1 Sample characteristics (raw variables)

compareGroups::descrTable(~.
                          , Biok_vert_df_raw, 
                          hide.no = '0', 
                          show.p.overall = FALSE,
                          include.label = TRUE)
## 
## --------Summary descriptives table ---------
## 
## _____________________________________________________________ 
##                                                 [ALL]      N  
##                                                 N=218         
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## sex:                                                      218 
##     male                                      82 (37.6%)      
##     female                                   136 (62.4%)      
## age                                          44.3 (12.9)  218 
## BMI                                          28.6 (5.58)  218 
## race:                                                     218 
##     asian                                     3 (1.38%)       
##     black                                     4 (1.83%)       
##     white                                    211 (96.8%)      
## patientno                                    1016 (1365)  218 
## Site_Location:                                            218 
##     Johns Hopkins                             22 (10.1%)      
##     Univeristy of Michigan                    69 (31.7%)      
##     Mayo Clinic                              114 (52.3%)      
##     Pine Rest                                 13 (5.96%)      
## infusionno:                                               218 
##     BL                                        73 (33.5%)      
##     1st                                       72 (33.0%)      
##     3rd                                       73 (33.5%)      
## Blood_Draw_Event:                                         218 
##     Acute Infusion #1 Baseline 100            49 (22.5%)      
##     Acute Infusion #1 Baseline 40             24 (11.0%)      
##     Acute Infusion #1 Stop 100                48 (22.0%)      
##     Acute Infusion #1 Stop 40                 24 (11.0%)      
##     Acute Infusion #3 Stop 100                28 (12.8%)      
##     Acute Infusion #3 Stop 40                 45 (20.6%)      
## Batch_Number                                 3.51 (1.71)  218 
## BSS_Score                                    4.57 (6.82)  213 
## MADRS_Score                                  17.0 (10.6)  217 
## Remission:                                                215 
##     No remission                              77 (35.8%)      
##     Remitter                                 138 (64.2%)      
## TRP_nM                                       25449 (5942) 218 
## five_HT_nM                                    205 (284)   218 
## KYN_nM                                        917 (244)   218 
## three_HK_nM                                  16.2 (7.44)  218 
## KYNA_nM                                      19.5 (7.68)  218 
## PIC_nM                                       19.2 (13.5)  218 
## Quin_nM                                       146 (43.0)  218 
## AA_nM                                        5.95 (3.12)  218 
## KYN_TRP_ratio                                0.04 (0.01)  218 
## KYN_SER_ratio                                33.2 (72.1)  218 
## QUIN_PIC_ratio                               9.14 (4.39)  218 
## QUIN_KYNA_ratio                              8.30 (3.40)  218 
## threeHK_KYN_ratio                            0.02 (0.01)  218 
## threeHK_KYNA_ratio                           0.91 (0.44)  218 
## IL1B_pg_mL                                   0.28 (0.47)  42  
## IL1B_pg_mL_LLOD                              0.34 (0.19)  218 
## IL2_pg_mL                                    1.27 (6.00)  152 
## IL2_pg_mL_LLOD                               0.92 (5.03)  218 
## IL4_pg_mL                                    0.09 (0.03)  217 
## IL4_pg_mL_LLOD                               0.09 (0.03)  218 
## IL6_pg_mL                                    1.04 (0.58)  218 
## IL8_pg_mL                                    4.36 (1.66)  218 
## IL10_pg_mL                                   0.64 (1.95)  218 
## IL12p70_pg_mL                                 21.8 (186)  217 
## IL12p70_pg_mL_LLOD                            21.7 (185)  218 
## IL13_pg_mL                                   5.07 (11.5)  215 
## IL13_pg_mL_LLOD                              5.01 (11.4)  218 
## TNFa_pg_mL                                   1.44 (0.46)  218 
## IFNy_pg_mL                                   6.97 (5.50)  218 
## CRP_ng_mL                                    2835 (4774)  218 
## NIC_nM                                        41.4 (340)  218 
## NIC_nM_LLOD                                   41.4 (340)  218 
## NTA_nM                                        306 (153)   218 
## SAA_ng_mL                                    2870 (2145)  218 
## VCAM_1_ng_mL                                  309 (67.9)  218 
## ICAM_1_ng_mL                                  308 (82.3)  218 
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

2 Sample missingness counts

missingTable(compareGroups(infusionno~., data=Biok_vert_df_raw))
## 
## --------Missingness table by 'infusionno'---------
## 
## _____________________________________________________________ 
##                        BL        1st        3rd     p.overall 
##                       N=73       N=72       N=73              
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## sex                0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## age                0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## BMI                0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## race               0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## patientno          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Site_Location      0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Blood_Draw_Event   0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Sample_ID          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Batch_Number       0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## BSS_Score          0 (0.00%)  2 (2.78%)  3 (4.11%)    0.291   
## MADRS_Score        0 (0.00%)  0 (0.00%)  1 (1.37%)    1.000   
## Remission          1 (1.37%)  1 (1.39%)  1 (1.37%)    1.000   
## TRP_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## five_HT_nM         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYN_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## three_HK_nM        0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYNA_nM            0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## PIC_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Quin_nM            0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## AA_nM              0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYN_TRP_ratio      0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYN_SER_ratio      0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## QUIN_PIC_ratio     0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## QUIN_KYNA_ratio    0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## threeHK_KYN_ratio  0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## threeHK_KYNA_ratio 0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL1B_pg_mL         57 (78.1%) 61 (84.7%) 58 (79.5%)   0.565   
## IL1B_pg_mL_LLOD    0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL2_pg_mL          28 (38.4%) 20 (27.8%) 18 (24.7%)   0.168   
## IL2_pg_mL_LLOD     0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL4_pg_mL          0 (0.00%)  1 (1.39%)  0 (0.00%)    0.330   
## IL4_pg_mL_LLOD     0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL6_pg_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL8_pg_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL10_pg_mL         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL12p70_pg_mL      0 (0.00%)  1 (1.39%)  0 (0.00%)    0.330   
## IL12p70_pg_mL_LLOD 0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL13_pg_mL         1 (1.37%)  2 (2.78%)  0 (0.00%)    0.327   
## IL13_pg_mL_LLOD    0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## TNFa_pg_mL         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IFNy_pg_mL         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## CRP_ng_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## NIC_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## NIC_nM_LLOD        0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## NTA_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## SAA_ng_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## VCAM_1_ng_mL       0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## ICAM_1_ng_mL       0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

3 Outcome inspection - Depressive severity (MADRS_Score)

mu <- ddply(Biok_vert_df, "infusionno", summarise, grp.mean=mean(MADRS_Score))
ggplot(Biok_vert_df, aes(x=MADRS_Score))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(infusionno ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=infusionno),linetype="dashed")+
  labs(title="Distribution of MADRS total score by Ketamine infusion (timepoint)", x="Depressive severity (MADRS)", y="Count")+
  theme_gray()

