot_df <- drawProteins::feature_to_dataframe(P28069_json)
is(my_prot_df)
## [1] "data.frame" "list" "oldClass" "vector"
## [5] "list_OR_List" "vector_OR_Vector" "vector_OR_factor"
my_canvas <- draw_canvas(my_prot_df)
my_canvas <- draw_chains(my_canvas, my_prot_df,
label_size = 2.5)
my_canvas <- draw_domains(my_canvas, my_prot_df)
my_canvas
Prepare Data
POU1F1_list[[1]]
## [1] "MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTVPSILSLIQTPKCLCTHFSVTTLGNTATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPIHQPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR"
POU1F1_human_vector <- unlist(strsplit( POU1F1_list[[1]], "" ))
seqinr::dotPlot( POU1F1_human_vector, POU1F1_human_vector )
TODO:
par(mfrow = c(2,2),
mar = c(0,0,2,1))
# plot 1: Defaults
seqinr::dotPlot(POU1F1_human_vector, POU1F1_human_vector,
wsize = 1,
nmatch = 1,
main = "size=1, num match=1")
# plot 2 size = 10, nmatch = 10
seqinr::dotPlot(POU1F1_human_vector, POU1F1_human_vector,
wsize = 10,
nmatch = 1,
main = "size = 10, nmatch = 10")
# plot 3: size = 10, nmatch = 5
seqinr::dotPlot(POU1F1_human_vector, POU1F1_human_vector,
wsize = 10,
nmatch = 5,
main = "size = 10, nmatch = 5")
# plot 4: size = 20, nmatch = 5
seqinr::dotPlot(POU1F1_human_vector, POU1F1_human_vector,
wsize = 20,
nmatch = 5,
main = "size = 20, nmatch = 5")
par(mfrow = c(1,1),
mar = c(4,4,4,4))
seqinr::dotPlot(POU1F1_human_vector, POU1F1_human_vector,
wsize = 20,
nmatch = 5,
main = "POU1F1 human dot plot")
TODO: Create table
Below are links to relevant information. 1. Pfam: http://pfam.xfam.org/protein/P28069; “Pou” region from 127 to 198. “Homeodomain” region from 215 to 271 2. DisProt: no info available 3. RepeatDB: no info available 4. PDB secondary structural location: no info available
Uniprot (which uses http://www.csbio.sjtu.edu) indicates that this protein is a protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway.
First, I need the data from Chou and Zhang (1994) Table 5. Code to build this table is available at https://rpubs.com/lowbrowR/843543
The table looks like this:
# enter once
aa.1.1 <- c("A","R","N","D","C","Q","E","G","H","I",
"L","K","M","F","P","S","T","W","Y","V")
# alpha proteins
alpha <- c(285, 53, 97, 163, 22, 67, 134, 197, 111, 91,
221, 249, 48, 123, 82, 122, 119, 33, 63, 167)
# beta proteins
beta <- c(203, 67, 139, 121, 75, 122, 86, 297, 49, 120,
177, 115, 16, 85, 127, 341, 253, 44, 110, 229)
# alpha + beta
a.plus.b <- c(175, 78, 120, 111, 74, 74, 86, 171, 33, 93,
110, 112, 25, 52, 71, 126, 117, 30, 108, 123)
# alpha/beta
a.div.b <- c(361, 146, 183, 244, 63, 114, 257, 377, 107, 239,
339, 321, 91, 158, 188, 327, 238, 72, 130, 378)
pander(data.frame(aa.1.1, alpha, beta, a.plus.b, a.div.b))
| aa.1.1 | alpha | beta | a.plus.b | a.div.b |
|---|---|---|---|---|
| A | 285 | 203 | 175 | 361 |
| R | 53 | 67 | 78 | 146 |
| N | 97 | 139 | 120 | 183 |
