- بخش اول: مدیریت داده ها و ارتباط آن با بسته های Tidyverse
- بخش دوم: تبدیل داده ها با dplyr
- بخش سوم: داده های مرتب با tidyr
- بخش چهارم: داده های رابطه ای با dplyr
مدیریت داده ها و ارتباط آن با بسته های Tidyverse
Tidyverseinstall.packages("tidyverse")
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.1.1 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x tidyr::extract() masks magrittr::extract()
## x dplyr::filter() masks stats::filter()
## x dplyr::group_rows() masks kableExtra::group_rows()
## x dplyr::lag() masks stats::lag()
## x purrr::set_names() masks magrittr::set_names()
زنجیره کاری بسته ها
Tidyversetidyverse_packages()
## [1] "broom" "cli" "crayon" "dbplyr"
## [5] "dplyr" "dtplyr" "forcats" "googledrive"
## [9] "googlesheets4" "ggplot2" "haven" "hms"
## [13] "httr" "jsonlite" "lubridate" "magrittr"
## [17] "modelr" "pillar" "purrr" "readr"
## [21] "readxl" "reprex" "rlang" "rstudioapi"
## [25] "rvest" "stringr" "tibble" "tidyr"
## [29] "xml2" "tidyverse"
Tidyverse و مدیریت داده هاTidyverse با داده های مرتب (Tidy) کار می کنند
تبدیل داده ها با dplyr
اغلب باید متغیرها یا خلاصه های جدیدی ایجاد کنید، یا شاید فقط می خواهید نام متغیرها را تغییر دهید یا مشاهدات را مرتب کنید تا کار با داده ها کمی آسان تر شود.
در این بخش قصد داریم بر نحوه استفاده از بسته dplyr، یکی از اعضای اصلی tidyverse تمرکز کنیم. ما ایده های کلیدی را با استفاده از داده های بسته nycflights13 نشان خواهیم داد. این چارچوب داده شامل تمام 336776 پروازی است که در سال 2013 از شهر نیویورک حرکت کردند.
راهنمای داده ها را با flights? یا https://rdrr.io/cran/nycflights13/man/flights.html می توانید دریافت کنید.
library(tidyverse)
library(nycflights13)
flights
## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
print(flights, n = 5, width = Inf)
## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## arr_delay carrier flight tailnum origin dest air_time distance hour minute
## <dbl> <chr> <int> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 11 UA 1545 N14228 EWR IAH 227 1400 5 15
## 2 20 UA 1714 N24211 LGA IAH 227 1416 5 29
## 3 33 AA 1141 N619AA JFK MIA 160 1089 5 40
## 4 -18 B6 725 N804JB JFK BQN 183 1576 5 45
## 5 -25 DL 461 N668DN LGA ATL 116 762 6 0
## time_hour
## <dttm>
## 1 2013-01-01 05:00:00
## 2 2013-01-01 05:00:00
## 3 2013-01-01 05:00:00
## 4 2013-01-01 05:00:00
## 5 2013-01-01 06:00:00
## # ... with 336,771 more rows
glimpse(flights)
## Rows: 336,776
## Columns: 19
## $ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2~
## $ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
## $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
## $ dep_time <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, ~
## $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600, ~
## $ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1~
## $ arr_time <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,~
## $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,~
## $ arr_delay <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1~
## $ carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", "~
## $ flight <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4~
## $ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394~
## $ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",~
## $ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD",~
## $ air_time <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149, 1~
## $ distance <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733, ~
## $ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6~
## $ minute <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0~
## $ time_hour <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-01 0~
View(flights)
()filterfilter(flights, month == 1, day == 1)
## # A tibble: 842 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with 832 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, month == 11 | month == 12)
## # A tibble: 55,403 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 11 1 5 2359 6 352 345
## 2 2013 11 1 35 2250 105 123 2356
## 3 2013 11 1 455 500 -5 641 651
## 4 2013 11 1 539 545 -6 856 827
## 5 2013 11 1 542 545 -3 831 855
## 6 2013 11 1 549 600 -11 912 923
## 7 2013 11 1 550 600 -10 705 659
## 8 2013 11 1 554 600 -6 659 701
## 9 2013 11 1 554 600 -6 826 827
## 10 2013 11 1 554 600 -6 749 751
## # ... with 55,393 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, !(arr_delay > 120 | dep_delay > 120))
## # A tibble: 316,050 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with 316,040 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, arr_delay <= 120, dep_delay <= 120)
## # A tibble: 316,050 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with 316,040 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
distinct(flights, month)
## # A tibble: 12 x 1
## month
## <int>
## 1 1
## 2 10
## 3 11
## 4 12
## 5 2
## 6 3
## 7 4
## 8 5
## 9 6
## 10 7
## 11 8
## 12 9
distinct(flights, month, .keep_all = TRUE)
## # A tibble: 12 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 10 1 447 500 -13 614 648
## 3 2013 11 1 5 2359 6 352 345
## 4 2013 12 1 13 2359 14 446 445
## 5 2013 2 1 456 500 -4 652 648
## 6 2013 3 1 4 2159 125 318 56
## 7 2013 4 1 454 500 -6 636 640
## 8 2013 5 1 9 1655 434 308 2020
## 9 2013 6 1 2 2359 3 341 350
## 10 2013 7 1 1 2029 212 236 2359
## 11 2013 8 1 12 2130 162 257 14
## 12 2013 9 1 9 2359 10 343 340
## # ... with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
slice(flights, 21:25, 101:105, 1000)
