dt<-read.csv(file.choose(),sep=",") View(dt) summary(dt) dt2<-read.csv(file.choose(),sep=",") View(dt2)

Input Data

dt<-read.csv("D:/DOWNLOADS/CASchools.csv",sep=",")
dt2<-read.csv("D:/DOWNLOADS/heart.csv",sep=",")

Resampling

Jackknife

kita bisa melakukan teknik resampling Jackknife dengan menggunakan code berikut :

n<-nrow(dt)
x.bar<-mean(dt$income)
Se.x<-sd(dt$income)/sqrt(n)
jack.x.bar<-numeric(n)
for (i in 1:n){
  temp<-dt$income[-c(i)]
  jack.x.bar[i]<-mean(temp)
}
jack.mean.x.bar<-mean(jack.x.bar)
jack.SE<-sqrt(((n-1)/n)*sum((jack.x.bar-jack.mean.x.bar)^2))

#Tingkat Kepercayaan 95% untuk rata-rata
t.star<-qt(p=0.975,df=n-1)
x.bar+c(-1,1)*t.star*Se.x
FALSE [1] 14.62353 16.00965
res<-jack.mean.x.bar+c(-1,1)*t.star*jack.SE

hasil Confident Interval untuk rata rata dengan Jackknife adalah 14.6235277, 16.0096484

###Bootstrap kita bisa melakukan teknik resampling bootstrap dengan menggunakan code berikut :

library(mosaic)
x<-dt$income
theta.hat<-mean(x)
B<-1000
boot.mean<-do(B)*mean(resample(x,replace=TRUE))
boot.mean<-data.frame(boot.mean)
alpha<-0.05
quantile(x=boot.mean$mean,probs=c(alpha/2,1-alpha/2),data=boot.mean,na.rm=TRUE)
FALSE     2.5%    97.5% 
FALSE 14.66248 16.02973
SE.boot<-sd(boot.mean$mean)
res2<-theta.hat+c(-1,1)*qnorm(p=1-alpha/2)*SE.boot

Hasil Confident Interval untuk rata rata AHH pria 2015 dengan bootstrap adalah 14.6235277, 16.0096484

Statistik Deskriptif

# Mean
mean(dt$income)
## [1] 15.31659
# Median
median(dt$income)
## [1] 13.7278
# Fraktil
quantile(dt$expenditure,c(0.25,0.5,0.75))
##      25%      50%      75% 
## 4906.180 5214.517 5601.401
# Range 
range(dt$expenditure)
## [1] 3926.070 7711.507
max(dt$expenditure)-min(dt$expenditure)
## [1] 3785.437
# Interquartile range
quantile(dt$expenditure,0.75)-quantile(dt$expenditure,0.25)
##      75% 
## 695.2213
# Varians
var(dt$income)
## [1] 52.21348
# Standar deviasi (Simpangan baku)
sd(dt$income)
## [1] 7.22589
# Rangkuman statistik deskriptif 
summary(dt$income)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   5.335  10.639  13.728  15.317  17.629  55.328
summary(dt)
##        X            district        school             county         
##  Min.   :  1.0   Min.   :61382   Length:420         Length:420        
##  1st Qu.:105.8   1st Qu.:64308   Class :character   Class :character  
##  Median :210.5   Median :67761   Mode  :character   Mode  :character  
##  Mean   :210.5   Mean   :67473                                        
##  3rd Qu.:315.2   3rd Qu.:70419                                        
##  Max.   :420.0   Max.   :75440                                        
##     grades             students          teachers          calworks     
##  Length:420         Min.   :   81.0   Min.   :   4.85   Min.   : 0.000  
##  Class :character   1st Qu.:  379.0   1st Qu.:  19.66   1st Qu.: 4.395  
##  Mode  :character   Median :  950.5   Median :  48.56   Median :10.520  
##                     Mean   : 2628.8   Mean   : 129.07   Mean   :13.246  
##                     3rd Qu.: 3008.0   3rd Qu.: 146.35   3rd Qu.:18.981  
##                     Max.   :27176.0   Max.   :1429.00   Max.   :78.994  
##      lunch           computer       expenditure       income      
##  Min.   :  0.00   Min.   :   0.0   Min.   :3926   Min.   : 5.335  
##  1st Qu.: 23.28   1st Qu.:  46.0   1st Qu.:4906   1st Qu.:10.639  
##  Median : 41.75   Median : 117.5   Median :5215   Median :13.728  
##  Mean   : 44.71   Mean   : 303.4   Mean   :5312   Mean   :15.317  
##  3rd Qu.: 66.86   3rd Qu.: 375.2   3rd Qu.:5601   3rd Qu.:17.629  
##  Max.   :100.00   Max.   :3324.0   Max.   :7712   Max.   :55.328  
##     english            read            math      
##  Min.   : 0.000   Min.   :604.5   Min.   :605.4  
##  1st Qu.: 1.941   1st Qu.:640.4   1st Qu.:639.4  
##  Median : 8.778   Median :655.8   Median :652.5  
##  Mean   :15.768   Mean   :655.0   Mean   :653.3  
##  3rd Qu.:22.970   3rd Qu.:668.7   3rd Qu.:665.9  
##  Max.   :85.540   Max.   :704.0   Max.   :709.5
summary(dt2)
##       Age            Sex            ChestPainType        RestingBP    
##  Min.   :28.00   Length:918         Length:918         Min.   :  0.0  
##  1st Qu.:47.00   Class :character   Class :character   1st Qu.:120.0  
##  Median :54.00   Mode  :character   Mode  :character   Median :130.0  
##  Mean   :53.51                                         Mean   :132.4  
##  3rd Qu.:60.00                                         3rd Qu.:140.0  
##  Max.   :77.00                                         Max.   :200.0  
##   Cholesterol      FastingBS       RestingECG            MaxHR      
##  Min.   :  0.0   Min.   :0.0000   Length:918         Min.   : 60.0  
##  1st Qu.:173.2   1st Qu.:0.0000   Class :character   1st Qu.:120.0  
##  Median :223.0   Median :0.0000   Mode  :character   Median :138.0  
##  Mean   :198.8   Mean   :0.2331                      Mean   :136.8  
##  3rd Qu.:267.0   3rd Qu.:0.0000                      3rd Qu.:156.0  
##  Max.   :603.0   Max.   :1.0000                      Max.   :202.0  
##  ExerciseAngina        Oldpeak          ST_Slope          HeartDisease   
##  Length:918         Min.   :-2.6000   Length:918         Min.   :0.0000  
##  Class :character   1st Qu.: 0.0000   Class :character   1st Qu.:0.0000  
##  Mode  :character   Median : 0.6000   Mode  :character   Median :1.0000  
##                     Mean   : 0.8874                      Mean   :0.5534  
##                     3rd Qu.: 1.5000                      3rd Qu.:1.0000  
##                     Max.   : 6.2000                      Max.   :1.0000

Uji Proporsi

# Pengaturan variabel
library(dplyr)
dt2.male<-dt2%>%filter(Sex=="M")
total.dt2.male<-nrow(dt2.male)
total.dt2.male
## [1] 725
total.dt2<-nrow(dt2)
total.dt2
## [1] 918
# Two-tailed
test.prop.dt2.sex<-prop.test(x=total.dt2.male, n=total.dt2, p=0.5, correct = FALSE)
test.prop.dt2.sex
## 
##  1-sample proportions test without continuity correction
## 
## data:  total.dt2.male out of total.dt2
## X-squared = 308.31, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
##  0.7622210 0.8148848
## sample estimates:
##         p 
## 0.7897603
# One tailed

# Less
test.less<-prop.test(x=total.dt2.male, n=total.dt2, p=0.5,alternative="less", correct = FALSE)
test.less
## 
##  1-sample proportions test without continuity correction
## 
## data:  total.dt2.male out of total.dt2
## X-squared = 308.31, df = 1, p-value = 1
## alternative hypothesis: true p is less than 0.5
## 95 percent confidence interval:
##  0.0000000 0.8110141
## sample estimates:
##         p 
## 0.7897603
# Greater
test.greater<-prop.test(x=total.dt2.male, n=total.dt2, p=0.5,alternative="greater", correct = FALSE)
test.greater
## 
##  1-sample proportions test without continuity correction
## 
## data:  total.dt2.male out of total.dt2
## X-squared = 308.31, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is greater than 0.5
## 95 percent confidence interval:
##  0.7668037 1.0000000
## sample estimates:
##         p 
## 0.7897603