Biok_vert_df %>% 
    filter(!is.na(Remission)) %>%
ggplot(aes(x = as.numeric(infusionno), y = MADRS_Score)) + 
  geom_boxplot(aes(group = infusionno), lwd=1.25, fatten=1, outlier.shape = "triangle", outlier.size = 3 ) +
  ggtitle("Depression by Ketamine Infusion (timeseries)")+
  geom_line(aes(group=patientno, color=Remission)) +
  geom_point(aes(color=Remission))+
  labs(x = "infusionno") +
  scale_x_continuous(breaks = 1:3)

my_comparisons <- list( c("BL", "1st"), c("1st", "3rd"), c("BL", "3rd") )

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = infusionno, y = MADRS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~Remission)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", ref.group="BL", comparisons=my_comparisons)+
  ggpubr::stat_compare_means(method="anova", label.y=70)

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = Remission, y = MADRS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~infusionno)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", label.y=50)

4 Outcome inspection - suicidality (BSS_Score)

mu <- ddply(Biok_vert_df, "infusionno", summarise,grp.mean=mean(log(BSS_Score)))
ggplot(Biok_vert_df, aes(x=log(BSS_Score)))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(infusionno ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=infusionno),linetype="dashed")+
  labs(title="Distribution of BSS total score by Ketamine infusion (timepoint)", x="Suicidal severity (BSS)", y="Count")+
  theme_gray()

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = infusionno, y = BSS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~Remission)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", ref.group="BL", comparisons=my_comparisons)+
  ggpubr::stat_compare_means( label.y=40)

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = Remission, y = BSS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~infusionno)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means( label.y=30)

5 Q-Q Plots: biomarker (reduced model, untransformed)

for (x in Biok_biomarkers) {
  LM1 <-  lme4::lmer(substitute(i ~ sex+age+BMI+race+(1|patientno), list(i = as.name(x))), data = Biok_vert_df)
  car::qqPlot(residuals(LM1), main=x)
}

6 Q-Q Plots: biomarker (log transformed) reduced models

qq_df_log<-Biok_vert_df %>% select(all_of(Biok_biomarkers_log)) %>% select(-NIC_nM_log) %>% names


for (x in qq_df_log) {
  LM2 <-  lm(substitute(i ~ sex+age+BMI+race, list(i = as.name(x))), data = Biok_vert_df)
  car::qqPlot(residuals(LM2), main=x)
}

Despite log transform, the following biomarkers remain abnormally distributed: 5HT, KYN/5HT, IL1B, IL2, IL4, IL6, IL10, IL12, IL13, IFNy, CRP Note: Nic_nM_log was removed due to undefined with log Robust regressions may be necessary downstream…

7 Univariate screen (baseline) by dichotomous outcome

compareGroups::descrTable(Remission~.
                          , Vert, 
                          include.miss=TRUE,
                          hide.no = '0', 
                          subset=infusionno=="BL", 
                          show.ratio = TRUE)
## 
## --------Summary descriptives table by 'Remission'---------
## 
## ___________________________________________________________________________________ 
##                        No remission   Remitter          OR        p.ratio p.overall 
##                            N=26         N=46                                        
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## sex:                                                                        0.431   
##     male                7 (26.9%)    18 (39.1%)        Ref.        Ref.             
##     female              19 (73.1%)   28 (60.9%)  0.58 [0.19;1.64]  0.312            
## age                    43.4 (14.1)  44.3 (12.6)  1.01 [0.97;1.04]  0.778    0.788   
## BMI                    28.6 (6.61)  28.8 (5.08)  1.01 [0.92;1.10]  0.904    0.913   
## race:                                                                       1.000   
##     asian               0 (0.00%)    1 (2.17%)         Ref.        Ref.             
##     black               1 (3.85%)    1 (2.17%)       . [.;.]         .              
##     white               25 (96.2%)   44 (95.7%)      . [.;.]         .              
## patientno               987 (1379)  1046 (1388)  1.00 [1.00;1.00]  0.861    0.863   
## infusionno: BL          26 (100%)    46 (100%)         Ref.        Ref.       .     
## MADRS_Score            29.3 (5.91)  27.2 (5.68)  0.94 [0.86;1.02]  0.152    0.157   
## BSS_Score              9.08 (7.65)  7.78 (7.85)  0.98 [0.92;1.04]  0.494    0.498   
## TRP_nM_log             10.2 (0.20)  10.2 (0.24)  0.26 [0.03;2.64]  0.253    0.228   
## five_HT_nM_log         4.86 (1.62)  4.36 (1.33)  0.78 [0.55;1.11]  0.166    0.191   
## KYN_nM_log             6.89 (0.23)  6.84 (0.27)  0.46 [0.07;3.16]  0.429    0.411   
## three_HK_nM_log        2.78 (0.36)  2.78 (0.37)  0.98 [0.26;3.64]  0.971    0.971   
## KYNA_nM_log            2.93 (0.39)  2.96 (0.39)  1.27 [0.36;4.46]  0.705    0.709   
## PIC_nM_log             2.89 (0.41)  2.92 (0.55)  1.11 [0.42;2.94]  0.830    0.820   
## Quin_nM_log            4.92 (0.28)  4.97 (0.30)  1.95 [0.36;10.6]  0.437    0.437   
## AA_nM_log              1.57 (0.29)  1.82 (0.47)  6.32 [1.34;29.8]  0.020    0.005   
## KYN_TRP_ratio_log      -3.36 (0.28) -3.34 (0.24) 1.24 [0.19;8.16]  0.825    0.835   
## KYN_SER_ratio_log      2.03 (1.72)  2.48 (1.37)  1.23 [0.88;1.71]  0.228    0.262   
## QUIN_PIC_ratio_log     2.03 (0.42)  2.06 (0.56)  1.12 [0.43;2.88]  0.817    0.805   
## QUIN_KYNA_ratio_log    1.99 (0.36)  2.01 (0.36)  1.16 [0.30;4.49]  0.826    0.829   
## threeHK_KYN_ratio_log  -4.10 (0.26) -4.06 (0.29) 1.88 [0.31;11.5]  0.493    0.486   
## threeHK_KYNA_ratio_log -0.14 (0.48) -0.18 (0.37) 0.79 [0.25;2.55]  0.697    0.722   
## IL1B_pg_mL_log         -1.51 (1.36) -2.39 (1.30) 0.51 [0.16;1.66]  0.261    0.305   
## IL1B_pg_mL_LLOD_log    -1.07 (0.31) -1.12 (0.04) 0.14 [0.00;13.4]  0.395    0.371   
## IL2_pg_mL_log          -0.63 (1.25) -0.95 (0.75) 0.69 [0.34;1.39]  0.301    0.352   
## IL2_pg_mL_LLOD_log     -1.27 (1.28) -1.44 (0.87) 0.86 [0.54;1.37]  0.517    0.563   
## IL4_pg_mL_log          -2.48 (0.39) -2.49 (0.31) 0.88 [0.21;3.73]  0.863    0.874   
## IL4_pg_mL_LLOD_log     -2.48 (0.39) -2.49 (0.31) 0.88 [0.21;3.73]  0.863    0.874   
## IL6_pg_mL_log          -0.08 (0.48) -0.08 (0.45) 0.98 [0.34;2.84]  0.968    0.969   
## IL8_pg_mL_log          1.36 (0.51)  1.52 (0.33)  2.61 [0.75;9.07]  0.132    0.179   
## IL10_pg_mL_log         -1.04 (0.25) -0.95 (0.83) 1.24 [0.57;2.69]  0.592    0.499   
## IL12p70_pg_mL_log      -0.88 (0.39) -0.84 (1.32) 1.04 [0.65;1.65]  0.885    0.856   
## IL12p70_pg_mL_LLOD_log -0.88 (0.39) -0.84 (1.32) 1.04 [0.65;1.65]  0.885    0.856   
## IL13_pg_mL_log         1.25 (0.19)  1.38 (0.54)  4.40 [0.35;55.9]  0.253    0.157   
## IL13_pg_mL_LLOD_log    1.25 (0.19)  1.32 (0.66)  1.30 [0.48;3.46]  0.606    0.511   
## TNFa_pg_mL_log         0.31 (0.19)  0.36 (0.28)  2.17 [0.29;16.1]  0.447    0.405   
## IFNy_pg_mL_log         1.77 (0.54)  1.80 (0.56)  1.12 [0.46;2.73]  0.806    0.808   
## CRP_ng_mL_log          7.24 (1.80)  6.93 (1.35)  0.87 [0.63;1.21]  0.405    0.448   
## NIC_nM_log             -0.24 (1.90)    . (.)         . [.;.]         .        .     
## NIC_nM_LLOD_log        -0.24 (1.90) -0.33 (1.33) 0.96 [0.71;1.31]  0.820    0.839   
## NTA_nM_log             5.62 (0.57)  5.70 (0.56)  1.32 [0.56;3.12]  0.533    0.543   
## SAA_ng_mL_log          7.86 (0.76)  7.61 (0.79)  0.65 [0.34;1.24]  0.194    0.192   
## VCAM_1_ng_mL_log       5.71 (0.22)  5.73 (0.22)  1.33 [0.15;11.8]  0.796    0.799   
## ICAM_1_ng_mL_log       5.77 (0.26)  5.69 (0.25)  0.30 [0.04;2.14]  0.232    0.240   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Findings: anthranilic acid (baseline) is higher in remitters compared to non-remitters