## # A tibble: 11 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 602 610 -8 812 820
## 2 2013 1 1 602 605 -3 821 805
## 3 2013 1 1 606 610 -4 858 910
## 4 2013 1 1 606 610 -4 837 845
## 5 2013 1 1 607 607 0 858 915
## 6 2013 1 1 753 755 -2 1056 1110
## 7 2013 1 1 754 759 -5 1039 1041
## 8 2013 1 1 754 755 -1 1103 1030
## 9 2013 1 1 758 800 -2 1053 1054
## 10 2013 1 1 759 800 -1 1057 1127
## 11 2013 1 2 809 810 -1 950 948
## # ... with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
slice_sample(flights, n = 5)
## # A tibble: 5 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 11 2 622 630 -8 855 918
## 2 2013 4 18 1222 1210 12 1455 1450
## 3 2013 2 23 1620 1630 -10 1950 2015
## 4 2013 1 2 1249 1245 4 1555 1550
## 5 2013 12 23 2120 1940 100 2344 2153
## # ... with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
slice_min(flights, dep_delay, n = 5)
## # A tibble: 5 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 12 7 2040 2123 -43 40 2352
## 2 2013 2 3 2022 2055 -33 2240 2338
## 3 2013 11 10 1408 1440 -32 1549 1559
## 4 2013 1 11 1900 1930 -30 2233 2243
## 5 2013 1 29 1703 1730 -27 1947 1957
## # ... with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
slice_head(flights, n = 5)
## # A tibble: 5 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## # ... with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
slice_head(flights, prop = 1 / 1e5)
## # A tibble: 3 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## # ... with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
()arrangearrange(flights, dep_delay)
## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 12 7 2040 2123 -43 40 2352
## 2 2013 2 3 2022 2055 -33 2240 2338
## 3 2013 11 10 1408 1440 -32 1549 1559
## 4 2013 1 11 1900 1930 -30 2233 2243
## 5 2013 1 29 1703 1730 -27 1947 1957
## 6 2013 8 9 729 755 -26 1002 955
## 7 2013 10 23 1907 1932 -25 2143 2143
## 8 2013 3 30 2030 2055 -25 2213 2250
## 9 2013 3 2 1431 1455 -24 1601 1631
## 10 2013 5 5 934 958 -24 1225 1309
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
arrange(flights, desc(dep_delay))
## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 9 641 900 1301 1242 1530
## 2 2013 6 15 1432 1935 1137 1607 2120
## 3 2013 1 10 1121 1635 1126 1239 1810
## 4 2013 9 20 1139 1845 1014 1457 2210
## 5 2013 7 22 845 1600 1005 1044 1815
## 6 2013 4 10 1100 1900 960 1342 2211
## 7 2013 3 17 2321 810 911 135 1020
## 8 2013 6 27 959 1900 899 1236 2226
## 9 2013 7 22 2257 759 898 121 1026
## 10 2013 12 5 756 1700 896 1058 2020
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
df <- tibble(x = c(5, 2, NA))
arrange(df, x)
## # A tibble: 3 x 1
## x
## <dbl>
## 1 2
## 2 5
## 3 NA
arrange(df, desc(x))
## # A tibble: 3 x 1
## x
## <dbl>
## 1 5
## 2 2
## 3 NA
()selectselect(flights, year, month, day)
## # A tibble: 336,776 x 3
## year month day
## <int> <int> <int>
## 1 2013 1 1
## 2 2013 1 1
## 3 2013 1 1
## 4 2013 1 1
## 5 2013 1 1
## 6 2013 1 1
## 7 2013 1 1
## 8 2013 1 1
## 9 2013 1 1
## 10 2013 1 1
## # ... with 336,766 more rows
select(flights, year:day)
## # A tibble: 336,776 x 3
## year month day
## <int> <int> <int>
## 1 2013 1 1
## 2 2013 1 1
## 3 2013 1 1
## 4 2013 1 1
## 5 2013 1 1
## 6 2013 1 1
## 7 2013 1 1
## 8 2013 1 1
## 9 2013 1 1
## 10 2013 1 1
## # ... with 336,766 more rows
select(flights, -(year:day))
## # A tibble: 336,776 x 16
## dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier
## <int> <int> <dbl> <int> <int> <dbl> <chr>
## 1 517 515 2 830 819 11 UA
## 2 533 529 4 850 830 20 UA
## 3 542 540 2 923 850 33 AA
## 4 544 545 -1 1004 1022 -18 B6
## 5 554 600 -6 812 837 -25 DL
## 6 554 558 -4 740 728 12 UA
## 7 555 600 -5 913 854 19 B6
## 8 557 600 -3 709 723 -14 EV
## 9 557 600 -3 838 846 -8 B6
## 10 558 600 -2 753 745 8 AA
## # ... with 336,766 more rows, and 9 more variables: flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
select(flights, 1:3, 5)
## # A tibble: 336,776 x 4
## year month day sched_dep_time
## <int> <int> <int> <int>
## 1 2013 1 1 515
## 2 2013 1 1 529
## 3 2013 1 1 540
## 4 2013 1 1 545
## 5 2013 1 1 600
## 6 2013 1 1 558
## 7 2013 1 1 600
## 8 2013 1 1 600
## 9 2013 1 1 600
## 10 2013 1 1 600
## # ... with 336,766 more rows
select(flights, 1:3, last_col())
## # A tibble: 336,776 x 4
## year month day time_hour
## <int> <int> <int> <dttm>
## 1 2013 1 1 2013-01-01 05:00:00
## 2 2013 1 1 2013-01-01 05:00:00
## 3 2013 1 1 2013-01-01 05:00:00
## 4 2013 1 1 2013-01-01 05:00:00
## 5 2013 1 1 2013-01-01 06:00:00
## 6 2013 1 1 2013-01-01 05:00:00
## 7 2013 1 1 2013-01-01 06:00:00
## 8 2013 1 1 2013-01-01 06:00:00
## 9 2013 1 1 2013-01-01 06:00:00
## 10 2013 1 1 2013-01-01 06:00:00
## # ... with 336,766 more rows
select(flights, starts_with("dep"))
## # A tibble: 336,776 x 2
## dep_time dep_delay
## <int> <dbl>
## 1 517 2
## 2 533 4
## 3 542 2
## 4 544 -1
## 5 554 -6
## 6 554 -4
## 7 555 -5
## 8 557 -3
## 9 557 -3
## 10 558 -2
## # ... with 336,766 more rows
select(flights, ends_with("time"))
## # A tibble: 336,776 x 5
## dep_time sched_dep_time arr_time sched_arr_time air_time
## <int> <int> <int> <int> <dbl>
## 1 517 515 830 819 227
## 2 533 529 850 830 227
## 3 542 540 923 850 160
## 4 544 545 1004 1022 183
## 5 554 600 812 837 116
## 6 554 558 740 728 150
## 7 555 600 913 854 158
## 8 557 600 709 723 53
## 9 557 600 838 846 140
## 10 558 600 753 745 138
## # ... with 336,766 more rows
select(flights, starts_with("dep"), ends_with("time"))
