Introduction

This code compiles summary information about the gene PRKG1 (Protein Kinase CGMP-Dependent).

It also generates alignments and a phylogeneitc tree to indicate the evolutionary relationship betweeen the human version of the gene and its homologs in other species.

Resources / References

Key information use to make this script can be found here:

Refseq Gene: https://www.ncbi.nlm.nih.gov/gene/1733 Refseq Homologene: https://www.ncbi.nlm.nih.gov/homologene/620 Other resources consulted includes

Neanderthal genome: http://neandertal.ensemblgenomes.org/index.html Other interesting resources and online tools include:

REPPER: https://toolkit.tuebingen.mpg.de/jobs/7803820 Sub-cellular locations prediction: https://wolfpsort.hgc.jp/

Preparation

Load necessary packages:

Download and load drawProteins from Bioconductor

library(BiocManager)
## Bioconductor version '3.13' is out-of-date; the current release version '3.14'
##   is available with R version '4.1'; see https://bioconductor.org/install
#install("drawProteins")

library(drawProteins)

Load other packages

# github packages
library(compbio4all)
library(ggmsa)
## Registered S3 methods overwritten by 'ggalt':
##   method                  from   
##   grid.draw.absoluteGrob  ggplot2
##   grobHeight.absoluteGrob ggplot2
##   grobWidth.absoluteGrob  ggplot2
##   grobX.absoluteGrob      ggplot2
##   grobY.absoluteGrob      ggplot2
# CRAN packages
library(rentrez)
library(seqinr)
library(ape)
## 
## Attaching package: 'ape'
## The following objects are masked from 'package:seqinr':
## 
##     as.alignment, consensus
library(pander)


library(ggplot2)

# Bioconductor packages
## msa
### The msa package is having problems on some platforms
### You can skip the msa steps if necessary.  The msa output
### is used to make a distance matrix and then phylogenetics trees,
### but I provide code to build the matrix by hand so
### you can proceed even if msa doesn't work for you.

## Biostrings
library(Biostrings)
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
## 
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: XVector
## Loading required package: GenomeInfoDb
## 
## Attaching package: 'Biostrings'
## The following object is masked from 'package:ape':
## 
##     complement
## The following object is masked from 'package:seqinr':
## 
##     translate
## The following object is masked from 'package:base':
## 
##     strsplit
library(msa)
## 
## Attaching package: 'msa'
## The following object is masked from 'package:BiocManager':
## 
##     version
library(drawProteins)



#library(HGNChelper)

Accession numbers

Accession numbers were obtained from RefSeq, Refseq Homlogene, UniProt and PDB. UniProt accession numbers can be found by searching for the gene name. PDB accessions can be found by searching with a UniProt accession or a gene name, though many proteins are not in PDB. The the Neanderthal genome database was searched but did not yield sequence information on.

A protein BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) was carried out excluding vertebrates to determine if it occurred outside of vertebreates. The gene does not appear in non-vertebrates and so a second search was conducted to exclude mammals.

OPTIONAL: Use the function to confirm the validity of your gene name and any aliases

# 10 RefSeq or Genbank PROTEIN accession numbers for sequences for adopted gene from 10 species
# Max of 7 obtained via Homologene
# Other 3:
# Neanderthal
# Drosophila
# obtain from BLAST

# UniProt Accession Numbers
# PDB Accession numbers
# Common name for each species
# Scientific name for each species

# this is optional
#HGNChelper::checkGeneSymbols(x = c("PRKG1"))

Accession number table

# can make table using matrix()

# TODO: Add additional sequences to get a total of 10 

prkg1_table_vector <- c("NP_006249",   "Q13976", "1ZXA","Homo sapiens",    "Human",      "PRKG1",
              "NP_776861","P00516",    "3SHR", "Bos taurus" , "Cattle","PRKG1",
              "NP_001013855",   "P0C605","NA","Mus musculus",      "Mouse"    ,"PRKG1",
              
              "NP_001099201","NA","NA","Rattus norvegicus", "Rat",      "PRKG1",
              
              "NP_957324", "Q7T2E5","NA","Danio Rerio", "Zebrafish",     "PRKG1",
              
              "NP_477488","NA","NA", "Drosophila melanogaster",       "Fruit Fly",     "PRKG1",
              
              "XP_001162858", "H2Q1X0", "NA", "Pan troglodytes", "Chimpanzee", "PRKG1",
              
              "XP_851997", "J9JHE0", "NA", "Canis Lupus Familiaris", "Dog", "PRKG1",
              
              "XP_003641507", "NA", "NA", "Gallus gallus", "Chicken", "PRKG1",
              
              "XP_002935474", "A0A6I8R7F3", "NA", "Xenos Tropicalis", "Frog", "PRKG1")

prkg1_matrix <- matrix( prkg1_table_vector, ncol = 6, byrow = TRUE)

?matrix

prkg1_df <- data.frame( prkg1_matrix )

colnames( prkg1_df ) <- c("ncbi.protein.accession", "UniProt.id", "PDB", "species", "common.name",
                          "gene.name")

# names of columns

# ncbi.protein.accession
# UniProt.id
# PDB
# species
# common.name
# gene.name

The finished table

pander::pander( prkg1_df )
Table continues below
ncbi.protein.accession UniProt.id PDB species
NP_006249 Q13976 1ZXA Homo sapiens
NP_776861 P00516 3SHR Bos taurus
NP_001013855 P0C605 NA Mus musculus
NP_001099201 NA NA Rattus norvegicus
NP_957324 Q7T2E5 NA Danio Rerio
NP_477488 NA NA Drosophila melanogaster
XP_001162858 H2Q1X0 NA Pan troglodytes
XP_851997 J9JHE0 NA Canis Lupus Familiaris
XP_003641507 NA NA Gallus gallus
XP_002935474 A0A6I8R7F3 NA Xenos Tropicalis
common.name gene.name
Human PRKG1
Cattle PRKG1
Mouse PRKG1
Rat PRKG1
Zebrafish PRKG1
Fruit Fly PRKG1
Chimpanzee PRKG1
Dog PRKG1
Chicken PRKG1
Frog PRKG1

Data Preparation

Download Sequences

All sequences were downloaded using a wrapper compbio4all::entrez_fetch_list() which uses rentrez::entrez_fetch() to access NCBI databases.

# download FASTA sequences


# entrez_fetch_list is a wrapper
# uses rentrez::entrez_fetch() to access NCBI databases

prkg1_list <- compbio4all::entrez_fetch_list( db = "protein",
                                              id = prkg1_df$ncbi.protein.accession,
                                              rettype = "fasta"
                                              ) 

Number of FASTA files obtained

length( prkg1_list )
## [1] 10
# 10

The first entry

prkg1_list[[1]]
## [1] ">NP_006249.1 cGMP-dependent protein kinase 1 isoform 2 [Homo sapiens]\nMGTLRDLQYALQEKIEELRQRDALIDELELELDQKDELIQKLQNELDKYRSVIRPATQQAQKQSASTLQG\nEPRTKRQAISAEPTAFDIQDLSHVTLPFYPKSPQSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYG\nKDSCIIKEGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAIDRQ\nCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQGARGDTFFIISKGT\nVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKA\nYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEH\nIRSEKQIMQGAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYL\nHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLG\nILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQK\nHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDIDF\n\n"
# output should be the FASTA sequence with header information and newlines still included

Initial Data Cleaning

Remove FASTA header

# use fasta_cleaner( FASTA_seq, parse=F )
# we don't want to parse every char in the fasta file

for(i in 1:length(prkg1_list)){
  prkg1_list[[i]] <- compbio4all::fasta_cleaner(prkg1_list[[i]], parse = F)
}

Specific additional cleaning steps will be as needed for particular analyses

General Protein Information

Protein Diagram

For code see https://rpubs.com/lowbrowR/drawProtein

# First use UniProt accession to download data from UniProt

Q13976_dp <- drawProteins::get_features("Q13976")
## [1] "Download has worked"
is( Q13976_dp )
## [1] "list"             "vector"           "list_OR_List"     "vector_OR_Vector"
## [5] "vector_OR_factor"
# convert raw data into dataframe

my_prot_df <- drawProteins::feature_to_dataframe(Q13976_dp)
is(my_prot_df)
## [1] "data.frame"       "list"             "oldClass"         "vector"          
## [5] "list_OR_List"     "vector_OR_Vector" "vector_OR_factor"

Domains Present

my_canvas <- draw_canvas(my_prot_df)  
my_canvas <- draw_chains(my_canvas, my_prot_df, 
                         label_size = 2.5)
my_canvas <- draw_domains(my_canvas, my_prot_df)
my_canvas

Draw dotplot

Prepare Data

prkg1_list[[1]]
## [1] "MGTLRDLQYALQEKIEELRQRDALIDELELELDQKDELIQKLQNELDKYRSVIRPATQQAQKQSASTLQGEPRTKRQAISAEPTAFDIQDLSHVTLPFYPKSPQSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIKEGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAIDRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQGARGDTFFIISKGTVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDIDF"
prkg1_human_vector <- unlist(strsplit( prkg1_list[[1]], "" ))

seqinr::dotPlot( prkg1_human_vector, prkg1_human_vector )

# TODO:
# create 2x2 panel to show different values for dotPlots settings
# create a single large plot with best version of the plot
par(mfrow = c(2,2), 
    mar = c(0,0,2,1))

# plot 1: Defaults
seqinr::dotPlot(prkg1_human_vector, prkg1_human_vector, 
        wsize = 1, 
        nmatch = 1, 
        main = "size=1, num match=1")

# plot 2 size = 10, nmatch = 10
seqinr::dotPlot(prkg1_human_vector, prkg1_human_vector, 
        wsize = 10, 
        nmatch = 1, 
        main = "size = 10, nmatch = 10")

# plot 3: size = 10, nmatch = 5
seqinr::dotPlot(prkg1_human_vector, prkg1_human_vector, 
        wsize = 10, 
        nmatch = 5, 
        main = "size = 10, nmatch = 5")

# plot 4: size = 20, nmatch = 5
seqinr::dotPlot(prkg1_human_vector, prkg1_human_vector, 
        wsize = 20,
        nmatch = 5,
        main = "size = 20, nmatch = 5")

# reset par() - run this or other plots will be small!
par(mfrow = c(1,1), 
    mar = c(4,4,4,4))
seqinr::dotPlot(prkg1_human_vector, prkg1_human_vector, 
        wsize = 20,
        nmatch = 5,
        main = "PRKG1 Human dot plot")

Protein properties compiled from databases

TODO: Create table

Below are links to relevant information. 1. Pfam: Region present: cNMP binding domain, Pkinase domain 2. DisProt: NA 3. RepeatDB: NA 4. PDB secondary structural classification: partial apo (92-227) of PRKG1 contains alpha helices and beta sheets

A Oryctolagus cuniculus (Rabbit) homolog is listed in Alphafold (https://alphafold.ebi.ac.uk/entry/O77676). The predicted structure contains alpha helices and beta sheets.

Protein feature prediction

Uniprot (which uses http://www.csbio.sjtu.edu) indicates that this protein is a protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway.

Predict protein fold

NOTE: My protein does NOT contain “U”.

First, I need the data from Chou and Zhang (1994) Table 5. Code to build this table is available at https://rpubs.com/lowbrowR/843543

The table looks like this:

# enter once
aa.1.1 <- c("A","R","N","D","C","Q","E","G","H","I",
            "L","K","M","F","P","S","T","W","Y","V")

# alpha proteins
alpha <- c(285, 53, 97, 163, 22, 67, 134, 197, 111, 91, 
           221, 249, 48, 123, 82, 122, 119, 33, 63, 167)

# check against chou's total
sum(alpha) == 2447
## [1] TRUE
# beta proteins
beta <- c(203, 67, 139, 121, 75, 122, 86, 297, 49, 120, 
          177, 115, 16, 85, 127, 341, 253, 44, 110, 229)

