Se cargan todas las librerias:

library(AOI)
library(climateR)
library(sf)
library(raster)
library(rasterVis)
library(dplyr)
library(leaflet)
library(RColorBrewer)
library(renv)

Se lee el archivo shapefile de Putumayo:

(putu <- st_read("E:/Descargas en el disco duro/4to Semestre/Geomatica/Putumayo/ADMINISTRATIVO/MGN_MPIO_POLITICO.shp"))
Reading layer `MGN_MPIO_POLITICO' from data source `E:\Descargas en el disco duro\4to Semestre\Geomatica\Putumayo\ADMINISTRATIVO\MGN_MPIO_POLITICO.shp' using driver `ESRI Shapefile'
Simple feature collection with 13 features and 9 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -77.18681 ymin: -0.5622776 xmax: -73.84132 ymax: 1.467315
Geodetic CRS:  WGS 84
Simple feature collection with 13 features and 9 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -77.18681 ymin: -0.5622776 xmax: -73.84132 ymax: 1.467315
Geodetic CRS:  WGS 84
First 10 features:
   DPTO_CCDGO MPIO_CCDGO             MPIO_CNMBR                                  MPIO_CRSLC MPIO_NAREA MPIO_NANO DPTO_CNMBR Shape_Leng  Shape_Area                       geometry
1          86      86001                  MOCOA                                        1958 1304.63835      2017   PUTUMAYO  2.4752281 0.105792947 POLYGON ((-76.6705 1.467315...
2          86      86219                  COLÓN         Decreto 2830 de Diciembre 2 de 1989   64.27462      2017   PUTUMAYO  0.4548864 0.005209533 POLYGON ((-76.96835 1.28631...
3          86      86320                  ORITO        Decreto 2891 de Diciembre 28 de 1978 1939.39517      2017   PUTUMAYO  2.1520883 0.157171417 POLYGON ((-77.07275 0.94231...
4          86      86749               SIBUNDOY             Decreto 1871 de Julio 1 de 1982   97.73462      2017   PUTUMAYO  0.5113819 0.007922269 POLYGON ((-76.9043 1.299191...
5          86      86755          SAN FRANCISCO         Decreto 2830 de Diciembre 2 de 1989  407.35674      2017   PUTUMAYO  1.1754950 0.033022563 POLYGON ((-76.87345 1.28986...
6          86      86757 SAN MIGUEL (La Dorada)            Ordenanza 45 de Abril 29 de 1994  379.74249      2017   PUTUMAYO  1.3275843 0.030777834 POLYGON ((-76.99677 0.37418...
7          86      86760               SANTIAGO         Decreto 2830 de Diciembre 2 de 1989  341.92382      2017   PUTUMAYO  0.9881418 0.027710081 POLYGON ((-77.0344 1.199208...
8          86      86865      VALLE DEL GUAMUEZ Decreto DAINCO 3293 de Noviembre 12 de 1985  815.15905      2017   PUTUMAYO  1.7150665 0.066065988 POLYGON ((-77.00282 0.50363...
9          86      86885            VILLAGARZÓN             Decreto 574 de Marzo 14 de 1977 1396.96644      2017   PUTUMAYO  1.9280172 0.113257175 POLYGON ((-76.63426 1.06411...
10         86      86569         PUERTO CAICEDO        Ordenanza 12 de Noviembre 24 de 1992  926.46719      2017   PUTUMAYO  1.7197177 0.075139258 POLYGON ((-76.41069 0.86694...

Buscamos los datos de precipitación para el año 2019 en el mes de enero…

tc_prcp = getTerraClim(putu, param = "prcp", startDate = "2019-01-01")
Spherical geometry (s2) switched off
Spherical geometry (s2) switched on
tc_tmp <- tc_prcp[[1]]
tc_tmp
class      : RasterStack 
dimensions : 50, 81, 4050, 1  (nrow, ncol, ncell, nlayers)
resolution : 0.04166667, 0.04166667  (x, y)
extent     : -77.20833, -73.83333, -0.5833333, 1.5  (xmin, xmax, ymin, ymax)
crs        : +proj=longlat +datum=WGS84 +no_defs 
names      : X2019.01 
min values :     82.3 
max values :    853.6 

