library(seqinr)
library(rentrez)
library(compbio4all)
library(Biostrings)
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind, colnames,
## dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
## grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
## union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
## expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: XVector
## Loading required package: GenomeInfoDb
##
## Attaching package: 'Biostrings'
## The following object is masked from 'package:seqinr':
##
## translate
## The following object is masked from 'package:base':
##
## strsplit
Download sequence P73709
P73709_FASTA <- rentrez::entrez_fetch(id = "P73709",
db = "protein",
rettype="fasta")
Clean and set up sequence as vector.
NOTE: no arguments besides sequence passed to fasta_cleaner() - we do this differently for parwise alignment
P73709_vector <- fasta_cleaner(P73709_FASTA)
Set up as 1 continuous string
P73709_FASTA_str <- fasta_cleaner(P73709_FASTA,
parse = F)
length(P73709_FASTA_str)
## [1] 1
nchar(P73709_FASTA_str)
## [1] 331
Compare structure of each type
str(P73709_FASTA)
## chr ">sp|P73709.1|Y1819_SYNY3 RecName: Full=Uncharacterized protein slr1819\nMEAKELVQRYRNGETLFTGLKLPGINLEAADLIGIVLNE"| __truncated__
str(P73709_vector)
## chr [1:331] "M" "E" "A" "K" "E" "L" "V" "Q" "R" "Y" "R" "N" "G" "E" "T" ...
str(P73709_FASTA_str)
## chr "MEAKELVQRYRNGETLFTGLKLPGINLEAADLIGIVLNEADLRGANLLFCYLNRANLGQANLVAANLSGASLNQADLAGADLRSANFHGAMLQGAILRDSDMTLATLQDTN"| __truncated__
length(P73709_FASTA_str)
## [1] 1
nchar(P73709_FASTA_str)
## [1] 331
Takes data in STRING form!
align <- pairwiseAlignment(P73709_FASTA_str,
P73709_FASTA_str,
type = "global")
Look at PID
pid(align)
## [1] 100
str()
[ ]
P73709_vector[1]
## [1] "M"
P73709_vector[2]
## [1] "E"
P73709_vector[7]
## [1] "V"
[x:y]
colon (not semi colon, not a dash, not sace)
P73709_vector[1:2]
## [1] "M" "E"
P73709_vector[1:50]
## [1] "M" "E" "A" "K" "E" "L" "V" "Q" "R" "Y" "R" "N" "G" "E" "T" "L" "F" "T" "G"
## [20] "L" "K" "L" "P" "G" "I" "N" "L" "E" "A" "A" "D" "L" "I" "G" "I" "V" "L" "N"
## [39] "E" "A" "D" "L" "R" "G" "A" "N" "L" "L" "F" "C"
length()
table()
table(P73709_vector)
## P73709_vector
## A C D E F G H I K L M N P Q R S T V Y
## 53 3 21 13 8 27 4 10 11 52 12 34 2 13 20 15 17 10 6
P73709_vector[50:60]
## [1] "C" "Y" "L" "N" "R" "A" "N" "L" "G" "Q" "A"
table(P73709_vector[50:60])
##
## A C G L N Q R Y
## 2 1 1 2 2 1 1 1
P73709_vector[40:79]
## [1] "A" "D" "L" "R" "G" "A" "N" "L" "L" "F" "C" "Y" "L" "N" "R" "A" "N" "L" "G"
## [20] "Q" "A" "N" "L" "V" "A" "A" "N" "L" "S" "G" "A" "S" "L" "N" "Q" "A" "D" "L"
## [39] "A" "G"
table(P73709_vector[40:79])
##
## A C D F G L N Q R S V Y
## 9 1 2 1 4 9 6 2 2 2 1 1
Note orientation. Any strong diagonals?
dotPlot(P73709_vector[40:79],
P73709_vector[40:79])
dotPlot(P73709_vector,
P73709_vector)
Default is exact match (binary):
filter out “noise” amplify the signal
dotPlot(P73709_vector,
P73709_vector,
wsize = 1,
wstep = 1,
nmatch = 1)
Don’t vary wstep
Running average
dotPlot(P73709_vector,
P73709_vector,
wsize = 1,
nmatch = 1)
main = … sets a title
I’ll use “Default: wsize = 1, nmatch = 1
dotPlot(P73709_vector,
P73709_vector,
wsize = 1,
nmatch = 1,
main = "Default: wsize = 1, nmatch = 1")
We can make a grid of plots with the par() command (we’ll leave this as a black box for now) mfrow sets layout of grid mar sets margins
# set up 2 x 2 grid, make margins thingger
par(mfrow = c(2,2),
mar = c(0,0,1,1))
# plot 1: Defaults
dotPlot(P73709_vector, P73709_vector,
wsize = 1,
nmatch = 1,
main = "Defaults")
# plot 2 size = 10, nmatch = 1
dotPlot(P73709_vector, P73709_vector,
wsize = 10,
nmatch = 1,
main = "size = 10, nmatch = 1")
# plot 3: size = 10, nmatch = 5
dotPlot(P73709_vector, P73709_vector,
wsize = 10,
nmatch = 5,
main = "size = 10, nmatch = 5")
# plot 4: size = 20, nmatch = 5
dotPlot(P73709_vector, P73709_vector,
wsize = 20,
nmatch = 5,
main = "size = 20, nmatch = 5")