Regresi Linear

# Regresi Linear Sederhana
x<-dt$expenditure
y<-dt$income
plot(x,y)
abline(lm(y~x))

lm(y~x)
## 
## Call:
## lm(formula = y ~ x)
## 
## Coefficients:
## (Intercept)            x  
##   -3.726430     0.003585
fit <-lm(y~x)
summary(fit)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.479  -4.272  -1.167   2.494  35.895 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.7264305  2.8313784  -1.316    0.189    
## x            0.0035846  0.0005292   6.773 4.29e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.867 on 418 degrees of freedom
## Multiple R-squared:  0.0989, Adjusted R-squared:  0.09674 
## F-statistic: 45.88 on 1 and 418 DF,  p-value: 4.286e-11
# Regresi Linear Berganda
lm(income~math+read,english, data=dt)
## 
## Call:
## lm(formula = income ~ math + read, data = dt, subset = english)
## 
## Coefficients:
## (Intercept)         math         read  
##   -70.47963     -0.02069      0.14886
fit1<-lm(income~math+read,english, data=dt)
summary(fit1)
## 
## Call:
## lm(formula = income ~ math + read, data = dt, subset = english)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.325 -2.001 -0.330  1.712 12.627 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -70.47963    5.07159 -13.897  < 2e-16 ***
## math         -0.02069    0.02955  -0.700    0.484    
## read          0.14886    0.02718   5.477 8.53e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.038 on 334 degrees of freedom
## Multiple R-squared:  0.4932, Adjusted R-squared:  0.4902 
## F-statistic: 162.5 on 2 and 334 DF,  p-value: < 2.2e-16

numSummary()

library(survival, pos=22)
library(TH.data, pos=22)
## Warning: package 'TH.data' was built under R version 4.0.5
## Loading required package: MASS
## Warning: package 'MASS' was built under R version 4.0.5
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## Attaching package: 'TH.data'
## The following object is masked _by_ 'package:MASS':
## 
##     geyser
library(multcomp, pos=22)
## Warning: package 'multcomp' was built under R version 4.0.5
## Loading required package: mvtnorm
## Warning: package 'mvtnorm' was built under R version 4.0.5
library(abind, pos=25)
library(car)
## Warning: package 'car' was built under R version 4.0.5
## Loading required package: carData
## 
## Attaching package: 'car'
## The following objects are masked from 'package:mosaic':
## 
##     deltaMethod, logit
## The following object is masked from 'package:dplyr':
## 
##     recode
AnovaModel.3 <- aov(income~county, data=dt)
summary(AnovaModel.3)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## county       44  11840  269.08   10.05 <2e-16 ***
## Residuals   375  10038   26.77                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AnovaModel.4 <- aov(expenditure ~county, data=dt)
summary(AnovaModel.4)
##              Df    Sum Sq Mean Sq F value   Pr(>F)    
## county       44  52122246 1184597   3.821 6.39e-13 ***
## Residuals   375 116263876  310037                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AnovaModel.11 <- lm(income ~ county, data=dt, contrasts=list(county ="contr.Sum"))
Anova(AnovaModel.11)
## Anova Table (Type II tests)
## 
## Response: income
##           Sum Sq  Df F value    Pr(>F)    
## county     11840  44  10.053 < 2.2e-16 ***
## Residuals  10038 375                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Tapply(income ~ county, mean, na.action=na.omit, data=dt) # means
##         Alameda           Butte       Calaveras    Contra Costa       El Dorado 
##       22.690001        9.205243       13.243000       25.265674       15.964900 
##          Fresno           Glenn        Humboldt        Imperial            Inyo 
##        9.269000       10.639000       12.879294        9.677167       13.522333 
##            Kern           Kings            Lake          Lassen     Los Angeles 
##       11.217030       10.820074       10.796500       12.819000       14.644124 
##          Madera           Marin       Mendocino          Merced        Monterey 
##       12.642517       32.185312       10.035000       10.018221       13.134043 
##          Nevada          Orange          Placer       Riverside      Sacramento 
##       15.325334       17.433482       16.777414       12.861125       11.987568 
##      San Benito  San Bernardino       San Diego     San Joaquin San Luis Obispo 
##       13.630000       13.394711       17.448104       13.397000       16.864500 
##       San Mateo   Santa Barbara     Santa Clara      Santa Cruz          Shasta 
##       27.461052       22.780021       24.026920       20.398662       12.142857 
##        Siskiyou          Sonoma      Stanislaus          Sutter          Tehama 
##       11.202815       17.445289       13.498087       11.984000       10.507125 
##         Trinity          Tulare        Tuolumne         Ventura            Yuba 
##       13.103500        9.918167       12.016389       15.319697       11.227000
Tapply(income ~ county, sd, na.action=na.omit, data=dt) # std. deviations
##         Alameda           Butte       Calaveras    Contra Costa       El Dorado 
##              NA       1.3535137              NA      10.3077626       2.2472260 
##          Fresno           Glenn        Humboldt        Imperial            Inyo 
##       2.2957477       0.0000000       1.6487372       0.8997434              NA 
##            Kern           Kings            Lake          Lassen     Los Angeles 
##       3.8232827       0.6767858       1.0698529       0.3634376       5.4256976 
##          Madera           Marin       Mendocino          Merced        Monterey 
##       2.0131309      11.4800799              NA       1.8263700       3.6342600 
##          Nevada          Orange          Placer       Riverside      Sacramento 
##       2.4029508       3.6630183       2.6644683       2.2943909       1.9418465 
##      San Benito  San Bernardino       San Diego     San Joaquin San Luis Obispo 
##       0.0000000       3.1729992       6.8641375       3.3610909       8.3346674 
##       San Mateo   Santa Barbara     Santa Clara      Santa Cruz          Shasta 
##      10.9824315      11.3406484       8.9794769       4.8016953       1.4590718 
##        Siskiyou          Sonoma      Stanislaus          Sutter          Tehama 
##       1.4316131       2.6648830       1.3812515       2.1644668       0.8384520 
##         Trinity          Tulare        Tuolumne         Ventura            Yuba 
##       0.2397090       2.3670582       2.4042008       5.7172809       1.8031224
xtabs(~ county, data=dt) # counts
## county
##         Alameda           Butte       Calaveras    Contra Costa       El Dorado 
##               1               6               1               7              10 
##          Fresno           Glenn        Humboldt        Imperial            Inyo 
##              12               3              17               6               1 
##            Kern           Kings            Lake          Lassen     Los Angeles 
##              27               9               2               5              27 
##          Madera           Marin       Mendocino          Merced        Monterey 
##               5               8               1              11               7 
##          Nevada          Orange          Placer       Riverside      Sacramento 
##               9              11              11               4               7 
##      San Benito  San Bernardino       San Diego     San Joaquin San Luis Obispo 
##               3              10              21               6               2 
##       San Mateo   Santa Barbara     Santa Clara      Santa Cruz          Shasta 
##              17              11              20               7              13 
##        Siskiyou          Sonoma      Stanislaus          Sutter          Tehama 
##               9              29               7               6               8 
##         Trinity          Tulare        Tuolumne         Ventura            Yuba 
##               2              24               6               9               2
AnovaModel.11 <- lm(expenditure ~ county, data=dt, contrasts=list(county ="contr.Sum"))
Anova(AnovaModel.11)
## Anova Table (Type II tests)
## 
## Response: expenditure
##              Sum Sq  Df F value    Pr(>F)    
## county     52122246  44  3.8208 6.391e-13 ***
## Residuals 116263876 375                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Tapply(expenditure ~ county, mean, na.action=na.omit, data=dt) # means
##         Alameda           Butte       Calaveras    Contra Costa       El Dorado 
##        6384.911        5776.724        5482.677        5269.445        5309.967 
##          Fresno           Glenn        Humboldt        Imperial            Inyo 
##        5396.978        4363.346        5449.528        5036.141        5189.628 
##            Kern           Kings            Lake          Lassen     Los Angeles 
##        5165.863        5267.910        5762.261        4944.442        5055.672 
##          Madera           Marin       Mendocino          Merced        Monterey 
##        5587.214        6158.656        6089.911        5227.237        5171.937 
##          Nevada          Orange          Placer       Riverside      Sacramento 
##        5560.375        4980.176        5026.351        4904.150        5212.460 
##      San Benito  San Bernardino       San Diego     San Joaquin San Luis Obispo 
##        5137.167        5015.355        5412.878        4885.268        5058.711 
##       San Mateo   Santa Barbara     Santa Clara      Santa Cruz          Shasta 
##        5715.444        5307.868        5560.497        5889.167        5479.120 
##        Siskiyou          Sonoma      Stanislaus          Sutter          Tehama 
##        6241.181        5660.046        4855.546        4613.043        5008.996 
##         Trinity          Tulare        Tuolumne         Ventura            Yuba 
##        5827.908        4852.233        5408.842        4964.327        5384.865
Tapply(expenditure ~ county, sd, na.action=na.omit, data=dt) # std. deviations
##         Alameda           Butte       Calaveras    Contra Costa       El Dorado 
##              NA       757.88607              NA       380.54706       281.70541 
##          Fresno           Glenn        Humboldt        Imperial            Inyo 
##       554.38457       301.89106       523.28313       566.73002              NA 
##            Kern           Kings            Lake          Lassen     Los Angeles 
##       511.38782       725.92476       151.50177       213.83224       348.02586 
##          Madera           Marin       Mendocino          Merced        Monterey 
##       725.43480       475.45764              NA       438.82091       544.57305 
##          Nevada          Orange          Placer       Riverside      Sacramento 
##       723.33354       199.55427       277.30837       142.70637       369.77360 
##      San Benito  San Bernardino       San Diego     San Joaquin San Luis Obispo 
##       248.69548       496.87814       384.88565       207.01949       277.07365 
##       San Mateo   Santa Barbara     Santa Clara      Santa Cruz          Shasta 
##      1086.00600       845.27314       428.69782       823.20936       762.24326 
##        Siskiyou          Sonoma      Stanislaus          Sutter          Tehama 
##       443.43863       677.67998       223.20636       410.03572       331.31024 
##         Trinity          Tulare        Tuolumne         Ventura            Yuba 
##        79.93725       625.97029       269.23665       454.81323       860.58866
xtabs(~ county, data=dt) # counts
## county
##         Alameda           Butte       Calaveras    Contra Costa       El Dorado 
##               1               6               1               7              10 
##          Fresno           Glenn        Humboldt        Imperial            Inyo 
##              12               3              17               6               1 
##            Kern           Kings            Lake          Lassen     Los Angeles 
##              27               9               2               5              27 
##          Madera           Marin       Mendocino          Merced        Monterey 
##               5               8               1              11               7 
##          Nevada          Orange          Placer       Riverside      Sacramento 
##               9              11              11               4               7 
##      San Benito  San Bernardino       San Diego     San Joaquin San Luis Obispo 
##               3              10              21               6               2 
##       San Mateo   Santa Barbara     Santa Clara      Santa Cruz          Shasta 
##              17              11              20               7              13 
##        Siskiyou          Sonoma      Stanislaus          Sutter          Tehama 
##               9              29               7               6               8 
##         Trinity          Tulare        Tuolumne         Ventura            Yuba 
##               2              24               6               9               2