| D | 163 | 121 | 111 | 244 |
| C | 22 | 75 | 74 | 63 |
| Q | 67 | 122 | 74 | 114 |
| E | 134 | 86 | 86 | 257 |
| G | 197 | 297 | 171 | 377 |
| H | 111 | 49 | 33 | 107 |
| I | 91 | 120 | 93 | 239 |
| L | 221 | 177 | 110 | 339 |
| K | 249 | 115 | 112 | 321 |
| M | 48 | 16 | 25 | 91 |
| F | 123 | 85 | 52 | 158 |
| P | 82 | 127 | 71 | 188 |
| S | 122 | 341 | 126 | 327 |
| T | 119 | 253 | 117 | 238 |
| W | 33 | 44 | 30 | 72 |
| Y | 63 | 110 | 108 | 130 |
| V | 167 | 229 | 123 | 378 |
Convert to frequencies Table 5 therefore becomes this
alpha.prop <- alpha/sum(alpha)
beta.prop <- beta/sum(beta)
a.plus.b.prop <- a.plus.b/sum(a.plus.b)
a.div.b <- a.div.b/sum(a.div.b)
aa.prop <- data.frame(alpha.prop,
beta.prop,
a.plus.b.prop,
a.div.b)
row.names(aa.prop) <- aa.1.1
pander::pander(aa.prop)
| alpha.prop | beta.prop | a.plus.b.prop | a.div.b | |
|---|---|---|---|---|
| A | 0.1165 | 0.07313 | 0.09264 | 0.08331 |
| R | 0.02166 | 0.02414 | 0.04129 | 0.03369 |
| N | 0.03964 | 0.05007 | 0.06353 | 0.04223 |
| D | 0.06661 | 0.04359 | 0.05876 | 0.05631 |
| C | 0.008991 | 0.02702 | 0.03917 | 0.01454 |
| Q | 0.02738 | 0.04395 | 0.03917 | 0.02631 |
| E | 0.05476 | 0.03098 | 0.04553 | 0.05931 |
| G | 0.08051 | 0.107 | 0.09052 | 0.08701 |
| H | 0.04536 | 0.01765 | 0.01747 | 0.02469 |
| I | 0.03719 | 0.04323 | 0.04923 | 0.05516 |
| L | 0.09031 | 0.06376 | 0.05823 | 0.07824 |
| K | 0.1018 | 0.04143 | 0.05929 | 0.07408 |
| M | 0.01962 | 0.005764 | 0.01323 | 0.021 |
| F | 0.05027 | 0.03062 | 0.02753 | 0.03646 |
| P | 0.03351 | 0.04575 | 0.03759 | 0.04339 |
| S | 0.04986 | 0.1228 | 0.0667 | 0.07547 |
| T | 0.04863 | 0.09114 | 0.06194 | 0.05493 |
| W | 0.01349 | 0.01585 | 0.01588 | 0.01662 |
| Y | 0.02575 | 0.03963 | 0.05717 | 0.03 |
| V | 0.06825 | 0.08249 | 0.06511 | 0.08724 |
Determine the number of each amino acid in my protein.
A Function to convert a table into a vector is helpful here because R is goofy about tables not being the same as vectors.
table_to_vector <- function(table_x){
table_names <- attr(table_x, "dimnames")[[1]]
table_vect <- as.vector(table_x)
names(table_vect) <- table_names
return(table_vect)
}
POU1F1_human_table <- table(POU1F1_human_vector)/length(POU1F1_human_vector)
POU1F1.human.aa.freq <- table_to_vector(POU1F1_human_table)
POU1F1.human.aa.freq
## A C D E F G
## 0.078864353 0.031545741 0.025236593 0.085173502 0.044164038 0.037854890
## H I K L M N
## 0.037854890 0.044164038 0.066246057 0.097791798 0.022082019 0.047318612
## P Q R S T V
## 0.050473186 0.041009464 0.056782334 0.088328076 0.069400631 0.050473186
## W Y
## 0.006309148 0.018927445
Check for the presence of “U” (unknown aa.)
aa.names <- names(POU1F1.human.aa.freq)
i.U <- which(aa.names == "U")
aa.names[i.U]
## character(0)
POU1F1.human.aa.freq[i.U]
## named numeric(0)
Add data on my focal protein to the amino acid frequency table.