# check against chou's total
sum(beta) == 2776
## [1] TRUE
# alpha + beta
a.plus.b <- c(175, 78, 120, 111, 74, 74, 86, 171, 33, 93,
              110, 112, 25, 52, 71, 126, 117, 30, 108, 123)
sum(a.plus.b) == 1889
## [1] TRUE
# alpha/beta
a.div.b <- c(361, 146, 183, 244, 63, 114, 257, 377, 107, 239, 
             339, 321, 91, 158, 188, 327, 238, 72, 130, 378)
sum(a.div.b) == 4333
## [1] TRUE
data.frame(aa.1.1, alpha, beta, a.plus.b, a.div.b)
##    aa.1.1 alpha beta a.plus.b a.div.b
## 1       A   285  203      175     361
## 2       R    53   67       78     146
## 3       N    97  139      120     183
## 4       D   163  121      111     244
## 5       C    22   75       74      63
## 6       Q    67  122       74     114
## 7       E   134   86       86     257
## 8       G   197  297      171     377
## 9       H   111   49       33     107
## 10      I    91  120       93     239
## 11      L   221  177      110     339
## 12      K   249  115      112     321
## 13      M    48   16       25      91
## 14      F   123   85       52     158
## 15      P    82  127       71     188
## 16      S   122  341      126     327
## 17      T   119  253      117     238
## 18      W    33   44       30      72
## 19      Y    63  110      108     130
## 20      V   167  229      123     378
alpha.prop <- alpha/sum(alpha)
beta.prop <- beta/sum(beta)
a.plus.b.prop <- a.plus.b/sum(a.plus.b)
a.div.b <- a.div.b/sum(a.div.b)

#dataframe
aa.prop <- data.frame(alpha.prop,
                      beta.prop,
                      a.plus.b.prop,
                      a.div.b)
#row labels
row.names(aa.prop) <- aa.1.1

Table 5 therefore becomes this

pander::pander(aa.prop)
  alpha.prop beta.prop a.plus.b.prop a.div.b
A 0.1165 0.07313 0.09264 0.08331
R 0.02166 0.02414 0.04129 0.03369
N 0.03964 0.05007 0.06353 0.04223
D 0.06661 0.04359 0.05876 0.05631
C 0.008991 0.02702 0.03917 0.01454
Q 0.02738 0.04395 0.03917 0.02631
E 0.05476 0.03098 0.04553 0.05931
G 0.08051 0.107 0.09052 0.08701
H 0.04536 0.01765 0.01747 0.02469
I 0.03719 0.04323 0.04923 0.05516
L 0.09031 0.06376 0.05823 0.07824
K 0.1018 0.04143 0.05929 0.07408
M 0.01962 0.005764 0.01323 0.021
F 0.05027 0.03062 0.02753 0.03646
P 0.03351 0.04575 0.03759 0.04339
S 0.04986 0.1228 0.0667 0.07547
T 0.04863 0.09114 0.06194 0.05493
W 0.01349 0.01585 0.01588 0.01662
Y 0.02575 0.03963 0.05717 0.03
V 0.06825 0.08249 0.06511 0.08724

Determine the number of each amino acid in my protein.

A Function to convert a table into a vector is helpful here because R is goofy about tables not being the same as vectors.

table_to_vector <- function(table_x){
  table_names <- attr(table_x, "dimnames")[[1]]
  table_vect <- as.vector(table_x)
  names(table_vect) <- table_names
  return(table_vect)
}
NP_006249 <- prkg1_human_vector

PRKG1.human.aa.freq <- table(NP_006249)/length(NP_006249)

pander::pander(PRKG1.human.aa.freq)
Table continues below
A C D E F G H I
0.05977 0.01458 0.07434 0.08017 0.0481 0.06706 0.01603 0.07289
Table continues below
K L M N P Q R S
0.08163 0.09475 0.02187 0.03353 0.04227 0.03936 0.04519 0.05394
T V W Y
0.05831 0.05102 0.01166 0.03353

Check for the presence of “U” (unknown aa.)

aa.names <- names(PRKG1.human.aa.freq)

aa.names
##  [1] "A" "C" "D" "E" "F" "G" "H" "I" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V" "W"
## [20] "Y"
any(aa.names == "U") 
## [1] FALSE
# i.U <- which(aa.names == "U")

# i.U

# aa.names[i.U]

# pander::pander(PRKG1.human.aa.freq)
# PRKG1.human.aa.freq[i.U]
# pander::pander(PRKG1.human.aa.freq)

# PRKG1.human.aa.freq <- PRKG1.human.aa.freq[-i.U]

# pander::pander(PRKG1.human.aa.freq)

Add data on my focal protein to the amino acid frequency table.

aa.prop$PRKG1.human.aa.freq <- PRKG1.human.aa.freq

pander::pander(aa.prop)
  alpha.prop beta.prop a.plus.b.prop a.div.b PRKG1.human.aa.freq
A 0.1165 0.07313 0.09264 0.08331 0.05977
R 0.02166 0.02414 0.04129 0.03369 0.01458
N 0.03964 0.05007 0.06353 0.04223 0.07434
D 0.06661 0.04359 0.05876 0.05631 0.08017
C 0.008991 0.02702 0.03917 0.01454 0.0481
Q 0.02738 0.04395 0.03917 0.02631 0.06706
E 0.05476 0.03098 0.04553 0.05931 0.01603
G 0.08051 0.107 0.09052 0.08701 0.07289
H 0.04536 0.01765 0.01747 0.02469 0.08163
I 0.03719 0.04323 0.04923 0.05516 0.09475
L 0.09031 0.06376 0.05823 0.07824 0.02187
K 0.1018 0.04143 0.05929 0.07408 0.03353
M 0.01962 0.005764 0.01323 0.021 0.04227
F 0.05027 0.03062 0.02753 0.03646 0.03936
P 0.03351 0.04575 0.03759 0.04339 0.04519
S 0.04986 0.1228 0.0667 0.07547 0.05394
T 0.04863 0.09114 0.06194 0.05493 0.05831
W 0.01349 0.01585 0.01588 0.01662 0.05102
Y 0.02575 0.03963 0.05717 0.03 0.01166
V 0.06825 0.08249 0.06511 0.08724 0.03353

Functions to calculate similarities

Two custom functions are needed: one to calculate correlates between two columns of our table, and one to calculate correlation similarities.