Grafik

with(dt,hist(income, scale="frequency", breaks="Sturges", col="darkgray"))
## Warning in plot.window(xlim, ylim, "", ...): "scale" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...): "scale"
## is not a graphical parameter
## Warning in axis(1, ...): "scale" is not a graphical parameter
## Warning in axis(2, ...): "scale" is not a graphical parameter

densityPlot( ~ income, data=dt, bw=bw.SJ, adjust=1, kernel=dnorm, method="adaptive")

library(aplpack, pos=26)
## Warning: package 'aplpack' was built under R version 4.0.5
with(dt, stem.leaf(income, na.rm=TRUE))
## 1 | 2: represents 1.2
##  leaf unit: 0.1
##             n: 420
##     2     5 | 36
##     6     6 | 2569
##    24     7 | 013333333344455799
##    47     8 | 01111222234557888999999
##    73     9 | 00444566666666777788999999
##   112    10 | 000000000222222333344455555566666666699
##   155    11 | 0011111111222222344444455556667788888889999
##   184    12 | 00112333444555555666667788999
##   (31)   13 | 1222233334444455555666777777799
##   205    14 | 0000000001111111122222224445555556666789
##   165    15 | 000111111122233344444555555677779
##   132    16 | 0222233333446667999
##   113    17 | 1334555667777789
##    97    18 | 012233333555666667778
##    76    19 | 001135789
##    67    20 | 0144457789
##    57    21 | 0156999
##    50    22 | 00145567888
##    39    23 | 46778
##    34    24 | 6
##    33    25 | 0002467
##          26 | 
##    26    27 | 489
##    23    28 | 7
## HI: 30.6284999847412 30.8400001525879 31.0520000457764 33.4550018310547 34.1595001220703 34.3009986877441 35.3419990539551 35.4809989929199 35.810001373291 35.810001373291 36.173999786377 36.173999786377 38.6285705566406 40.2639999389648 40.4020004272461 41.0929985046387 41.7341079711914 43.2299995422363 43.2299995422363 49.9389991760254 50.6769981384277 55.3279991149902
Boxplot( ~ income, data=dt, id=list(method="y"))

##  [1] "405" "414" "404" "402" "413" "417" "387" "415" "411" "408"
scatterplot(income~expenditure, regLine=FALSE, smooth=FALSE, boxplots=FALSE, data=dt)

library(colorspace, pos=27)
## Warning: package 'colorspace' was built under R version 4.0.5

Uji Rata-Rata Satu Sampel

Uji Kenormalan

Melihat kesimetrisan data menggunakan boxplot

boxplot(dt$math)

Uji Saphiro-Wilk

shapiro.test(dt$math)

    Shapiro-Wilk normality test

data:  dt$math
W = 0.99366, p-value = 0.07594

Keputusan: gagal tolak H_0

Kesimpulan: Dengan tingkat kepercayaan 95% dapat ditunjukkan bahwa score math dan read mengikuti distribusi normal

Uji t Satu Sampel

res <- t.test(dt$math,mu=650)
res

    One Sample t-test

data:  dt$math
t = 3.6527, df = 419, p-value = 0.0002924
alternative hypothesis: true mean is not equal to 650
95 percent confidence interval:
 651.5438 655.1414
sample estimates:
mean of x 
 653.3426 

Keputusan: tolak H_0

Kesimpulan: Dengan taraf uji 5% dan dapat ditunjukkan bahwa rata-rata score math tidak sama dengan 650.

Uji Rata-Rata Dua Sampel Independen

Uji Kenormalan

Melihat kesimetrisan data menggunakan boxplot

boxplot(dt$math)

boxplot(dt$read)

Uji Saphiro-Wilk

shapiro.test(dt$math)

    Shapiro-Wilk normality test

data:  dt$math
W = 0.99366, p-value = 0.07594
shapiro.test(dt$read)

    Shapiro-Wilk normality test

data:  dt$read
W = 0.99472, p-value = 0.1597

Keputusan: gagal tolak H_0

Kesimpulan: Dengan tingkat kepercayaan 95% dapat ditunjukkan bahwa score math dan read berdistribusi normal.

Uji Varians

res.ftest <- var.test(math~grades, data =dt)
res.ftest

    F test to compare two variances

data:  math by grades
F = 1.1157, num df = 60, denom df = 358, p-value = 0.5432
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.7765411 1.6926969
sample estimates:
ratio of variances 
          1.115655 

Keputusan: gagal tolak H_0

Kesimpulan: Dengan tingkat kepercayaan 95% dapat ditunjukkan bahwa tidak ada perbedaan significant antara kedua varians

Uji t

res <- t.test(read~grades, data =dt, var.equal = TRUE)
res

    Two Sample t-test

data:  read by grades
t = 3.0136, df = 418, p-value = 0.002739
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  2.890422 13.733932
sample estimates:
mean in group KK-06 mean in group KK-08 
           662.0754            653.7632 

Keputusan: tolak H_0

Kesimpulan: Dengan taraf uji 5% dapat ditunjukkan bahwa rata-rata score math di grades KK-06 tidak sama dengan rata-rata di grades KK-08

Uji Rata-Rata Dua Sampel Dependen

Impor Data

library(foreign) AHH.dependen <- read.spss("D:/kerjaanku@_@/Praktikum Komstat/dua sampel dependen.sav",to.data.frame = TRUE)

View(dt2) ## Menghitung Beda Sampel

d <- with(AHH.dependen, AHHwanita[Tahun == "2018"] - AHHwanita[Tahun == "2019"])

Uji Saphiro-Wilk terhadap d

res <- shapiro.test(d) res

Keputusan: gagal tolak H_0

Kesimpulan: Dengan tingkat kepercayaan 95% dan 50 sampel kabupaten di Pulau Sumatera, dapat ditunjukkan bahwa beda antara AHH wanita tahun 2018 dan 2019 di Pulau Sumatera berdistribusi normal.

Uji t dependen

res <- t.test(AHHwanita ~ Tahun, data = AHH.dependen, paired = TRUE) res

Keputusan: tolak H_0

Kesimpulan: Dengan taraf uji 5% dan 50 sampel kabupaten di Pulau Sumatera, dapat ditunjukkan bahwa rata-rata AHH wanita tahun 2018 di Pulau Sumatera tidak sama dengan AHH wanita tahun 2019 di Pulau Sumatera.

Aplikasi Loop dan Fungsi (Data Sampel)