8 Univariate screen (infusion #3) by dichotomous outcome

compareGroups::descrTable(Remission~.
                          , Vert, 
                          include.miss=TRUE,
                          hide.no = '0', 
                          subset=infusionno=="3rd")
## 
## --------Summary descriptives table by 'Remission'---------
## 
## __________________________________________________________ 
##                        No remission   Remitter   p.overall 
##                            N=26         N=46               
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## sex:                                               0.526   
##     male                8 (30.8%)    19 (41.3%)            
##     female              18 (69.2%)   27 (58.7%)            
## age                    44.1 (14.1)  44.7 (12.4)    0.858   
## BMI                    28.8 (6.58)  28.7 (5.03)    0.937   
## race:                                              0.595   
##     asian               0 (0.00%)    1 (2.17%)             
##     black               1 (3.85%)    0 (0.00%)             
##     white               25 (96.2%)   45 (97.8%)            
## patientno               987 (1379)  1045 (1387)    0.865   
## infusionno: 3rd         26 (100%)    46 (100%)       .     
## MADRS_Score            17.3 (6.14)  4.20 (2.70)   <0.001   
## BSS_Score              4.60 (6.29)  0.61 (2.18)    0.005   
## TRP_nM_log             10.1 (0.27)  10.1 (0.22)    0.461   
## five_HT_nM_log         4.85 (1.69)  3.97 (1.43)    0.029   
## KYN_nM_log             6.79 (0.23)  6.76 (0.27)    0.550   
## three_HK_nM_log        2.70 (0.30)  2.69 (0.33)    0.965   
## KYNA_nM_log            2.83 (0.40)  2.91 (0.38)    0.416   
## PIC_nM_log             2.86 (0.52)  2.81 (0.40)    0.706   
## Quin_nM_log            4.91 (0.28)  4.98 (0.30)    0.279   
## AA_nM_log              1.60 (0.36)  1.64 (0.43)    0.684   
## KYN_TRP_ratio_log      -3.31 (0.30) -3.30 (0.25)   0.886   
## KYN_SER_ratio_log      1.94 (1.77)  2.79 (1.45)    0.043   
## QUIN_PIC_ratio_log     2.05 (0.55)  2.17 (0.47)    0.348   
## QUIN_KYNA_ratio_log    2.07 (0.43)  2.07 (0.35)    0.981   
## threeHK_KYN_ratio_log  -4.10 (0.23) -4.06 (0.32)   0.613   
## threeHK_KYNA_ratio_log -0.14 (0.45) -0.22 (0.37)   0.429   
## IL1B_pg_mL_log         -1.69 (0.34) -1.65 (1.17)   0.936   
## IL1B_pg_mL_LLOD_log    -1.13 (0.01) -1.08 (0.32)   0.276   
## IL2_pg_mL_log          -0.73 (1.24) -1.04 (0.68)   0.337   
## IL2_pg_mL_LLOD_log     -1.22 (1.27) -1.27 (0.74)   0.855   
## IL4_pg_mL_log          -2.44 (0.29) -2.46 (0.28)   0.840   
## IL4_pg_mL_LLOD_log     -2.44 (0.29) -2.46 (0.28)   0.840   
## IL6_pg_mL_log          -0.05 (0.46) -0.17 (0.39)   0.281   
## IL8_pg_mL_log          1.36 (0.31)  1.31 (0.36)    0.546   
## IL10_pg_mL_log         -0.95 (0.29) -0.94 (0.71)   0.917   
## IL12p70_pg_mL_log      -0.86 (0.37) -0.81 (1.29)   0.814   
## IL12p70_pg_mL_LLOD_log -0.86 (0.37) -0.81 (1.29)   0.814   
## IL13_pg_mL_log         1.26 (0.22)  1.37 (0.53)    0.224   
## IL13_pg_mL_LLOD_log    1.26 (0.22)  1.37 (0.53)    0.224   
## TNFa_pg_mL_log         0.29 (0.20)  0.34 (0.29)    0.390   
## IFNy_pg_mL_log         1.76 (0.52)  1.81 (0.45)    0.693   
## CRP_ng_mL_log          7.06 (1.73)  6.86 (1.30)    0.597   
## NIC_nM_log             -0.15 (1.83) -0.47 (1.11)   0.425   
## NIC_nM_LLOD_log        -0.15 (1.83) -0.47 (1.11)   0.425   
## NTA_nM_log             5.56 (0.61)  5.49 (0.54)    0.619   
## SAA_ng_mL_log          7.79 (0.77)  7.63 (0.73)    0.395   
## VCAM_1_ng_mL_log       5.71 (0.22)  5.69 (0.25)    0.723   
## ICAM_1_ng_mL_log       5.75 (0.24)  5.64 (0.27)    0.102   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Findings: at post-infusion #3, remitters show lower [MADRS, BSS, and serotonin (5HT)] and higher KYN/5HT ratio compared to non-remitters

9 Univariate screen (non-remitters) by infusion timepoint

compareGroups::descrTable(infusionno~.
                          , Vert, 
                          include.miss=TRUE,
                          hide.no = '0', 
                          ref="BL",
                          subset=Remission=="No remission")
## 
## --------Summary descriptives table by 'infusionno'---------
## 
## ________________________________________________________________________ 
##                              BL          1st          3rd      p.overall 
##                             N=26         N=25         N=26               
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## sex:                                                             0.918   
##     male                 7 (26.9%)    8 (32.0%)    8 (30.8%)             
##     female               19 (73.1%)   17 (68.0%)   18 (69.2%)            
## age                     43.4 (14.1)  43.6 (14.2)  44.1 (14.1)    0.983   
## BMI                     28.6 (6.61)  28.4 (6.44)  28.8 (6.58)    0.980   
## race:                                                            1.000   
##     black                1 (3.85%)    1 (4.00%)    1 (3.85%)             
##     white                25 (96.2%)   24 (96.0%)   25 (96.2%)            
## patientno                987 (1379)  1026 (1393)   987 (1379)    0.993   
## Remission: No remission  26 (100%)    25 (100%)    26 (100%)       .     
## MADRS_Score             29.3 (5.91)  18.7 (7.66)  17.3 (6.14)   <0.001   
## BSS_Score               9.08 (7.65)  5.70 (7.35)  4.60 (6.29)    0.072   
## TRP_nM_log              10.2 (0.20)  10.1 (0.19)  10.1 (0.27)    0.034   
## five_HT_nM_log          4.86 (1.62)  4.65 (1.45)  4.85 (1.69)    0.877   
## KYN_nM_log              6.89 (0.23)  6.76 (0.26)  6.79 (0.23)    0.154   
## three_HK_nM_log         2.78 (0.36)  2.68 (0.33)  2.70 (0.30)    0.486   
## KYNA_nM_log             2.93 (0.39)  2.87 (0.31)  2.83 (0.40)    0.670   
## PIC_nM_log              2.89 (0.41)  2.81 (0.38)  2.86 (0.52)    0.811   
## Quin_nM_log             4.92 (0.28)  4.91 (0.27)  4.91 (0.28)    0.976   
## AA_nM_log               1.57 (0.29)  1.65 (0.40)  1.60 (0.36)    0.698   
## KYN_TRP_ratio_log       -3.36 (0.28) -3.33 (0.28) -3.31 (0.30)   0.869   
## KYN_SER_ratio_log       2.03 (1.72)  2.11 (1.57)  1.94 (1.77)    0.939   
## QUIN_PIC_ratio_log      2.03 (0.42)  2.10 (0.37)  2.05 (0.55)    0.867   
## QUIN_KYNA_ratio_log     1.99 (0.36)  2.03 (0.33)  2.07 (0.43)    0.760   
## threeHK_KYN_ratio_log   -4.10 (0.26) -4.08 (0.24) -4.10 (0.23)   0.953   
## threeHK_KYNA_ratio_log  -0.14 (0.48) -0.19 (0.41) -0.14 (0.45)   0.890   
## IL1B_pg_mL_log          -1.51 (1.36) -1.69 (1.21) -1.69 (0.34)   0.957   
## IL1B_pg_mL_LLOD_log     -1.07 (0.31) -1.10 (0.14) -1.13 (0.01)   0.554   
## IL2_pg_mL_log           -0.63 (1.25) -0.80 (1.21) -0.73 (1.24)   0.917   
## IL2_pg_mL_LLOD_log      -1.27 (1.28) -1.22 (1.23) -1.22 (1.27)   0.985   
## IL4_pg_mL_log           -2.48 (0.39) -2.44 (0.34) -2.44 (0.29)   0.886   
## IL4_pg_mL_LLOD_log      -2.48 (0.39) -2.44 (0.34) -2.44 (0.29)   0.886   
## IL6_pg_mL_log           -0.08 (0.48) 0.09 (0.56)  -0.05 (0.46)   0.439   
## IL8_pg_mL_log           1.36 (0.51)  1.31 (0.42)  1.36 (0.31)    0.888   
## IL10_pg_mL_log          -1.04 (0.25) -0.94 (0.32) -0.95 (0.29)   0.389   
## IL12p70_pg_mL_log       -0.88 (0.39) -0.84 (0.40) -0.86 (0.37)   0.918   
## IL12p70_pg_mL_LLOD_log  -0.88 (0.39) -0.84 (0.40) -0.86 (0.37)   0.918   
## IL13_pg_mL_log          1.25 (0.19)  1.28 (0.21)  1.26 (0.22)    0.924   
## IL13_pg_mL_LLOD_log     1.25 (0.19)  1.28 (0.21)  1.26 (0.22)    0.924   
## TNFa_pg_mL_log          0.31 (0.19)  0.27 (0.22)  0.29 (0.20)    0.755   
## IFNy_pg_mL_log          1.77 (0.54)  1.68 (0.54)  1.76 (0.52)    0.808   
## CRP_ng_mL_log           7.24 (1.80)  7.03 (1.85)  7.06 (1.73)    0.909   
## NIC_nM_log              -0.24 (1.90) -0.33 (1.90) -0.15 (1.83)   0.944   
## NIC_nM_LLOD_log         -0.24 (1.90) -0.33 (1.90) -0.15 (1.83)   0.944   
## NTA_nM_log              5.62 (0.57)  5.48 (0.52)  5.56 (0.61)    0.668   
## SAA_ng_mL_log           7.86 (0.76)  7.77 (0.81)  7.79 (0.77)    0.906   
## VCAM_1_ng_mL_log        5.71 (0.22)  5.72 (0.24)  5.71 (0.22)    0.979   
## ICAM_1_ng_mL_log        5.77 (0.26)  5.75 (0.27)  5.75 (0.24)    0.951   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Findings: MADRS was progressively lower across 3 timepoints. BSS downtrended at infusion 3 compared to baseline. Although TRP was significantly different across timepoints, TRP only downtrended with subsequent treatments compared to baseline.