# Correlation used in Chou and Zhange 1992.
chou_cor <- function(x,y){
  numerator <- sum(x*y)
denominator <- sqrt((sum(x^2))*(sum(y^2)))
result <- numerator/denominator
return(result)
}

# Cosine similarity used in Higgs and Attwood (2005). 
chou_cosine <- function(z.1, z.2){
  z.1.abs <- sqrt(sum(z.1^2))
  z.2.abs <- sqrt(sum(z.2^2))
  my.cosine <- sum(z.1*z.2)/(z.1.abs*z.2.abs)
  return(my.cosine)
}

Calculate correlation between each column

corr.alpha <- chou_cor(aa.prop[,5], aa.prop[,1])
corr.beta  <- chou_cor(aa.prop[,5], aa.prop[,2])
corr.apb   <- chou_cor(aa.prop[,5], aa.prop[,3])
corr.adb   <- chou_cor(aa.prop[,5], aa.prop[,4])

Calculate cosine similarity

cos.alpha <- chou_cosine(aa.prop[,5], aa.prop[,1])
cos.beta  <- chou_cosine(aa.prop[,5], aa.prop[,2])
cos.apb   <- chou_cosine(aa.prop[,5], aa.prop[,3])
cos.adb   <- chou_cosine(aa.prop[,5], aa.prop[,4])

Calculate distance. Note: we need to flip the dataframe on its side using a command called t()

aa.prop.flipped <- t(aa.prop)
round(aa.prop.flipped,2)
##                        A    R    N    D    C    Q    E    G    H    I    L    K
## alpha.prop          0.12 0.02 0.04 0.07 0.01 0.03 0.05 0.08 0.05 0.04 0.09 0.10
## beta.prop           0.07 0.02 0.05 0.04 0.03 0.04 0.03 0.11 0.02 0.04 0.06 0.04
## a.plus.b.prop       0.09 0.04 0.06 0.06 0.04 0.04 0.05 0.09 0.02 0.05 0.06 0.06
## a.div.b             0.08 0.03 0.04 0.06 0.01 0.03 0.06 0.09 0.02 0.06 0.08 0.07
## PRKG1.human.aa.freq 0.06 0.01 0.07 0.08 0.05 0.07 0.02 0.07 0.08 0.09 0.02 0.03
##                        M    F    P    S    T    W    Y    V
## alpha.prop          0.02 0.05 0.03 0.05 0.05 0.01 0.03 0.07
## beta.prop           0.01 0.03 0.05 0.12 0.09 0.02 0.04 0.08
## a.plus.b.prop       0.01 0.03 0.04 0.07 0.06 0.02 0.06 0.07
## a.div.b             0.02 0.04 0.04 0.08 0.05 0.02 0.03 0.09
## PRKG1.human.aa.freq 0.04 0.04 0.05 0.05 0.06 0.05 0.01 0.03

We can get distance matrix like this

dist(aa.prop.flipped, method = "euclidean")
##                     alpha.prop  beta.prop a.plus.b.prop    a.div.b
## beta.prop           0.13342098                                    
## a.plus.b.prop       0.09281824 0.08289406                         
## a.div.b             0.06699039 0.08659174    0.06175113           
## PRKG1.human.aa.freq 0.16424606 0.15741673    0.13455135 0.14951781

Individual distances using dist()

dist.alpha <- dist((aa.prop.flipped[c(1,5),]),  method = "euclidean")
dist.beta  <- dist((aa.prop.flipped[c(2,5),]),  method = "euclidean")
dist.apb   <- dist((aa.prop.flipped[c(3,5),]),  method = "euclidean")
dist.adb  <- dist((aa.prop.flipped[c(4,5),]), method = "euclidean")

Compile the information. Rounding makes it easier to read

# fold types
fold.type <- c("alpha","beta","alpha plus beta", "alpha/beta")

# data
corr.sim <- round(c(corr.alpha,corr.beta,corr.apb,corr.adb),5)
cosine.sim <- round(c(cos.alpha,cos.beta,cos.apb,cos.adb),5)
Euclidean.dist <- round(c(dist.alpha,dist.beta,dist.apb,dist.adb),5)

# summary
sim.sum <- c("","","most.sim","")
dist.sum <- c("","","min.dist","")

df <- data.frame(fold.type,
           corr.sim ,
           cosine.sim ,
           Euclidean.dist ,
           sim.sum ,
           dist.sum )

Display output

pander::pander(df)
fold.type corr.sim cosine.sim Euclidean.dist sim.sum dist.sum
alpha 0.7894 0.7894 0.1643
beta 0.8098 0.8098 0.1574
alpha plus beta 0.8493 0.8493 0.1346 most.sim min.dist
alpha/beta 0.8173 0.8173 0.1495
# fold.type
# corr.sim
# cosine.sim
# Euclidean.dist
# sim.sum
# dist.sum

Percent Identity Comparisons (PID)

Data Preparation

Convert all FASTA records intro entries in a single vector. FASTA entries are contained in a list produced at the beginning of the script. They were cleaned to remove the header and newline characters.