score.math<- data.frame(dt$math)
z_score <- function(x) {
  (x - mean(x)) / sd(x)
}
apply(score.math,2,z_score)
            dt.math
  [1,]  1.954622283
  [2,]  0.456292718
  [3,] -0.130242496
  [4,] -0.524822034
  [5,] -0.716777711
  [6,] -2.556365430
  [7,] -2.364409753
  [8,] -2.177784912
  [9,] -1.985829234
 [10,] -2.129794365
 [11,] -1.847191685
 [12,] -1.991160071
 [13,] -1.788539466
 [14,] -1.639240244
 [15,] -1.724553155
 [16,] -1.783205375
 [17,] -1.543259150
 [18,] -1.687227536
 [19,] -1.751213846
 [20,] -1.815200157
 [21,] -1.489937767
 [22,] -1.623241225
 [23,] -1.745883010
 [24,] -1.596580533
 [25,] -1.473942003
 [26,] -1.713888227
 [27,] -1.457946239
 [28,] -1.223330851
 [29,] -1.399294019
 [30,] -1.756544683
 [31,] -1.313977854
 [32,] -1.409955692
 [33,] -1.255325634
 [34,] -1.479276094
 [35,] -1.415289783
 [36,] -1.340638545
 [37,] -1.233995779
 [38,] -1.495271858
 [39,] -1.239329870
 [40,] -1.399294019
 [41,] -1.313977854
 [42,] -0.967388863
 [43,] -1.367299237
 [44,] -0.914067480
 [45,] -1.191339323
 [46,] -1.276652234
 [47,] -1.180674396
 [48,] -1.303312926
 [49,] -1.271321398
 [50,] -1.106026412
 [51,] -1.047370938
 [52,] -1.399294019
 [53,] -1.207335087
 [54,] -1.020710246
 [55,] -1.260656470
 [56,] -1.218000015
 [57,] -1.084696557
 [58,] -1.404624856
 [59,] -1.372633328
 [60,] -1.111357248
 [61,] -0.887406788
 [62,] -0.935397335
 [63,] -0.887406788
 [64,] -1.090027393
 [65,] -1.079365720
 [66,] -1.265990561
 [67,] -0.914067480
 [68,] -1.218000015
 [69,] -0.887406788
 [70,] -1.164678632
 [71,] -0.892740879
 [72,] -1.186008487
 [73,] -1.052705029
 [74,] -0.914067480
 [75,] -0.780764022
 [76,] -1.132687104
 [77,] -1.058035865
 [78,] -1.452615403
 [79,] -1.244660706
 [80,] -0.892740879
 [81,] -0.807424714
 [82,] -0.988718718
 [83,] -0.780764022
 [84,] -0.802093877
 [85,] -0.802093877
 [86,] -1.361968400
 [87,] -0.652794655
 [88,] -0.636795637
 [89,] -0.834085405
 [90,] -0.823420478
 [91,] -0.914067480
 [92,] -1.042040101
 [93,] -1.223330851
 [94,] -1.255325634
 [95,] -0.567478489
 [96,] -0.748772494
 [97,] -0.924732407
 [98,] -0.690117020
 [99,] -0.380853648
[100,] -0.812758805
[101,] -0.732776730
[102,] -0.684786183
[103,] -0.807424714
[104,] -0.930063244
[105,] -0.775433185
[106,] -0.839419496
[107,] -0.828754569
[108,] -0.812758805
[109,] -0.802093877
[110,] -0.418179267
[111,] -0.887406788
[112,] -0.716777711
[113,] -0.535486961
[114,] -0.551482725
[115,] -0.876741861
[116,] -0.615469036
[117,] -0.519491197
[118,] -0.482165578
[119,] -0.588808344
[120,] -0.460835723
[121,] -0.572812580
[122,] -0.316867338
[123,] -0.466169814
[124,] -1.090027393
[125,] -0.492830506
[126,] -0.508826270
[127,] -0.332866356
[128,] -0.290206646
[129,] -0.439509122
[130,] -0.562147653
[131,] -1.015379410
[132,]  0.024387562
[133,] -0.620799872
[134,] -0.919401571
[135,] -0.503492179
[136,] -0.887406788
[137,] -0.743438403
[138,] -0.407514340
[139,] -0.460835723
[140,] -0.546151889
[141,] -0.492830506
[142,] -0.700781947
[143,] -0.322201429
[144,] -1.047370938
[145,] -1.079365720
[146,] -0.530152870
[147,] -0.370188721
[148,] -0.327532265
[149,] -0.391518576
[150,] -0.738107566
[151,] -0.631464800
[152,] -0.194228807
[153,] -0.114246732
[154,] -0.434175031
[155,] -0.498161342
[156,] -0.210224571
[157,] -0.274210882
[158,] -0.386187739
[159,] -0.092920132
[160,] -0.204893735
[161,] -0.508826270
[162,] -0.402183503
[163,] -0.519491197
[164,] -0.124911660
[165,] -0.263545954
[166,] -0.300871573
[167,] -0.439509122
[168,]  0.035052490
[169,] -0.028933821
[170,] -0.055594513
[171,] -0.530152870
[172,] -0.220889499
[173,] -0.279544973
[174,] -0.332866356
[175,] -0.402183503
[176,] -0.364857884
[177,] -0.402183503
[178,] -0.300871573
[179,] -0.178233043
[180,] -0.407514340
[181,] -0.231554426
[182,] -0.140907424
[183,] -0.268880045
[184,] -0.668790419
[185,]  0.136364419
[186,] -0.210224571
[187,] -0.082255204
[188,] -0.311536501
[189,]  0.131030328
[190,] -0.295540737
[191,] -0.039598749
[192,] -0.204893735
[193,]  0.019056725
[194,] -0.311536501
[195,] -0.471500651
[196,] -0.199562898
[197,] -0.076921113
[198,] -0.236885263
[199,] -0.172902207
[200,] -0.012938057
[201,]  0.067044018
[202,] -0.098250968
[203,]  0.019056725
[204,] -0.002273130
[205,] -0.066259440
[206,] -0.082255204
[207,] -0.108915896
[208,]  0.184351712
[209,] -0.146241515
[210,] -0.252884281
[211,]  0.008391798
[212,]  0.168355947
[213,]  0.115034564
[214,]  0.152360183
[215,] -0.306205664
[216,]  0.360311625
[217,] -0.034264658
[218,] -0.194228807
[219,] -0.199562898
[220,]  0.099038800
[221,]  0.232342258
[222,] -0.012938057
[223,]  0.227008167
[224,] -0.226223590
[225,]  0.344315861
[226,] -0.199562898
[227,]  0.131030328
[228,]  0.285663641
[229,]  0.099038800
[230,]  0.056382345
[231,]  0.243007186
[232,] -0.076921113
[233,] -0.167568116
[234,]  0.189685803
[235,]  0.163025111
[236,]  0.179020875
[237,] -0.002273130
[238,] -0.183563880
[239,] -0.594139181
[240,] -0.130242496
[241,]  0.120365401
[242,]  0.104369637
[243,]  0.381641480
[244,]  0.211012403
[245,]  0.301659405
[246,] -0.034264658
[247,]  0.488284246
[248,]  0.157691020
[249,]  0.525609866
[250,]  0.152360183
[251,]  0.376310644
[252,]  0.141695256
[253,]  0.290994478
[254,]  0.290994478
[255,]  0.322989260
[256,]  0.269667877
[257,] -0.332866356
[258,]  0.386972317
[259,] -0.028933821
[260,]  0.067044018
[261,]  0.344315861
[262,]  0.440293700
[263,]  0.402971335
[264,]  0.573597158
[265,] -0.135576587
[266,]  0.546936466
[267,]  0.264333786
[268,]  0.408302172
[269,]  0.328320097
[270,]  0.424297936
[271,]  0.541605630
[272,]  0.445627791
[273,]  1.069488625
[274,]  0.328320097
[275,]  0.434962863
[276,]  0.536274793
[277,]  0.125699492
[278,]  0.728230471
[279,]  0.514944938
[280,]  0.269667877
[281,]  0.221677331
[282,]  0.317655169
[283,]  0.493615083
[284,]  0.717565543
[285,]  0.424297936
[286,]  0.797547618
[287,]  0.893525457
[288,]  0.450958627
[289,]  0.317655169
[290,]  0.195016639
[291,]  0.440293700
[292,]  0.067044018
[293,]  0.642917559
[294,]  0.664244160
[295,]  0.562935485
[296,]  0.664244160
[297,]  0.477619319
[298,]  0.568266321
[299,]  0.536274793
[300,]  1.112145080
[301,]  0.402971335
[302,]  0.749560326
[303,]  0.434962863
[304,]  0.749560326
[305,]  0.568266321
[306,]  0.536274793
[307,]  0.637583468
[308,]  0.376310644
[309,]  0.424297936
[310,]  0.573597158
[311,]  0.456292718
[312,]  0.861533929
[313,]  0.418967099
[314,]  0.664244160
[315,]  0.957511767
[316,]  0.717565543
[317,]  0.482953410
[318,]  0.706900616
[319,]  0.600257849
[320,]  0.498949174
[321,]  0.776221017
[322,]  0.674909088
[323,]  0.706900616
[324,]  1.192127155
[325,]  0.941516003
[326,]  0.594927013
[327,]  0.808212545
[328,]  0.840204074
[329,]  0.973507531
[330,]  1.016167242
[331,]  1.000168223
[332,]  0.872198856
[333,]  0.232342258
[334,]  0.642917559
[335,]  1.106810989
[336,]  0.861533929
[337,]  0.701569779
[338,]  0.925520239
[339,]  0.930851076
[340,]  0.813543382
[341,]  0.957511767
[342,]  0.781551854
[343,]  0.797547618
[344,]  0.984172459
[345,]  0.658913323
[346,]  0.546936466
[347,]  1.133471681
[348,]  0.925520239
[349,]  0.578931249
[350,]  0.973507531
[351,]  0.781551854
[352,]  0.898859548
[353,]  1.234783611
[354,]  0.893525457
[355,]  1.005502314
[356,]  1.192127155
[357,]  0.850869001
[358,]  0.728230471
[359,]  0.968176695
[360,]  0.914855312
[361,]  0.706900616
[362,]  1.240114447
[363,]  1.277440066
[364,]  1.021498078
[365,]  0.877529693
[366,]  0.802881709
[367,]  1.005502314
[368,]  1.384082833
[369,]  1.416077615
[370,]  1.058823697
[371,]  1.480060671
[372,]  1.181462228
[373,]  1.282774157
[374,]  1.058823697
[375,]  0.968176695
[376,]  1.346757214
[377,]  1.138805772
[378,]  1.538716146
[379,]  1.218787847
[380,]  1.464064907
[381,]  1.389416924
[382,]  1.122810008
[383,]  1.245448538
[384,]  1.410743524
[385,]  1.517386291
[386,]  1.138805772
[387,]  1.101480153
[388,]  1.554711910
[389,]  1.682684531
[390,]  1.394747760
[391,]  1.314765685
[392,]  1.650689749
[393,]  1.544046982
[394,]  1.858644445
[395,]  1.432073379
[396,]  1.815987989
[397,]  1.618698220
[398,]  1.416077615
[399,]  1.970618047
[400,]  1.490725599
[401,]  1.773328279
[402,]  1.879971045
[403,]  2.221229199
[404,]  1.959953120
[405,]  2.061265050
[406,]  2.215898363
[407,]  2.045269286
[408,]  2.237224963
[409,]  1.917296664
[410,]  2.258554818
[411,]  2.343867730
[412,]  2.546488335
[413,]  2.679791793
[414,]  2.482505279
[415,]  2.578483117
[416,]  2.898411416
[417,]  2.994389255
[418,] -0.620799872
[419,]  1.234783611
[420,] -0.124911660
##Dengan menggunakan library dplyr lakukan semua perintah:
#1. {Select} Ingin dilakukan pemilihan variabel atau kolom dari data frame AHH pulau Sumatra berikut : AHH Wanita tahun 2020 dan AHH Pria tahun 2020.
#2. {Filter} Dengan menggunakan data yang telah difilter sebelumnya ingin dipilih cases dengan kondisi yang telah ditentukan yaitu AHH laki- laki yang lebih besar dari 67 tahun di provinsi Aceh dengan kode 1
#3. {Arrange} Ingin dilakukan pengurutan data berdasarkan data yang telah difilter pada no. 3
#4. {Summarise} Dengan menggunakan perintah summarise ingin dikeathui rata-rata AHH Wanita tahun 2020 di pulau Sumatra
#5. {Mutate} Ingin dilakukan perhitungan rasio antar AHH Wanita tahun 2020 dengan AHH pria tahun 2020
#6. {Group by} Ingin dilihat rata-rata AHH per provinsi
#7. {Piping} Ingin diperoleh data AHH Provinsi Aceh, dengan AHH wanita lebih besar dari 70 tahun  dan AHH pria lebih besar dari 67 tahun, disusun berdasarkan AHH Wanita terkecil hingga terbesar, dan serta tambahan variabel yang menyatakan rasio AHH Wanita/AHH Pria tahun 2020
#8. {Join} Menggabungkan data tahun 2019 dan tahun 2020

If-Else Statement

a <- mean(dt$income)
b <- mean(dt$expenditure)
if (a > b) {
  print("Rata-rata income lebih besar dari rata rata expenditure")
} else {
  print("Rata-rata income lebih kecil dari rata rata expenditur")
}
## [1] "Rata-rata income lebih kecil dari rata rata expenditur"
ifelse (a > b, print("Rata-rata income lebih besar dari rata rata expenditure"),  print("Rata-rata income lebih kecil dari rata rata expenditure"))
## [1] "Rata-rata income lebih kecil dari rata rata expenditure"
## [1] "Rata-rata income lebih kecil dari rata rata expenditure"