POU1F1.human.aa.freq
## A C D E F G
## 0.078864353 0.031545741 0.025236593 0.085173502 0.044164038 0.037854890
## H I K L M N
## 0.037854890 0.044164038 0.066246057 0.097791798 0.022082019 0.047318612
## P Q R S T V
## 0.050473186 0.041009464 0.056782334 0.088328076 0.069400631 0.050473186
## W Y
## 0.006309148 0.018927445
aa.prop$POU1F1.human.aa.freq <- POU1F1.human.aa.freq
pander::pander(aa.prop)
| alpha.prop | beta.prop | a.plus.b.prop | a.div.b | POU1F1.human.aa.freq | |
|---|---|---|---|---|---|
| A | 0.1165 | 0.07313 | 0.09264 | 0.08331 | 0.07886 |
| R | 0.02166 | 0.02414 | 0.04129 | 0.03369 | 0.03155 |
| N | 0.03964 | 0.05007 | 0.06353 | 0.04223 | 0.02524 |
| D | 0.06661 | 0.04359 | 0.05876 | 0.05631 | 0.08517 |
| C | 0.008991 | 0.02702 | 0.03917 | 0.01454 | 0.04416 |
| Q | 0.02738 | 0.04395 | 0.03917 | 0.02631 | 0.03785 |
| E | 0.05476 | 0.03098 | 0.04553 | 0.05931 | 0.03785 |
| G | 0.08051 | 0.107 | 0.09052 | 0.08701 | 0.04416 |
| H | 0.04536 | 0.01765 | 0.01747 | 0.02469 | 0.06625 |
| I | 0.03719 | 0.04323 | 0.04923 | 0.05516 | 0.09779 |
| L | 0.09031 | 0.06376 | 0.05823 | 0.07824 | 0.02208 |
| K | 0.1018 | 0.04143 | 0.05929 | 0.07408 | 0.04732 |
| M | 0.01962 | 0.005764 | 0.01323 | 0.021 | 0.05047 |
| F | 0.05027 | 0.03062 | 0.02753 | 0.03646 | 0.04101 |
| P | 0.03351 | 0.04575 | 0.03759 | 0.04339 | 0.05678 |
| S | 0.04986 | 0.1228 | 0.0667 | 0.07547 | 0.08833 |
| T | 0.04863 | 0.09114 | 0.06194 | 0.05493 | 0.0694 |
| W | 0.01349 | 0.01585 | 0.01588 | 0.01662 | 0.05047 |
| Y | 0.02575 | 0.03963 | 0.05717 | 0.03 | 0.006309 |
| V | 0.06825 | 0.08249 | 0.06511 | 0.08724 | 0.01893 |
Two custom functions are needed: one to calculate correlates between two columns of our table, and one to calculate correlation similarities.
# Correlation used in Chou and Zhange 1992.
chou_cor <- function(x,y){
numerator <- sum(x*y)
denominator <- sqrt((sum(x^2))*(sum(y^2)))
result <- numerator/denominator
return(result)
}
# Cosine similarity used in Higgs and Attwood (2005).
chou_cosine <- function(z.1, z.2){
z.1.abs <- sqrt(sum(z.1^2))
z.2.abs <- sqrt(sum(z.2^2))
my.cosine <- sum(z.1*z.2)/(z.1.abs*z.2.abs)
return(my.cosine)
}
Calculate correlation between each column
corr.alpha <- chou_cor(aa.prop[,5], aa.prop[,1])
corr.beta <- chou_cor(aa.prop[,5], aa.prop[,2])
corr.apb <- chou_cor(aa.prop[,5], aa.prop[,3])
corr.adb <- chou_cor(aa.prop[,5], aa.prop[,4])
Calculate cosine similarity
cos.alpha <- chou_cosine(aa.prop[,5], aa.prop[,1])
cos.beta <- chou_cosine(aa.prop[,5], aa.prop[,2])
cos.apb <- chou_cosine(aa.prop[,5], aa.prop[,3])
cos.adb <- chou_cosine(aa.prop[,5], aa.prop[,4])
Calculate distance. Note: we need to flip the dataframe on its side using a command called t()
aa.prop.flipped <- t(aa.prop)
round(aa.prop.flipped,2)
## A R N D C Q E G H I L
## alpha.prop 0.12 0.02 0.04 0.07 0.01 0.03 0.05 0.08 0.05 0.04 0.09
## beta.prop 0.07 0.02 0.05 0.04 0.03 0.04 0.03 0.11 0.02 0.04 0.06
## a.plus.b.prop 0.09 0.04 0.06 0.06 0.04 0.04 0.05 0.09 0.02 0.05 0.06
## a.div.b 0.08 0.03 0.04 0.06 0.01 0.03 0.06 0.09 0.02 0.06 0.08
## POU1F1.human.aa.freq 0.08 0.03 0.03 0.09 0.04 0.04 0.04 0.04 0.07 0.10 0.02
## K M F P S T W Y V
## alpha.prop 0.10 0.02 0.05 0.03 0.05 0.05 0.01 0.03 0.07
## beta.prop 0.04 0.01 0.03 0.05 0.12 0.09 0.02 0.04 0.08
## a.plus.b.prop 0.06 0.01 0.03 0.04 0.07 0.06 0.02 0.06 0.07
## a.div.b 0.07 0.02 0.04 0.04 0.08 0.05 0.02 0.03 0.09
## POU1F1.human.aa.freq 0.05 0.05 0.04 0.06 0.09 0.07 0.05 0.01 0.02
We can get distance matrix like this
dist(aa.prop.flipped, method = "euclidean")
## alpha.prop beta.prop a.plus.b.prop a.div.b
## beta.prop 0.13342098
## a.plus.b.prop 0.09281824 0.08289406
## a.div.b 0.06699039 0.08659174 0.06175113
## POU1F1.human.aa.freq 0.15625179 0.15527795 0.13873638 0.14030109
Individual distances using dist()
dist.alpha <- dist((aa.prop.flipped[c(1,5),]), method = "euclidean")
dist.beta <- dist((aa.prop.flipped[c(2,5),]), method = "euclidean")
dist.apb <- dist((aa.prop.flipped[c(3,5),]), method = "euclidean")
dist.adb <- dist((aa.prop.flipped[c(4,5),]), method = "euclidean")
Compile the information. Rounding makes it easier to read
# fold types
fold.type <- c("alpha","beta","alpha plus beta", "alpha/beta")
# data
corr.sim <- round(c(corr.alpha,corr.beta,corr.apb,corr.adb),5)
cosine.sim <- round(c(cos.alpha,cos.beta,cos.apb,cos.adb),5)
Euclidean.dist <- round(c(dist.alpha,dist.beta,dist.apb,dist.adb),5)
# summary
sim.sum <- c("","","most.sim","")
dist.sum <- c("","","min.dist","")
df <- data.frame(fold.type,
corr.sim ,
cosine.sim ,
Euclidean.dist ,
sim.sum ,
dist.sum )
Display output
pander::pander(df)
| fold.type | corr.sim | cosine.sim | Euclidean.dist | sim.sum | dist.sum |
|---|---|---|---|---|---|
| alpha | 0.8103 | 0.8103 | 0.1562 | ||
| beta | 0.8157 | 0.8157 | 0.1553 | ||
| alpha plus beta | 0.8407 | 0.8407 | 0.1387 | most.sim | min.dist |
| alpha/beta | 0.84 | 0.84 | 0.1403 |
Convert all FASTA records intro entries in a single vector. FASTA entries are contained in a list produced at the beginning of the script. They were cleaned to remove the header and newline characters.
POU1F1_list
## $NP_001116229.1
## [1] "MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTVPSILSLIQTPKCLCTHFSVTTLGNTATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPIHQPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR"
##
## $XP_001145917.1
## [1] "MYGKIIFVLLLSAIVSISASSTTEVAMHTSTSSVTKSYISSETSDKHKWDIYPATPRAHEVSEIYVTTVYPPEEENGEGVQLVHRFSEPEITLIIFGVMAGVIGTILLIYYSICRLIKKSPSDVKPLPSPDTDVPLSSVEIENPETSDQ"
##
## $NP_001036325.1
## [1] "MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTVPSILSLIQTPKCLCTHFLVTTLGNTATGLHYSVPSCHYGNQPSTYGVMAGSLTLVFYKFPDHTLSHGFPPIHQPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR"
##
## $NP_001006950.1
## [1] "MSCQPFTSADTFLPLNSEASAALPLIMHPGAAECLPGSNHATNVVSTATGLHYSVPSCHYGNQPSTYGVMAGGLTPCLYKFPEHGLGPGFPAAHQPLLAEGPAVADFKQELRRRSKLAEEPVDTESPEIRELEKFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFTISKEHLECR"
##
## $NP_777004.1
## [1] "MSCQPFTSTDTFIPLNSESSATLPLIMHPSAAECLPVSNHATNVMSTATGLHYSVPFCHYGNQSSTYGVMAGSLTPCLYKFPDHTLSHGFPPMHQPLLSEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEQNKPSSQEILRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFTISKEHLECR"
##
## $NP_032875.1
## [1] "MSCQSFTSADTFITLNSDASAALPLRMHHSAAECLPASNHATNVMSTATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPLHQPLLAEDPAASEFKQELRRKSKLVEEPIDMDSPEIRELEQFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISVAAKDALERHFGEHSKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR"
##
## $NP_037140.2
## [1] "MSCQPFTSADTFIPLNSDASAALPLRMHHNAAEGLPASNHATNVMSTATGLHYSVPSCHYGNQPSTYGVMAGTLTPCLYKFPDHTLSHGFPPLHQPLLAEDPTASEFKQELRRKSKLVEEPIDMDSPEIRELEQFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEHSKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR"
##
## $XP_003831560.1
## [1] "MSCQAFTSADNFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPIHQPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR"
##
## $XP_003893855.1
## [1] "MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPIHQPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR"
##
## $` XP_011782975.1 `
## [1] "MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPLHQPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR"
names( POU1F1_list )
## [1] "NP_001116229.1" "XP_001145917.1" "NP_001036325.1" "NP_001006950.1"
## [5] "NP_777004.1" "NP_032875.1" "NP_037140.2" "XP_003831560.1"
## [9] "XP_003893855.1" " XP_011782975.1 "
length( POU1F1_list )
## [1] 10
Each entry is a full entry with no spaces or parsing, and no header
POU1F1_list[1]
## $NP_001116229.1
## [1] "MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTVPSILSLIQTPKCLCTHFSVTTLGNTATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPIHQPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR"
Make each entry of the list into a vector. There are several ways to do this.
POU1F1_vector <- unlist( POU1F1_list )
Name the vector
names( POU1F1_list )
## [1] "NP_001116229.1" "XP_001145917.1" "NP_001036325.1" "NP_001006950.1"
## [5] "NP_777004.1" "NP_032875.1" "NP_037140.2" "XP_003831560.1"
## [9] "XP_003893855.1" " XP_011782975.1 "
names( POU1F1_vector ) <- names( POU1F1_list )
Do pairwise alignments for humans, chimps and 2-other species.
POU1F1_human <- POU1F1_vector["NP_001116229.1"]
POU1F1_chimp <- POU1F1_vector["XP_001145917.1"]
POU1F1_dog <- POU1F1_vector["NP_001006950.1"]
POU1F1_cattle <- POU1F1_vector["NP_777004.1"]
align.human.chimp <- Biostrings::pairwiseAlignment(POU1F1_human, POU1F1_chimp)
align.human.dog <- Biostrings::pairwiseAlignment(POU1F1_human, POU1F1_dog)
align.human.cattle <- Biostrings::pairwiseAlignment(POU1F1_human, POU1F1_cattle)
align.chimp.dog <- Biostrings::pairwiseAlignment(POU1F1_chimp, POU1F1_dog)
align.chimp.cattle <- Biostrings::pairwiseAlignment(POU1F1_chimp, POU1F1_cattle)
align.dog.cattle <- Biostrings::pairwiseAlignment(POU1F1_dog, POU1F1_cattle)
Build matrix
pids <- c(1, NA, NA, NA,
Biostrings::pid(align.human.chimp), 1, NA, NA,
Biostrings::pid(align.human.dog), Biostrings::pid(align.chimp.dog), 1, NA,
Biostrings::pid(align.human.cattle), Biostrings::pid(align.chimp.cattle), Biostrings::pid(align.dog.cattle), 1)
mat <- matrix(pids, nrow = 4, byrow = T)
row.names(mat) <- c("Homo","Chimp","dog","cattle")
colnames(mat) <- c("Homo","Chimp","dog","cattle")
pander::pander(mat)
| Homo | Chimp | dog | cattle | |
|---|---|---|---|---|
| Homo | 1 | NA | NA | NA |
| Chimp | 20.33 | 1 | NA | NA |
| dog | 84.23 | 20.07 | 1 | NA |
| cattle | 88.33 | 20.43 | 91.07 | 1 |
Compare different PID methods. I did this for Humans vs. chimps
PID1 <- Biostrings::pid(align.human.chimp, type="PID1")
PID2 <- Biostrings::pid(align.human.chimp, type="PID2")
PID3 <- Biostrings::pid(align.human.chimp, type="PID3")
PID4 <- Biostrings::pid(align.human.chimp, type="PID4")
method <- c("PID1", "PID2", "PID3", "PID4")
PID <- c( PID1, PID2, PID3, PID4 )
pid.comparison <- data.frame( method, PID )
pander::pander(pid.comparison)
| method | PID |
|---|---|
| PID1 | 20.33 |
| PID2 | 41.89 |
| PID3 | 41.61 |
| PID4 | 26.61 |
For use with R bioinformatics tools we need to convert our named vector to a string set using Biostrings::AAStringSet(). Note the _ss tag at the end of the object we’re assigning the output to, which designates this as a string set.
POU1F1_vector_ss <- Biostrings::AAStringSet( POU1F1_vector )
POU1F1_align <- msa(POU1F1_vector_ss, method = "ClustalW")
## use default substitution matrix
msa produces a species MSA object
class( POU1F1_align )
## [1] "MsaAAMultipleAlignment"
## attr(,"package")
## [1] "msa"
is( POU1F1_align )
## [1] "MsaAAMultipleAlignment" "AAMultipleAlignment" "MsaMetaData"
## [4] "MultipleAlignment"
Default output of MSA
POU1F1_align
## CLUSTAL 2.1
##
## Call:
## msa(POU1F1_vector_ss, method = "ClustalW")
##
## MsaAAMultipleAlignment with 10 rows and 317 columns
## aln names
## [1] MSCQAFTSADTFIPLNSDASATLPL...QREKRVKTSLNQSLFSISKEHLECR NP_001116229.1
## [2] MSCQAFTSADTFIPLNSDASATLPL...QREKRVKTSLNQSLFSISKEHLECR XP_003893855.1
## [3] MSCQAFTSADNFIPLNSDASATLPL...QREKRVKTSLNQSLFSISKEHLECR XP_003831560.1
## [4] MSCQAFTSADTFIPLNSDASATLPL...QREKRVKTSLNQSLFSISKEHLECR NP_001036325.1
## [5] MSCQAFTSADTFIPLNSDASATLPL...QREKRVKTSLNQSLFSISKEHLECR XP_011782975.1
## [6] MSCQSFTSADTFITLNSDASAALPL...QREKRVKTSLNQSLFSISKEHLECR NP_032875.1
## [7] MSCQPFTSADTFIPLNSDASAALPL...QREKRVKTSLNQSLFSISKEHLECR NP_037140.2
## [8] MSCQPFTSTDTFIPLNSESSATLPL...QREKRVKTSLNQSLFTISKEHLECR NP_777004.1
## [9] MSCQPFTSADTFLPLNSEASAALPL...QREKRVKTSLNQSLFTISKEHLECR NP_001006950.1
## [10] ------------------MYGKIIF...------------------------- XP_001145917.1
## Con MSCQAFTSADTFIPLNSDASATLPL...QREKRVKTSLNQSLFSISKEHLECR Consensus
Change class of alignment