## # A tibble: 336,776 x 6
## dep_time dep_delay sched_dep_time arr_time sched_arr_time air_time
## <int> <dbl> <int> <int> <int> <dbl>
## 1 517 2 515 830 819 227
## 2 533 4 529 850 830 227
## 3 542 2 540 923 850 160
## 4 544 -1 545 1004 1022 183
## 5 554 -6 600 812 837 116
## 6 554 -4 558 740 728 150
## 7 555 -5 600 913 854 158
## 8 557 -3 600 709 723 53
## 9 557 -3 600 838 846 140
## 10 558 -2 600 753 745 138
## # ... with 336,766 more rows
select(flights, starts_with("dep") & ends_with("time"))
## # A tibble: 336,776 x 1
## dep_time
## <int>
## 1 517
## 2 533
## 3 542
## 4 544
## 5 554
## 6 554
## 7 555
## 8 557
## 9 557
## 10 558
## # ... with 336,766 more rows
select(flights, contains("arr"))
## # A tibble: 336,776 x 4
## arr_time sched_arr_time arr_delay carrier
## <int> <int> <dbl> <chr>
## 1 830 819 11 UA
## 2 850 830 20 UA
## 3 923 850 33 AA
## 4 1004 1022 -18 B6
## 5 812 837 -25 DL
## 6 740 728 12 UA
## 7 913 854 19 B6
## 8 709 723 -14 EV
## 9 838 846 -8 B6
## 10 753 745 8 AA
## # ... with 336,766 more rows
select(flights, where(is.numeric))
## # A tibble: 336,776 x 14
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with 336,766 more rows, and 6 more variables: arr_delay <dbl>,
## # flight <int>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>
select(flights, where(is.character))
## # A tibble: 336,776 x 4
## carrier tailnum origin dest
## <chr> <chr> <chr> <chr>
## 1 UA N14228 EWR IAH
## 2 UA N24211 LGA IAH
## 3 AA N619AA JFK MIA
## 4 B6 N804JB JFK BQN
## 5 DL N668DN LGA ATL
## 6 UA N39463 EWR ORD
## 7 B6 N516JB EWR FLL
## 8 EV N829AS LGA IAD
## 9 B6 N593JB JFK MCO
## 10 AA N3ALAA LGA ORD
## # ... with 336,766 more rows
ترکیب انتخاب متغیرها و فیلتر کردن
flights %>%
select(year:sched_arr_time) %>%
filter(month == 1, day == 1)
## # A tibble: 842 x 8
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with 832 more rows
rename(flights, tail_num = tailnum)
## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tail_num <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
rename_with(flights, toupper, starts_with("dep"))
## # A tibble: 336,776 x 19
## year month day DEP_TIME sched_dep_time DEP_DELAY arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
select(flights, time_hour, air_time, everything())
## # A tibble: 336,776 x 19
## time_hour air_time year month day dep_time sched_dep_time
## <dttm> <dbl> <int> <int> <int> <int> <int>
## 1 2013-01-01 05:00:00 227 2013 1 1 517 515
## 2 2013-01-01 05:00:00 227 2013 1 1 533 529
## 3 2013-01-01 05:00:00 160 2013 1 1 542 540
## 4 2013-01-01 05:00:00 183 2013 1 1 544 545
## 5 2013-01-01 06:00:00 116 2013 1 1 554 600
## 6 2013-01-01 05:00:00 150 2013 1 1 554 558
## 7 2013-01-01 06:00:00 158 2013 1 1 555 600
## 8 2013-01-01 06:00:00 53 2013 1 1 557 600
## 9 2013-01-01 06:00:00 140 2013 1 1 557 600
## 10 2013-01-01 06:00:00 138 2013 1 1 558 600
## # ... with 336,766 more rows, and 12 more variables: dep_delay <dbl>,
## # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
## # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, distance <dbl>,
## # hour <dbl>, minute <dbl>
relocate(flights, time_hour, air_time)
## # A tibble: 336,776 x 19
## time_hour air_time year month day dep_time sched_dep_time
## <dttm> <dbl> <int> <int> <int> <int> <int>
## 1 2013-01-01 05:00:00 227 2013 1 1 517 515
## 2 2013-01-01 05:00:00 227 2013 1 1 533 529
## 3 2013-01-01 05:00:00 160 2013 1 1 542 540
## 4 2013-01-01 05:00:00 183 2013 1 1 544 545
## 5 2013-01-01 06:00:00 116 2013 1 1 554 600
## 6 2013-01-01 05:00:00 150 2013 1 1 554 558
## 7 2013-01-01 06:00:00 158 2013 1 1 555 600
## 8 2013-01-01 06:00:00 53 2013 1 1 557 600
## 9 2013-01-01 06:00:00 140 2013 1 1 557 600
## 10 2013-01-01 06:00:00 138 2013 1 1 558 600
## # ... with 336,766 more rows, and 12 more variables: dep_delay <dbl>,
## # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
## # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, distance <dbl>,
## # hour <dbl>, minute <dbl>
relocate(flights, time_hour, air_time, .before = day)
## # A tibble: 336,776 x 19
## year month time_hour air_time day dep_time sched_dep_time
## <int> <int> <dttm> <dbl> <int> <int> <int>
## 1 2013 1 2013-01-01 05:00:00 227 1 517 515
## 2 2013 1 2013-01-01 05:00:00 227 1 533 529
## 3 2013 1 2013-01-01 05:00:00 160 1 542 540
## 4 2013 1 2013-01-01 05:00:00 183 1 544 545
## 5 2013 1 2013-01-01 06:00:00 116 1 554 600
## 6 2013 1 2013-01-01 05:00:00 150 1 554 558
## 7 2013 1 2013-01-01 06:00:00 158 1 555 600
## 8 2013 1 2013-01-01 06:00:00 53 1 557 600
## 9 2013 1 2013-01-01 06:00:00 140 1 557 600
## 10 2013 1 2013-01-01 06:00:00 138 1 558 600
## # ... with 336,766 more rows, and 12 more variables: dep_delay <dbl>,
## # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
## # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, distance <dbl>,
## # hour <dbl>, minute <dbl>
relocate(flights, time_hour, air_time, .after = day)
## # A tibble: 336,776 x 19
## year month day time_hour air_time dep_time sched_dep_time
## <int> <int> <int> <dttm> <dbl> <int> <int>
## 1 2013 1 1 2013-01-01 05:00:00 227 517 515
## 2 2013 1 1 2013-01-01 05:00:00 227 533 529
## 3 2013 1 1 2013-01-01 05:00:00 160 542 540
## 4 2013 1 1 2013-01-01 05:00:00 183 544 545
## 5 2013 1 1 2013-01-01 06:00:00 116 554 600
## 6 2013 1 1 2013-01-01 05:00:00 150 554 558
## 7 2013 1 1 2013-01-01 06:00:00 158 555 600
## 8 2013 1 1 2013-01-01 06:00:00 53 557 600
## 9 2013 1 1 2013-01-01 06:00:00 140 557 600
## 10 2013 1 1 2013-01-01 06:00:00 138 558 600
## # ... with 336,766 more rows, and 12 more variables: dep_delay <dbl>,
## # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
## # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, distance <dbl>,
## # hour <dbl>, minute <dbl>
()mutateMutate به معنی جهش و دگرگونی است.
flights_sml <- select(
flights,
year:day,
ends_with("delay"),
distance,
air_time
)
mutate(flights_sml,
gain = dep_delay - arr_delay,
speed = distance / air_time * 60
)
## # A tibble: 336,776 x 9
## year month day dep_delay arr_delay distance air_time gain speed
## <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2013 1 1 2 11 1400 227 -9 370.
## 2 2013 1 1 4 20 1416 227 -16 374.
## 3 2013 1 1 2 33 1089 160 -31 408.
## 4 2013 1 1 -1 -18 1576 183 17 517.
## 5 2013 1 1 -6 -25 762 116 19 394.
## 6 2013 1 1 -4 12 719 150 -16 288.
## 7 2013 1 1 -5 19 1065 158 -24 404.
## 8 2013 1 1 -3 -14 229 53 11 259.
## 9 2013 1 1 -3 -8 944 140 5 405.
## 10 2013 1 1 -2 8 733 138 -10 319.
## # ... with 336,766 more rows
mutate(flights_sml,
gain = dep_delay - arr_delay,
hours = air_time / 60,
gain_per_hour = gain / hours
)
## # A tibble: 336,776 x 10
## year month day dep_delay arr_delay distance air_time gain hours
## <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2013 1 1 2 11 1400 227 -9 3.78
## 2 2013 1 1 4 20 1416 227 -16 3.78
## 3 2013 1 1 2 33 1089 160 -31 2.67
## 4 2013 1 1 -1 -18 1576 183 17 3.05
## 5 2013 1 1 -6 -25 762 116 19 1.93
## 6 2013 1 1 -4 12 719 150 -16 2.5
## 7 2013 1 1 -5 19 1065 158 -24 2.63
## 8 2013 1 1 -3 -14 229 53 11 0.883
## 9 2013 1 1 -3 -8 944 140 5 2.33
## 10 2013 1 1 -2 8 733 138 -10 2.3
## # ... with 336,766 more rows, and 1 more variable: gain_per_hour <dbl>
transmute استفاده کنید. Transmute به معنای تبدیل است.
transmute(flights_sml,
gain = dep_delay - arr_delay,
hours = air_time / 60,
gain_per_hour = gain / hours
)
## # A tibble: 336,776 x 3
## gain hours gain_per_hour
## <dbl> <dbl> <dbl>
## 1 -9 3.78 -2.38
## 2 -16 3.78 -4.23
## 3 -31 2.67 -11.6
## 4 17 3.05 5.57
## 5 19 1.93 9.83
## 6 -16 2.5 -6.4
## 7 -24 2.63 -9.11
## 8 11 0.883 12.5
## 9 5 2.33 2.14
## 10 -10 2.3 -4.35
## # ... with 336,766 more rows
transmute(flights, across(ends_with("delay"), abs))
## # A tibble: 336,776 x 2
## dep_delay arr_delay
## <dbl> <dbl>
## 1 2 11
## 2 4 20
## 3 2 33
## 4 1 18
## 5 6 25
## 6 4 12
## 7 5 19
## 8 3 14
## 9 3 8
## 10 2 8
## # ... with 336,766 more rows
()summarisesummarise(flights, delay = mean(dep_delay, na.rm = TRUE))
## # A tibble: 1 x 1
## delay
## <dbl>
## 1 12.6
by_day <- group_by(flights, year, month, day)
summarise(by_day, delay = mean(dep_delay, na.rm = TRUE))
## # A tibble: 365 x 4
## # Groups: year, month [12]
## year month day delay
## <int> <int> <int> <dbl>
## 1 2013 1 1 11.5
## 2 2013 1 2 13.9
## 3 2013 1 3 11.0
## 4 2013 1 4 8.95
## 5 2013 1 5 5.73
## 6 2013 1 6 7.15
## 7 2013 1 7 5.42
## 8 2013 1 8 2.55
## 9 2013 1 9 2.28
## 10 2013 1 10 2.84
## # ... with 355 more rows
ترکیب چندین عملیات با pipe
flights %>%
group_by(dest) %>%
summarise(
count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)
) %>%
filter(count > 20, dest != "HNL")
## # A tibble: 96 x 4
## dest count dist delay
## <chr> <int> <dbl> <dbl>
## 1 ABQ 254 1826 4.38
## 2 ACK 265 199 4.85
## 3 ALB 439 143 14.4
## 4 ATL 17215 757. 11.3
## 5 AUS 2439 1514. 6.02
## 6 AVL 275 584. 8.00
## 7 BDL 443 116 7.05
## 8 BGR 375 378 8.03
## 9 BHM 297 866. 16.9
## 10 BNA 6333 758. 11.8
## # ... with 86 more rows
توابع زیادی برای بدست آوردن خلاصه های وجود دارد. در بالا محاسبه تعداد هر گروه با استفاده از ()n دیده شد. اگر هدف فقط به دست آوردن تعداد باشد، این کار با استفاده توابع tally و count ساده تر است.