# reset par() - run this or other plots will be small!
par(mfrow = c(1,1),
mar = c(4,4,4,4))
# be sure to run par - re-run just in cae
par(mfrow = c(1,1),
mar = c(4,4,4,4))
dotPlot(P73709_vector,
P73709_vector,
wsize = 20,
wstep = 1,
nmatch = 5)
Make new function
dot_plot <- function(seq1, seq2, wsize = 1, wstep = 1, nmatch = 1, col = c("white",
"black"), xlab = deparse(substitute(seq1)), ylab = deparse(substitute(seq2)),
...) {
# make sure input wors
if (nchar(seq1[1]) > 1)
stop("seq1 should be provided as a vector of single chars")
if (nchar(seq2[1]) > 1)
stop("seq2 should be provided as a vector of single chars")
if (wsize < 1)
stop("non allowed value for wsize")
if (wstep < 1)
stop("non allowed value for wstep")
if (nmatch < 1)
stop("non allowed value for nmatch")
if (nmatch > wsize)
stop("nmatch > wsize is not allowed")
# internal function
mkwin <- function(seq, wsize, wstep) {
sapply(seq(from = 1, to = length(seq) - wsize + 1, by = wstep),
function(i) c2s(seq[i:(i + wsize - 1)]))
}
wseq1 <- mkwin(seq1, wsize, wstep)
wseq2 <- mkwin(seq2, wsize, wstep)
if (nmatch == wsize) {
xy <- outer(wseq1, wseq2, "==")
}
else {
"%==%" <- function(x, y) colSums(sapply(x, s2c) == sapply(y,
s2c)) >= nmatch
xy <- outer(wseq1, wseq2, "%==%")
}
# compile output in list
out <- list(x = seq(from = 1, to = length(seq1), length = length(wseq1)),
y = seq(from = 1, to = length(seq2), length = length(wseq2)),
z = xy)
}
Use new function, save output (doesn’t autoplot)
my_dot_out <- dot_plot(P73709_vector,
P73709_vector,
wsize = 20,
wstep = 1,
nmatch = 8) # threshold for number of "hits" or number of "matchs
# within the window
# 5/20 matches;
Get rid of upper triangular portion
my_dot_out$z[lower.tri(my_dot_out$z)] <- FALSE
Do some weird prep (don’t worry about it)
my_dot_out$z <- my_dot_out$z[, nrow(my_dot_out$z):1]
Plot using image() command
# seriously - it will drive you crazy if you forget abouthis
par(mfrow = c(1,1),
mar = c(4,4,4,4))
# plot with image()
image(x = my_dot_out$x,
y = my_dot_out$y,
z = my_dot_out$z)
P24587 <- rentrez::entrez_fetch(id = "P24587",
db = "protein",
rettype="fasta")
P24587 <- fasta_cleaner(P24587)
length(P24587)
## [1] 714
# Use [ : ] to subset 300 to 400
dotPlot(P24587[300:400],
P24587[300:400],
wsize = 15,
wstep = 1,
nmatch = 5)
P02840 <- rentrez::entrez_fetch(id = "P02840",db = "protein", rettype="fasta")
P02840 <- fasta_cleaner(P02840)
length(P02840)
## [1] 307
# set limit to 80 to 113
dotPlot(P02840[],
P02840[],
wsize = 5,
wstep = 1,
nmatch = 5)
P19246 <- rentrez::entrez_fetch(id = "P19246",db = "protein", rettype="fasta")
P19246 <- fasta_cleaner(P19246)
length(P19246)
## [1] 1090
# full
dotPlot(P19246,P19246,
wsize = 1,
wstep = 1,
nmatch = 1)
# set limit to 525:550
dotPlot(P19246[],P19246[],
wsize = 1,
wstep = 1,
nmatch = 1)
Q55837 <- rentrez::entrez_fetch(id = "Q55837",db = "protein", rettype="fasta")
Q55837 <- fasta_cleaner(Q55837)
length(Q55837)
## [1] 166
dotPlot(Q55837,
Q55837)