library(rhdfs)
## Loading required package: rJava
## 
## HADOOP_CMD=/usr/bin/hadoop
## 
## Be sure to run hdfs.init()
library(rmr2)
## Warning: S3 methods 'gorder.default', 'gorder.factor', 'gorder.data.frame',
## 'gorder.matrix', 'gorder.raw' were declared in NAMESPACE but not found
## Please review your hadoop settings. See help(hadoop.settings)
library(plyrmr)
## Loading required package: reshape2
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## 
## 
## Attaching package: 'plyrmr'
## 
## The following objects are masked from 'package:dplyr':
## 
##     count, intersect, select, transmute, ungroup, union
## 
## The following object is masked from 'package:reshape2':
## 
##     dcast
## 
## The following object is masked from 'package:rmr2':
## 
##     gather
## 
## The following objects are masked from 'package:base':
## 
##     intersect, ncol, nrow, rbind, sample, union
hdfs.init()
rmr.options(backend="local")
## NULL
plyrmr.options(backend="local")
## list()
file.remove('/tmp/mtcars')
## [1] TRUE
cardata = to.dfs(mtcars, output = '/tmp/mtcars')
bind.cols(input(cardata), carb.per.cyl = carb/cyl)
##     mpg cyl  disp  hp drat    wt  qsec vs am gear carb carb.per.cyl
## 1  21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4    0.6666667
## 2  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4    0.6666667
## 3  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1    0.2500000
## 4  21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1    0.1666667
## 5  18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2    0.2500000
## 6  18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1    0.1666667
## 7  14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4    0.5000000
## 8  24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2    0.5000000
## 9  22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2    0.5000000
## 10 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4    0.6666667
## 11 17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4    0.6666667
## 12 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3    0.3750000
## 13 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3    0.3750000
## 14 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3    0.3750000
## 15 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4    0.5000000
## 16 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4    0.5000000
## 17 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4    0.5000000
## 18 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1    0.2500000
## 19 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2    0.5000000
## 20 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1    0.2500000
## 21 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1    0.2500000
## 22 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2    0.2500000
## 23 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2    0.2500000
## 24 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4    0.5000000
## 25 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2    0.2500000
## 26 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1    0.2500000
## 27 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2    0.5000000
## 28 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2    0.5000000
## 29 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4    0.5000000
## 30 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6    1.0000000
## 31 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8    1.0000000
## 32 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2    0.5000000
data(Titanic)
titanic = data.frame(Titanic)

where(
titanic,
Freq >=100)
##    Class    Sex   Age Survived Freq
## 9    1st   Male Adult       No  118
## 10   2nd   Male Adult       No  154
## 11   3rd   Male Adult       No  387
## 12  Crew   Male Adult       No  670
## 28  Crew   Male Adult      Yes  192
## 29   1st Female Adult      Yes  140
titanic %|% where(Freq >=100)
##    Class    Sex   Age Survived Freq
## 9    1st   Male Adult       No  118
## 10   2nd   Male Adult       No  154
## 11   3rd   Male Adult       No  387
## 12  Crew   Male Adult       No  670
## 28  Crew   Male Adult      Yes  192
## 29   1st Female Adult      Yes  140
file.remove('/tmp/titanic')
## [1] TRUE
tidata = to.dfs(data.frame(Titanic), output =
'/tmp/titanic')