Se miran los resultados con la función Leaflet:

pal <- colorNumeric(c("red", "orange", "#fcc000","yellow", "cyan", "blue", "#3240cd"), values(tc_tmp$X2019.01), 
                    na.color = "transparent")

leaflet() %>% addTiles() %>%
  addRasterImage(tc_tmp$X2019.01 , colors = pal, opacity = 0.5) %>%
  addLegend(pal = pal, values = values(tc_tmp$X2019.01),
    title = "Lluvias en Putumayo Enero 2019 [MM]")
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded ellps WGS 84 in Proj4 definition: +proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null +wktext +no_defs +type=crs
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded datum World Geodetic System 1984 in Proj4 definition
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded ellps WGS 84 in Proj4 definition: +proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null +wktext +no_defs +type=crs
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded datum World Geodetic System 1984 in Proj4 definition
Warning in colors(.) :
  Some values were outside the color scale and will be treated as NA

Con esta tabla se miran las variables disponibles para cada dato climatico:

head(param_meta$terraclim)

Buscamos los datos de deficit de agua para el periodo de 1981 a 2010 en el mes de enero:

wat_def = getTerraClimNormals(putu, param = "water_deficit", period = "19812010", month=1)
Spherical geometry (s2) switched off
Spherical geometry (s2) switched on
tc_tmp <- wat_def[[1]]

Se usa la herramienta leaflet para visualizar los datos:

pal <- colorNumeric(c("green", "#9acd32","yellow", "orange", 
                    "#fc7300"), values(tc_tmp$X01), 
                    na.color = "transparent")

leaflet() %>% addTiles() %>%
  addRasterImage(tc_tmp$X01, colors = pal, opacity = 0.5) %>%
  addLegend(pal = pal, values = values(tc_tmp$X01),
    title = "Deficit de Agua Putumayo Enero")
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded ellps WGS 84 in Proj4 definition: +proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null +wktext +no_defs +type=crs
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded datum World Geodetic System 1984 in Proj4 definition
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded ellps WGS 84 in Proj4 definition: +proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null +wktext +no_defs +type=crs
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded datum World Geodetic System 1984 in Proj4 definition

Por ultimo se buscan los datos de precipitación para el mes de diciembre en el año 2019 para una comparativa:

tc_prcp2 = getTerraClim(putu, param = "prcp", startDate = "2019-12-01")
Spherical geometry (s2) switched off
Spherical geometry (s2) switched on
tc_tmp <- tc_prcp2[[1]]

Se utiliza la herramienta leaflet para visualizar los datos:

pal <- colorNumeric(c("red", "orange", "#fcc000","yellow", "cyan", "blue", "#3240cd"), values(tc_tmp$X2019.12), 
                    na.color = "transparent")

leaflet() %>% addTiles() %>%
  addRasterImage(tc_tmp$X2019.12 , colors = pal, opacity = 0.5) %>%
  addLegend(pal = pal, values = values(tc_tmp$X2019.12),
    title = "Lluvias en Putumayo Diciembre 2019 [mm]")
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded ellps WGS 84 in Proj4 definition: +proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null +wktext +no_defs +type=crs
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded datum World Geodetic System 1984 in Proj4 definition
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded ellps WGS 84 in Proj4 definition: +proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null +wktext +no_defs +type=crs
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded datum World Geodetic System 1984 in Proj4 definition

Todos los codigos usados en este cuarderno de R fueron tomados del cuaderno del profesor (Lizarazo, 2021).