prkg1_list 
## $NP_006249
## [1] "MGTLRDLQYALQEKIEELRQRDALIDELELELDQKDELIQKLQNELDKYRSVIRPATQQAQKQSASTLQGEPRTKRQAISAEPTAFDIQDLSHVTLPFYPKSPQSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIKEGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAIDRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQGARGDTFFIISKGTVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDIDF"
## 
## $NP_776861
## [1] "MSELEEDFAKILMLKEERIKELEKRLSEKEEEIQELKRKLHKCQSVLPVPSTHIGPRTTRAQGISAEPQTYRSFHDLRQAFRKFTKSERSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIKEGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAIDRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQGARGDTFFIISKGKVNVTREDSPNEDPVFLRTLGKGDWFGEKALQGEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDIDF"
## 
## $NP_001013855
## [1] "MSELEEDFAKILMLKEERIKELEKRLSEKEEEIQELKRKLHKCQSVLPVPSTHIGPRTTRAQGISAEPQTYRSFHDLRQAFRKFTKSERSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIKEGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAIDRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPDEILSKLADVLEETHYENGEYIIRQGARGDTFFIISKGQVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDSDEPPPDDNSGWDIDF"
## 
## $NP_001099201
## [1] "MSELEEDFAKILMLKEERIKELEKRLSEKEEEIQELKRKLHKCQSVLPVPSTHIGPRTTRAQGISAEPQTYRSFHDLRQAFRKFTKSERSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIKEGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAIDRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPDEILSKLADVLEETHYENGEYIIRQGARGDTFFIISKGKVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDSDEPPPDDNSGWDIDF"
## 
## $NP_957324
## [1] "MSDLDEDFAKILMLKEERIRDLERRLLEREDEISELKRKLHKCQSVLPSAQIGPRTHRAQGISAEPQTHQDLSNQSFRRVAKSDRSKDLIKSAILDNDFMKNLEMSQIQEIVDCMYPVDYDKNSCIIKEGDVGSLVYVMEDGKVEVTKEGLKLCTMGPGKVFGELAILYNCTRTATVRTVSSVKLWAIDRQCFQTIMMRTGLIKHAEYMELLKSVLTFRGLPEEILSKLADVLEETHYEDGNYIIRQGARGDTFFIISKGKVTMTREDCPGQEPVYLRSMGRGDSFGEKALQGEDIRTANVIAAETVTCLVIDRDSYKHLIGGLEDVSNKGCEDAEAKAKYEAENAFFSNLNLSDFNIIDTLGVGGFGRVELVQLKSDEMKTFAMKILKKRHIVDTRQQEHIRSEKLIMQEAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGNFDDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKITKNAANLIKKLCRDTPSERLGNLKNGVKDIQKHKWFEGFNWDGLRKGTLMPPIIPNVTSSTDTSNFDSFPEDNEDPPPDDNSGWDIDF"
## 
## $NP_477488
## [1] "MQSLRISGCTPSGTGGSATPSPVGLVDPNFIVSNYVAASPQEERFIQIIQAKELKIQEMQRALQFKDNEIAELKSHLDKFQSVFPFSRGSAAGCAGTGGASGSGAGGSGGSGPGTATGATRKSGQNFQRQRALGISAEPQSESSLLLEHVSFPKYDKDERSRELIKAAILDNDFMKNLDLTQIREIVDCMYPVKYPAKNLIIKEGDVGSIVYVMEDGRVEVSREGKYLSTLSGAKVLGELAILYNCQRTATITAITECNLWAIERQCFQTIMMRTGLIRQAEYSDFLKSVPIFKDLAEDTLIKISDVLEETHYQRGDYIVRQGARGDTFFIISKGKVRVTIKQQDTQEEKFIRMLGKGDFFGEKALQGDDLRTANIICESADGVSCLVIDRETFNQLISNLDEIKHRYDDEGAMERRKINEEFRDINLTDLRVIATLGVGGFGRVELVQTNGDSSRSFALKQMKKSQIVETRQQQHIMSEKEIMGEANCQFIVKLFKTFKDKKYLYMLMESCLGGELWTILRDKGNFDDSTTRFYTACVVEAFDYLHSRNIIYRDLKPENLLLNERGYVKLVDFGFAKKLQTGRKTWTFCGTPEYVAPEVILNRGHDISADYWSLGVLMFELLTGTPPFTGSDPMRTYNIILKGIDAIEFPRNITRNASNLIKKLCRDNPAERLGYQRGGISEIQKHKWFDGFYWWGLQNCTLEPPIKPAVKSVVDTTNFDDYPPDPEGPPPDDVTGWDKDF"
## 
## $XP_001162858
## [1] "MGTLRDLQYALQEKIEELRQRDALIDELELELDQKDELIQKLQNELDKYRSVIRPATQQAQKQSASTLQGEPRTKRQAISAEPTAFDIQDLSHVTLPFYPKSPQSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIKEGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAIDRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQGARGDTFFIISKGTVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDIDF"
## 
## $XP_851997
## [1] "MSELEEDFAQVLMLKEERIKELERRLSEKEEEIQELKRKLHKCQSVLPAPSPHIGPRTTRAQGISAEPQTYRSFHDLRQAFRKFAKSERSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIKEGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAIDRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQGARGDTFFIISKGTVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKDSKYLYMLMEVCLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYTKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDIDF"
## 
## $XP_003641507
## [1] "MVIVAISRIPASPSGTKAFPLFLRFFRAPLLLPPPLPAAPRPVPGDVGPAAVSGAGRAAPVPPPCERRGPTMSELEGDFTKLLLLKEERIRELERRLGEKDEEIQELRRRLHKCHSVLPAPSPHIGPRTTRAQGISAEPQTYRSFHDLRQAFHKFTKAERSKELIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIKEGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAIDRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYESGEYIIRQGARGDTFFIISKGKVNVTREDSPSEDPVFLRTLGKGDWFGEKALQWEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEETKTFAMKILKKRHIVDTRQQEHIRSEKQIMQSAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDIDF"
## 
## $XP_002935474
## [1] "MGTLRDLQYALQEKIEELRQRDALIDELELELDQKDELIQRLQNELDKYRSVIKPATQQVHKQNPTTLGEQRTKRQAISAEPTAIDIQELSHVTLPFYPKSPQSKELIKEAILDNDFMKNLEISQIQEIVDCMYPVEYGKDSCIIKEGDVGSLVYVMEDGKVEVTKESVKLCTMGPGKVFGELAILYNCTRTATVKTLTNVKLWAIDRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEIVSKLADVLEETHYESGDYIIRQGARGDTFFIISKGKVNVTREDSPGEDPIFLRTLGKGDWFGEKALQGEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFGNLKLADFNIIDTLGVGGFGRVELVQLKSDECKTFAMKILKKRHIVDTRQQEHIRSEKQIMQSAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGSFDDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKITKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNEDPPPDDNSGWDIDF"
names( prkg1_list )
##  [1] "NP_006249"    "NP_776861"    "NP_001013855" "NP_001099201" "NP_957324"   
##  [6] "NP_477488"    "XP_001162858" "XP_851997"    "XP_003641507" "XP_002935474"
# 10 accession numbers
length( prkg1_list )
## [1] 10
# 10

Each entry is a full entry with no spaces or parsing, and no header

prkg1_list[1]
## $NP_006249
## [1] "MGTLRDLQYALQEKIEELRQRDALIDELELELDQKDELIQKLQNELDKYRSVIRPATQQAQKQSASTLQGEPRTKRQAISAEPTAFDIQDLSHVTLPFYPKSPQSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIKEGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAIDRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQGARGDTFFIISKGTVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVIAAEAVTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKDSKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDIDF"

Make each entry of the list into a vector. There are several ways to do this.

prkg1_vector <- unlist( prkg1_list )

Name the vector

names( prkg1_list )
##  [1] "NP_006249"    "NP_776861"    "NP_001013855" "NP_001099201" "NP_957324"   
##  [6] "NP_477488"    "XP_001162858" "XP_851997"    "XP_003641507" "XP_002935474"
names( prkg1_vector ) <- names( prkg1_list )

PID table

Do pairwise alignments for humans, chimps and 2-other species.

prkg1_human <- prkg1_vector["NP_006249"]

prkg1_chimp <- prkg1_vector["XP_001162858"]

prkg1_mouse <- prkg1_vector["NP_001013855"]
  
prkg1_fish <- prkg1_vector["NP_957324"]

# human and chimp
alignHumanChimp <- Biostrings::pairwiseAlignment(prkg1_human, prkg1_chimp)

Biostrings::pid( alignHumanChimp )
## [1] 100
alignHumanMouse <- Biostrings::pairwiseAlignment(prkg1_human, prkg1_mouse)


