# UNIVERSIDAD NACIONAL DEL ALTIPLANO
# FACULTAD DE INGENIERIA ESTADISTICA E INFORMATICA
# ESTADISTICA BAYESIANA
# NAIVE BAYES
library(e1071)
## Warning: package 'e1071' was built under R version 4.0.5
library(naivebayes)
## Warning: package 'naivebayes' was built under R version 4.0.5
## naivebayes 0.9.7 loaded
library(caret)
## Warning: package 'caret' was built under R version 4.0.5
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.0.3
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.0.2
library(readxl)
## Warning: package 'readxl' was built under R version 4.0.2
Paciente <- read_excel("E:/ESTADISTICA BAYESIANA/TAREA 06/Paciente.xlsx")
attach(Paciente)
names(Paciente)
## [1] "Escalofrio" "Catarro" "Cefalea" "Fiebre" "Gripe"
#View(Datos)
set.seed(2018)
t.ids <- createDataPartition(Paciente$Gripe, p=0.67, list = F)
mod <- naiveBayes(Gripe ~ ., data = Paciente[t.ids,])
mod
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
## No Si
## 0.4285714 0.5714286
##
## Conditional probabilities:
## Escalofrio
## Y No Si
## No 0.6666667 0.3333333
## Si 0.2500000 0.7500000
##
## Catarro
## Y No Si
## No 0.6666667 0.3333333
## Si 0.2500000 0.7500000
##
## Cefalea
## Y Forte Media No
## No 0.3333333 0.3333333 0.3333333
## Si 0.5000000 0.2500000 0.2500000
##
## Fiebre
## Y No Si
## No 0.6666667 0.3333333
## Si 0.2500000 0.7500000
pred <- predict(mod, Paciente[t.ids,])
tab <- table(Paciente[t.ids,]$Gripe, pred, dnn = c("Actual","Predicha"))
confusionMatrix(tab)
## Confusion Matrix and Statistics
##
## Predicha
## Actual No Si
## No 2 1
## Si 0 4
##
## Accuracy : 0.8571
## 95% CI : (0.4213, 0.9964)
## No Information Rate : 0.7143
## P-Value [Acc > NIR] : 0.3605
##
## Kappa : 0.6957
##
## Mcnemar's Test P-Value : 1.0000
##
## Sensitivity : 1.0000
## Specificity : 0.8000
## Pos Pred Value : 0.6667
## Neg Pred Value : 1.0000
## Prevalence : 0.2857
## Detection Rate : 0.2857
## Detection Prevalence : 0.4286
## Balanced Accuracy : 0.9000
##
## 'Positive' Class : No
##