10 Univariate screen (remitters) by infusion timepoint

compareGroups::descrTable(infusionno~.
                          , Vert, 
                          include.miss=TRUE,
                          hide.no = '0', 
                          ref="BL",
                          subset=Remission=="Remitter")
## 
## --------Summary descriptives table by 'infusionno'---------
## 
## _______________________________________________________________________ 
##                             BL          1st          3rd      p.overall 
##                            N=46         N=46         N=46               
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## sex:                                                            0.970   
##     male                18 (39.1%)   19 (41.3%)   19 (41.3%)            
##     female              28 (60.9%)   27 (58.7%)   27 (58.7%)            
## age                    44.3 (12.6)  44.7 (12.4)  44.7 (12.4)    0.985   
## BMI                    28.8 (5.08)  28.7 (5.03)  28.7 (5.03)    0.997   
## race:                                                           1.000   
##     asian               1 (2.17%)    1 (2.17%)    1 (2.17%)             
##     black               1 (2.17%)    0 (0.00%)    0 (0.00%)             
##     white               44 (95.7%)   45 (97.8%)   45 (97.8%)            
## patientno              1046 (1388)  1045 (1387)  1045 (1387)    1.000   
## Remission: Remitter     46 (100%)    46 (100%)    46 (100%)       .     
## MADRS_Score            27.2 (5.68)  11.8 (6.01)  4.20 (2.70)   <0.001   
## BSS_Score              7.78 (7.85)  1.76 (4.02)  0.61 (2.18)   <0.001   
## TRP_nM_log             10.2 (0.24)  10.1 (0.26)  10.1 (0.22)    0.030   
## five_HT_nM_log         4.36 (1.33)  4.21 (1.41)  3.97 (1.43)    0.390   
## KYN_nM_log             6.84 (0.27)  6.75 (0.26)  6.76 (0.27)    0.208   
## three_HK_nM_log        2.78 (0.37)  2.69 (0.34)  2.69 (0.33)    0.384   
## KYNA_nM_log            2.96 (0.39)  2.91 (0.36)  2.91 (0.38)    0.754   
## PIC_nM_log             2.92 (0.55)  2.77 (0.42)  2.81 (0.40)    0.291   
## Quin_nM_log            4.97 (0.30)  4.94 (0.30)  4.98 (0.30)    0.754   
## AA_nM_log              1.82 (0.47)  1.77 (0.41)  1.64 (0.43)    0.132   
## KYN_TRP_ratio_log      -3.34 (0.24) -3.32 (0.26) -3.30 (0.25)   0.761   
## KYN_SER_ratio_log      2.48 (1.37)  2.54 (1.41)  2.79 (1.45)    0.531   
## QUIN_PIC_ratio_log     2.06 (0.56)  2.17 (0.46)  2.17 (0.47)    0.470   
## QUIN_KYNA_ratio_log    2.01 (0.36)  2.03 (0.33)  2.07 (0.35)    0.736   
## threeHK_KYN_ratio_log  -4.06 (0.29) -4.06 (0.27) -4.06 (0.32)   0.995   
## threeHK_KYNA_ratio_log -0.18 (0.37) -0.22 (0.37) -0.22 (0.37)   0.859   
## IL1B_pg_mL_log         -2.39 (1.30) -1.85 (1.00) -1.65 (1.17)   0.329   
## IL1B_pg_mL_LLOD_log    -1.12 (0.04) -1.12 (0.08) -1.08 (0.32)   0.430   
## IL2_pg_mL_log          -0.95 (0.75) -1.15 (0.78) -1.04 (0.68)   0.579   
## IL2_pg_mL_LLOD_log     -1.44 (0.87) -1.41 (0.77) -1.27 (0.74)   0.555   
## IL4_pg_mL_log          -2.49 (0.31) -2.48 (0.33) -2.46 (0.28)   0.846   
## IL4_pg_mL_LLOD_log     -2.49 (0.31) -2.54 (0.55) -2.46 (0.28)   0.581   
## IL6_pg_mL_log          -0.08 (0.45) -0.08 (0.48) -0.17 (0.39)   0.527   
## IL8_pg_mL_log          1.52 (0.33)  1.49 (0.32)  1.31 (0.36)    0.009   
## IL10_pg_mL_log         -0.95 (0.83) -0.90 (0.74) -0.94 (0.71)   0.951   
## IL12p70_pg_mL_log      -0.84 (1.32) -0.85 (1.26) -0.81 (1.29)   0.984   
## IL12p70_pg_mL_LLOD_log -0.84 (1.32) -0.92 (1.33) -0.81 (1.29)   0.910   
## IL13_pg_mL_log         1.38 (0.54)  1.38 (0.54)  1.37 (0.53)    0.999   
## IL13_pg_mL_LLOD_log    1.32 (0.66)  1.26 (0.76)  1.37 (0.53)    0.710   
## TNFa_pg_mL_log         0.36 (0.28)  0.33 (0.31)  0.34 (0.29)    0.851   
## IFNy_pg_mL_log         1.80 (0.56)  1.77 (0.56)  1.81 (0.45)    0.946   
## CRP_ng_mL_log          6.93 (1.35)  6.91 (1.29)  6.86 (1.30)    0.965   
## NIC_nM_log                . (.)     -0.11 (1.31) -0.47 (1.11)     .     
## NIC_nM_LLOD_log        -0.33 (1.33) -0.11 (1.31) -0.47 (1.11)   0.398   
## NTA_nM_log             5.70 (0.56)  5.66 (0.48)  5.49 (0.54)    0.130   
## SAA_ng_mL_log          7.61 (0.79)  7.63 (0.79)  7.63 (0.73)    0.988   
## VCAM_1_ng_mL_log       5.73 (0.22)  5.71 (0.21)  5.69 (0.25)    0.672   
## ICAM_1_ng_mL_log       5.69 (0.25)  5.68 (0.24)  5.64 (0.27)    0.641   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Findings: both MADRS and BSS declined significantly with subsequent infusion timepoints. TRP downtrended from baseline to infusion 1, and was significantly lower at infusion 3 relative to baseline. IL8 at infusion 3 was lower compared to baseline and infusion 1.