Biostrings::pid( alignHumanMouse )
## [1] 90.13062
alignHumanFish <- Biostrings::pairwiseAlignment(prkg1_human, prkg1_fish)


Biostrings::pid( alignHumanFish )
## [1] 82.67831

Build matrix

alignHumanChimp <- Biostrings::pairwiseAlignment(prkg1_human, prkg1_mouse)
alignHumanMouse <- Biostrings::pairwiseAlignment(prkg1_human, prkg1_mouse)
alignHumanFish <- Biostrings::pairwiseAlignment(prkg1_human, prkg1_mouse)
alignChimpMouse <- Biostrings::pairwiseAlignment(prkg1_human, prkg1_mouse)
alignChimpFish <- Biostrings::pairwiseAlignment(prkg1_human, prkg1_mouse)
alignMouseFish <- Biostrings::pairwiseAlignment(prkg1_human, prkg1_mouse)



pids <- c(1,                  NA,     NA,     NA,
          Biostrings::pid(alignHumanChimp),          1,     NA,     NA,
          Biostrings::pid(alignHumanMouse), Biostrings::pid(alignChimpMouse),      1,     NA,
          Biostrings::pid(alignHumanFish), Biostrings::pid(alignChimpFish), Biostrings::pid(alignMouseFish), 1)

mat <- matrix(pids, nrow = 4, byrow = T)
row.names(mat) <- c("Homo","Pan","Rat","Fish")   
colnames(mat) <- c("Homo","Pan","Rat","Fish")   

pander::pander(mat)  
  Homo Pan Rat Fish
Homo 1 NA NA NA
Pan 90.13 1 NA NA
Rat 90.13 90.13 1 NA
Fish 90.13 90.13 90.13 1

PID methods comparison

Compare different PID methods. I did this for Humans vs. chimps

# humans vs chimps

# pid1, pid2, pid3, pid4

PID1 <- Biostrings::pid(alignHumanChimp, type="PID1")
PID2 <- Biostrings::pid(alignHumanChimp, type="PID2")
PID3 <- Biostrings::pid(alignHumanChimp, type="PID3")
PID4 <- Biostrings::pid(alignHumanChimp, type="PID4")

method <- c("PID1", "PID2", "PID3", "PID4")

PID <- c( PID1, PID2, PID3, PID4 )

pid.comparison <- data.frame( method, PID )

pander::pander(pid.comparison)
method PID
PID1 90.13
PID2 92.96
PID3 92.55
PID4 91.53

Multiple Sequence Alignment

MSA data preparation

For use with R bioinformatics tools we need to convert our named vector to a string set using Biostrings::AAStringSet(). Note the _ss tag at the end of the object we’re assigning the output to, which designates this as a string set.

prkg1_vector_ss <- Biostrings::AAStringSet( prkg1_vector )

Building Multiple Sequence Alignment (MSA)

prkg1_align <- msa(prkg1_vector_ss,
                     method = "ClustalW")
## use default substitution matrix

Cleaning / Setting up an MSA

msa produces a species MSA object

class( prkg1_align )
## [1] "MsaAAMultipleAlignment"
## attr(,"package")
## [1] "msa"
# should be msa
is( prkg1_align )
## [1] "MsaAAMultipleAlignment" "AAMultipleAlignment"    "MsaMetaData"           
## [4] "MultipleAlignment"
# should be MsaAAMultipleAlignment

Default output of MSA

prkg1_align
## CLUSTAL 2.1  
## 
## Call:
##    msa(prkg1_vector_ss, method = "ClustalW")
## 
## MsaAAMultipleAlignment with 10 rows and 781 columns
##      aln                                                   names
##  [1] -------------------------...SNFDSFPEDNDEPPPDDNSGWDIDF NP_006249
##  [2] -------------------------...SNFDSFPEDNDEPPPDDNSGWDIDF XP_001162858
##  [3] -------------------------...SNFDSFPEDNEDPPPDDNSGWDIDF XP_002935474
##  [4] -------------------------...SNFDSFPEDNDEPPPDDNSGWDIDF XP_851997
##  [5] MVIVAISRIPASPSGTKAFPLFLRF...SNFDSFPEDNDEPPPDDNSGWDIDF XP_003641507
##  [6] -------------------------...SNFDSFPEDSDEPPPDDNSGWDIDF NP_001013855
##  [7] -------------------------...SNFDSFPEDSDEPPPDDNSGWDIDF NP_001099201
##  [8] -------------------------...SNFDSFPEDNDEPPPDDNSGWDIDF NP_776861
##  [9] -------------------------...SNFDSFPEDNEDPPPDDNSGWDIDF NP_957324
## [10] -------------------------...TNFDDYPPDPEGPPPDDVTGWDKDF NP_477488
##  Con -------------------------...SNFDSFPEDNDEPPPDDNSGWDIDF Consensus

Change class of alignment

# should be msa

class(prkg1_align) <- "AAMultipleAlignment"

Convert to seqinr format

# alignment

prkg1_align_seqinr <- msaConvert(prkg1_align, 
                                   type = "seqinr::alignment")

OPTIONAL: show output with print_msa

compbio4all::print_msa(prkg1_align_seqinr)
## [1] "------------------------------------------------------------ 0"
## [1] "------------------------------------------------------------ 0"
## [1] "------------------------------------------------------------ 0"
## [1] "------------------------------------------------------------ 0"
## [1] "MVIVAISRIPASPSGTKAFPLFLRFFRAPLLLPPPLPAAPRPVPGDVGPAAVSGAGRAAP 0"
## [1] "------------------------------------------------------------ 0"
## [1] "------------------------------------------------------------ 0"
## [1] "------------------------------------------------------------ 0"
## [1] "------------------------------------------------------------ 0"
## [1] "--------------------------------MQSLRISGCTPSGTGGSATPSPVGLVDP 0"
## [1] " "
## [1] "--------MGTLRDLQYALQEKIEELRQRDALIDELELELDQKDELIQKLQNELDKYRSV 0"
## [1] "--------MGTLRDLQYALQEKIEELRQRDALIDELELELDQKDELIQKLQNELDKYRSV 0"
## [1] "--------MGTLRDLQYALQEKIEELRQRDALIDELELELDQKDELIQRLQNELDKYRSV 0"
## [1] "-----------MSELEEDFAQVLMLKEER---IKELERRLSEKEEEIQELKRKLHKCQSV 0"
## [1] "VPPPCERRGPTMSELEGDFTKLLLLKEER---IRELERRLGEKDEEIQELRRRLHKCHSV 0"
## [1] "-----------MSELEEDFAKILMLKEER---IKELEKRLSEKEEEIQELKRKLHKCQSV 0"
## [1] "-----------MSELEEDFAKILMLKEER---IKELEKRLSEKEEEIQELKRKLHKCQSV 0"
## [1] "-----------MSELEEDFAKILMLKEER---IKELEKRLSEKEEEIQELKRKLHKCQSV 0"
## [1] "-----------MSDLDEDFAKILMLKEER---IRDLERRLLEREDEISELKRKLHKCQSV 0"
## [1] "N--FIVSNYVAASPQEERFIQIIQAKELK---IQEMQRALQFKDNEIAELKSHLDKFQSV 0"
## [1] " "
## [1] "IRPATQQAQ-----------------KQSASTLQGEPRT--------KRQAISAEPTAFD 0"
## [1] "IRPATQQAQ-----------------KQSASTLQGEPRT--------KRQAISAEPTAFD 0"
## [1] "IKPATQQVH-----------------KQNPTTL-GEQRT--------KRQAISAEPTAID 0"
## [1] "LP--------------------------APSPHIGPRTT--------RAQGISAEPQTYR 0"
## [1] "LP--------------------------APSPHIGPRTT--------RAQGISAEPQTYR 0"
## [1] "LP--------------------------VPSTHIGPRTT--------RAQGISAEPQTYR 0"
## [1] "LP--------------------------VPSTHIGPRTT--------RAQGISAEPQTYR 0"
## [1] "LP--------------------------VPSTHIGPRTT--------RAQGISAEPQTYR 0"
## [1] "LP----------------------------SAQIGPRTH--------RAQGISAEPQTH- 0"
## [1] "FPFSRGSAAGCAGTGGASGSGAGGSGGSGPGTATGATRKSGQNFQRQRALGISAEPQSES 0"
## [1] " "
## [1] "IQDLSHVTLPFYPKSPQSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIK 0"
## [1] "IQDLSHVTLPFYPKSPQSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIK 0"
## [1] "IQELSHVTLPFYPKSPQSKELIKEAILDNDFMKNLEISQIQEIVDCMYPVEYGKDSCIIK 0"
## [1] "SFHDLRQAFRKFAKSERSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIK 0"
## [1] "SFHDLRQAFHKFTKAERSKELIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIK 0"
## [1] "SFHDLRQAFRKFTKSERSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIK 0"
## [1] "SFHDLRQAFRKFTKSERSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIK 0"
## [1] "SFHDLRQAFRKFTKSERSKDLIKEAILDNDFMKNLELSQIQEIVDCMYPVEYGKDSCIIK 0"
## [1] "-QDLSNQSFRRVAKSDRSKDLIKSAILDNDFMKNLEMSQIQEIVDCMYPVDYDKNSCIIK 0"
## [1] "SLLLEHVSFPKYDKDERSRELIKAAILDNDFMKNLDLTQIREIVDCMYPVKYPAKNLIIK 0"
## [1] " "
## [1] "EGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAI 0"
## [1] "EGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAI 0"
## [1] "EGDVGSLVYVMEDGKVEVTKESVKLCTMGPGKVFGELAILYNCTRTATVKTLTNVKLWAI 0"
## [1] "EGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAI 0"
## [1] "EGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAI 0"
## [1] "EGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAI 0"
## [1] "EGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAI 0"
## [1] "EGDVGSLVYVMEDGKVEVTKEGVKLCTMGPGKVFGELAILYNCTRTATVKTLVNVKLWAI 0"
## [1] "EGDVGSLVYVMEDGKVEVTKEGLKLCTMGPGKVFGELAILYNCTRTATVRTVSSVKLWAI 0"
## [1] "EGDVGSIVYVMEDGRVEVSREGKYLSTLSGAKVLGELAILYNCQRTATITAITECNLWAI 0"
## [1] " "
## [1] "DRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQG 0"
## [1] "DRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQG 0"
## [1] "DRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEIVSKLADVLEETHYESGDYIIRQG 0"
## [1] "DRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQG 0"
## [1] "DRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYESGEYIIRQG 0"
## [1] "DRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPDEILSKLADVLEETHYENGEYIIRQG 0"
## [1] "DRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPDEILSKLADVLEETHYENGEYIIRQG 0"
## [1] "DRQCFQTIMMRTGLIKHTEYMEFLKSVPTFQSLPEEILSKLADVLEETHYENGEYIIRQG 0"
## [1] "DRQCFQTIMMRTGLIKHAEYMELLKSVLTFRGLPEEILSKLADVLEETHYEDGNYIIRQG 0"
## [1] "ERQCFQTIMMRTGLIRQAEYSDFLKSVPIFKDLAEDTLIKISDVLEETHYQRGDYIVRQG 0"
## [1] " "
## [1] "ARGDTFFIISKGTVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVI--AAEA 0"
## [1] "ARGDTFFIISKGTVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVI--AAEA 0"
## [1] "ARGDTFFIISKGKVNVTREDSPGEDPIFLRTLGKGDWFGEKALQGEDVRTANVI--AAEA 0"
## [1] "ARGDTFFIISKGTVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVI--AAEA 0"
## [1] "ARGDTFFIISKGKVNVTREDSPSEDPVFLRTLGKGDWFGEKALQWEDVRTANVI--AAEA 0"
## [1] "ARGDTFFIISKGQVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVI--AAEA 0"
## [1] "ARGDTFFIISKGKVNVTREDSPSEDPVFLRTLGKGDWFGEKALQGEDVRTANVI--AAEA 0"
## [1] "ARGDTFFIISKGKVNVTREDSPNEDPVFLRTLGKGDWFGEKALQGEDVRTANVI--AAEA 0"
## [1] "ARGDTFFIISKGKVTMTREDCPGQEPVYLRSMGRGDSFGEKALQGEDIRTANVI--AAET 0"
## [1] "ARGDTFFIISKGKVRVTIKQQDTQEEKFIRMLGKGDFFGEKALQGDDLRTANIICESADG 0"
## [1] " "
## [1] "VTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGG 0"
## [1] "VTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGG 0"
## [1] "VTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFGNLKLADFNIIDTLGVGG 0"
## [1] "VTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGG 0"
## [1] "VTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGG 0"
## [1] "VTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGG 0"
## [1] "VTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGG 0"
## [1] "VTCLVIDRDSFKHLIGGLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGG 0"
## [1] "VTCLVIDRDSYKHLIGGLEDVSNKGCEDAEAKAKYEAENAFFSNLNLSDFNIIDTLGVGG 0"
## [1] "VSCLVIDRETFNQLISNLDEIKHR-YDDEGAMERRKINEEFR-DINLTDLRVIATLGVGG 0"
## [1] " "
## [1] "FGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKD 0"
## [1] "FGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKD 0"
## [1] "FGRVELVQLKSDECKTFAMKILKKRHIVDTRQQEHIRSEKQIMQSAHSDFIVRLYRTFKD 0"
## [1] "FGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKD 0"
## [1] "FGRVELVQLKSEETKTFAMKILKKRHIVDTRQQEHIRSEKQIMQSAHSDFIVRLYRTFKD 0"
## [1] "FGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKD 0"
## [1] "FGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKD 0"
## [1] "FGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKD 0"
## [1] "FGRVELVQLKSDEMKTFAMKILKKRHIVDTRQQEHIRSEKLIMQEAHSDFIVRLYRTFKD 0"
## [1] "FGRVELVQTNGDSSRSFALKQMKKSQIVETRQQQHIMSEKEIMGEANCQFIVKLFKTFKD 0"
## [1] " "
## [1] "SKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENL 0"
## [1] "SKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENL 0"
## [1] "SKYLYMLMEACLGGELWTILRDRGSFDDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENL 0"
## [1] "SKYLYMLMEVCLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENL 0"
## [1] "SKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENL 0"
## [1] "SKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENL 0"
## [1] "SKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENL 0"
## [1] "SKYLYMLMEACLGGELWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENL 0"
## [1] "SKYLYMLMEACLGGELWTILRDRGNFDDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENL 0"
## [1] "KKYLYMLMESCLGGELWTILRDKGNFDDSTTRFYTACVVEAFDYLHSRNIIYRDLKPENL 0"
## [1] " "
## [1] "ILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYE 0"
## [1] "ILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYE 0"
## [1] "ILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYE 0"
## [1] "ILDHRGYTKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYE 0"
## [1] "ILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYE 0"
## [1] "ILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYE 0"
## [1] "ILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYE 0"
## [1] "ILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYE 0"
## [1] "ILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYE 0"
## [1] "LLNERGYVKLVDFGFAKKLQTGRKTWTFCGTPEYVAPEVILNRGHDISADYWSLGVLMFE 0"
## [1] " "
## [1] "LLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGV 0"
## [1] "LLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGV 0"
## [1] "LLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKITKNAANLIKKLCRDNPSERLGNLKNGV 0"
## [1] "LLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGV 0"
## [1] "LLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGV 0"
## [1] "LLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGV 0"
## [1] "LLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGV 0"
## [1] "LLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGV 0"
## [1] "LLTGSPPFSGPDPMKTYNIILRGIDMIEFPKKITKNAANLIKKLCRDTPSERLGNLKNGV 0"
## [1] "LLTGTPPFTGSDPMRTYNIILKGIDAIEFPRNITRNASNLIKKLCRDNPAERLGYQRGGI 0"
## [1] " "
## [1] "KDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDID 0"
## [1] "KDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDID 0"
## [1] "KDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNEDPPPDDNSGWDID 0"
## [1] "KDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDID 0"
## [1] "KDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDID 0"
## [1] "KDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDSDEPPPDDNSGWDID 0"
## [1] "KDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDSDEPPPDDNSGWDID 0"
## [1] "KDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDID 0"
## [1] "KDIQKHKWFEGFNWDGLRKGTLMPPIIPNVTSSTDTSNFDSFPEDNEDPPPDDNSGWDID 0"
## [1] "SEIQKHKWFDGFYWWGLQNCTLEPPIKPAVKSVVDTTNFDDYPPDPEGPPPDDVTGWDKD 0"
## [1] " "
## [1] "F 59"
## [1] "F 59"
## [1] "F 59"
## [1] "F 59"
## [1] "F 59"
## [1] "F 59"
## [1] "F 59"
## [1] "F 59"
## [1] "F 59"
## [1] "F 59"
## [1] " "

Finished MSA

Based on the output from drawProtiens, amino acids 625-700 appear to contain an interesting AGC-Kinase C Terminal.

# key step - must have class set properly
class(prkg1_align) <- "AAMultipleAlignment"

# run ggmsa
ggmsa::ggmsa(prkg1_align, 
            start = 625, end = 700) 

Distance Matrix

Make a distance matrix

prkg1_dist <- seqinr::dist.alignment(prkg1_align_seqinr, 
                                       matrix = "identity")

This produces a “dist” class object

is( prkg1_dist )
## [1] "dist"     "oldClass"
class( prkg1_dist )
## [1] "dist"

Round for display

prkg1_align_seqinr_rnd <- round(prkg1_dist, 3)
prkg1_align_seqinr_rnd
##              NP_006249 XP_001162858 XP_002935474 XP_851997 XP_003641507
## XP_001162858     0.000                                                 
## XP_002935474     0.206        0.206                                    
## XP_851997        0.309        0.309        0.350                       
## XP_003641507     0.322        0.322        0.343     0.181             
## NP_001013855     0.309        0.309        0.348     0.128        0.185
## NP_001099201     0.309        0.309        0.346     0.128        0.181
## NP_776861        0.306        0.306        0.341     0.122        0.177
## NP_957324        0.408        0.408        0.406     0.342        0.357
## NP_477488        0.623        0.623        0.617     0.599        0.622
##              NP_001013855 NP_001099201 NP_776861 NP_957324
## XP_001162858                                              
## XP_002935474                                              
## XP_851997                                                 
## XP_003641507                                              
## NP_001013855                                              
## NP_001099201        0.039                                 
## NP_776861           0.077        0.067                    
## NP_957324           0.342        0.340     0.335          
## NP_477488           0.600        0.599     0.598     0.603

Phylognetic trees of sequences

Build a phylogenetic tree from distance matrix

tree <- nj(prkg1_align_seqinr_rnd)

Plotting phylogenetic trees

Plot the tree

# plot tree
plot.phylo(tree, main="PRKG1 Phylogenetic Tree", 
            type = "unrooted", 
            use.edge.length = F)

# add label
# mtext(text = "PRKG1 Phylogenetic Tree - UNrooted, no branch lengths")