Sean Jewell
This is an example R Markdown file to illustrate my competency with Markdown. We will be looking at the Gapminder dataset at a very basic level. We plan to:
Here we will import the data and also bring in the (beautiful) ggplot2 library
gDat <- read.delim("gapminderDataFiveYear.txt")
library(ggplot2)
str(gDat)
## 'data.frame': 1704 obs. of 6 variables:
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ pop : num 8425333 9240934 10267083 11537966 13079460 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ lifeExp : num 28.8 30.3 32 34 36.1 ...
## $ gdpPercap: num 779 821 853 836 740 ...
summary(gDat)
## country year pop continent
## Afghanistan: 12 Min. :1952 Min. :6.00e+04 Africa :624
## Albania : 12 1st Qu.:1966 1st Qu.:2.79e+06 Americas:300
## Algeria : 12 Median :1980 Median :7.02e+06 Asia :396
## Angola : 12 Mean :1980 Mean :2.96e+07 Europe :360
## Argentina : 12 3rd Qu.:1993 3rd Qu.:1.96e+07 Oceania : 24
## Australia : 12 Max. :2007 Max. :1.32e+09
## (Other) :1632
## lifeExp gdpPercap
## Min. :23.6 Min. : 241
## 1st Qu.:48.2 1st Qu.: 1202
## Median :60.7 Median : 3532
## Mean :59.5 Mean : 7215
## 3rd Qu.:70.8 3rd Qu.: 9325
## Max. :82.6 Max. :113523
##
Markdown also allows for inline code: There are 1704 rows of data.
qplot(year, lifeExp, data = gDat)
ggplot(gDat, aes(x = gdpPercap, y = lifeExp, color = continent)) + geom_point()
*Now, on a continent basis
p <- ggplot(gDat, aes(x = gdpPercap, y = lifeExp)) + geom_point(data = subset(gDat,
year == 2007))
p + facet_grid(. ~ continent)