input(tidata) %|% transmute(sum(Freq))
##   sum.Freq.
## 1      2201
input(tidata) %|% group(Sex) %|%
transmute(sum(Freq))
##      Sex sum.Freq.
## 1   Male      1731
## 2 Female       470
as.data.frame(count(input(tidata),Sex))
##   Sex.Sex Sex.freq
## 1  Female       16
## 2    Male       16
sample(input(tidata), n=10)
##    Class    Sex   Age Survived Freq
## 1    1st   Male Child       No    0
## 2    2nd   Male Child       No    0
## 3    3rd   Male Child       No   35
## 4   Crew   Male Child       No    0
## 5    1st Female Child       No    0
## 6    2nd Female Child       No    0
## 7    3rd Female Child       No   17
## 8   Crew Female Child       No    0
## 9    1st   Male Adult       No  118
## 10   2nd   Male Adult       No  154
as.data.frame(top.k(input(tidata), .k=5, Freq))
##   Class    Sex   Age Survived Freq
## 1  Crew   Male Adult       No  670
## 2   3rd   Male Adult       No  387
## 3  Crew   Male Adult      Yes  192
## 4   2nd   Male Adult       No  154
## 5   1st Female Adult      Yes  140
as.data.frame(bottom.k(input(tidata), .k=5, Freq))
##   Class    Sex   Age Survived Freq
## 1   1st   Male Child       No    0
## 2   2nd   Male Child       No    0
## 3  Crew   Male Child       No    0
## 4   1st Female Child       No    0
## 5   2nd Female Child       No    0
convert_tb = data.frame(Label=c("No","Yes"),
Symbol=c(0,1))
ctb = to.dfs(convert_tb, output = 'convert')
as.data.frame(plyrmr::merge(input(tidata), input(ctb),
by.x="Survived", by.y="Label"))
##    Survived Class    Sex   Age Freq Symbol
## 1        No   1st   Male Child    0      0
## 2        No   2nd   Male Child    0      0
## 3        No   3rd   Male Child   35      0
## 4        No  Crew   Male Child    0      0
## 5        No   1st Female Child    0      0
## 6        No   2nd Female Child    0      0
## 7        No   3rd Female Child   17      0
## 8        No  Crew Female Child    0      0
## 9        No   1st   Male Adult  118      0
## 10       No   2nd   Male Adult  154      0
## 11       No   3rd   Male Adult  387      0
## 12       No  Crew   Male Adult  670      0
## 13       No   1st Female Adult    4      0
## 14       No   2nd Female Adult   13      0
## 15       No   3rd Female Adult   89      0
## 16       No  Crew Female Adult    3      0
## 17      Yes   1st   Male Child    5      1
## 18      Yes   2nd   Male Child   11      1
## 19      Yes   3rd   Male Child   13      1
## 20      Yes  Crew   Male Child    0      1
## 21      Yes   1st Female Child    1      1
## 22      Yes   2nd Female Child   13      1
## 23      Yes   3rd Female Child   14      1
## 24      Yes  Crew Female Child    0      1
## 25      Yes   1st   Male Adult   57      1
## 26      Yes   2nd   Male Adult   14      1
## 27      Yes   3rd   Male Adult   75      1
## 28      Yes  Crew   Male Adult  192      1
## 29      Yes   1st Female Adult  140      1
## 30      Yes   2nd Female Adult   80      1
## 31      Yes   3rd Female Adult   76      1
## 32      Yes  Crew Female Adult   20      1
file.remove('convert')
## [1] TRUE
file.remove('/tmp/tempreture')
## [1] TRUE
tempreture = read.table("~/rhadoopiii/Data/tempreture.tab", head=TRUE)
tempdata = to.dfs(tempreture, output =
'/tmp/tempreture')

res = input("/tmp/tempreture") %|%
group(STN...) %|%
group(YEARMODA) %|%
transmute(mean.temp = mean(TEMP))
temp = data.frame(res)
head(temp)
##   STN... YEARMODA mean.temp
## 1   8403 20140101      85.8
## 2   8403 20140102      86.3
## 3   8403 20140103      85.9
## 4   8403 20140104      85.6
## 5   8403 20140105      84.8
## 6   8403 20140106      86.8
dim(temp)
## [1] 57  3
temp[,2] <- as.integer(temp[,2])
colnames(temp) <- c("station", "yearMonth",
"mean.temp")
mean( table(temp[,1]) )
## [1] 57
mean( table(temp[,2]) )
## [1] 1
library(ggplot2)
ggplot(temp, aes(yearMonth, mean.temp, group=station, colour=station)) + geom_line() + labs(x="Date", y="Temperature in F", title="Changes in Average Temperature") + theme(legend.position = "none") + scale_x_continuous(breaks=20140101:20140226) + stat_summary(fun.y = mean, colour = "red", geom="line", aes(group = 1))