Distribution

x <- mean(dt$math)
y <- sd(dt$math)
shapiro.test(dt$math)
## 
##  Shapiro-Wilk normality test
## 
## data:  dt$math
## W = 0.99366, p-value = 0.07594
## data dapat dianggap berdistribusi normal
#ingin diketahui besar peluang besar AHH wanita tahun 2017 yang lebih besar dari 67 dan kurang dari 70
hasil<-(pnorm(660,x,y) - pnorm(650,x,y))

Berdasarkan hasil pehitungan dapat diketahui bahwa besar peluang besarnya score math lebih besar dari 650 dan kurang dari 70 adalah 0.209428

dplyr

library(dplyr)
#Select
dt<-data.frame(dt)
score.test<-dplyr::select(dt,school,county,grades,math,read)
head(score.test)
##                            school  county grades  math  read
## 1              Sunol Glen Unified Alameda  KK-08 690.0 691.6
## 2            Manzanita Elementary   Butte  KK-08 661.9 660.5
## 3     Thermalito Union Elementary   Butte  KK-08 650.9 636.3
## 4 Golden Feather Union Elementary   Butte  KK-08 643.5 651.9
## 5        Palermo Union Elementary   Butte  KK-08 639.9 641.8
## 6         Burrel Union Elementary  Fresno  KK-08 605.4 605.7
#Filter
score.cerdas<- filter(score.test, math>650, read>650 )
score.cerdas
##                                      school          county grades  math  read
## 1                        Sunol Glen Unified         Alameda  KK-08 690.0 691.6
## 2                      Manzanita Elementary           Butte  KK-08 661.9 660.5
## 3                   Salida Union Elementary      Stanislaus  KK-08 650.7 651.7
## 4                Monte Rio Union Elementary          Sonoma  KK-08 651.8 651.9
## 5                      Fullerton Elementary          Orange  KK-08 652.6 651.6
## 6                  Santa Barbara Elementary   Santa Barbara  KK-08 653.7 650.9
## 7               South Fork Union Elementary            Kern  KK-08 651.9 653.1
## 8                       Live Oak Elementary      Santa Cruz  KK-08 650.1 656.1
## 9                  Menifee Union Elementary       Riverside  KK-08 653.1 653.7
## 10                Lakeside Union Elementary            Kern  KK-08 654.6 652.4
## 11                       Whisman Elementary     Santa Clara  KK-08 651.5 655.6
## 12                  McCabe Union Elementary        Imperial  KK-08 653.7 653.4
## 13                  Lammersville Elementary     San Joaquin  KK-08 653.3 654.1
## 14             Lassen View Union Elementary          Tehama  KK-08 652.1 655.5
## 15                  Loleta Union Elementary        Humboldt  KK-08 651.8 655.9
## 16                      Junction Elementary          Shasta  KK-08 651.3 656.6
## 17                      Rosemead Elementary     Los Angeles  KK-08 656.8 651.4
## 18                  Grass Valley Elementary          Nevada  KK-08 650.6 657.8
## 19               Kernville Union Elementary            Kern  KK-08 653.5 655.1
## 20              Galt Joint Union Elementary      Sacramento  KK-08 656.5 652.7
## 21                     Southside Elementary      San Benito  KK-08 655.5 654.2
## 22                Lakeside Union Elementary       San Diego  KK-08 656.2 653.5
## 23                  Oakley Union Elementary    Contra Costa  KK-08 652.7 657.4
## 24               Berryessa Union Elementary     Santa Clara  KK-08 655.2 655.4
## 25              Kit Carson Union Elementary           Kings  KK-08 657.7 653.0
## 26                  Sylvan Union Elementary      Stanislaus  KK-08 653.1 657.6
## 27                Oak View Union Elementary     San Joaquin  KK-08 657.6 653.2
## 28      North County Joint Union Elementary      San Benito  KK-08 659.8 651.6
## 29                       Central Elementary  San Bernardino  KK-08 655.8 655.9
## 30                 Pacheco Union Elementary          Shasta  KK-08 658.7 654.1
## 31                  Chicago Park Elementary          Nevada  KK-08 655.2 657.8
## 32                      Brisbane Elementary       San Mateo  KK-08 654.4 658.7
## 33                 Central Union Elementary           Kings  KK-08 657.9 655.4
## 34            Happy Valley Union Elementary          Shasta  KK-08 651.9 661.5
## 35              Mark Twain Union Elementary       Calaveras  KK-08 650.2 663.4
## 36               San Rafael City Elementary           Marin  KK-08 656.9 656.7
## 37            Cajon Valley Union Elementary       San Diego  KK-08 656.4 657.6
## 38                Campbell Union Elementary     Santa Clara  KK-08 656.7 657.3
## 39                        Browns Elementary          Sutter  KK-08 653.3 661.0
## 40                   Guerneville Elementary          Sonoma  KK-08 650.9 664.2
## 41                San Bruno Park Elementary       San Mateo  KK-08 655.6 659.7
## 42                      Antelope Elementary          Tehama  KK-08 655.3 660.2
## 43                     Centralia Elementary          Orange  KK-06 660.5 655.1
## 44                      Etiwanda Elementary  San Bernardino  KK-08 657.3 658.5
## 45                      Wiseburn Elementary     Los Angeles  KK-08 659.0 657.0
## 46                  Scotia Union Elementary        Humboldt  KK-08 652.7 664.0
## 47                 Mountain View Elementary  San Bernardino  KK-08 662.5 654.7
## 48   Pleasant Valley Joint Union Elementary San Luis Obispo  KK-06 656.3 661.3
## 49                     Oak Grove Elementary     Santa Clara  KK-08 663.2 654.9
## 50                 Pollock Pines Elementary       El Dorado  KK-08 656.2 662.1
## 51                 Castaic Union Elementary     Los Angeles  KK-08 660.4 658.3
## 52                  Bishop Union Elementary            Inyo  KK-08 656.0 662.8
## 53                Buellton Union Elementary   Santa Barbara  KK-08 658.8 660.0
## 54                Chawanakee Jt. Elementary          Madera  KK-08 658.8 660.8
## 55                   Yreka Union Elementary        Siskiyou  KK-08 659.4 660.4
## 56        Alexander Valley Union Elementary          Sonoma  KK-06 658.4 661.7
## 57                 Sundale Union Elementary          Tulare  KK-08 660.6 659.8
## 58            Three Rivers Union Elementary          Tulare  KK-08 652.8 667.8
## 59                Columbia Union Elementary        Tuolumne  KK-08 654.6 666.9
## 60                Westside Union Elementary     Los Angeles  KK-08 659.8 662.1
## 61               Ballico-Cressey Elementary          Merced  KK-08 661.6 661.1
## 62                      Millbrae Elementary       San Mateo  KK-08 660.9 662.0
## 63                     Evergreen Elementary     Santa Clara  KK-08 664.1 659.1
## 64                 Harmony Union Elementary          Sonoma  KK-08 650.8 672.4
## 65      Panama Buena Vista Union Elementary            Kern  KK-08 663.6 660.1
## 66           Laguna Salada Union Elementary       San Mateo  KK-08 658.3 665.4
## 67                        Sonora Elementary        Tuolumne  KK-08 661.0 662.7
## 68                Roseville City Elementary          Placer  KK-08 659.5 664.3
## 69                       Gratton Elementary      Stanislaus  KK-08 661.3 662.5
## 70                    Susanville Elementary          Lassen  KK-08 663.5 660.4
## 71                   Bella Vista Elementary          Shasta  KK-08 661.7 663.1
## 72                     Columbine Elementary          Tulare  KK-08 673.4 651.4
## 73  Hughes-Elizabeth Lakes Union Elementary     Los Angeles  KK-08 659.5 665.4
## 74                 Mountain View Elementary     Santa Clara  KK-08 661.5 663.5
## 75         Sulphur Springs Union Elementary     Los Angeles  KK-06 663.4 661.7
## 76             Forestville Union Elementary          Sonoma  KK-08 655.7 669.4
## 77                Rosedale Union Elementary            Kern  KK-08 667.0 658.3
## 78                      Columbia