flights %>% tally()
## # A tibble: 1 x 1
## n
## <int>
## 1 336776
flights %>% count(dest)
## # A tibble: 105 x 2
## dest n
## <chr> <int>
## 1 ABQ 254
## 2 ACK 265
## 3 ALB 439
## 4 ANC 8
## 5 ATL 17215
## 6 AUS 2439
## 7 AVL 275
## 8 BDL 443
## 9 BGR 375
## 10 BHM 297
## # ... with 95 more rows
flights %>% count(dest, sort = TRUE, name = "size")
## # A tibble: 105 x 2
## dest size
## <chr> <int>
## 1 ORD 17283
## 2 ATL 17215
## 3 LAX 16174
## 4 BOS 15508
## 5 MCO 14082
## 6 CLT 14064
## 7 SFO 13331
## 8 FLL 12055
## 9 MIA 11728
## 10 DCA 9705
## # ... with 95 more rows
flights %>%
count(dest, sort = TRUE, name = "size") %>%
filter(size > 12000)
## # A tibble: 8 x 2
## dest size
## <chr> <int>
## 1 ORD 17283
## 2 ATL 17215
## 3 LAX 16174
## 4 BOS 15508
## 5 MCO 14082
## 6 CLT 14064
## 7 SFO 13331
## 8 FLL 12055
توابع add_tally و add_count همان محاسبات را انجام می دهند، اما تعداد را به صورت یک ستون به داده های اصلی اضافه می کنند.
داده های مرتب با tidyr
همانطور که قبلاً اشاره شد، داده های مرتب (tidy) اساس کار بسته های Tidyverse را تشکیل می دهند.
کار بر روی ساختمان این داده ها با استفاده از بسته tidyr امکان پذیر است.
ممکن است داده ها در انواع عریض و طویل دیده شوند. در اینجا یک مجموعه داده در چند قالب دیده می شود. این داده ها، تعداد مبتلایان بیماری سل در سالهای 1999 و 2000 در کشورهای افغانستان، برزیل و چین را گزارش می کنند.
table1
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
table2
## # A tibble: 12 x 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
table3
## # A tibble: 6 x 3
## country year rate
## * <chr> <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
table4a # cases
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
table4b # population
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 19987071 20595360
## 2 Brazil 172006362 174504898
## 3 China 1272915272 1280428583
()pivot_longertable4b
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 19987071 20595360
## 2 Brazil 172006362 174504898
## 3 China 1272915272 1280428583
table4a %>%
pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases")
## # A tibble: 6 x 3
## country year cases
## <chr> <chr> <int>
## 1 Afghanistan 1999 745
## 2 Afghanistan 2000 2666
## 3 Brazil 1999 37737
## 4 Brazil 2000 80488
## 5 China 1999 212258
## 6 China 2000 213766
()pivot_widertable2
## # A tibble: 12 x 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
table2 %>%
pivot_wider(names_from = type, values_from = count)
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
()separatetable3
## # A tibble: 6 x 3
## country year rate
## * <chr> <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
table3 %>%
separate(rate, into = c("cases", "population"))
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <chr> <chr>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
table3 %>%
separate(rate, into = c("cases", "population"), convert = TRUE, remove = FALSE)
## # A tibble: 6 x 5
## country year rate cases population
## <chr> <int> <chr> <int> <int>
## 1 Afghanistan 1999 745/19987071 745 19987071
## 2 Afghanistan 2000 2666/20595360 2666 20595360
## 3 Brazil 1999 37737/172006362 37737 172006362
## 4 Brazil 2000 80488/174504898 80488 174504898
## 5 China 1999 212258/1272915272 212258 1272915272
## 6 China 2000 213766/1280428583 213766 1280428583
table3 %>%
separate(year, into = c("century", "year"), sep = 2)
## # A tibble: 6 x 4
## country century year rate
## <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583
()unitetable5
## # A tibble: 6 x 4
## country century year rate
## * <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583
table5 %>%
unite(new, century, year)
## # A tibble: 6 x 3
## country new rate
## <chr> <chr> <chr>
## 1 Afghanistan 19_99 745/19987071
## 2 Afghanistan 20_00 2666/20595360
## 3 Brazil 19_99 37737/172006362
## 4 Brazil 20_00 80488/174504898
## 5 China 19_99 212258/1272915272
## 6 China 20_00 213766/1280428583
table5 %>%
unite(new, century, year, sep = "")
## # A tibble: 6 x 3
## country new rate
## <chr> <chr> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
()expand و ()completedf1 <- tibble(x1 = c("A", "B", "B"), x2 = c(1, 1, 2), x3 = c(3, 4, 5))
df1
## # A tibble: 3 x 3
## x1 x2 x3
## <chr> <dbl> <dbl>
## 1 A 1 3
## 2 B 1 4
## 3 B 2 5
expand(df1, x1, x2)
## # A tibble: 4 x 2
## x1 x2
## <chr> <dbl>
## 1 A 1
## 2 A 2
## 3 B 1
## 4 B 2
complete(df1, x1, x2)
## # A tibble: 4 x 3
## x1 x2 x3
## <chr> <dbl> <dbl>
## 1 A 1 3
## 2 A 2 NA
## 3 B 1 4
## 4 B 2 5
df2 <- complete(df1, x1, x2)
drop_na(df2) # na.omit
## # A tibble: 3 x 3
## x1 x2 x3
## <chr> <dbl> <dbl>
## 1 A 1 3
## 2 B 1 4
## 3 B 2 5
drop_na(df2, x3)
## # A tibble: 3 x 3
## x1 x2 x3
## <chr> <dbl> <dbl>
## 1 A 1 3
## 2 B 1 4
## 3 B 2 5
fill(df2, x3)
## # A tibble: 4 x 3
## x1 x2 x3
## <chr> <dbl> <dbl>
## 1 A 1 3
## 2 A 2 3
## 3 B 1 4
## 4 B 2 5
replace_na(df2, list(x3 = 0))