class(POU1F1_align) <- "AAMultipleAlignment"
Convert to seqinr format
POU1F1_align_seqinr <- msaConvert(POU1F1_align, type = "seqinr::alignment")
OPTIONAL: show output with print_msa
compbio4all::print_msa(POU1F1_align_seqinr)
## [1] "MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTVPSILSLIQTPKC 0"
## [1] "MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMS-------------- 0"
## [1] "MSCQAFTSADNFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMS-------------- 0"
## [1] "MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTVPSILSLIQTPKC 0"
## [1] "MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMS-------------- 0"
## [1] "MSCQSFTSADTFITLNSDASAALPLRMHHSAAECLPASNHATNVMS-------------- 0"
## [1] "MSCQPFTSADTFIPLNSDASAALPLRMHHNAAEGLPASNHATNVMS-------------- 0"
## [1] "MSCQPFTSTDTFIPLNSESSATLPLIMHPSAAECLPVSNHATNVMS-------------- 0"
## [1] "MSCQPFTSADTFLPLNSEASAALPLIMHPGAAECLPGSNHATNVVS-------------- 0"
## [1] "------------------MYGKIIFVLLLSAIVSISASSTTEVAMH-------------- 0"
## [1] " "
## [1] "LCTHFSVTTLGNTATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPIH 0"
## [1] "------------TATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPIH 0"
## [1] "------------TATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPIH 0"
## [1] "LCTHFLVTTLGNTATGLHYSVPSCHYGNQPSTYGVMAGSLTLVFYKFPDHTLSHGFPPIH 0"
## [1] "------------TATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPLH 0"
## [1] "------------TATGLHYSVPSCHYGNQPSTYGVMAGSLTPCLYKFPDHTLSHGFPPLH 0"
## [1] "------------TATGLHYSVPSCHYGNQPSTYGVMAGTLTPCLYKFPDHTLSHGFPPLH 0"
## [1] "------------TATGLHYSVPFCHYGNQSSTYGVMAGSLTPCLYKFPDHTLSHGFPPMH 0"
## [1] "------------TATGLHYSVPSCHYGNQPSTYGVMAGGLTPCLYKFPEHGLGPGFPAAH 0"
## [1] "------------TSTSSVTKSYISSETSDKHKWDIYP--ATPRAHEVSEIYVTTVYPPEE 0"
## [1] " "
## [1] "QPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVG 0"
## [1] "QPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVG 0"
## [1] "QPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVG 0"
## [1] "QPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVG 0"
## [1] "QPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVG 0"
## [1] "QPLLAEDPAASEFKQELRRKSKLVEEPIDMDSPEIRELEQFANEFKVRRIKLGYTQTNVG 0"
## [1] "QPLLAEDPTASEFKQELRRKSKLVEEPIDMDSPEIRELEQFANEFKVRRIKLGYTQTNVG 0"
## [1] "QPLLSEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQTNVG 0"
## [1] "QPLLAEGPAVADFKQELRRRSKLAEEPVDTESPEIRELEKFANEFKVRRIKLGYTQTNVG 0"
## [1] "E-----------------------------NGEGVQLVHRFS-EPEITLIIFGVMAGVIG 0"
## [1] " "
## [1] "EALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERK 0"
## [1] "EALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERK 0"
## [1] "EALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERK 0"
## [1] "EALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERK 0"
## [1] "EALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERK 0"
## [1] "EALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERK 0"
## [1] "EALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERK 0"
## [1] "EALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERK 0"
## [1] "EALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERK 0"
## [1] "TILLIYY-------SICRLIK-----KSPSDVKPLPS----------------------- 0"
## [1] " "
## [1] "RKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKT 0"
## [1] "RKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKT 0"
## [1] "RKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKT 0"
## [1] "RKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKT 0"
## [1] "RKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKT 0"
## [1] "RKRRTTISVAAKDALERHFGEHSKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKT 0"
## [1] "RKRRTTISIAAKDALERHFGEHSKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKT 0"
## [1] "RKRRTTISIAAKDALERHFGEQNKPSSQEILRMAEELNLEKEVVRVWFCNRRQREKRVKT 0"
## [1] "RKRRTTISIAAKDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKT 0"
## [1] "--PDTDVPLSSVEIENPETSDQ-------------------------------------- 0"
## [1] " "
## [1] "SLNQSLFSISKEHLECR 43"
## [1] "SLNQSLFSISKEHLECR 43"
## [1] "SLNQSLFSISKEHLECR 43"
## [1] "SLNQSLFSISKEHLECR 43"
## [1] "SLNQSLFSISKEHLECR 43"
## [1] "SLNQSLFSISKEHLECR 43"
## [1] "SLNQSLFSISKEHLECR 43"
## [1] "SLNQSLFTISKEHLECR 43"
## [1] "SLNQSLFTISKEHLECR 43"
## [1] "----------------- 43"
## [1] " "
class(POU1F1_align) <- "AAMultipleAlignment"
ggmsa::ggmsa(POU1F1_align, start = 69, end = 150)
Make a distance matrix
POU1F1_dist <- seqinr::dist.alignment(POU1F1_align_seqinr,
matrix = "identity")
This produces a “dist” class object
is( POU1F1_dist )
## [1] "dist" "oldClass"
class( POU1F1_dist )
## [1] "dist"
Round for display
POU1F1_align_seqinr_rnd <- round(POU1F1_dist, 3)
POU1F1_align_seqinr_rnd
## NP_001116229.1 XP_003893855.1 XP_003831560.1 NP_001036325.1
## XP_003893855.1 0.000
## XP_003831560.1 0.059 0.059
## NP_001036325.1 0.112 0.102 0.117
## XP_011782975.1 0.059 0.059 0.083 0.117
## NP_032875.1 0.211 0.211 0.219 0.234
## NP_037140.2 0.211 0.211 0.219 0.234
## NP_777004.1 0.194 0.194 0.203 0.219
## NP_001006950.1 0.287 0.287 0.293 0.305
## XP_001145917.1 0.916 0.916 0.916 0.920
## XP_011782975.1 NP_032875.1 NP_037140.2 NP_777004.1
## XP_003893855.1
## XP_003831560.1
## NP_001036325.1
## XP_011782975.1
## NP_032875.1 0.203
## NP_037140.2 0.203 0.155
## NP_777004.1 0.194 0.275 0.269
## NP_001006950.1 0.287 0.321 0.316 0.299
## XP_001145917.1 0.916 0.916 0.920 0.916
## NP_001006950.1
## XP_003893855.1
## XP_003831560.1
## NP_001036325.1
## XP_011782975.1
## NP_032875.1
## NP_037140.2
## NP_777004.1
## NP_001006950.1
## XP_001145917.1 0.923
Build a phylogenetic tree from distance matrix
tree <- nj(POU1F1_align_seqinr_rnd)
Plot the tree
plot.phylo(tree, main="POU1F1 Phylogenetic Tree",
use.edge.length = F)
mtext(text = "POU1F1 Phylogenetic Tree - rooted, no branch lengths")