Elementary          Shasta  KK-08 663.0 662.4
## 79                        Colfax Elementary          Placer  KK-08 658.4 667.1
## 80              Mt. Shasta Union Elementary        Siskiyou  KK-08 657.5 668.3
## 81            Piner-Olivet Union Elementary          Sonoma  KK-06 659.3 667.4
## 82               Bass Lake Joint Elementary          Madera  KK-08 662.6 664.3
## 83                        Cutten Elementary        Humboldt  KK-06 666.8 660.2
## 84             Placerville Union Elementary       El Dorado  KK-08 661.3 666.4
## 85                        Wright Elementary          Sonoma  KK-06 668.3 659.4
## 86               Evergreen Union Elementary          Tehama  KK-08 670.1 657.7
## 87               Old Adobe Union Elementary          Sonoma  KK-06 661.8 666.2
## 88                  Wilmar Union Elementary          Sonoma  KK-06 659.3 668.7
## 89                      Ackerman Elementary          Placer  KK-08 657.0 671.3
## 90               Santa Cruz City Elementary      Santa Cruz  KK-06 661.6 666.7
## 91                        Arcata Elementary        Humboldt  KK-08 654.6 674.0
## 92                     Alta Loma Elementary  San Bernardino  KK-08 665.4 663.4
## 93              Foresthill Union Elementary          Placer  KK-08 665.8 663.1
## 94             Mother Lode Union Elementary       El Dorado  KK-08 663.9 665.5
## 95                    Ocean View Elementary          Orange  KK-08 665.8 663.7
## 96                          Lake Elementary           Glenn  KK-08 662.3 667.6
## 97         San Mateo-Foster City Elementary       San Mateo  KK-08 664.0 665.9
## 98                  Goleta Union Elementary   Santa Barbara  KK-06 663.4 666.8
## 99                     Helendale Elementary  San Bernardino  KK-08 674.2 656.2
## 100                Petaluma City Elementary          Sonoma  KK-06 660.9 669.8
## 101                    Sunnyvale Elementary     Santa Clara  KK-08 667.4 663.9
## 102                      College Elementary   Santa Barbara  KK-08 661.5 670.3
## 103                   La Mesa-Spring Valley       San Diego  KK-08 667.4 664.5
## 104        Huntington Beach City Elementary          Orange  KK-08 664.0 668.0
## 105                      Solvang Elementary   Santa Barbara  KK-08 663.4 668.7
## 106                       Soquel Elementary      Santa Cruz  KK-08 665.3 666.9
## 107            Capay Joint Union Elementary           Glenn  KK-08 660.4 671.9
## 108            Gravenstein Union Elementary          Sonoma  KK-08 661.3 671.0
## 109              Pleasant Valley Elementary          Nevada  KK-08 664.1 668.8
## 110                Pioneer Union Elementary           Kings  KK-08 661.9 671.2
## 111                       Santee Elementary       San Diego  KK-08 669.5 663.7
## 112                Johnstonville Elementary          Lassen  KK-08 661.2 672.1
## 113              Pleasant Valley Elementary         Ventura  KK-08 665.8 667.5
## 114                 Curtis Creek Elementary        Tuolumne  KK-08 671.3 662.1
## 115             Fort Jones Union Elementary        Siskiyou  KK-06 666.8 666.9
## 116              Mark West Union Elementary          Sonoma  KK-06 662.4 671.3
## 117                 Alpine Union Elementary       San Diego  KK-08 666.6 667.7
## 118             Sebastopol Union Elementary          Sonoma  KK-08 664.6 669.8
## 119                   Freshwater Elementary        Humboldt  KK-06 662.7 672.2
## 120                       Norris Elementary            Kern  KK-08 667.9 667.0
## 121            Springville Union Elementary          Tulare  KK-08 666.0 669.2
## 122                     Moreland Elementary     Santa Clara  KK-08 666.6 669.4
## 123                        Maple Elementary            Kern  KK-08 675.7 660.5
## 124   Kings River-Hardwick Union Elementary           Kings  KK-08 671.0 665.8
## 125                 Julian Union Elementary       San Diego  KK-08 664.5 672.7
## 126                      Cardiff Elementary       San Diego  KK-06 668.5 668.8
## 127                    Saucelito Elementary          Tulare  KK-08 669.1 668.5
## 128                Bonsall Union Elementary       San Diego  KK-08 671.6 666.2
## 129                      Cypress Elementary          Orange  KK-06 672.4 665.5
## 130                 Lowell Joint Elementary     Los Angeles  KK-08 672.1 666.1
## 131                      Newhall Elementary     Los Angeles  KK-06 669.7 668.9
## 132                    Lagunitas Elementary           Marin  KK-08 657.7 680.9
## 133                     Cambrian Elementary     Santa Clara  KK-08 665.4 673.3
## 134                    Richfield Elementary          Tehama  KK-08 674.1 664.6
## 135                   Fieldbrook Elementary        Humboldt  KK-08 669.5 670.1
## 136                       Dehesa Elementary       San Diego  KK-06 666.5 673.2
## 137             Cottonwood Union Elementary          Shasta  KK-08 670.7 669.2
## 138                    Fruitvale Elementary            Kern  KK-08 670.8 669.2
## 139                        Union Elementary     Santa Clara  KK-08 668.6 672.8
## 140              Fountain Valley Elementary          Orange  KK-08 671.3 671.2
## 141               Gold Oak Union Elementary       El Dorado  KK-08 668.0 674.6
## 142                Buckeye Union Elementary       El Dorado  KK-08 668.3 674.9
## 143                         Rocklin Unified          Placer  KK-08 671.8 671.4
## 144             Gold Trail Union Elementary       El Dorado  KK-08 665.7 677.6
## 145                   Hydesville Elementary        Humboldt  KK-08 663.6 679.8
## 146                 Saugus Union Elementary     Los Angeles  KK-06 674.6 668.9
## 147                 Loomis Union Elementary          Placer  KK-08 670.7 673.1
## 148           Placer Hills Union Elementary          Placer  KK-08 664.2 679.6
## 149                       Dunham Elementary          Sonoma  KK-06 671.6 672.3
## 150                   San Carlos Elementary       San Mateo  KK-08 668.0 676.1
## 151          Ready Springs Union Elementary          Nevada  KK-08 670.2 673.9
## 152             Coarsegold Union Elementary          Madera  KK-08 676.5 668.1
## 153                      Cayucos Elementary San Luis Obispo  KK-08 670.1 674.6
## 154                     Richmond Elementary          Lassen  KK-08 672.2 672.7
## 155                   Clay Joint Elementary          Fresno  KK-08 675.7 669.4
## 156                        Waugh Elementary          Sonoma  KK-06 669.3 676.1
## 157               Two Rock Union Elementary          Sonoma  KK-06 667.0 679.1
## 158       Belmont-Redwood Shores Elementary       San Mateo  KK-08 671.5 675.0
## 159                 Rescue Union Elementary       El Dorado  KK-08 670.5 676.1
## 160        Alta-Dutch Flat Union Elementary          Placer  KK-08 666.6 680.5
## 161            San Pasqual Union Elementary       San Diego  KK-08 676.6 670.5
## 162                      Latrobe Elementary       El Dorado  KK-08 677.3 670.5
## 163                   Union Hill Elementary          Nevada  KK-08 672.5 676.0
## 164             Twin Hills Union Elementary          Sonoma  KK-08 669.8 681.0
## 165                Pacific Union Elementary        Humboldt  KK-08 668.4 683.0
## 166                 Douglas City Elementary         Trinity  KK-08 672.2 680.1
## 167         Pleasant Ridge Union Elementary          Nevada  KK-08 679.3 673.8
## 168                    Newcastle Elementary          Placer  KK-08 679.9 673.3
## 169                   Mesa Union Elementary         Ventura  KK-08 673.2 680.5
## 170                  Weaverville Elementary         Trinity  KK-08 681.1 672.8
## 