## # A tibble: 4 x 3
## x1 x2 x3
## <chr> <dbl> <dbl>
## 1 A 1 3
## 2 A 2 0
## 3 B 1 4
## 4 B 2 5
داده های رابطه ای با dplyr
flights
## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
airlines
## # A tibble: 16 x 2
## carrier name
## <chr> <chr>
## 1 9E Endeavor Air Inc.
## 2 AA American Airlines Inc.
## 3 AS Alaska Airlines Inc.
## 4 B6 JetBlue Airways
## 5 DL Delta Air Lines Inc.
## 6 EV ExpressJet Airlines Inc.
## 7 F9 Frontier Airlines Inc.
## 8 FL AirTran Airways Corporation
## 9 HA Hawaiian Airlines Inc.
## 10 MQ Envoy Air
## 11 OO SkyWest Airlines Inc.
## 12 UA United Air Lines Inc.
## 13 US US Airways Inc.
## 14 VX Virgin America
## 15 WN Southwest Airlines Co.
## 16 YV Mesa Airlines Inc.
airports
## # A tibble: 1,458 x 8
## faa name lat lon alt tz dst tzone
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A America/~
## 2 06A Moton Field Municipal Airport 32.5 -85.7 264 -6 A America/~
## 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/~
## 4 06N Randall Airport 41.4 -74.4 523 -5 A America/~
## 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A America/~
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2 1593 -5 A America/~
## 7 0G6 Williams County Airport 41.5 -84.5 730 -5 A America/~
## 8 0G7 Finger Lakes Regional Airport 42.9 -76.8 492 -5 A America/~
## 9 0P2 Shoestring Aviation Airfield 39.8 -76.6 1000 -5 U America/~
## 10 0S9 Jefferson County Intl 48.1 -123. 108 -8 A America/~
## # ... with 1,448 more rows
planes
## # A tibble: 3,322 x 9
## tailnum year type manufacturer model engines seats speed engine
## <chr> <int> <chr> <chr> <chr> <int> <int> <int> <chr>
## 1 N10156 2004 Fixed wing m~ EMBRAER EMB-1~ 2 55 NA Turbo-~
## 2 N102UW 1998 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 3 N103US 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 4 N104UW 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 5 N10575 2002 Fixed wing m~ EMBRAER EMB-1~ 2 55 NA Turbo-~
## 6 N105UW 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 7 N107US 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 8 N108UW 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 9 N109UW 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 10 N110UW 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## # ... with 3,312 more rows
weather
## # A tibble: 26,115 x 15
## origin year month day hour temp dewp humid wind_dir wind_speed
## <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 EWR 2013 1 1 1 39.0 26.1 59.4 270 10.4
## 2 EWR 2013 1 1 2 39.0 27.0 61.6 250 8.06
## 3 EWR 2013 1 1 3 39.0 28.0 64.4 240 11.5
## 4 EWR 2013 1 1 4 39.9 28.0 62.2 250 12.7
## 5 EWR 2013 1 1 5 39.0 28.0 64.4 260 12.7
## 6 EWR 2013 1 1 6 37.9 28.0 67.2 240 11.5
## 7 EWR 2013 1 1 7 39.0 28.0 64.4 240 15.0
## 8 EWR 2013 1 1 8 39.9 28.0 62.2 250 10.4
## 9 EWR 2013 1 1 9 39.9 28.0 62.2 260 15.0
## 10 EWR 2013 1 1 10 41 28.0 59.6 260 13.8
## # ... with 26,105 more rows, and 5 more variables: wind_gust <dbl>,
## # precip <dbl>, pressure <dbl>, visib <dbl>, time_hour <dttm>
planes %>%
count(tailnum) %>%
filter(n > 1)
## # A tibble: 0 x 2
## # ... with 2 variables: tailnum <chr>, n <int>
weather %>%
count(year, month, day, hour, origin) %>%
filter(n > 1)
## # A tibble: 3 x 6
## year month day hour origin n
## <int> <int> <int> <int> <chr> <int>
## 1 2013 11 3 1 EWR 2
## 2 2013 11 3 1 JFK 2
## 3 2013 11 3 1 LGA 2
flights %>%
count(year, month, day, flight) %>%
filter(n > 1)
## # A tibble: 29,768 x 5
## year month day flight n
## <int> <int> <int> <int> <int>
## 1 2013 1 1 1 2
## 2 2013 1 1 3 2
## 3 2013 1 1 4 2
## 4 2013 1 1 11 3
## 5 2013 1 1 15 2
## 6 2013 1 1 21 2
## 7 2013 1 1 27 4
## 8 2013 1 1 31 2
## 9 2013 1 1 32 2
## 10 2013 1 1 35 2
## # ... with 29,758 more rows
flights %>%
count(year, month, day, tailnum) %>%
filter(n > 1)
## # A tibble: 64,928 x 5
## year month day tailnum n
## <int> <int> <int> <chr> <int>
## 1 2013 1 1 N0EGMQ 2
## 2 2013 1 1 N11189 2
## 3 2013 1 1 N11536 2
## 4 2013 1 1 N11544 3
## 5 2013 1 1 N11551 2
## 6 2013 1 1 N12540 2
## 7 2013 1 1 N12567 2
## 8 2013 1 1 N13123 2
## 9 2013 1 1 N13538 3
## 10 2013 1 1 N13566 3
## # ... with 64,918 more rows
برای کار با داده های رابطه ای به توابعی نیاز دارید که با جفت جداول کار کنند. سه خانواده از توابع برای کار با داده های رابطه ای طراحی شده اند:
flights2 <- flights %>%
select(year:day, hour, origin, dest, tailnum, carrier)
flights2
## # A tibble: 336,776 x 8
## year month day hour origin dest tailnum carrier
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr>
## 1 2013 1 1 5 EWR IAH N14228 UA
## 2 2013 1 1 5 LGA IAH N24211 UA
## 3 2013 1 1 5 JFK MIA N619AA AA
## 4 2013 1 1 5 JFK BQN N804JB B6
## 5 2013 1 1 6 LGA ATL N668DN DL
## 6 2013 1 1 5 EWR ORD N39463 UA
## 7 2013 1 1 6 EWR FLL N516JB B6
## 8 2013 1 1 6 LGA IAD N829AS EV
## 9 2013 1 1 6 JFK MCO N593JB B6
## 10 2013 1 1 6 LGA ORD N3ALAA AA
## # ... with 336,766 more rows
flights2 %>%
select(-origin, -dest) %>%
left_join(airlines, by = "carrier")