11 Univariate screen (whole group) by continuous outcome (Spearman’s matrix)

Bx_spearmans<- Vert %>% 
  select("age", "BMI","MADRS_Score", "BSS_Score",
         all_of(starts_with(vars_KP)),
         all_of(starts_with(vars_inflam)),
         all_of(starts_with(vars_vasc))) %>% 
  select(!starts_with("IL1"))%>% 
  select(!starts_with("IL2")) %>% 
  select(!starts_with("IL4")) %>% 
  select(!contains("LLOD"))

mydata.cor = cor(Bx_spearmans, method = c("spearman"), use="complete.obs")
matrix<-Hmisc::rcorr(as.matrix(mydata.cor))
corrplot::corrplot(mydata.cor, 
                   addCoef.col = 'black', 
                   p.mat=matrix$P,
                   insig="blank", 
                   order="hclust",
                   method="color", 
                   type="upper", 
                   diag=FALSE, 
                   number.cex=0.8, 
                   na.label.col = "gray",
                   addgrid.col=TRUE,
                   tl.col = 'red',
                   tl.srt = 45,
                   title="Spearmans's matrix of age, BMI, and log transformed biomarkers (whole sample)")

MADRS correlations: TRP BSS correlations: TRP, MADRS BMI correlations: age, AA, KYN/TRP, QUIN/PIC, IL6, CRP, SAA, NTA Age correlations: BMI, AA, KYN/TRP, QUIN, KYN, TNFa

12 TRP_model_1: TRP by Remission*infusionno (mixed effects model)

model_TRP_vif<-lme4::lmer(TRP_nM~sex+age+BMI+race+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(model_TRP_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.070739  1        1.034765
## age        1.117809  1        1.057265
## BMI        1.175612  1        1.084256
## race       1.157261  2        1.037189
## Remission  1.021103  1        1.010496
## infusionno 1.002135  2        1.000533
model_TRP<-lme4::lmer(TRP_nM~sex+age+BMI+race+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(model_TRP))

## 218  42 
## 215  41
pairwise_remission<-emmeans(model_TRP, pairwise~Remission|infusionno)
plot(pairwise_remission, comparisons=TRUE, xlab="Tryptophan (emmeans)", ylab="Prospective remission status")

pairwise_infusionno<-emmeans(model_TRP, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="Tryptophan (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

PAIRWISE COMPARISON OF ESTIMATES: 1. Between-groups comparison: TRP did not distinguish prospective remission status at all 3 timepoints 2. Within-groups comparison: TRP declined significantly between baseline and infusion 3, for both remitter/non-remitter groups

13 TRP_model_2: MADRS by TRP*infusionno (mixed effects model)

lmer_TRP<-lme4::lmer(MADRS_Score~age+sex+BMI+TRP_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(lmer_TRP))

## 148 143 
## 147 143
# summary(lmer_TRP)
# car::Anova(lmer_TRP)
sjPlot::tab_model(lmer_TRP, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS according to TRP-by-infusion interaction")
Mixed model: MADRS according to TRP-by-infusion interaction
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.04 0.70 – 1.38 <0.001 <0.001
age 0.04 -0.08 – 0.15 0.503 0.503
sex [female] 0.18 -0.06 – 0.42 0.137 0.137
BMI 0.04 -0.07 – 0.15 0.488 0.488
TRP nM -0.00 -0.14 – 0.14 0.987 0.987
infusionno [1st] -1.28 -1.45 – -1.10 <0.001 <0.001
infusionno [3rd] -1.77 -1.95 – -1.60 <0.001 <0.001
TRP nM * infusionno [1st] 0.09 -0.09 – 0.26 0.339 0.339
TRP nM * infusionno [3rd] 0.14 -0.04 – 0.32 0.134 0.134
Random Effects
σ2 28.34
τ00 patientno 16.04
τ00 Site_Location 6.52
ICC 0.44
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.567 / 0.759

FINDINGS: MADRS was not associated with TRP, adjusting for demo and interaction with infusion timepoint

14 TRP_model_3: post-treatment MADRS by pre-treatment TRP (linear model)

# MADRS by baseline TRP, adjusted by baseline MADRS, remission interaction, and demo
Biok_wide_new$TRP_nM_BL<-exp(Biok_wide_new$TRP_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+TRP_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

##  4 25 
##  2 23
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Linear model: post-treatment MADRS according to pre-treatment TRP, adjusting for demo and pre-treatment MADRS")
Linear model: post-treatment MADRS according to pre-treatment TRP, adjusting for demo and pre-treatment MADRS
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.27 -0.67 – 0.12 0.090
age 0.08 -0.17 – 0.32 0.536
sex [female] 0.43 -0.08 – 0.93 0.095
BMI 0.04 -0.20 – 0.28 0.727
MADRS Score BL 0.23 -0.00 – 0.47 0.052
TRP nM BL 0.27 0.03 – 0.51 0.030
Observations 70
R2 / R2 adjusted 0.152 / 0.086

FINDINGS: MADRS (post-treatment) was predicted by baseline TRP adjusting for MADRS (baseline) + demo

15 5HT_model_1: 5HT (outcome) by Remission*infusionno (mixed model)

model_SER<-lme4::lmer(five_HT_nM_log~sex+age+BMI+race+Remission*infusionno+(1|patientno)+(1|Site_Location)+(1|Batch_Number), data=Biok_vert_df)
car::qqPlot(residuals(model_SER))

## 204 131 
## 201 129
pairwise_remission<-emmeans(model_SER,pairwise~Remission|infusionno)
plot(pairwise_remission, comparisons=TRUE, xlab="Serotonin (emmeans)", ylab="Prospective remission status")

pairwise_infusionno<-emmeans(model_SER,pairwise~infusionno|Remission)
plot(pairwise_infusionno, comparisons=TRUE, xlab="Serotonin (emmeans)", ylab="Ketamine infusion timepoint")

FINDINGS: 1. At baseline and timepoint 3, 5HT was significantly lower in remitters compared to non-remitters 2. In remitters, 5HT declined significantly between BL and infusion 3

16 5HT_model_2: MADRS by 5HT*infusionno (mixed model)

lmer_5HT<-lme4::lmer(MADRS_Score~age+sex+BMI+five_HT_nM_log*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(lmer_5HT))

## 147 104 
## 146 104
# summary(lmer_5HT)
sjPlot::tab_model(lmer_5HT, show.std =TRUE, show.est=FALSE, title="Mixed model of MADRS according to 5HT-by-infusion and covariates")
Mixed model of MADRS according to 5HT-by-infusion and covariates
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.11 0.76 – 1.46 <0.001 <0.001
age 0.03 -0.08 – 0.14 0.579 0.579
sex [female] 0.12 -0.10 – 0.35 0.283 0.283
BMI 0.04 -0.07 – 0.15 0.470 0.470
five HT nM log -0.06 -0.20 – 0.09 0.438 0.438
infusionno [1st] -1.30 -1.46 – -1.13 <0.001 <0.001
infusionno [3rd] -1.79 -1.96 – -1.63 <0.001 <0.001
five HT nM log *
infusionno [1st]
0.11 -0.06 – 0.28 0.220 0.220
five HT nM log *
infusionno [3rd]
0.23 0.06 – 0.39 0.007 0.007
Random Effects
σ2 27.78
τ00 patientno 15.28
τ00 Site_Location 8.68
ICC 0.46
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.566 / 0.767

RESULTS: MADRS was significantly associated with interaction of 5HT and infusion 3