171              North Cow Creek Elementary          Shasta  KK-08 675.5 679.0
## 172                  Nevada City Elementary          Nevada  KK-08 677.4 678.5
## 173                 Jacoby Creek Elementary        Humboldt  KK-08 673.2 682.9
## 174                    Fort Ross Elementary          Sonoma  KK-08 671.5 685.3
## 175              Encinitas Union Elementary       San Diego  KK-06 678.6 679.0
## 176                        Dixie Elementary           Marin  KK-08 674.7 684.1
## 177               Lakeside Joint Elementary     Santa Clara  KK-06 682.2 676.8
## 178           Hermosa Beach City Elementary     Los Angeles  KK-08 676.2 683.1
## 179          Rincon Valley Union Elementary          Sonoma  KK-06 680.8 678.7
## 180             Washington Union Elementary        Monterey  KK-08 679.4 680.2
## 181         Bennett Valley Union Elementary          Sonoma  KK-06 674.4 685.7
## 182          Loma Prieta Joint Union Elemen     Santa Clara  KK-08 676.7 684.2
## 183                      Kenwood Elementary          Sonoma  KK-06 679.8 682.8
## 184                      Liberty Elementary          Sonoma  KK-06 681.8 680.8
## 185                Knights Ferry Elementary      Stanislaus  KK-08 674.7 688.5
## 186                    Kentfield Elementary           Marin  KK-08 674.0 689.8
## 187                      Ballard Elementary   Santa Barbara  KK-06 682.5 681.8
## 188              Oak Grove Union Elementary          Sonoma  KK-08 684.9 680.0
## 189                  Ross Valley Elementary           Marin  KK-08 679.5 685.6
## 190                     Mountain Elementary      Santa Cruz  KK-06 678.0 687.3
## 191                   Burlingame Elementary       San Mateo  KK-08 684.3 682.4
## 192                        Grant Elementary          Shasta  KK-08 682.3 684.5
## 193                 Happy Valley Elementary      Santa Cruz  KK-06 688.2 680.4
## 194             Bonny Doon Union Elementary      Santa Cruz  KK-06 680.2 688.5
## 195                 Walnut Creek Elementary    Contra Costa  KK-08 687.4 682.2
## 196                         Hope Elementary   Santa Barbara  KK-06 683.7 686.2
## 197                     Larkspur Elementary           Marin  KK-08 679.9 692.2
## 198              Cupertino Union Elementary     Santa Clara  KK-08 690.3 683.1
## 199                      Pacific Elementary      Santa Cruz  KK-06 681.3 693.8
## 200              Los Gatos Union Elementary     Santa Clara  KK-08 686.6 691.6
## 201              Montecito Union Elementary   Santa Barbara  KK-06 688.6 693.5
## 202                 Solana Beach Elementary       San Diego  KK-06 695.0 687.7
## 203              Menlo Park City Elementary       San Mateo  KK-08 690.1 693.7
## 204                   Reed Union Elementary           Marin  KK-08 692.0 695.9
## 205                  Mill Valley Elementary           Marin  KK-08 694.9 693.6
## 206                    Lafayette Elementary    Contra Costa  KK-08 691.7 697.9
## 207                Del Mar Union Elementary       San Diego  KK-06 695.3 695.1
## 208                     Woodside Elementary       San Mateo  KK-08 689.3 701.3
## 209                       Moraga Elementary    Contra Costa  KK-08 695.7 697.4
## 210                 Orinda Union Elementary    Contra Costa  KK-08 697.3 699.1
## 211            Hillsborough City Elementary       San Mateo  KK-08 701.1 695.4
## 212                  Cold Spring Elementary   Santa Barbara  KK-06 703.6 693.3
## 213               Portola Valley Elementary       San Mateo  KK-08 699.9 698.3
## 214               Saratoga Union Elementary     Santa Clara  KK-08 701.7 698.9
## 215                  Las Lomitas Elementary       San Mateo  KK-08 707.7 700.9
## 216                    Los Altos Elementary     Santa Clara  KK-08 709.5 704.0
## 217                       Plumas Elementary            Yuba  KK-08 676.5 667.9
## 218                    Wheatland Elementary            Yuba  KK-08 651.0 660.5
#Arrange
score.math.urut<-arrange(score.cerdas,desc(math))
head(score.math.urut)
##                         school        county grades  math  read
## 1         Los Altos Elementary   Santa Clara  KK-08 709.5 704.0
## 2       Las Lomitas Elementary     San Mateo  KK-08 707.7 700.9
## 3       Cold Spring Elementary Santa Barbara  KK-06 703.6 693.3
## 4    Saratoga Union Elementary   Santa Clara  KK-08 701.7 698.9
## 5 Hillsborough City Elementary     San Mateo  KK-08 701.1 695.4
## 6    Portola Valley Elementary     San Mateo  KK-08 699.9 698.3
#Summarise
summarise(score.cerdas, mean_read = mean(read, na.rm = TRUE))
##   mean_read
## 1  669.8826
#Mutate
ratio.math.read<- mutate(score.cerdas, ratio.math.read = math/read)
head(ratio.math.read)
##                       school        county grades  math  read ratio.math.read
## 1         Sunol Glen Unified       Alameda  KK-08 690.0 691.6       0.9976866
## 2       Manzanita Elementary         Butte  KK-08 661.9 660.5       1.0021196
## 3    Salida Union Elementary    Stanislaus  KK-08 650.7 651.7       0.9984656
## 4 Monte Rio Union Elementary        Sonoma  KK-08 651.8 651.9       0.9998465
## 5       Fullerton Elementary        Orange  KK-08 652.6 651.6       1.0015347
## 6   Santa Barbara Elementary Santa Barbara  KK-08 653.7 650.9       1.0043017
#Group by
summarise(group_by(score.cerdas,county), mean_math = mean(math,na.rm= TRUE), mean_read = mean(read,na.rm = TRUE))
## # A tibble: 43 x 3
##    county       mean_math mean_read
##    <chr>            <dbl>     <dbl>
##  1 Alameda           690       692.
##  2 Butte             662.      660.
##  3 Calaveras         650.      663.
##  4 Contra Costa      685.      687.
##  5 El Dorado         666.      671.
##  6 Fresno            676.      669.
##  7 Glenn             661.      670.
##  8 Humboldt          663.      671.
##  9 Imperial          654.      653.
## 10 Inyo              656       663.
## # ... with 33 more rows
#piping
new_score <- score.cerdas%>% filter(grades=="KK-08" , math>680, read>680) %>% arrange(math) %>% mutate(ratio_score = math/read)
head(new_score)
##                       school       county grades  math  read ratio_score
## 1           Grant Elementary       Shasta  KK-08 682.3 684.5   0.9967860
## 2      Burlingame Elementary    San Mateo  KK-08 684.3 682.4   1.0027842
## 3 Los Gatos Union Elementary  Santa Clara  KK-08 686.6 691.6   0.9927704
## 4    Walnut Creek Elementary Contra Costa  KK-08 687.4 682.2   1.0076224
## 5        Woodside Elementary    San Mateo  KK-08 689.3 701.3   0.9828889
## 6         Sunol Glen Unified      Alameda  KK-08 690.0 691.6   0.9976866
mean(dt$income)
## [1] 15.31659
mean(dt$expenditure)
## [1] 5312.408
#join
new.dt<-dplyr::select(dt, X,school,grades,county,income,expenditure)
join.dt<- full_join(new.dt,score.cerdas, by = "school")
head(join.dt)
##   X                          school grades.x county.x    income expenditure
## 1 1              Sunol Glen Unified    KK-08  Alameda 22.690001    6384.911
## 2 2            Manzanita Elementary    KK-08    Butte  9.824000    5099.381
## 3 3     Thermalito Union Elementary    KK-08    Butte  8.978000    5501.955
## 4 4 Golden Feather Union Elementary    KK-08    Butte  8.978000    7101.831
## 5 5        Palermo Union Elementary    KK-08    Butte  9.080333    5235.988
## 6 6         Burrel Union Elementary    KK-08   Fresno 10.415000    5580.147
##   county.y grades.y  math  read
## 1  Alameda    KK-08 690.0 691.6
## 2    Butte    KK-08 661.9 660.5
## 3     <NA>     <NA>    NA    NA
## 4     <NA>     <NA>    NA    NA
## 5     <NA>     <NA>    NA    NA
## 6     <NA>     <NA>    NA    NA