LS0tDQp0aXRsZTogIkNsaW1hUHV0dW1heW8oYWxndW5vcyBkYXRvcykiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCmF1dGhvcjogIkdhYnJpZWwgUm9tZXJvIEQiDQpkYXRlOiAxMi1EaWMvMjAyMQ0KLS0tDQoNClNlIGNhcmdhbiB0b2RhcyBsYXMgbGlicmVyaWFzOg0KDQpgYGB7cn0NCmxpYnJhcnkoQU9JKQ0KbGlicmFyeShjbGltYXRlUikNCmxpYnJhcnkoc2YpDQpsaWJyYXJ5KHJhc3RlcikNCmxpYnJhcnkocmFzdGVyVmlzKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkobGVhZmxldCkNCmxpYnJhcnkoUkNvbG9yQnJld2VyKQ0KbGlicmFyeShyZW52KQ0KYGBgDQoNClNlIGxlZSBlbCBhcmNoaXZvIHNoYXBlZmlsZSBkZSBQdXR1bWF5bzoNCg0KYGBge3J9DQoocHV0dSA8LSBzdF9yZWFkKCJFOi9EZXNjYXJnYXMgZW4gZWwgZGlzY28gZHVyby80dG8gU2VtZXN0cmUvR2VvbWF0aWNhL1B1dHVtYXlvL0FETUlOSVNUUkFUSVZPL01HTl9NUElPX1BPTElUSUNPLnNocCIpKQ0KYGBgDQpCdXNjYW1vcyBsb3MgZGF0b3MgZGUgcHJlY2lwaXRhY2nDs24gcGFyYSBlbCBhw7FvIDIwMTkgZW4gZWwgbWVzIGRlIGVuZXJvLi4uDQoNCmBgYHtyfQ0KdGNfcHJjcCA9IGdldFRlcnJhQ2xpbShwdXR1LCBwYXJhbSA9ICJwcmNwIiwgc3RhcnREYXRlID0gIjIwMTktMDEtMDEiKQ0KYGBgDQpgYGB7cn0NCnRjX3RtcCA8LSB0Y19wcmNwW1sxXV0NCmBgYA0KDQpgYGB7cn0NCnRjX3RtcA0KYGBgDQpTZSBtaXJhbiBsb3MgcmVzdWx0YWRvcyBjb24gbGEgZnVuY2nDs24gTGVhZmxldDoNCg0KYGBge3J9DQpwYWwgPC0gY29sb3JOdW1lcmljKGMoInJlZCIsICJvcmFuZ2UiLCAiI2ZjYzAwMCIsInllbGxvdyIsICJjeWFuIiwgImJsdWUiLCAiIzMyNDBjZCIpLCB2YWx1ZXModGNfdG1wJFgyMDE5LjAxKSwgDQogICAgICAgICAgICAgICAgICAgIG5hLmNvbG9yID0gInRyYW5zcGFyZW50IikNCg0KbGVhZmxldCgpICU+JSBhZGRUaWxlcygpICU+JQ0KICBhZGRSYXN0ZXJJbWFnZSh0Y190bXAkWDIwMTkuMDEgLCBjb2xvcnMgPSBwYWwsIG9wYWNpdHkgPSAwLjUpICU+JQ0KICBhZGRMZWdlbmQocGFsID0gcGFsLCB2YWx1ZXMgPSB2YWx1ZXModGNfdG1wJFgyMDE5LjAxKSwNCiAgICB0aXRsZSA9ICJMbHV2aWFzIGVuIFB1dHVtYXlvIEVuZXJvIDIwMTkgW01NXSIpDQpgYGANCg0KQ29uIGVzdGEgdGFibGEgc2UgbWlyYW4gbGFzIHZhcmlhYmxlcyBkaXNwb25pYmxlcyBwYXJhIGNhZGEgZGF0byBjbGltYXRpY286DQoNCmBgYHtyfQ0KaGVhZChwYXJhbV9tZXRhJHRlcnJhY2xpbSkNCmBgYA0KDQpCdXNjYW1vcyBsb3MgZGF0b3MgZGUgZGVmaWNpdCBkZSBhZ3VhIHBhcmEgZWwgcGVyaW9kbyBkZSAxOTgxIGEgMjAxMCBlbiBlbCBtZXMgZGUgZW5lcm86DQoNCmBgYHtyfQ0Kd2F0X2RlZiA9IGdldFRlcnJhQ2xpbU5vcm1hbHMocHV0dSwgcGFyYW0gPSAid2F0ZXJfZGVmaWNpdCIsIHBlcmlvZCA9ICIxOTgxMjAxMCIsIG1vbnRoPTEpDQpgYGANCmBgYHtyfQ0KdGNfdG1wIDwtIHdhdF9kZWZbWzFdXQ0KYGBgDQoNClNlIHVzYSBsYSBoZXJyYW1pZW50YSBsZWFmbGV0IHBhcmEgdmlzdWFsaXphciBsb3MgZGF0b3M6DQoNCmBgYHtyfQ0KcGFsIDwtIGNvbG9yTnVtZXJpYyhjKCJncmVlbiIsICIjOWFjZDMyIiwieWVsbG93IiwgIm9yYW5nZSIsIA0KICAgICAgICAgICAgICAgICAgICAiI2ZjNzMwMCIpLCB2YWx1ZXModGNfdG1wJFgwMSksIA0KICAgICAgICAgICAgICAgICAgICBuYS5jb2xvciA9ICJ0cmFuc3BhcmVudCIpDQoNCmxlYWZsZXQoKSAlPiUgYWRkVGlsZXMoKSAlPiUNCiAgYWRkUmFzdGVySW1hZ2UodGNfdG1wJFgwMSwgY29sb3JzID0gcGFsLCBvcGFjaXR5ID0gMC41KSAlPiUNCiAgYWRkTGVnZW5kKHBhbCA9IHBhbCwgdmFsdWVzID0gdmFsdWVzKHRjX3RtcCRYMDEpLA0KICAgIHRpdGxlID0gIkRlZmljaXQgZGUgQWd1YSBQdXR1bWF5byBFbmVybyIpDQpgYGANCg0KUG9yIHVsdGltbyBzZSBidXNjYW4gbG9zIGRhdG9zIGRlIHByZWNpcGl0YWNpw7NuIHBhcmEgZWwgbWVzIGRlIGRpY2llbWJyZSBlbiBlbCBhw7FvIDIwMTkgcGFyYSB1bmEgY29tcGFyYXRpdmE6DQoNCmBgYHtyfQ0KdGNfcHJjcDIgPSBnZXRUZXJyYUNsaW0ocHV0dSwgcGFyYW0gPSAicHJjcCIsIHN0YXJ0RGF0ZSA9ICIyMDE5LTEyLTAxIikNCmBgYA0KDQpgYGB7cn0NCnRjX3RtcCA8LSB0Y19wcmNwMltbMV1dDQpgYGANCg0KU2UgdXRpbGl6YSBsYSBoZXJyYW1pZW50YSBsZWFmbGV0IHBhcmEgdmlzdWFsaXphciBsb3MgZGF0b3M6DQoNCmBgYHtyfQ0KcGFsIDwtIGNvbG9yTnVtZXJpYyhjKCJyZWQiLCAib3JhbmdlIiwgIiNmY2MwMDAiLCJ5ZWxsb3ciLCAiY3lhbiIsICJibHVlIiwgIiMzMjQwY2QiKSwgdmFsdWVzKHRjX3RtcCRYMjAxOS4xMiksIA0KICAgICAgICAgICAgICAgICAgICBuYS5jb2xvciA9ICJ0cmFuc3BhcmVudCIpDQoNCmxlYWZsZXQoKSAlPiUgYWRkVGlsZXMoKSAlPiUNCiAgYWRkUmFzdGVySW1hZ2UodGNfdG1wJFgyMDE5LjEyICwgY29sb3JzID0gcGFsLCBvcGFjaXR5ID0gMC41KSAlPiUNCiAgYWRkTGVnZW5kKHBhbCA9IHBhbCwgdmFsdWVzID0gdmFsdWVzKHRjX3RtcCRYMjAxOS4xMiksDQogICAgdGl0bGUgPSAiTGx1dmlhcyBlbiBQdXR1bWF5byBEaWNpZW1icmUgMjAxOSBbbW1dIikNCmBgYA0KDQpUb2RvcyBsb3MgY29kaWdvcyB1c2Fkb3MgZW4gZXN0ZSBjdWFyZGVybm8gZGUgUiBmdWVyb24gdG9tYWRvcyBkZWwgY3VhZGVybm8gZGVsIHByb2Zlc29yIChMaXphcmF6bywgMjAyMSkuDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQo=