YouTube “Multiple Regression” videos
Route Delivery Schedule is as followed:
rds <- data.frame(miles=c(89,66,78,111,44,77,80,66,109,76),
numDelivers=c(4,1,3,6,1,3,3,2,5,3),
gasPrice=c(3.84,3.19,3.78,3.89,3.57,3.57,3.03,3.51,3.54,3.25),
travelTime=c(7,5.4,6.6,7.4,4.8,6.4,7,5.6,7.3,6.4))
rds
## miles numDelivers gasPrice travelTime
## 1 89 4 3.84 7.0
## 2 66 1 3.19 5.4
## 3 78 3 3.78 6.6
## 4 111 6 3.89 7.4
## 5 44 1 3.57 4.8
## 6 77 3 3.57 6.4
## 7 80 3 3.03 7.0
## 8 66 2 3.51 5.6
## 9 109 5 3.54 7.3
## 10 76 3 3.25 6.4
Independent variables are:
Dependent variable is:
attach(rds)
par(mfrow=c(1,3))
plot(miles, travelTime)
abline(lm(travelTime ~ miles))
plot(numDelivers, travelTime)
abline(lm(travelTime ~ numDelivers))
plot(gasPrice, travelTime)
abline(lm(travelTime ~ gasPrice))
pairs(~ miles + numDelivers + gasPrice, data=rds)
library(psych)
## Warning: package 'psych' was built under R version 3.1.3
corr.test(rds)
## Call:corr.test(x = rds)
## Correlation matrix
## miles numDelivers gasPrice travelTime
## miles 1.00 0.96 0.36 0.93
## numDelivers 0.96 1.00 0.50 0.92
## gasPrice 0.36 0.50 1.00 0.27
## travelTime 0.93 0.92 0.27 1.00
## Sample Size
## [1] 10
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## miles numDelivers gasPrice travelTime
## miles 0.00 0.00 0.63 0.00
## numDelivers 0.00 0.00 0.43 0.00
## gasPrice 0.31 0.14 0.00 0.63
## travelTime 0.00 0.00 0.46 0.00
##
## To see confidence intervals of the correlations, print with the short=FALSE option