17 5HT_model_3: post-treatment MADRS by baseline 5HT (linear model)

lm_5HT_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+five_HT_nM_log_BL*Remission, data=Biok_wide_new)
car::qqPlot(residuals(lm_5HT_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_5HT_BL, show.std =TRUE, show.est=FALSE, title="Linear model: post-treatment MADRS by baseline TRP, adjusting for demographics and baseline MADRS")
Linear model: post-treatment MADRS by baseline TRP, adjusting for demographics and baseline MADRS
  MADRS Score 3 rd
Predictors std. Beta standardized CI p std. p
(Intercept) 0.99 0.70 – 1.28 0.539 <0.001
age 0.08 -0.05 – 0.22 0.225 0.225
sex [female] 0.08 -0.19 – 0.35 0.551 0.551
BMI 0.02 -0.11 – 0.15 0.770 0.770
MADRS Score BL 0.15 0.01 – 0.28 0.030 0.030
five HT nM log BL 0.22 0.02 – 0.42 0.034 0.034
Remission [Remitter] -1.65 -1.92 – -1.38 0.042 <0.001
five HT nM log BL *
Remission [Remitter]
-0.23 -0.50 – 0.04 0.094 0.094
Observations 70
R2 / R2 adjusted 0.755 / 0.727

RESULTS: post-treatment MADRS was associated with baseline 5HT, regardless of prospective remission status, adjusting for baseline MADRS and demographics

18 KYN_model_1: Kynurenine (KYN) analysis

model_KYN<-lme4::lmer(KYN_nM_log~sex+age+BMI+race+Remission*infusionno+(1|patientno)+(1|Site_Location)+(1|Batch_Number), data=Biok_vert_df)
car::qqPlot(residuals(model_KYN))

## 218 202 
## 215 199
pairwise_remission<-emmeans(model_KYN,pairwise~Remission|infusionno)
plot(pairwise_remission, comparisons=TRUE, xlab="Kynurenine (emmeans)", ylab="Prospective remission status")

pairwise_infusionno<-emmeans(model_KYN,pairwise~infusionno|Remission)
plot(pairwise_infusionno, comparisons=TRUE, xlab="Kynurenine (emmeans)", ylab="Ketamine infusion timepoint")

RESULTS: 1. KYN did not distinguish remission at any timepoint 2. KYN decreased significantly at infusion 1 and 3 (relative to baseline), for BOTH remitters and non-remitters.

19 KYN_model_2: MADRS by KYN*infusionno (mixed model)

# Mixed effects model of MADRS by AA-infusionno   
lmer_KYN<-lme4::lmer(MADRS_Score~sex+age+BMI+KYN_nM_log*infusionno+ (1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(lmer_KYN))

## 143 151 
## 143 150
sjPlot::tab_model(lmer_KYN, show.std=TRUE, show.est=FALSE, title="Mixed model: MADRS by KYN*infusionno, adjusted by demo")
Mixed model: MADRS by KYN*infusionno, adjusted by demo
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.07 0.73 – 1.40 0.076 <0.001
sex [female] 0.16 -0.08 – 0.39 0.192 0.192
age 0.01 -0.11 – 0.13 0.845 0.845
BMI 0.02 -0.09 – 0.14 0.682 0.682
KYN nM log -0.03 -0.18 – 0.11 0.657 0.657
infusionno [1st] -1.29 -1.46 – -1.12 0.064 <0.001
infusionno [3rd] -1.79 -1.96 – -1.62 0.008 <0.001
KYN nM log * infusionno
[1st]
0.11 -0.06 – 0.27 0.205 0.205
KYN nM log * infusionno
[3rd]
0.17 -0.01 – 0.34 0.060 0.060
Random Effects
σ2 28.10
τ00 patientno 16.37
τ00 Site_Location 6.77
ICC 0.45
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.566 / 0.762

RESULTS: -Mixed effects model: MADRS trended with KYN at infusion 3, adjusting for demographics

20 KYN/5HT_model_1: Kynurenine/5HT by remission*infusionno (mixed model)

model_KYNSER<-lme4::lmer(KYN_SER_ratio_log~sex+age+BMI+race+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(model_KYNSER))

## 204 131 
## 201 129
pairwise_remission<-emmeans(model_KYNSER,pairwise~Remission|infusionno)
plot(pairwise_remission, comparisons=TRUE, xlab="KYN:5HT ratio (emmeans)", ylab="Prospective remission status")

pairwise_infusionno<-emmeans(model_KYNSER,pairwise~infusionno|Remission)
plot(pairwise_infusionno, comparisons=TRUE, xlab="KYN:5HT rato (emmeans)", ylab="Ketamine infusion timepoint")

RESULTS 1. QQ plot still abnormal - may need robust model 2. Significantly higher KYN:5HT ratio (infusion 3) in remitters compared to non-remitters 3. Amongst remitters there’s an uptrend in KYN:5HT ratio at infusion 3 compared to baseline

21 KYN/5HT_model_2: MADRS by KYN/5HT*infusionno interaction (mixed model)

# Mixed effects model of MADRS by AA-infusionno   
lmer_KYNSER<-lme4::lmer(MADRS_Score~sex+age+BMI+KYN_SER_ratio_log*infusionno+ (1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(lmer_KYNSER))

## 147 104 
## 146 104
# summary(lmer_KYNSER)
# car::Anova(lmer_KYNSER)

sjPlot::tab_model(lmer_KYNSER, show.std=TRUE, show.est=FALSE, title="Mixed model: MADRS by KYN/5HT*infusionno interaction, adjusted by demo")
Mixed model: MADRS by KYN/5HT*infusionno interaction, adjusted by demo
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.11 0.75 – 1.46 <0.001 <0.001
sex [female] 0.12 -0.11 – 0.35 0.302 0.302
age 0.03 -0.08 – 0.15 0.561 0.561
BMI 0.04 -0.07 – 0.15 0.464 0.464
KYN SER ratio log 0.05 -0.10 – 0.19 0.533 0.533
infusionno [1st] -1.30 -1.46 – -1.13 <0.001 <0.001
infusionno [3rd] -1.79 -1.96 – -1.63 <0.001 <0.001
KYN SER ratio log *
infusionno [1st]
-0.08 -0.26 – 0.09 0.336 0.336
KYN SER ratio log *
infusionno [3rd]
-0.20 -0.36 – -0.03 0.020 0.020
Random Effects
σ2 28.09
τ00 patientno 15.47
τ00 Site_Location 8.56
ICC 0.46
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.563 / 0.764

RESULTS: 1. MADRS (post-treatment) inversely correlated with KYN:SER at infusion #3, adjusting for demo Note: need help with robust mixed model if appropriate (https://cran.r-project.org/web/packages/sjPlot/vignettes/tab_model_robust.html)

22 KYN/5HT_model_3: post-tx MADRS by baseline KYN/5HT and covariates (linear model)

# Baseline elevated KYN:5HT is associated with outcome, adjusted by baseline severity and demo
lm_KYNSER_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+KYN_SER_ratio_log_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_KYNSER_BL))

## 2 4 
## 1 2
# summary(lm_KYNSER_BL)

sjPlot::tab_model(lm_KYNSER_BL, show.std=TRUE, show.est=FALSE, title="Linear model: Post-tx MADRS by baseline KYN/5HT adjusted by baseline MADRS and demo")
Linear model: Post-tx MADRS by baseline KYN/5HT adjusted by baseline MADRS and demo
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.56 – 0.22 0.589
age 0.08 -0.17 – 0.33 0.504
sex [female] 0.26 -0.23 – 0.75 0.290
BMI 0.04 -0.21 – 0.28 0.764
MADRS Score BL 0.29 0.05 – 0.53 0.019
KYN SER ratio log BL -0.22 -0.46 – 0.01 0.066
Observations 70
R2 / R2 adjusted 0.134 / 0.066

RESULTS: MADRS (post-treatment) trended with baseline KYN:5HT (p=0.06), adjusting for MADRS (baseline) and demo

23 AA_model_1: Anthranilic acid by Remission*infusion interaction (mixed model)

model_AA<-lme4::lmer(AA_nM_log~sex+age+BMI+race+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(model_AA))

##  50 205 
##  49 202
pairwise_remission<-emmeans(model_AA,pairwise~Remission|infusionno)
plot(pairwise_remission, comparisons=TRUE, xlab="AA level(emmeans)", ylab="Prospective remission status")

pairwise_infusionno<-emmeans(model_AA,pairwise~infusionno|Remission)
plot(pairwise_infusionno, comparisons=TRUE, xlab="AA level (emmeans)", ylab="Ketamine infusion timepoint")

RESULTS 1. Baseline AA is significantly higher in remitters than non-remitters 2. In remitters, AA is significantly lower at infusion 3 compared to baseline

24 AA_model_2: MADRS by AA*infusionno and covariates

lmer_AA<-lme4::lmer(MADRS_Score~sex+age+BMI+AA_nM_log*infusionno+ (1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(lmer_AA))

## 148 143 
## 147 143
sjPlot::tab_model(lmer_AA, show.est=FALSE, show.std=TRUE, title="Mixed model: MADRS by AA*infusionno (interaction), adjusting for demographics")
Mixed model: MADRS by AA*infusionno (interaction), adjusting for demographics
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.08 0.75 – 1.42 <0.001 <0.001
sex [female] 0.12 -0.11 – 0.36 0.292 0.292
age 0.02 -0.10 – 0.14 0.708 0.708
BMI 0.03 -0.09 – 0.15 0.637 0.637
AA nM log -0.03 -0.16 – 0.11 0.697 0.697
infusionno [1st] -1.30 -1.47 – -1.14 <0.001 <0.001
infusionno [3rd] -1.80 -1.96 – -1.63 <0.001 <0.001
AA nM log * infusionno
[1st]
0.12 -0.05 – 0.29 0.174 0.174
AA nM log * infusionno
[3rd]
0.04 -0.13 – 0.22 0.644 0.644
Random Effects
σ2 28.55
τ00 patientno 16.34
τ00 Site_Location 7.23
ICC 0.45
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.560 / 0.759

RESULT: MADRS is NOT associated with AA at any timepoint, adjusting for demo and random effects (patient, site)

25 AA_model_3: post-tx MADRS by pre-tx AA and covariates

lm_AA_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+AA_nM_log_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_AA_BL))

##  2 25 
##  1 23
sjPlot::tab_model(lm_AA_BL, show.est=FALSE, show.std=TRUE, title="Linear model: post-Tx MADRS by pre-tx AA, adjusting for pre-tx MADRS and covariates")
Linear model: post-Tx MADRS by pre-tx AA, adjusting for pre-tx MADRS and covariates
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.58 – 0.19 0.803
age 0.11 -0.14 – 0.36 0.381
sex [female] 0.30 -0.18 – 0.78 0.221
BMI 0.09 -0.16 – 0.33 0.485
MADRS Score BL 0.22 -0.02 – 0.46 0.067
AA nM log BL -0.28 -0.53 – -0.03 0.030
Observations 70
R2 / R2 adjusted 0.152 / 0.086

RESULTS (CONTINUOUS OUTCOME) 1. Post-treatment MADRS is negatively correlated with baseline AA, adjusting for baseline MADRS and demographics

26 IL8_mod_1: IL8 by remission*infusion (mixed model)

model_IL8<-lme4::lmer(IL8_pg_mL_log~sex+age+BMI+race+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(model_IL8), xlab="Intereukin 8 level (IL8_pg_mL_log)")

## 45 22 
## 44 21
pairwise_remission<-emmeans(model_IL8,pairwise~Remission|infusionno)
plot(pairwise_remission, comparisons=TRUE, xlab="IL8 level(emmeans)", ylab="Prospective remission status")

pairwise_infusionno<-emmeans(model_IL8,pairwise~infusionno|Remission)
plot(pairwise_infusionno, comparisons=TRUE, xlab="IL8 level (emmeans)", ylab="Ketamine infusion timepoint")

RESULTS 1. At any infusion timepoint, there are NO significant differences in IL8 by remission status 2. Amongst remitters, IL8 is significantly lower at infusion 3 compared to BL and infusion 1 levels

27 IL8_model_2: MADRS by IL8*infusionno (mixed effects)

# Mixed effects model of MADRS by IL8-infusionno   
lmer_IL8<-lme4::lmer(MADRS_Score~sex+age+BMI+IL8_pg_mL_log*infusionno+ (1|patientno)+(1|Site_Location), data=Biok_vert_df)
sjPlot::tab_model(lmer_IL8, show.est = FALSE, show.std=TRUE, title="Mixed model: MADRS by IL8*infusionno, adjusting for demographics")
Mixed model: MADRS by IL8*infusionno, adjusting for demographics
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.09 0.75 – 1.43 <0.001 <0.001
sex [female] 0.13 -0.11 – 0.36 0.290 0.290
age 0.02 -0.10 – 0.14 0.716 0.716
BMI 0.04 -0.08 – 0.16 0.506 0.506
IL8 pg mL log -0.07 -0.20 – 0.06 0.297 0.297
infusionno [1st] -1.31 -1.48 – -1.15 <0.001 <0.001
infusionno [3rd] -1.80 -1.97 – -1.63 <0.001 <0.001
IL8 pg mL log *
infusionno [1st]
0.20 0.04 – 0.37 0.017 0.017
IL8 pg mL log *
infusionno [3rd]
0.12 -0.05 – 0.30 0.167 0.167
Random Effects
σ2 27.40
τ00 patientno 17.42
τ00 Site_Location 7.28
ICC 0.47
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.563 / 0.770

RESULTS (CONTINUOUS OUTCOME) -Mixed effects: MADRS is associated with IL8 at infusion timepoint 1, adjusting for baseline MADRS and demo