## # A tibble: 336,776 x 7
## year month day hour tailnum carrier name
## <int> <int> <int> <dbl> <chr> <chr> <chr>
## 1 2013 1 1 5 N14228 UA United Air Lines Inc.
## 2 2013 1 1 5 N24211 UA United Air Lines Inc.
## 3 2013 1 1 5 N619AA AA American Airlines Inc.
## 4 2013 1 1 5 N804JB B6 JetBlue Airways
## 5 2013 1 1 6 N668DN DL Delta Air Lines Inc.
## 6 2013 1 1 5 N39463 UA United Air Lines Inc.
## 7 2013 1 1 6 N516JB B6 JetBlue Airways
## 8 2013 1 1 6 N829AS EV ExpressJet Airlines Inc.
## 9 2013 1 1 6 N593JB B6 JetBlue Airways
## 10 2013 1 1 6 N3ALAA AA American Airlines Inc.
## # ... with 336,766 more rows
flights2 %>%
select(-origin, -dest) %>%
mutate(name = airlines$name[match(carrier, airlines$carrier)])
## # A tibble: 336,776 x 7
## year month day hour tailnum carrier name
## <int> <int> <int> <dbl> <chr> <chr> <chr>
## 1 2013 1 1 5 N14228 UA United Air Lines Inc.
## 2 2013 1 1 5 N24211 UA United Air Lines Inc.
## 3 2013 1 1 5 N619AA AA American Airlines Inc.
## 4 2013 1 1 5 N804JB B6 JetBlue Airways
## 5 2013 1 1 6 N668DN DL Delta Air Lines Inc.
## 6 2013 1 1 5 N39463 UA United Air Lines Inc.
## 7 2013 1 1 6 N516JB B6 JetBlue Airways
## 8 2013 1 1 6 N829AS EV ExpressJet Airlines Inc.
## 9 2013 1 1 6 N593JB B6 JetBlue Airways
## 10 2013 1 1 6 N3ALAA AA American Airlines Inc.
## # ... with 336,766 more rows
x <- tribble(
~key, ~val_x,
1, "x1",
2, "x2",
3, "x3"
)
x
## # A tibble: 3 x 2
## key val_x
## <dbl> <chr>
## 1 1 x1
## 2 2 x2
## 3 3 x3
y <- tribble(
~key, ~val_y,
1, "y1",
2, "y2",
4, "y3"
)
y
## # A tibble: 3 x 2
## key val_y
## <dbl> <chr>
## 1 1 y1
## 2 2 y2
## 3 4 y3
Inner join
x %>%
inner_join(y, by = "key")
## # A tibble: 2 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
Outer joins
x %>%
left_join(y, by = "key")
## # A tibble: 3 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 3 x3 <NA>
x %>%
right_join(y, by = "key")
## # A tibble: 3 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 4 <NA> y3
x %>%
full_join(y, by = "key")
## # A tibble: 4 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 3 x3 <NA>
## 4 4 <NA> y3
flights2 %>%
left_join(weather)
## Joining, by = c("year", "month", "day", "hour", "origin")
## # A tibble: 336,776 x 18
## year month day hour origin dest tailnum carrier temp dewp humid
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA 39.0 28.0 64.4
## 2 2013 1 1 5 LGA IAH N24211 UA 39.9 25.0 54.8
## 3 2013 1 1 5 JFK MIA N619AA AA 39.0 27.0 61.6
## 4 2013 1 1 5 JFK BQN N804JB B6 39.0 27.0 61.6
## 5 2013 1 1 6 LGA ATL N668DN DL 39.9 25.0 54.8
## 6 2013 1 1 5 EWR ORD N39463 UA 39.0 28.0 64.4
## 7 2013 1 1 6 EWR FLL N516JB B6 37.9 28.0 67.2
## 8 2013 1 1 6 LGA IAD N829AS EV 39.9 25.0 54.8
## 9 2013 1 1 6 JFK MCO N593JB B6 37.9 27.0 64.3
## 10 2013 1 1 6 LGA ORD N3ALAA AA 39.9 25.0 54.8
## # ... with 336,766 more rows, and 7 more variables: wind_dir <dbl>,
## # wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure <dbl>,
## # visib <dbl>, time_hour <dttm>
flights2 %>%
left_join(planes, by = "tailnum")
## # A tibble: 336,776 x 16
## year.x month day hour origin dest tailnum carrier year.y type
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <int> <chr>
## 1 2013 1 1 5 EWR IAH N14228 UA 1999 Fixed wing mult~
## 2 2013 1 1 5 LGA IAH N24211 UA 1998 Fixed wing mult~
## 3 2013 1 1 5 JFK MIA N619AA AA 1990 Fixed wing mult~
## 4 2013 1 1 5 JFK BQN N804JB B6 2012 Fixed wing mult~
## 5 2013 1 1 6 LGA ATL N668DN DL 1991 Fixed wing mult~
## 6 2013 1 1 5 EWR ORD N39463 UA 2012 Fixed wing mult~
## 7 2013 1 1 6 EWR FLL N516JB B6 2000 Fixed wing mult~
## 8 2013 1 1 6 LGA IAD N829AS EV 1998 Fixed wing mult~
## 9 2013 1 1 6 JFK MCO N593JB B6 2004 Fixed wing mult~
## 10 2013 1 1 6 LGA ORD N3ALAA AA NA <NA>
## # ... with 336,766 more rows, and 6 more variables: manufacturer <chr>,
## # model <chr>, engines <int>, seats <int>, speed <int>, engine <chr>
flights2 %>%
left_join(airports, by = c("dest" = "faa"))
