library(ggplot2)
library(tidyverse)
library(dplyr)
library(tidyr)
library(plotly)https://www.kaggle.com/c/house-prices-advanced-regression-techniques
take a glance of data, I see that there are NAs in some numerical and categorical variable. Combine with the description of data, NA is meaningful in categorical data, not in numerical data. Therefore, I am going to deal with NA first.
# read data
data = read.csv('train2.csv')
# check number of observations
dim(data)## [1] 1460 81
# variables
colnames(data)## [1] "Id" "MSSubClass" "MSZoning" "LotFrontage"
## [5] "LotArea" "Street" "Alley" "LotShape"
## [9] "LandContour" "Utilities" "LotConfig" "LandSlope"
## [13] "Neighborhood" "Condition1" "Condition2" "BldgType"
## [17] "HouseStyle" "OverallQual" "OverallCond" "YearBuilt"
## [21] "YearRemodAdd" "RoofStyle" "RoofMatl" "Exterior1st"
## [25] "Exterior2nd" "MasVnrType" "MasVnrArea" "ExterQual"
## [29] "ExterCond" "Foundation" "BsmtQual" "BsmtCond"
## [33] "BsmtExposure" "BsmtFinType1" "BsmtFinSF1" "BsmtFinType2"
## [37] "BsmtFinSF2" "BsmtUnfSF" "TotalBsmtSF" "Heating"
## [41] "HeatingQC" "CentralAir" "Electrical" "X1stFlrSF"
## [45] "X2ndFlrSF" "LowQualFinSF" "GrLivArea" "BsmtFullBath"
## [49] "BsmtHalfBath" "FullBath" "HalfBath" "BedroomAbvGr"
## [53] "KitchenAbvGr" "KitchenQual" "TotRmsAbvGrd" "Functional"
## [57] "Fireplaces" "FireplaceQu" "GarageType" "GarageYrBlt"
## [61] "GarageFinish" "GarageCars" "GarageArea" "GarageQual"
## [65] "GarageCond" "PavedDrive" "WoodDeckSF" "OpenPorchSF"
## [69] "EnclosedPorch" "X3SsnPorch" "ScreenPorch" "PoolArea"
## [73] "PoolQC" "Fence" "MiscFeature" "MiscVal"
## [77] "MoSold" "YrSold" "SaleType" "SaleCondition"
## [81] "SalePrice"
# double check NAs
summary(data)## Id MSSubClass MSZoning LotFrontage
## Min. : 1.0 Min. : 20.0 Length:1460 Min. : 21.00
## 1st Qu.: 365.8 1st Qu.: 20.0 Class :character 1st Qu.: 59.00
## Median : 730.5 Median : 50.0 Mode :character Median : 69.00
## Mean : 730.5 Mean : 56.9 Mean : 70.05
## 3rd Qu.:1095.2 3rd Qu.: 70.0 3rd Qu.: 80.00
## Max. :1460.0 Max. :190.0 Max. :313.00
## NA's :259
## LotArea Street Alley LotShape
## Min. : 1300 Length:1460 Length:1460 Length:1460
## 1st Qu.: 7554 Class :character Class :character Class :character
## Median : 9478 Mode :character Mode :character Mode :character
## Mean : 10517
## 3rd Qu.: 11602
## Max. :215245
##
## LandContour Utilities LotConfig LandSlope
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## Neighborhood Condition1 Condition2 BldgType
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## HouseStyle OverallQual OverallCond YearBuilt
## Length:1460 Min. : 1.000 Min. :1.000 Min. :1872
## Class :character 1st Qu.: 5.000 1st Qu.:5.000 1st Qu.:1954
## Mode :character Median : 6.000 Median :5.000 Median :1973
## Mean : 6.099 Mean :5.575 Mean :1971
## 3rd Qu.: 7.000 3rd Qu.:6.000 3rd Qu.:2000
## Max. :10.000 Max. :9.000 Max. :2010
##
## YearRemodAdd RoofStyle RoofMatl Exterior1st
## Min. :1950 Length:1460 Length:1460 Length:1460
## 1st Qu.:1967 Class :character Class :character Class :character
## Median :1994 Mode :character Mode :character Mode :character
## Mean :1985
## 3rd Qu.:2004
## Max. :2010
##
## Exterior2nd MasVnrType MasVnrArea ExterQual
## Length:1460 Length:1460 Min. : 0.0 Length:1460
## Class :character Class :character 1st Qu.: 0.0 Class :character
## Mode :character Mode :character Median : 0.0 Mode :character
## Mean : 103.7
## 3rd Qu.: 166.0
## Max. :1600.0
## NA's :8
## ExterCond Foundation BsmtQual BsmtCond
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2
## Length:1460 Length:1460 Min. : 0.0 Length:1460
## Class :character Class :character 1st Qu.: 0.0 Class :character
## Mode :character Mode :character Median : 383.5 Mode :character
## Mean : 443.6
## 3rd Qu.: 712.2
## Max. :5644.0
##
## BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Length:1460
## 1st Qu.: 0.00 1st Qu.: 223.0 1st Qu.: 795.8 Class :character
## Median : 0.00 Median : 477.5 Median : 991.5 Mode :character
## Mean : 46.55 Mean : 567.2 Mean :1057.4
## 3rd Qu.: 0.00 3rd Qu.: 808.0 3rd Qu.:1298.2
## Max. :1474.00 Max. :2336.0 Max. :6110.0
##
## HeatingQC CentralAir Electrical X1stFlrSF
## Length:1460 Length:1460 Length:1460 Min. : 334
## Class :character Class :character Class :character 1st Qu.: 882
## Mode :character Mode :character Mode :character Median :1087
## Mean :1163
## 3rd Qu.:1391
## Max. :4692
##
## X2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath
## Min. : 0 Min. : 0.000 Min. : 334 Min. :0.0000
## 1st Qu.: 0 1st Qu.: 0.000 1st Qu.:1130 1st Qu.:0.0000
## Median : 0 Median : 0.000 Median :1464 Median :0.0000
## Mean : 347 Mean : 5.845 Mean :1515 Mean :0.4253
## 3rd Qu.: 728 3rd Qu.: 0.000 3rd Qu.:1777 3rd Qu.:1.0000
## Max. :2065 Max. :572.000 Max. :5642 Max. :3.0000
##
## BsmtHalfBath FullBath HalfBath BedroomAbvGr
## Min. :0.00000 Min. :0.000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.00000 1st Qu.:1.000 1st Qu.:0.0000 1st Qu.:2.000
## Median :0.00000 Median :2.000 Median :0.0000 Median :3.000
## Mean :0.05753 Mean :1.565 Mean :0.3829 Mean :2.866
## 3rd Qu.:0.00000 3rd Qu.:2.000 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :2.00000 Max. :3.000 Max. :2.0000 Max. :8.000
##
## KitchenAbvGr KitchenQual TotRmsAbvGrd Functional
## Min. :0.000 Length:1460 Min. : 2.000 Length:1460
## 1st Qu.:1.000 Class :character 1st Qu.: 5.000 Class :character
## Median :1.000 Mode :character Median : 6.000 Mode :character
## Mean :1.047 Mean : 6.518
## 3rd Qu.:1.000 3rd Qu.: 7.000
## Max. :3.000 Max. :14.000
##
## Fireplaces FireplaceQu GarageType GarageYrBlt
## Min. :0.000 Length:1460 Length:1460 Min. :1900
## 1st Qu.:0.000 Class :character Class :character 1st Qu.:1961
## Median :1.000 Mode :character Mode :character Median :1980
## Mean :0.613 Mean :1979
## 3rd Qu.:1.000 3rd Qu.:2002
## Max. :3.000 Max. :2010
## NA's :81
## GarageFinish GarageCars GarageArea GarageQual
## Length:1460 Min. :0.000 Min. : 0.0 Length:1460
## Class :character 1st Qu.:1.000 1st Qu.: 334.5 Class :character
## Mode :character Median :2.000 Median : 480.0 Mode :character
## Mean :1.767 Mean : 473.0
## 3rd Qu.:2.000 3rd Qu.: 576.0
## Max. :4.000 Max. :1418.0
##
## GarageCond PavedDrive WoodDeckSF OpenPorchSF
## Length:1460 Length:1460 Min. : 0.00 Min. : 0.00
## Class :character Class :character 1st Qu.: 0.00 1st Qu.: 0.00
## Mode :character Mode :character Median : 0.00 Median : 25.00
## Mean : 94.24 Mean : 46.66
## 3rd Qu.:168.00 3rd Qu.: 68.00
## Max. :857.00 Max. :547.00
##
## EnclosedPorch X3SsnPorch ScreenPorch PoolArea
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.000
## Mean : 21.95 Mean : 3.41 Mean : 15.06 Mean : 2.759
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :552.00 Max. :508.00 Max. :480.00 Max. :738.000
##
## PoolQC Fence MiscFeature MiscVal
## Length:1460 Length:1460 Length:1460 Min. : 0.00
## Class :character Class :character Class :character 1st Qu.: 0.00
## Mode :character Mode :character Mode :character Median : 0.00
## Mean : 43.49
## 3rd Qu.: 0.00
## Max. :15500.00
##
## MoSold YrSold SaleType SaleCondition
## Min. : 1.000 Min. :2006 Length:1460 Length:1460
## 1st Qu.: 5.000 1st Qu.:2007 Class :character Class :character
## Median : 6.000 Median :2008 Mode :character Mode :character
## Mean : 6.322 Mean :2008
## 3rd Qu.: 8.000 3rd Qu.:2009
## Max. :12.000 Max. :2010
##
## SalePrice
## Min. : 34900
## 1st Qu.:129975
## Median :163000
## Mean :180921
## 3rd Qu.:214000
## Max. :755000
##
reduce NA
# numerical variables contains NA
summary(data$GarageYrBlt)## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1900 1961 1980 1979 2002 2010 81
summary(data$MasVnrArea)## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0 0.0 0.0 103.7 166.0 1600.0 8
summary(data$LotFrontage)## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 21.00 59.00 69.00 70.05 80.00 313.00 259
variable: garage year built
the plot is left skewed, as we can see that mostly garage built between 1950 and 2021. The missing value could be year was too old to recorded, or, for some reasons, they were forgotten to be recorded. Anyhow, consider it only takes 5% of data, I’m going to drop these rows.
# garage year built
ggplot(data, aes(x = GarageYrBlt)) + geom_bar()## Warning: Removed 81 rows containing non-finite values (stat_count).
# garage year built vs sale price
ggplot(data, aes(x = GarageYrBlt, y = SalePrice)) + geom_point()## Warning: Removed 81 rows containing missing values (geom_point).
# drop NA in the variable
data <- data %>% drop_na(GarageYrBlt)
# check NA amount: it helps a little
summary(data$MasVnrArea)## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0 0.0 0.0 109.0 171.5 1600.0 8
summary(data$LotFrontage)## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 21.00 60.00 70.00 70.68 80.00 313.00 252
variable: Masonry veneer area in square feet
there is only 8 NAs, I guess I will just drop them.
data <- data %>% drop_na(MasVnrArea)variable: Linear feet of street connected to property
with no NA, the distribution looks roughly normal without outliers. since most data is centered between first and third quantile, so I am going to replace NA with random number between the range.
ggplot(data, aes(x = LotFrontage)) + geom_boxplot()## Warning: Removed 250 rows containing non-finite values (stat_boxplot).
ggplot(data, aes(x = LotFrontage)) + geom_histogram()## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 250 rows containing non-finite values (stat_bin).
set.seed(100)
data$LotFrontage <- data$LotFrontage %>% replace_na(round(runif(1, 60.0, 80.0),2))
# double check NA values in these numerical variable
sum(is.na(data$GarageYrBlt)) == 0## [1] TRUE
sum(is.na(data$MasVnrArea)) == 0## [1] TRUE
sum(is.na(data$LotFrontage)) == 0## [1] TRUE
Descriptive and inferential statisctics
Descriptive statistics
provide univariate descriptive statistics and appropriate plots.
If I am the one wants to buy a house, I am interested in the following features:
qualitative:
* ExterCond: Evaluates the present condition of the material on the exterior
* Utilities: Type of utilities available
* HouseStyle: Style of dwelling
* BldgType: Type of dwelling
* Neighborhood: Physical locations within Ames city limits
quantitative:
* OverallCond: Rates the overall condition of the house
* OverallQual: Rates the overall material and finish of the house
* YearBuilt: Original construction date
* TotalBsmtSF: Total square feet of basement area
* GrLivArea: Above grade (ground) living area square feet
* GarageCars: Size of garage in car capacity
* SalePrice: the property's sale price in dollars
the plots below are just some kind of idea of features influence sales price.
# qualitative plots
qualitative <- data %>% select(ExterCond, Utilities,HouseStyle,BldgType,Neighborhood)
ggplot(qualitative, aes(x = ExterCond, y = data$SalePrice)) + geom_point() + labs(x = 'the material on the exterior', y = 'sale price', title = 'relationshiop between sale price and condition of the material on the exterior')ggplot(qualitative, aes(x = Utilities, y = data$SalePrice)) + geom_point() + labs(x = 'public Utilities', y = 'sale price', title = 'relationshiop between sale price and house around public Utilities')ggplot(qualitative, aes(x = HouseStyle, y = data$SalePrice)) + geom_boxplot() + labs(x = 'house style', y = 'sale price', title = 'relationshiop between sale price and house style')ggplot(qualitative, aes(x = BldgType, y = data$SalePrice)) + geom_point() + labs(x = 'Type of dwelling', y = 'sale price', title = 'relationshiop between sale price and dwelling type')ggplot(qualitative, aes(x = Neighborhood, y = data$SalePrice)) + geom_boxplot() + labs(x = 'Type of dwelling', y = 'sale price', title = 'relationshiop between sale price and dwelling type')+ coord_flip()scatterplot matrix for at least two of the independent variables
from the plot created with quantitative data, the OverallQual, TotalBsmtSF and GrLivArea have strong positive relationship with SalePrice compared to others.
# quantitative plot
quantitative <- data %>% select(OverallCond, OverallQual,YearBuilt,TotalBsmtSF,GrLivArea,GarageCars,SalePrice)
pairs(quantitative)derive a correlation matrix for any three quantitative variables
# select variables with strong relationship and subset
positive_relation <- quantitative %>% select(OverallQual, TotalBsmtSF,GrLivArea,SalePrice)
# correlation matrix
correlation <- cor(positive_relation)
correlation## OverallQual TotalBsmtSF GrLivArea SalePrice
## OverallQual 1.0000000 0.5313612 0.5912377 0.7862117
## TotalBsmtSF 0.5313612 1.0000000 0.4410784 0.6029809
## GrLivArea 0.5912377 0.4410784 1.0000000 0.7097950
## SalePrice 0.7862117 0.6029809 0.7097950 1.0000000
inferencial statistics
hypotheses
null hypo: there is 0 relationship between these variables
alter hypo: there are some relationship between these variables
p is less than significant level, therefore, reject the null hypo. confidence interval is [182450.7, 187913.1]
library(infer)
t_result <- positive_relation %>% t_test(response = SalePrice, conf_level = 0.8)
t_result ## # A tibble: 1 × 7
## statistic t_df p_value alternative estimate lower_ci upper_ci
## <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
## 1 86.9 1370 0 two.sided 185182. 182451. 187913.
meaning of analysis
would you be worried about familywise error?
I only pick 3 independent variables to see if there is relationship between sales price and these variables for my personal preference. And I see positive trend in pairs plot, therefore, I am not worried about familywise error so far.
Linear Algebra and Correlation
library(matrixcalc)
# invert correlation matrix
inv_cor <- solve(correlation)
# correction * precision
cor_pre <- round(correlation %*% inv_cor,3)
# precision * correlation
pre_cor <- round(inv_cor%*%correlation, 3)
cor_pre %>% lu.decomposition()## $L
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
##
## $U
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
pre_cor %>% lu.decomposition()## $L
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
##
## $U
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
inv_cor %>% lu.decomposition()## $L
## [,1] [,2] [,3] [,4]
## [1,] 1.00000000 0.00000000 0.000000 0
## [2,] -0.08869378 1.00000000 0.000000 0
## [3,] -0.06454766 -0.02637211 1.000000 0
## [4,] -0.68691543 -0.58426210 -0.709795 1
##
## $U
## [,1] [,2] [,3] [,4]
## [1,] 2.669175e+00 -0.2367392 -0.17228900 -1.8334974
## [2,] 2.775558e-17 1.5721566 -0.04146109 -0.9185515
## [3,] 7.319731e-19 0.0000000 2.01535257 -1.4304871
## [4,] 2.387807e-16 0.0000000 0.00000000 1.0000000
Calculus-Based Probability & Statistics
# pick a right skewed variable
library(MASS)
plot(density(data$X1stFlrSF), main = "density function of first floor sf")# run fitdistr with exponential function
fit <- data$X1stFlrSF %>% fitdistr('exponential')
fit## rate
## 8.505005e-04
## (2.296973e-05)
# find lambda
lamda <- fit$estimate
# take sample from this exp distribution
exp_df <- rexp(1000, lamda)
# histogram of orig. data
hist(data$X1stFlrSF, main = 'distribution of first floor square feet', xlab = 'first floor square feet')# histogram of sample exp data
hist(exp_df, main = 'distribution of sample exponential data', xlab = 'x')# 5th and 95th percentiles using CDF
qexp(0.05, rate = lamda) ## [1] 60.30954
qexp(0.95, rate = lamda)## [1] 3522.317
# 95% of confidence interval from empirical data
library(Rmisc)
CI(data$X1stFlrSF)## upper mean lower
## 1196.197 1175.778 1155.359
# 5 percentile of data
quantile(data$X1stFlrSF, 0.05)## 5%
## 687.5
# 95% percentile of data
quantile(data$X1stFlrSF, 0.95)## 95%
## 1837
Modeling
multiple regression model
according to summary, there are some variables are not so important in modeling. So, I will reduce some features
library(purrr)
# select all quantitative variable
mask <- data %>% select_all() %>% map_lgl(is.numeric)
df <- data %>% select_if(mask)
lm <- lm(SalePrice ~ ., data = df)
summary(lm)##
## Call:
## lm(formula = SalePrice ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -459477 -16340 -2188 14573 299895
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.678e+05 1.457e+06 0.252 0.800729
## Id -5.073e-01 2.264e+00 -0.224 0.822773
## MSSubClass -1.903e+02 2.930e+01 -6.496 1.16e-10 ***
## LotFrontage -8.570e+01 5.354e+01 -1.601 0.109700
## LotArea 4.277e-01 1.027e-01 4.163 3.34e-05 ***
## OverallQual 1.827e+04 1.256e+03 14.550 < 2e-16 ***
## OverallCond 5.323e+03 1.116e+03 4.772 2.03e-06 ***
## YearBuilt 3.649e+02 7.658e+01 4.765 2.10e-06 ***
## YearRemodAdd 1.199e+02 7.358e+01 1.630 0.103330
## MasVnrArea 2.851e+01 6.036e+00 4.722 2.58e-06 ***
## BsmtFinSF1 1.813e+01 4.861e+00 3.730 0.000200 ***
## BsmtFinSF2 8.758e+00 7.254e+00 1.207 0.227519
## BsmtUnfSF 7.393e+00 4.423e+00 1.671 0.094882 .
## TotalBsmtSF NA NA NA NA
## X1stFlrSF 4.784e+01 6.061e+00 7.892 6.13e-15 ***
## X2ndFlrSF 4.946e+01 5.149e+00 9.605 < 2e-16 ***
## LowQualFinSF 3.194e+01 2.461e+01 1.298 0.194570
## GrLivArea NA NA NA NA
## BsmtFullBath 8.117e+03 2.743e+03 2.959 0.003144 **
## BsmtHalfBath 1.651e+03 4.237e+03 0.390 0.696754
## FullBath 2.165e+03 3.003e+03 0.721 0.471031
## HalfBath -3.548e+03 2.798e+03 -1.268 0.205005
## BedroomAbvGr -9.982e+03 1.834e+03 -5.443 6.24e-08 ***
## KitchenAbvGr -2.069e+04 5.971e+03 -3.465 0.000547 ***
## TotRmsAbvGrd 5.331e+03 1.277e+03 4.175 3.17e-05 ***
## Fireplaces 3.526e+03 1.824e+03 1.933 0.053419 .
## GarageYrBlt -5.806e+01 8.070e+01 -0.719 0.472034
## GarageCars 1.590e+04 3.028e+03 5.251 1.76e-07 ***
## GarageArea 5.572e+00 1.030e+01 0.541 0.588718
## WoodDeckSF 2.287e+01 8.186e+00 2.793 0.005290 **
## OpenPorchSF -4.545e+00 1.614e+01 -0.282 0.778294
## EnclosedPorch 1.034e+01 1.762e+01 0.587 0.557506
## X3SsnPorch 2.166e+01 3.151e+01 0.687 0.491969
## ScreenPorch 5.487e+01 1.728e+01 3.176 0.001528 **
## PoolArea -2.790e+01 2.401e+01 -1.162 0.245601
## MiscVal -7.401e-01 1.894e+00 -0.391 0.696008
## MoSold -8.483e+01 3.580e+02 -0.237 0.812715
## YrSold -6.343e+02 7.245e+02 -0.875 0.381504
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34800 on 1335 degrees of freedom
## Multiple R-squared: 0.8103, Adjusted R-squared: 0.8053
## F-statistic: 162.9 on 35 and 1335 DF, p-value: < 2.2e-16
# update multiple regression
updated_lm <- lm(SalePrice ~ MSSubClass+
LotArea +
OverallQual +
OverallCond +
YearBuilt+
MasVnrArea+
BsmtFinSF1+
X1stFlrSF+
X2ndFlrSF+
BsmtFullBath+
BedroomAbvGr+
KitchenAbvGr+
TotRmsAbvGrd+
GarageCars+
WoodDeckSF+
ScreenPorch, df)
summary(updated_lm)##
## Call:
## lm(formula = SalePrice ~ MSSubClass + LotArea + OverallQual +
## OverallCond + YearBuilt + MasVnrArea + BsmtFinSF1 + X1stFlrSF +
## X2ndFlrSF + BsmtFullBath + BedroomAbvGr + KitchenAbvGr +
## TotRmsAbvGrd + GarageCars + WoodDeckSF + ScreenPorch, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -477089 -16199 -2083 14188 280797
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.712e+05 9.392e+04 -8.212 5.04e-16 ***
## MSSubClass -1.751e+02 2.726e+01 -6.424 1.83e-10 ***
## LotArea 4.377e-01 9.959e-02 4.396 1.19e-05 ***
## OverallQual 1.951e+04 1.176e+03 16.587 < 2e-16 ***
## OverallCond 5.834e+03 9.881e+02 5.905 4.46e-09 ***
## YearBuilt 3.537e+02 4.757e+01 7.435 1.84e-13 ***
## MasVnrArea 2.770e+01 5.891e+00 4.701 2.85e-06 ***
## BsmtFinSF1 1.085e+01 3.009e+00 3.606 0.000322 ***
## X1stFlrSF 5.578e+01 4.619e+00 12.075 < 2e-16 ***
## X2ndFlrSF 4.785e+01 4.155e+00 11.514 < 2e-16 ***
## BsmtFullBath 8.050e+03 2.456e+03 3.278 0.001071 **
## BedroomAbvGr -1.034e+04 1.757e+03 -5.887 4.95e-09 ***
## KitchenAbvGr -2.339e+04 5.765e+03 -4.058 5.24e-05 ***
## TotRmsAbvGrd 5.408e+03 1.250e+03 4.326 1.63e-05 ***
## GarageCars 1.714e+04 2.072e+03 8.272 3.12e-16 ***
## WoodDeckSF 2.383e+01 8.013e+00 2.975 0.002986 **
## ScreenPorch 5.493e+01 1.675e+01 3.280 0.001063 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34810 on 1354 degrees of freedom
## Multiple R-squared: 0.8075, Adjusted R-squared: 0.8053
## F-statistic: 355.1 on 16 and 1354 DF, p-value: < 2.2e-16
\(SalePrice = -771200-175.1MSSubClass + 0.4377LotArea + 19510OverallQual + 5834OverallCond + 353.7YearBuilt + 27.7MasVnrArea + 10.85BsmtFinSF1 + 55.78X1stFlrSF + 47.85X2ndFlrSF + 805BsmtFullBath -10340BedroomAbvGr -23390KitchenAbvGr + 5408TotRmsAbvGrd + 17140GarageCars + 23.83WoodDeckSF + 54.93ScreenPorch\)
# read test data
test <- as.data.frame(read.csv('test2.csv'))
# synchronize variables from formula and drop na
syn_test <- test %>% dplyr::select(Id,MSSubClass,
LotArea,
OverallQual,
OverallCond,
YearBuilt,
MasVnrArea,
BsmtFinSF1,
X1stFlrSF,
X2ndFlrSF,
BsmtFullBath,
BedroomAbvGr,
KitchenAbvGr,
TotRmsAbvGrd,
GarageCars,
WoodDeckSF,
ScreenPorch) %>% drop_na()
summary(syn_test)## Id MSSubClass LotArea OverallQual
## Min. :1461 Min. : 20.00 Min. : 1470 Min. : 1.000
## 1st Qu.:1823 1st Qu.: 20.00 1st Qu.: 7379 1st Qu.: 5.000
## Median :2188 Median : 50.00 Median : 9399 Median : 6.000
## Mean :2189 Mean : 57.51 Mean : 9791 Mean : 6.069
## 3rd Qu.:2554 3rd Qu.: 70.00 3rd Qu.:11500 3rd Qu.: 7.000
## Max. :2919 Max. :190.00 Max. :56600 Max. :10.000
## OverallCond YearBuilt MasVnrArea BsmtFinSF1
## Min. :1.000 Min. :1879 Min. : 0.0 Min. : 0.0
## 1st Qu.:5.000 1st Qu.:1953 1st Qu.: 0.0 1st Qu.: 0.0
## Median :5.000 Median :1973 Median : 0.0 Median : 353.0
## Mean :5.557 Mean :1971 Mean : 100.9 Mean : 440.8
## 3rd Qu.:6.000 3rd Qu.:2000 3rd Qu.: 164.0 3rd Qu.: 758.0
## Max. :9.000 Max. :2010 Max. :1290.0 Max. :4010.0
## X1stFlrSF X2ndFlrSF BsmtFullBath BedroomAbvGr
## Min. : 407 Min. : 0.0 Min. :0.0000 Min. :0.000
## 1st Qu.: 873 1st Qu.: 0.0 1st Qu.:0.0000 1st Qu.:2.000
## Median :1080 Median : 0.0 Median :0.0000 Median :3.000
## Mean :1155 Mean : 324.6 Mean :0.4365 Mean :2.854
## 3rd Qu.:1380 3rd Qu.: 672.0 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :5095 Max. :1862.0 Max. :3.0000 Max. :6.000
## KitchenAbvGr TotRmsAbvGrd GarageCars WoodDeckSF
## Min. :0.000 Min. : 3.000 Min. :0.000 Min. : 0.00
## 1st Qu.:1.000 1st Qu.: 5.000 1st Qu.:1.000 1st Qu.: 0.00
## Median :1.000 Median : 6.000 Median :2.000 Median : 0.00
## Mean :1.043 Mean : 6.384 Mean :1.763 Mean : 93.51
## 3rd Qu.:1.000 3rd Qu.: 7.000 3rd Qu.:2.000 3rd Qu.: 168.00
## Max. :2.000 Max. :15.000 Max. :5.000 Max. :1424.00
## ScreenPorch
## Min. : 0.00
## 1st Qu.: 0.00
## Median : 0.00
## Mean : 17.28
## 3rd Qu.: 0.00
## Max. :576.00
# formula
salesprice <- -771200-175.1*syn_test$MSSubClass + 0.4377*syn_test$LotArea + 19510*syn_test$OverallQual + 5834*syn_test$OverallCond + 353.7*syn_test$YearBuilt + 27.7*syn_test$MasVnrArea + 10.85*syn_test$BsmtFinSF1 + 55.78*syn_test$X1stFlrSF + 47.85*syn_test$X2ndFlrSF + 805*syn_test$BsmtFullBath -10340*syn_test$BedroomAbvGr -23390*syn_test$KitchenAbvGr + 5408*syn_test$TotRmsAbvGrd + 17140*syn_test$GarageCars + 23.83*syn_test$WoodDeckSF + 54.93*syn_test$ScreenPorch
syn_test <- syn_test %>% mutate(predicted_saleprice = salesprice)
result <- syn_test %>% dplyr::select(Id, predicted_saleprice)
result$predicted_saleprice <- round(result$predicted_saleprice,2)
result## Id predicted_saleprice
## 1 1461 121639.13
## 2 1462 167832.23
## 3 1463 168665.29
## 4 1464 198903.05
## 5 1465 199210.96
## 6 1466 180534.75
## 7 1467 192247.75
## 8 1468 168977.18
## 9 1469 203697.83
## 10 1470 109261.24
## 11 1471 192012.05
## 12 1472 118266.83
## 13 1473 93858.89
## 14 1474 150870.70
## 15 1475 120251.54
## 16 1476 322858.18
## 17 1477 254851.71
## 18 1478 296653.60
## 19 1479 274754.66
## 20 1480 397527.24
## 21 1481 292706.65
## 22 1482 212809.08
## 23 1483 175819.92
## 24 1484 173922.65
## 25 1485 191265.13
## 26 1486 207401.23
## 27 1487 291634.59
## 28 1488 262108.93
## 29 1489 185436.75
## 30 1490 217820.91
## 31 1491 213984.08
## 32 1492 93103.25
## 33 1493 199522.86
## 34 1494 290123.73
## 35 1495 277856.85
## 36 1496 209009.46
## 37 1497 170360.52
## 38 1498 157128.01
## 39 1499 155270.11
## 40 1500 143906.41
## 41 1501 189278.03
## 42 1502 146407.19
## 43 1503 272159.80
## 44 1504 240787.14
## 45 1505 214632.72
## 46 1506 202101.21
## 47 1507 240388.84
## 48 1508 200008.76
## 49 1509 168746.42
## 50 1510 145775.78
## 51 1511 143776.60
## 52 1512 184755.46
## 53 1513 177365.00
## 54 1514 108879.94
## 55 1515 218503.41
## 56 1516 176595.04
## 57 1517 163735.71
## 58 1518 115800.05
## 59 1519 237083.49
## 60 1520 121621.92
## 61 1521 124735.61
## 62 1522 198791.81
## 63 1523 83104.21
## 64 1524 116631.28
## 65 1525 105123.20
## 66 1526 82540.47
## 67 1527 91771.25
## 68 1528 147012.96
## 69 1529 138685.14
## 70 1530 231122.71
## 71 1531 134882.59
## 72 1532 86484.64
## 73 1533 149649.31
## 74 1534 128905.69
## 75 1535 147959.94
## 76 1536 100375.86
## 77 1537 22285.49
## 78 1538 185541.74
## 79 1539 232986.11
## 80 1540 83759.64
## 81 1541 161825.80
## 82 1542 139303.69
## 83 1543 195587.40
## 84 1544 68921.55
## 85 1545 131200.34
## 86 1546 140048.84
## 87 1547 140299.01
## 88 1548 147217.23
## 89 1549 127573.67
## 90 1550 125240.69
## 91 1551 123524.86
## 92 1552 131071.58
## 93 1553 143898.89
## 94 1554 124502.92
## 95 1555 161826.52
## 96 1556 77289.18
## 97 1557 64279.19
## 98 1558 97574.59
## 99 1559 49263.14
## 100 1560 114744.77
## 101 1561 77582.00
## 102 1562 106710.92
## 103 1563 109022.92
## 104 1564 141241.17
## 105 1565 135481.57
## 106 1566 240128.66
## 107 1567 66473.64
## 108 1568 215310.93
## 109 1569 79682.48
## 110 1570 134954.48
## 111 1571 99119.42
## 112 1572 131004.15
## 113 1573 239049.02
## 114 1574 119231.48
## 115 1575 237065.62
## 116 1576 260219.73
## 117 1577 198494.03
## 118 1578 150088.74
## 119 1579 129088.49
## 120 1580 209459.51
## 121 1581 132939.31
## 122 1582 120408.68
## 123 1583 306561.95
## 124 1584 229234.29
## 125 1585 150045.14
## 126 1586 44678.39
## 127 1587 104793.50
## 128 1588 138759.55
## 129 1589 107335.32
## 130 1590 125611.88
## 131 1591 54037.06
## 132 1592 118210.99
## 133 1593 136984.11
## 134 1594 103862.50
## 135 1595 87622.75
## 136 1596 205861.64
## 137 1597 166314.18
## 138 1598 204459.25
## 139 1599 196219.89
## 140 1600 185434.93
## 141 1601 22208.91
## 142 1602 122906.14
## 143 1603 59726.00
## 144 1604 245003.39
## 145 1605 262721.01
## 146 1606 176464.27
## 147 1607 162476.69
## 148 1608 216708.66
## 149 1609 196286.99
## 150 1610 153930.86
## 151 1611 153567.93
## 152 1612 162751.10
## 153 1613 164772.55
## 154 1614 112873.66
## 155 1615 52984.63
## 156 1616 28992.61
## 157 1617 61693.53
## 158 1618 107482.40
## 159 1619 148103.86
## 160 1620 158723.87
## 161 1621 137536.39
## 162 1622 122754.89
## 163 1623 251473.79
## 164 1624 202876.80
## 165 1625 124486.16
## 166 1626 185627.66
## 167 1627 192676.01
## 168 1628 287033.15
## 169 1629 198528.26
## 170 1630 315999.73
## 171 1631 211161.96
## 172 1632 231641.32
## 173 1633 189091.46
## 174 1634 184026.91
## 175 1635 176842.98
## 176 1636 159568.12
## 177 1637 188163.11
## 178 1638 226990.40
## 179 1639 205439.58
## 180 1640 276876.29
## 181 1641 201958.28
## 182 1642 219044.98
## 183 1643 230013.59
## 184 1644 235252.03
## 185 1645 221134.89
## 186 1646 170441.56
## 187 1647 175741.42
## 188 1648 140712.59
## 189 1649 129461.13
## 190 1650 107001.85
## 191 1651 107731.92
## 192 1652 114289.28
## 193 1653 116018.88
## 194 1654 151002.67
## 195 1655 148493.11
## 196 1656 140295.46
## 197 1657 151886.48
## 198 1658 142965.23
## 199 1659 135326.30
## 200 1660 144689.47
## 201 1661 365675.06
## 202 1662 330360.94
## 203 1663 324447.36
## 204 1664 413295.05
## 205 1665 293022.54
## 206 1666 287380.88
## 207 1667 305849.92
## 208 1668 306011.77
## 209 1669 289356.62
## 210 1670 307775.12
## 211 1671 256450.85
## 212 1672 376128.09
## 213 1673 290031.35
## 214 1674 259428.19
## 215 1675 184909.58
## 216 1676 184021.53
## 217 1677 206082.67
## 218 1678 404189.96
## 219 1679 324353.37
## 220 1680 277281.05
## 221 1681 247909.43
## 222 1682 288220.53
## 223 1683 192583.14
## 224 1684 198945.33
## 225 1685 173384.14
## 226 1686 172390.66
## 227 1687 179822.88
## 228 1688 207347.74
## 229 1689 205137.19
## 230 1690 205072.51
## 231 1691 192096.60
## 232 1693 185594.04
## 233 1694 180496.24
## 234 1695 183259.79
## 235 1696 271928.96
## 236 1697 189136.69
## 237 1698 321152.08
## 238 1699 295735.67
## 239 1700 243296.75
## 240 1701 275158.23
## 241 1702 264653.69
## 242 1703 264169.33
## 243 1704 276708.26
## 244 1705 238569.16
## 245 1706 370383.43
## 246 1708 205864.04
## 247 1709 274036.91
## 248 1710 233633.39
## 249 1711 266640.09
## 250 1712 257857.59
## 251 1713 258515.06
## 252 1714 216012.90
## 253 1715 199159.00
## 254 1716 191210.05
## 255 1717 185533.89
## 256 1718 120848.79
## 257 1719 217725.09
## 258 1720 255514.58
## 259 1721 185941.17
## 260 1722 106731.33
## 261 1723 150260.98
## 262 1724 229032.07
## 263 1725 227993.89
## 264 1726 189796.63
## 265 1727 152570.46
## 266 1728 189816.83
## 267 1729 175477.32
## 268 1730 162331.94
## 269 1731 113362.17
## 270 1732 118247.63
## 271 1733 111041.04
## 272 1734 107759.04
## 273 1735 120867.98
## 274 1736 104171.32
## 275 1737 321179.32
## 276 1738 244329.99
## 277 1739 276982.31
## 278 1740 192614.27
## 279 1741 181966.16
## 280 1742 166428.55
## 281 1743 175470.09
## 282 1744 290114.81
## 283 1745 230335.01
## 284 1746 236634.18
## 285 1747 233620.11
## 286 1748 231648.45
## 287 1749 156475.91
## 288 1750 146207.83
## 289 1751 262451.27
## 290 1752 112035.42
## 291 1753 160949.66
## 292 1754 232411.00
## 293 1755 169587.85
## 294 1756 116568.96
## 295 1757 102477.08
## 296 1758 147911.28
## 297 1759 179235.05
## 298 1760 162032.02
## 299 1761 156342.07
## 300 1762 170331.72
## 301 1763 172265.94
## 302 1764 103325.75
## 303 1765 196695.16
## 304 1766 199904.98
## 305 1767 235950.47
## 306 1768 139107.48
## 307 1769 185990.76
## 308 1770 148465.57
## 309 1771 114630.38
## 310 1772 128135.94
## 311 1773 93498.03
## 312 1774 142310.25
## 313 1775 140637.29
## 314 1776 144433.75
## 315 1777 95094.74
## 316 1778 131805.83
## 317 1779 134221.13
## 318 1780 189833.73
## 319 1781 121117.00
## 320 1782 46816.58
## 321 1783 129129.55
## 322 1784 83867.69
## 323 1785 108746.17
## 324 1786 105520.10
## 325 1787 169148.84
## 326 1788 -7942.20
## 327 1789 104798.04
## 328 1790 29949.66
## 329 1791 212358.34
## 330 1792 178305.87
## 331 1793 147050.85
## 332 1794 175507.61
## 333 1795 135420.72
## 334 1796 139928.06
## 335 1797 146136.79
## 336 1798 106858.67
## 337 1799 100433.30
## 338 1800 104580.69
## 339 1801 94356.07
## 340 1802 147739.53
## 341 1803 181223.78
## 342 1804 133594.20
## 343 1805 138383.89
## 344 1806 139202.17
## 345 1807 158786.78
## 346 1808 127921.78
## 347 1809 100222.15
## 348 1810 151449.86
## 349 1811 36265.12
## 350 1812 82302.93
## 351 1813 119753.64
## 352 1814 84212.31
## 353 1815 13853.73
## 354 1816 95951.06
## 355 1817 94273.11
## 356 1818 160820.33
## 357 1819 111530.94
## 358 1820 24586.89
## 359 1821 106988.90
## 360 1822 163161.69
## 361 1823 3146.54
## 362 1824 140065.23
## 363 1825 133225.34
## 364 1826 100936.96
## 365 1827 95263.32
## 366 1828 126973.36
## 367 1829 165644.10
## 368 1830 165528.68
## 369 1831 191139.27
## 370 1832 79350.14
## 371 1833 150923.51
## 372 1834 129048.30
## 373 1835 103801.01
## 374 1836 129575.25
## 375 1837 70170.34
## 376 1838 112779.93
## 377 1839 79988.68
## 378 1840 105150.66
## 379 1841 104491.78
## 380 1842 67733.62
## 381 1843 123009.07
## 382 1844 133444.05
## 383 1845 124084.45
## 384 1846 152337.50
## 385 1847 170012.63
## 386 1848 -11636.00
## 387 1849 136325.28
## 388 1850 111599.82
## 389 1851 152973.10
## 390 1852 113251.00
## 391 1853 107647.18
## 392 1854 184823.73
## 393 1855 166250.15
## 394 1856 230660.73
## 395 1857 145507.72
## 396 1858 128712.49
## 397 1859 117831.38
## 398 1860 132959.03
## 399 1861 116599.40
## 400 1862 255573.18
## 401 1863 253859.15
## 402 1864 253875.35
## 403 1865 323085.87
## 404 1866 309060.20
## 405 1867 240713.21
## 406 1868 274643.32
## 407 1869 213082.97
## 408 1870 247782.17
## 409 1871 249035.08
## 410 1872 170999.25
## 411 1873 218352.68
## 412 1874 133849.73
## 413 1875 203816.63
## 414 1876 199200.31
## 415 1877 216490.45
## 416 1878 213695.46
## 417 1879 109722.21
## 418 1880 144549.73
## 419 1881 244007.67
## 420 1882 253231.29
## 421 1884 212095.72
## 422 1885 250876.36
## 423 1886 268668.74
## 424 1887 224478.30
## 425 1888 281652.65
## 426 1889 165565.84
## 427 1890 106080.88
## 428 1891 140291.16
## 429 1892 70447.44
## 430 1893 130869.76
## 431 1894 78350.25
## 432 1895 160046.82
## 433 1896 115578.43
## 434 1897 108481.47
## 435 1898 123092.93
## 436 1899 149760.00
## 437 1900 150942.53
## 438 1901 157768.69
## 439 1902 143410.27
## 440 1903 211632.37
## 441 1904 122986.13
## 442 1905 187601.31
## 443 1906 140093.15
## 444 1907 209897.63
## 445 1908 131304.18
## 446 1909 144441.11
## 447 1910 138055.77
## 448 1911 213756.24
## 449 1912 283148.16
## 450 1913 150892.73
## 451 1914 48536.20
## 452 1915 239271.28
## 453 1916 24062.68
## 454 1917 266509.66
## 455 1918 138003.97
## 456 1919 187933.24
## 457 1920 168700.89
## 458 1921 334257.69
## 459 1922 297167.99
## 460 1923 234609.58
## 461 1924 215213.04
## 462 1925 232870.90
## 463 1926 334973.84
## 464 1927 130896.09
## 465 1928 161672.26
## 466 1929 109203.80
## 467 1930 138194.30
## 468 1931 131879.66
## 469 1932 140153.44
## 470 1933 159700.85
## 471 1934 184152.45
## 472 1935 180212.10
## 473 1936 188827.00
## 474 1937 185864.55
## 475 1938 164803.98
## 476 1939 236861.21
## 477 1940 196385.86
## 478 1941 179367.65
## 479 1942 192795.11
## 480 1943 195245.62
## 481 1944 280879.47
## 482 1945 324519.61
## 483 1946 158059.11
## 484 1947 264690.93
## 485 1948 178474.90
## 486 1949 244433.36
## 487 1950 208783.91
## 488 1951 260900.99
## 489 1952 234929.83
## 490 1953 183689.84
## 491 1954 228827.33
## 492 1955 140609.21
## 493 1956 321824.10
## 494 1957 176111.60
## 495 1958 300520.91
## 496 1959 124160.58
## 497 1960 91305.38
## 498 1961 109669.78
## 499 1962 112920.34
## 500 1963 129063.87
## 501 1964 101869.04
## 502 1965 139354.56
## 503 1966 154525.04
## 504 1967 274225.47
## 505 1968 342631.99
## 506 1969 332958.89
## 507 1970 348696.52
## 508 1971 398323.84
## 509 1972 335099.97
## 510 1973 271302.03
## 511 1974 292114.06
## 512 1975 417388.39
## 513 1976 289195.19
## 514 1977 341429.18
## 515 1978 310078.06
## 516 1979 294963.83
## 517 1980 191197.02
## 518 1981 304879.55
## 519 1982 217665.51
## 520 1983 208495.81
## 521 1984 185513.41
## 522 1985 232707.09
## 523 1986 233854.06
## 524 1987 192226.65
## 525 1988 179362.44
## 526 1989 205625.12
## 527 1990 224407.64
## 528 1991 210600.95
## 529 1992 243089.47
## 530 1994 241530.17
## 531 1995 198401.84
## 532 1996 290354.99
## 533 1997 293321.55
## 534 1998 304594.45
## 535 1999 253416.08
## 536 2000 308483.66
## 537 2001 263911.72
## 538 2002 245490.08
## 539 2003 260011.50
## 540 2004 276369.68
## 541 2006 217889.55
## 542 2007 263793.05
## 543 2008 215206.83
## 544 2009 187992.09
## 545 2010 214051.32
## 546 2011 135160.81
## 547 2012 182101.36
## 548 2013 174123.55
## 549 2014 191587.00
## 550 2015 207164.58
## 551 2016 186431.02
## 552 2017 208647.92
## 553 2018 99807.09
## 554 2019 116874.95
## 555 2020 71906.86
## 556 2021 92384.44
## 557 2022 185810.76
## 558 2023 128227.89
## 559 2024 263094.29
## 560 2025 333398.57
## 561 2026 181142.80
## 562 2027 142038.89
## 563 2028 167223.78
## 564 2029 160254.62
## 565 2030 255282.13
## 566 2031 246207.39
## 567 2032 233580.88
## 568 2033 248834.04
## 569 2034 167806.05
## 570 2035 229096.01
## 571 2036 219863.45
## 572 2037 222772.15
## 573 2038 295053.39
## 574 2039 205785.39
## 575 2040 357508.23
## 576 2041 264252.14
## 577 2043 175984.26
## 578 2044 196705.54
## 579 2045 214868.94
## 580 2046 124929.57
## 581 2047 141972.85
## 582 2048 129947.70
## 583 2049 115555.55
## 584 2050 193178.08
## 585 2051 120327.61
## 586 2052 128819.37
## 587 2053 132882.56
## 588 2054 71031.14
## 589 2055 163833.20
## 590 2056 139752.98
## 591 2057 104730.25
## 592 2058 217665.53
## 593 2059 119748.75
## 594 2060 182007.10
## 595 2061 198224.74
## 596 2062 108972.24
## 597 2063 101083.62
## 598 2064 137059.02
## 599 2065 125396.68
## 600 2066 192092.33
## 601 2067 125051.21
## 602 2068 123609.86
## 603 2069 79886.82
## 604 2070 101578.46
## 605 2071 65249.78
## 606 2072 161982.14
## 607 2073 136372.11
## 608 2074 196095.99
## 609 2075 143211.73
## 610 2076 127706.62
## 611 2077 125459.18
## 612 2078 107585.06
## 613 2079 147204.27
## 614 2080 123139.72
## 615 2081 120620.81
## 616 2082 82756.84
## 617 2083 147672.56
## 618 2084 98687.74
## 619 2085 107137.50
## 620 2086 151694.16
## 621 2087 134601.63
## 622 2088 101492.72
## 623 2089 64898.12
## 624 2090 119215.84
## 625 2091 37686.30
## 626 2092 148458.94
## 627 2093 129363.51
## 628 2094 116844.64
## 629 2095 120368.38
## 630 2096 84881.32
## 631 2097 70914.68
## 632 2098 152612.62
## 633 2099 9135.76
## 634 2100 30302.07
## 635 2101 87511.66
## 636 2102 157371.19
## 637 2103 88860.71
## 638 2104 131682.93
## 639 2105 112888.02
## 640 2106 20413.01
## 641 2107 210239.00
## 642 2108 117533.19
## 643 2109 95691.59
## 644 2110 121567.67
## 645 2111 188937.87
## 646 2112 123554.75
## 647 2113 113337.46
## 648 2114 124354.82
## 649 2115 155624.27
## 650 2116 115265.22
## 651 2117 142292.41
## 652 2118 116271.42
## 653 2119 113916.34
## 654 2120 99339.95
## 655 2122 89633.47
## 656 2123 107654.46
## 657 2124 190985.05
## 658 2125 136428.25
## 659 2126 145961.53
## 660 2127 154884.92
## 661 2128 145365.58
## 662 2129 126026.61
## 663 2130 137392.87
## 664 2131 149743.39
## 665 2132 126675.76
## 666 2133 140730.14
## 667 2134 118735.32
## 668 2135 119440.68
## 669 2136 -9401.74
## 670 2137 104628.92
## 671 2138 132334.70
## 672 2139 151407.25
## 673 2140 128309.27
## 674 2141 164034.85
## 675 2142 118960.37
## 676 2143 131849.70
## 677 2144 91984.53
## 678 2145 128291.15
## 679 2146 187175.50
## 680 2147 142502.04
## 681 2148 164328.06
## 682 2149 145788.75
## 683 2150 219091.55
## 684 2151 136914.27
## 685 2152 136348.83
## 686 2153 178877.77
## 687 2154 78346.32
## 688 2155 155813.05
## 689 2156 262675.53
## 690 2157 240741.91
## 691 2158 235218.87
## 692 2159 224443.31
## 693 2160 183122.16
## 694 2161 257789.55
## 695 2162 360044.31
## 696 2163 313822.04
## 697 2164 245956.84
## 698 2165 203800.36
## 699 2166 148005.71
## 700 2167 211297.62
## 701 2168 192405.86
## 702 2169 201981.83
## 703 2170 216251.94
## 704 2171 154521.12
## 705 2172 135437.72
## 706 2173 184402.09
## 707 2174 239395.23
## 708 2175 295399.61
## 709 2176 282718.06
## 710 2177 235770.14
## 711 2178 233044.39
## 712 2179 145847.90
## 713 2180 222496.54
## 714 2181 198685.87
## 715 2182 234765.91
## 716 2183 193622.62
## 717 2184 129405.71
## 718 2185 131218.41
## 719 2186 167835.16
## 720 2187 156719.87
## 721 2188 166015.86
## 722 2190 43612.51
## 723 2191 45583.72
## 724 2192 30532.08
## 725 2193 88230.75
## 726 2194 96730.81
## 727 2195 94137.07
## 728 2196 84669.71
## 729 2197 91796.92
## 730 2198 184614.05
## 731 2199 167269.30
## 732 2200 143040.20
## 733 2201 144168.16
## 734 2202 195830.95
## 735 2203 126078.13
## 736 2204 142422.84
## 737 2205 105787.48
## 738 2206 147552.09
## 739 2207 215275.80
## 740 2208 245981.32
## 741 2209 190972.39
## 742 2210 133766.41
## 743 2211 126990.07
## 744 2212 120534.50
## 745 2213 81354.84
## 746 2214 136632.71
## 747 2215 98792.84
## 748 2216 144236.98
## 749 2217 23512.56
## 750 2218 85177.66
## 751 2219 72369.84
## 752 2220 47168.46
## 753 2221 239603.68
## 754 2222 226256.84
## 755 2223 282524.38
## 756 2224 237011.02
## 757 2225 123730.68
## 758 2226 173637.53
## 759 2227 215612.80
## 760 2228 270331.39
## 761 2229 232991.32
## 762 2230 144671.40
## 763 2231 214090.36
## 764 2232 196755.11
## 765 2233 187366.13
## 766 2234 244045.82
## 767 2235 205794.70
## 768 2236 251323.32
## 769 2237 305664.92
## 770 2238 229717.91
## 771 2239 109836.64
## 772 2240 156127.27
## 773 2241 140672.94
## 774 2242 119421.19
## 775 2243 107644.33
## 776 2244 75531.55
## 777 2245 70910.10
## 778 2246 132938.29
## 779 2247 110745.97
## 780 2248 121432.60
## 781 2249 111008.62
## 782 2250 133944.46
## 783 2251 103948.92
## 784 2252 202880.21
## 785 2253 161173.79
## 786 2254 185857.34
## 787 2255 198957.15
## 788 2256 190066.67
## 789 2257 193975.25
## 790 2258 179760.32
## 791 2259 183221.39
## 792 2260 165810.37
## 793 2261 192194.27
## 794 2262 205860.63
## 795 2263 308082.74
## 796 2264 372782.17
## 797 2265 166787.81
## 798 2266 252185.43
## 799 2267 342431.91
## 800 2268 354844.08
## 801 2269 160180.11
## 802 2270 206449.55
## 803 2271 229487.49
## 804 2272 236937.89
## 805 2273 178310.37
## 806 2274 192102.57
## 807 2275 175284.24
## 808 2276 190045.49
## 809 2277 194174.32
## 810 2278 168776.75
## 811 2279 97651.35
## 812 2280 97737.72
## 813 2281 158640.70
## 814 2282 167870.01
## 815 2283 125779.30
## 816 2284 106961.65
## 817 2285 148803.80
## 818 2286 111348.04
## 819 2287 309396.69
## 820 2288 262968.72
## 821 2289 310641.81
## 822 2290 355643.20
## 823 2291 304350.63
## 824 2292 366315.82
## 825 2293 364832.85
## 826 2294 335997.18
## 827 2295 391226.73
## 828 2296 253956.00
## 829 2297 282694.53
## 830 2298 298813.19
## 831 2299 327493.86
## 832 2300 300206.86
## 833 2301 272832.09
## 834 2302 251232.33
## 835 2303 249406.95
## 836 2304 250392.54
## 837 2305 182973.33
## 838 2306 184753.60
## 839 2307 185308.82
## 840 2308 220878.84
## 841 2309 261528.66
## 842 2310 206937.77
## 843 2311 205842.40
## 844 2313 172462.07
## 845 2314 189842.13
## 846 2315 175420.00
## 847 2316 197648.82
## 848 2317 185950.62
## 849 2318 171241.89
## 850 2319 193280.72
## 851 2320 192606.12
## 852 2321 254892.92
## 853 2322 198639.45
## 854 2323 187753.83
## 855 2324 194249.29
## 856 2325 205112.39
## 857 2327 209107.70
## 858 2328 223592.19
## 859 2329 188570.16
## 860 2330 190767.60
## 861 2331 311021.15
## 862 2332 352601.97
## 863 2333 304123.29
## 864 2334 258769.17
## 865 2335 266501.95
## 866 2336 308031.40
## 867 2337 194358.33
## 868 2338 263660.89
## 869 2339 239184.43
## 870 2340 365183.23
## 871 2342 243831.90
## 872 2343 223331.40
## 873 2344 240732.22
## 874 2345 249664.69
## 875 2346 211417.67
## 876 2347 191283.80
## 877 2348 241370.33
## 878 2349 164315.84
## 879 2351 236007.01
## 880 2352 264548.42
## 881 2353 253789.14
## 882 2354 123728.95
## 883 2355 140229.49
## 884 2356 151474.63
## 885 2357 209141.21
## 886 2358 195279.23
## 887 2359 124633.05
## 888 2360 110888.82
## 889 2361 142056.29
## 890 2362 270239.97
## 891 2363 143825.00
## 892 2364 184858.49
## 893 2365 217143.48
## 894 2366 187842.00
## 895 2367 211215.36
## 896 2368 188264.56
## 897 2370 161610.77
## 898 2371 148716.48
## 899 2372 188142.02
## 900 2373 266294.64
## 901 2374 281743.05
## 902 2375 231067.65
## 903 2376 297843.36
## 904 2377 311208.77
## 905 2378 162489.95
## 906 2379 235209.99
## 907 2380 154080.67
## 908 2381 184377.49
## 909 2382 240743.44
## 910 2383 225176.24
## 911 2384 251140.46
## 912 2385 171291.88
## 913 2386 137549.37
## 914 2387 116666.79
## 915 2388 115187.01
## 916 2389 134434.08
## 917 2390 148006.21
## 918 2391 134778.88
## 919 2392 100374.56
## 920 2393 188043.26
## 921 2394 137751.96
## 922 2395 208746.14
## 923 2396 154862.72
## 924 2397 220842.37
## 925 2398 132029.20
## 926 2399 9774.33
## 927 2400 12717.41
## 928 2401 114545.13
## 929 2402 142488.17
## 930 2403 133197.38
## 931 2404 142237.78
## 932 2405 165699.68
## 933 2406 136410.28
## 934 2407 116248.66
## 935 2408 148300.84
## 936 2409 110154.69
## 937 2410 197858.83
## 938 2411 106384.59
## 939 2412 149053.88
## 940 2413 109428.67
## 941 2414 136664.37
## 942 2415 119464.14
## 943 2416 147491.50
## 944 2417 131559.76
## 945 2418 112125.72
## 946 2419 90648.76
## 947 2420 99883.96
## 948 2421 132960.42
## 949 2422 109575.54
## 950 2423 84388.09
## 951 2424 124804.61
## 952 2425 233101.81
## 953 2426 137272.01
## 954 2427 98982.99
## 955 2428 184041.14
## 956 2429 103953.63
## 957 2430 133465.47
## 958 2431 102137.28
## 959 2432 120089.15
## 960 2433 133179.48
## 961 2434 122009.05
## 962 2435 133476.96
## 963 2436 106704.10
## 964 2437 99745.78
## 965 2438 94283.65
## 966 2439 117014.27
## 967 2440 140508.68
## 968 2441 93038.16
## 969 2442 90634.33
## 970 2443 141872.90
## 971 2444 128637.38
## 972 2445 64845.65
## 973 2446 120091.37
## 974 2447 214945.07
## 975 2448 143510.26
## 976 2449 117148.01
## 977 2450 168009.32
## 978 2451 108182.53
## 979 2452 220382.81
## 980 2453 88087.54
## 981 2454 121142.12
## 982 2455 130383.33
## 983 2456 127848.16
## 984 2457 112170.25
## 985 2458 119002.74
## 986 2459 97231.04
## 987 2460 147774.18
## 988 2461 114781.12
## 989 2462 119404.79
## 990 2463 132827.66
## 991 2464 174775.36
## 992 2465 150451.61
## 993 2466 109702.93
## 994 2467 159307.15
## 995 2468 80789.08
## 996 2469 81258.91
## 997 2470 206998.40
## 998 2471 220659.92
## 999 2472 183259.65
## 1000 2473 87686.78
## 1001 2474 56550.68
## 1002 2475 243097.82
## 1003 2476 85215.54
## 1004 2477 84178.33
## 1005 2478 156217.03
## 1006 2479 91105.42
## 1007 2480 125802.22
## 1008 2481 115608.47
## 1009 2482 112199.70
## 1010 2483 95985.03
## 1011 2484 135406.80
## 1012 2485 116695.05
## 1013 2486 126928.20
## 1014 2487 209874.77
## 1015 2488 176378.71
## 1016 2489 162328.69
## 1017 2490 129483.51
## 1018 2491 98640.24
## 1019 2492 196979.08
## 1020 2493 149852.80
## 1021 2494 162334.74
## 1022 2495 92583.52
## 1023 2496 236999.03
## 1024 2497 162705.97
## 1025 2498 95213.15
## 1026 2499 70712.26
## 1027 2500 108983.75
## 1028 2501 123933.77
## 1029 2502 129677.57
## 1030 2503 72900.32
## 1031 2504 181816.93
## 1032 2505 223977.23
## 1033 2506 264737.41
## 1034 2507 287541.81
## 1035 2508 264914.10
## 1036 2509 235750.67
## 1037 2510 232778.97
## 1038 2511 196874.92
## 1039 2512 211775.45
## 1040 2513 233785.88
## 1041 2514 276787.28
## 1042 2515 138811.24
## 1043 2516 171148.68
## 1044 2517 129107.42
## 1045 2518 135674.24
## 1046 2519 219524.46
## 1047 2520 220264.71
## 1048 2521 201258.02
## 1049 2522 227491.73
## 1050 2523 119357.53
## 1051 2524 125309.39
## 1052 2525 134903.81
## 1053 2526 125983.67
## 1054 2527 94401.87
## 1055 2528 120165.37
## 1056 2529 119548.76
## 1057 2530 118940.75
## 1058 2531 244242.65
## 1059 2532 222264.20
## 1060 2533 218116.79
## 1061 2534 249236.71
## 1062 2535 278380.95
## 1063 2536 240838.43
## 1064 2537 248354.09
## 1065 2538 191679.91
## 1066 2539 198553.54
## 1067 2540 171203.39
## 1068 2541 194509.24
## 1069 2542 150047.34
## 1070 2543 112676.03
## 1071 2544 110808.35
## 1072 2545 137825.10
## 1073 2546 162719.87
## 1074 2547 156185.10
## 1075 2548 160609.57
## 1076 2549 150202.24
## 1077 2550 640893.41
## 1078 2551 139312.36
## 1079 2552 112708.35
## 1080 2553 35870.91
## 1081 2554 62314.18
## 1082 2555 113355.23
## 1083 2556 71011.82
## 1084 2557 95547.68
## 1085 2558 126542.48
## 1086 2559 112613.02
## 1087 2560 151221.75
## 1088 2561 144796.51
## 1089 2562 137271.79
## 1090 2563 135159.77
## 1091 2564 195909.90
## 1092 2565 160946.81
## 1093 2566 105175.74
## 1094 2567 102972.15
## 1095 2568 187011.68
## 1096 2569 192436.42
## 1097 2570 133272.10
## 1098 2571 150680.20
## 1099 2572 187263.79
## 1100 2573 232336.21
## 1101 2574 300755.62
## 1102 2575 147419.00
## 1103 2576 104563.79
## 1104 2578 88980.11
## 1105 2579 14954.37
## 1106 2580 65958.50
## 1107 2581 116873.29
## 1108 2582 126508.51
## 1109 2583 255199.34
## 1110 2584 174646.64
## 1111 2585 186555.05
## 1112 2586 229425.04
## 1113 2587 211325.80
## 1114 2588 156102.17
## 1115 2589 157775.23
## 1116 2590 211485.37
## 1117 2591 272833.40
## 1118 2592 218544.29
## 1119 2594 198668.89
## 1120 2595 222870.71
## 1121 2596 315167.44
## 1122 2597 187434.27
## 1123 2598 254100.43
## 1124 2599 323085.02
## 1125 2600 220942.46
## 1126 2601 147759.65
## 1127 2602 49400.88
## 1128 2603 57255.60
## 1129 2604 49885.04
## 1130 2605 47824.43
## 1131 2606 141903.58
## 1132 2607 209060.68
## 1133 2608 207109.44
## 1134 2609 165840.31
## 1135 2610 91471.41
## 1136 2611 129347.03
## 1137 2612 157070.08
## 1138 2613 125515.34
## 1139 2614 112347.11
## 1140 2615 170188.66
## 1141 2616 162369.46
## 1142 2617 205054.45
## 1143 2618 224341.38
## 1144 2619 236844.79
## 1145 2620 184637.44
## 1146 2621 179740.23
## 1147 2622 190824.73
## 1148 2623 239107.05
## 1149 2624 284518.77
## 1150 2625 264314.03
## 1151 2626 182007.36
## 1152 2627 184728.55
## 1153 2628 375808.45
## 1154 2629 387929.20
## 1155 2630 324369.55
## 1156 2631 389219.36
## 1157 2632 346421.77
## 1158 2633 272771.19
## 1159 2634 341976.66
## 1160 2635 166570.85
## 1161 2636 208822.48
## 1162 2637 189842.66
## 1163 2638 248383.80
## 1164 2639 205628.84
## 1165 2640 173882.94
## 1166 2641 84348.15
## 1167 2642 172753.19
## 1168 2643 129043.40
## 1169 2644 131142.93
## 1170 2645 118972.27
## 1171 2646 111503.13
## 1172 2647 123332.85
## 1173 2648 146063.14
## 1174 2649 140099.69
## 1175 2650 140762.06
## 1176 2651 136406.20
## 1177 2652 345186.93
## 1178 2653 262913.79
## 1179 2654 238609.80
## 1180 2655 344971.50
## 1181 2656 311573.61
## 1182 2657 302737.73
## 1183 2659 285353.28
## 1184 2660 300778.86
## 1185 2661 315948.66
## 1186 2662 327769.29
## 1187 2663 285413.83
## 1188 2664 252554.92
## 1189 2665 319743.01
## 1190 2666 267032.53
## 1191 2667 176749.87
## 1192 2668 198415.47
## 1193 2669 174819.06
## 1194 2670 284078.90
## 1195 2671 200288.99
## 1196 2672 191634.15
## 1197 2673 200728.14
## 1198 2674 214302.29
## 1199 2675 173078.84
## 1200 2676 200160.89
## 1201 2677 210579.90
## 1202 2678 258008.08
## 1203 2679 273533.90
## 1204 2680 281644.05
## 1205 2681 362469.84
## 1206 2682 314141.52
## 1207 2683 421169.81
## 1208 2684 301902.35
## 1209 2685 326006.66
## 1210 2686 254206.23
## 1211 2688 231569.53
## 1212 2689 212649.17
## 1213 2690 358030.29
## 1214 2691 183889.35
## 1215 2692 120767.71
## 1216 2693 202141.82
## 1217 2694 127543.29
## 1218 2695 215687.21
## 1219 2696 201743.31
## 1220 2697 191160.64
## 1221 2698 209092.35
## 1222 2699 166865.34
## 1223 2700 149525.76
## 1224 2701 157245.80
## 1225 2702 114163.41
## 1226 2703 157839.13
## 1227 2704 156540.16
## 1228 2705 101781.03
## 1229 2706 102356.88
## 1230 2707 132398.79
## 1231 2708 113199.28
## 1232 2709 91925.91
## 1233 2710 113769.10
## 1234 2711 282580.65
## 1235 2712 342221.35
## 1236 2713 175277.32
## 1237 2714 147464.16
## 1238 2715 164622.01
## 1239 2716 144654.45
## 1240 2717 183062.36
## 1241 2718 221225.43
## 1242 2719 139090.89
## 1243 2720 217794.07
## 1244 2721 132273.60
## 1245 2722 171830.90
## 1246 2723 166571.87
## 1247 2724 103782.31
## 1248 2725 119277.70
## 1249 2726 123147.50
## 1250 2727 155529.81
## 1251 2728 187691.73
## 1252 2729 135512.89
## 1253 2730 136556.40
## 1254 2731 127761.75
## 1255 2732 117863.38
## 1256 2733 167482.63
## 1257 2734 154525.67
## 1258 2735 130303.50
## 1259 2736 141580.29
## 1260 2737 110902.96
## 1261 2738 117151.39
## 1262 2739 154060.62
## 1263 2740 164437.50
## 1264 2741 125907.05
## 1265 2742 187976.33
## 1266 2743 141995.63
## 1267 2744 150039.41
## 1268 2745 152069.27
## 1269 2746 112739.87
## 1270 2747 191445.01
## 1271 2748 127513.94
## 1272 2749 131383.32
## 1273 2750 111737.30
## 1274 2751 118241.26
## 1275 2752 234547.69
## 1276 2753 157486.28
## 1277 2754 208277.02
## 1278 2755 146279.85
## 1279 2756 55827.60
## 1280 2757 44520.22
## 1281 2758 68309.04
## 1282 2759 165781.48
## 1283 2760 103963.97
## 1284 2761 143907.17
## 1285 2762 144219.94
## 1286 2763 216872.22
## 1287 2764 202469.37
## 1288 2765 284337.37
## 1289 2766 112972.50
## 1290 2767 45640.91
## 1291 2768 78656.38
## 1292 2769 119551.11
## 1293 2770 174261.13
## 1294 2771 97917.02
## 1295 2772 67919.53
## 1296 2773 143918.38
## 1297 2774 141634.90
## 1298 2775 107135.66
## 1299 2776 157078.57
## 1300 2777 160597.96
## 1301 2778 142963.95
## 1302 2779 80758.46
## 1303 2780 112910.55
## 1304 2781 93652.88
## 1305 2782 79995.31
## 1306 2783 76163.02
## 1307 2784 95542.10
## 1308 2785 124616.40
## 1309 2786 26528.25
## 1310 2787 126791.17
## 1311 2788 36666.62
## 1312 2789 183826.59
## 1313 2790 73617.82
## 1314 2791 109288.97
## 1315 2792 16423.09
## 1316 2793 177969.25
## 1317 2794 54187.41
## 1318 2795 113568.25
## 1319 2796 80470.25
## 1320 2797 208915.35
## 1321 2798 121786.22
## 1322 2799 109122.58
## 1323 2800 50368.42
## 1324 2801 115190.51
## 1325 2802 124961.62
## 1326 2803 155369.41
## 1327 2804 160291.85
## 1328 2805 113038.49
## 1329 2806 69379.61
## 1330 2807 163152.59
## 1331 2808 154588.92
## 1332 2809 125477.03
## 1333 2810 120606.57
## 1334 2811 173115.23
## 1335 2812 167913.77
## 1336 2813 130731.32
## 1337 2814 133796.99
## 1338 2815 89008.90
## 1339 2816 239245.28
## 1340 2817 143444.02
## 1341 2818 122054.76
## 1342 2819 182473.98
## 1343 2820 129679.10
## 1344 2821 101818.39
## 1345 2822 211661.17
## 1346 2823 280697.11
## 1347 2824 160012.49
## 1348 2825 179816.49
## 1349 2826 124287.93
## 1350 2827 131663.88
## 1351 2828 240181.26
## 1352 2829 221658.69
## 1353 2830 233023.55
## 1354 2831 200290.44
## 1355 2832 225505.79
## 1356 2833 275959.10
## 1357 2834 218630.22
## 1358 2835 218907.63
## 1359 2836 210351.75
## 1360 2837 172662.69
## 1361 2838 137801.87
## 1362 2839 177674.50
## 1363 2840 197912.62
## 1364 2841 212103.58
## 1365 2842 222810.98
## 1366 2843 157222.13
## 1367 2844 191049.30
## 1368 2845 112873.21
## 1369 2846 218165.50
## 1370 2847 200110.22
## 1371 2848 238734.50
## 1372 2849 207015.38
## 1373 2850 292783.85
## 1374 2851 226995.89
## 1375 2852 255165.71
## 1376 2853 225168.38
## 1377 2854 150533.39
## 1378 2855 210270.44
## 1379 2856 204901.98
## 1380 2857 195932.17
## 1381 2858 205738.56
## 1382 2859 102238.15
## 1383 2860 118404.53
## 1384 2861 131535.10
## 1385 2862 216915.33
## 1386 2864 245833.48
## 1387 2865 140346.56
## 1388 2866 185021.43
## 1389 2867 70481.16
## 1390 2868 123824.27
## 1391 2869 101175.99
## 1392 2870 128955.56
## 1393 2871 47468.47
## 1394 2872 -9167.04
## 1395 2873 83575.69
## 1396 2874 125680.94
## 1397 2875 113391.79
## 1398 2876 173950.54
## 1399 2877 138251.19
## 1400 2878 157664.58
## 1401 2879 117191.99
## 1402 2880 87342.02
## 1403 2881 137119.81
## 1404 2882 158948.97
## 1405 2883 192743.22
## 1406 2884 213274.10
## 1407 2885 181368.29
## 1408 2886 206010.47
## 1409 2887 108654.69
## 1410 2888 149211.66
## 1411 2889 24576.99
## 1412 2890 55382.23
## 1413 2891 142373.97
## 1414 2892 28239.72
## 1415 2893 52421.40
## 1416 2894 26896.68
## 1417 2895 264263.77
## 1418 2896 247089.31
## 1419 2897 202276.25
## 1420 2898 155597.63
## 1421 2899 226045.35
## 1422 2900 164248.52
## 1423 2901 218945.24
## 1424 2902 191112.43
## 1425 2903 300315.76
## 1426 2904 323509.17
## 1427 2905 50482.82
## 1428 2906 229500.14
## 1429 2907 94180.68
## 1430 2908 108331.45
## 1431 2909 142039.83
## 1432 2910 31862.52
## 1433 2911 49392.13
## 1434 2912 147449.03
## 1435 2913 56232.77
## 1436 2914 34662.91
## 1437 2915 46510.37
## 1438 2916 60106.18
## 1439 2917 166733.54
## 1440 2918 87484.38
## 1441 2919 257807.92
write_csv(result, file = 'result.csv')