## # A tibble: 336,776 x 15
## year month day hour origin dest tailnum carrier name lat lon alt
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA Georg~ 30.0 -95.3 97
## 2 2013 1 1 5 LGA IAH N24211 UA Georg~ 30.0 -95.3 97
## 3 2013 1 1 5 JFK MIA N619AA AA Miami~ 25.8 -80.3 8
## 4 2013 1 1 5 JFK BQN N804JB B6 <NA> NA NA NA
## 5 2013 1 1 6 LGA ATL N668DN DL Harts~ 33.6 -84.4 1026
## 6 2013 1 1 5 EWR ORD N39463 UA Chica~ 42.0 -87.9 668
## 7 2013 1 1 6 EWR FLL N516JB B6 Fort ~ 26.1 -80.2 9
## 8 2013 1 1 6 LGA IAD N829AS EV Washi~ 38.9 -77.5 313
## 9 2013 1 1 6 JFK MCO N593JB B6 Orlan~ 28.4 -81.3 96
## 10 2013 1 1 6 LGA ORD N3ALAA AA Chica~ 42.0 -87.9 668
## # ... with 336,766 more rows, and 3 more variables: tz <dbl>, dst <chr>,
## # tzone <chr>
flights2 %>%
left_join(airports, by = c("origin" = "faa"))
## # A tibble: 336,776 x 15
## year month day hour origin dest tailnum carrier name lat lon alt
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA Newar~ 40.7 -74.2 18
## 2 2013 1 1 5 LGA IAH N24211 UA La Gu~ 40.8 -73.9 22
## 3 2013 1 1 5 JFK MIA N619AA AA John ~ 40.6 -73.8 13
## 4 2013 1 1 5 JFK BQN N804JB B6 John ~ 40.6 -73.8 13
## 5 2013 1 1 6 LGA ATL N668DN DL La Gu~ 40.8 -73.9 22
## 6 2013 1 1 5 EWR ORD N39463 UA Newar~ 40.7 -74.2 18
## 7 2013 1 1 6 EWR FLL N516JB B6 Newar~ 40.7 -74.2 18
## 8 2013 1 1 6 LGA IAD N829AS EV La Gu~ 40.8 -73.9 22
## 9 2013 1 1 6 JFK MCO N593JB B6 John ~ 40.6 -73.8 13
## 10 2013 1 1 6 LGA ORD N3ALAA AA La Gu~ 40.8 -73.9 22
## # ... with 336,766 more rows, and 3 more variables: tz <dbl>, dst <chr>,
## # tzone <chr>
top_dest <- flights %>%
count(dest, sort = TRUE) %>%
head(10)
top_dest
## # A tibble: 10 x 2
## dest n
## <chr> <int>
## 1 ORD 17283
## 2 ATL 17215
## 3 LAX 16174
## 4 BOS 15508
## 5 MCO 14082
## 6 CLT 14064
## 7 SFO 13331
## 8 FLL 12055
## 9 MIA 11728
## 10 DCA 9705
Semi join
flights %>%
semi_join(top_dest)
## # A tibble: 141,145 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 542 540 2 923 850
## 2 2013 1 1 554 600 -6 812 837
## 3 2013 1 1 554 558 -4 740 728
## 4 2013 1 1 555 600 -5 913 854
## 5 2013 1 1 557 600 -3 838 846
## 6 2013 1 1 558 600 -2 753 745
## 7 2013 1 1 558 600 -2 924 917
## 8 2013 1 1 558 600 -2 923 937
## 9 2013 1 1 559 559 0 702 706
## 10 2013 1 1 600 600 0 851 858
## # ... with 141,135 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
flights %>%
filter(dest %in% top_dest$dest)
## # A tibble: 141,145 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 542 540 2 923 850
## 2 2013 1 1 554 600 -6 812 837
## 3 2013 1 1 554 558 -4 740 728
## 4 2013 1 1 555 600 -5 913 854
## 5 2013 1 1 557 600 -3 838 846
## 6 2013 1 1 558 600 -2 753 745
## 7 2013 1 1 558 600 -2 924 917
## 8 2013 1 1 558 600 -2 923 937
## 9 2013 1 1 559 559 0 702 706
## 10 2013 1 1 600 600 0 851 858
## # ... with 141,135 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
x %>%
semi_join(y, by = "key")
## # A tibble: 2 x 2
## key val_x
## <dbl> <chr>
## 1 1 x1
## 2 2 x2
Anti join
flights %>%
anti_join(planes, by = "tailnum") %>%
count(tailnum, sort = TRUE)
## # A tibble: 722 x 2
## tailnum n
## <chr> <int>
## 1 <NA> 2512
## 2 N725MQ 575
## 3 N722MQ 513
## 4 N723MQ 507
## 5 N713MQ 483
## 6 N735MQ 396
## 7 N0EGMQ 371
## 8 N534MQ 364
## 9 N542MQ 363
## 10 N531MQ 349
## # ... with 712 more rows
df1 <- tribble(
~x, ~y,
1, 1,
2, 1
)
df2 <- tribble(
~x, ~y,
1, 1,
1, 2
)
intersect(df1, df2)
## # A tibble: 1 x 2
## x y
## <dbl> <dbl>
## 1 1 1
union(df1, df2)
## # A tibble: 3 x 2
## x y
## <dbl> <dbl>
## 1 1 1
## 2 2 1
## 3 1 2
# compared with bind_rows
bind_rows(df1, df2, .id = "DF")
## # A tibble: 4 x 3
## DF x y
## <chr> <dbl> <dbl>
## 1 1 1 1
## 2 1 2 1
## 3 2 1 1
## 4 2 1 2
bind_cols(df1, df2)
## # A tibble: 2 x 4
## x...1 y...2 x...3 y...4
## <dbl> <dbl> <dbl> <dbl>
## 1 1 1 1 1
## 2 2 1 1 2
setdiff(df1, df2)
## # A tibble: 1 x 2
## x y
## <dbl> <dbl>
## 1 2 1
setdiff(df2, df1)
## # A tibble: 1 x 2
## x y
## <dbl> <dbl>
## 1 1 2