Github Link
Web Link

Project #2 (Team) Assignment

This is role playing. I am your new boss. I am in charge of production at ABC Beverage and you are a team of data scientists reporting to me. My leadership has told me that new regulations are requiring us to understand our manufacturing process, the predictive factors and be able to report to them our predictive model of PH.

Please use the historical data set I am providing. Build and report the factors in both a technical and non-technical report. I like to use Word and Excel. Please provide your non-technical report in a business friendly readable document and your predictions in an Excel readable format. The technical report should show clearly the models you tested and how you selected your final approach.

Please submit both Rpubs links and .rmd files or other readable formats for technical and non-technical reports. Also submit the excel file showing the prediction of your models for pH.

Data Structure

## 'data.frame':    2571 obs. of  33 variables:
##  $ Brand.Code       : chr  "B" "A" "B" "A" ...
##  $ Carb.Volume      : num  5.34 5.43 5.29 5.44 5.49 ...
##  $ Fill.Ounces      : num  24 24 24.1 24 24.3 ...
##  $ PC.Volume        : num  0.263 0.239 0.263 0.293 0.111 ...
##  $ Carb.Pressure    : num  68.2 68.4 70.8 63 67.2 66.6 64.2 67.6 64.2 72 ...
##  $ Carb.Temp        : num  141 140 145 133 137 ...
##  $ PSC              : num  0.104 0.124 0.09 NA 0.026 0.09 0.128 0.154 0.132 0.014 ...
##  $ PSC.Fill         : num  0.26 0.22 0.34 0.42 0.16 0.24 0.4 0.34 0.12 0.24 ...
##  $ PSC.CO2          : num  0.04 0.04 0.16 0.04 0.12 0.04 0.04 0.04 0.14 0.06 ...
##  $ Mnf.Flow         : num  -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 ...
##  $ Carb.Pressure1   : num  119 122 120 115 118 ...
##  $ Fill.Pressure    : num  46 46 46 46.4 45.8 45.6 51.8 46.8 46 45.2 ...
##  $ Hyd.Pressure1    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Hyd.Pressure2    : num  NA NA NA 0 0 0 0 0 0 0 ...
##  $ Hyd.Pressure3    : num  NA NA NA 0 0 0 0 0 0 0 ...
##  $ Hyd.Pressure4    : int  118 106 82 92 92 116 124 132 90 108 ...
##  $ Filler.Level     : num  121 119 120 118 119 ...
##  $ Filler.Speed     : int  4002 3986 4020 4012 4010 4014 NA 1004 4014 4028 ...
##  $ Temperature      : num  66 67.6 67 65.6 65.6 66.2 65.8 65.2 65.4 66.6 ...
##  $ Usage.cont       : num  16.2 19.9 17.8 17.4 17.7 ...
##  $ Carb.Flow        : int  2932 3144 2914 3062 3054 2948 30 684 2902 3038 ...
##  $ Density          : num  0.88 0.92 1.58 1.54 1.54 1.52 0.84 0.84 0.9 0.9 ...
##  $ MFR              : num  725 727 735 731 723 ...
##  $ Balling          : num  1.4 1.5 3.14 3.04 3.04 ...
##  $ Pressure.Vacuum  : num  -4 -4 -3.8 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 ...
##  $ PH               : num  8.36 8.26 8.94 8.24 8.26 8.32 8.4 8.38 8.38 8.5 ...
##  $ Oxygen.Filler    : num  0.022 0.026 0.024 0.03 0.03 0.024 0.066 0.046 0.064 0.022 ...
##  $ Bowl.Setpoint    : int  120 120 120 120 120 120 120 120 120 120 ...
##  $ Pressure.Setpoint: num  46.4 46.8 46.6 46 46 46 46 46 46 46 ...
##  $ Air.Pressurer    : num  143 143 142 146 146 ...
##  $ Alch.Rel         : num  6.58 6.56 7.66 7.14 7.14 7.16 6.54 6.52 6.52 6.54 ...
##  $ Carb.Rel         : num  5.32 5.3 5.84 5.42 5.44 5.44 5.38 5.34 5.34 5.34 ...
##  $ Balling.Lvl      : num  1.48 1.56 3.28 3.04 3.04 3.02 1.44 1.44 1.44 1.38 ...
## 'data.frame':    267 obs. of  33 variables:
##  $ Brand.Code       : chr  "D" "A" "B" "B" ...
##  $ Carb.Volume      : num  5.48 5.39 5.29 5.27 5.41 ...
##  $ Fill.Ounces      : num  24 24 23.9 23.9 24.2 ...
##  $ PC.Volume        : num  0.27 0.227 0.303 0.186 0.16 ...
##  $ Carb.Pressure    : num  65.4 63.2 66.4 64.8 69.4 73.4 65.2 67.4 66.8 72.6 ...
##  $ Carb.Temp        : num  135 135 140 139 142 ...
##  $ PSC              : num  0.236 0.042 0.068 0.004 0.04 0.078 0.088 0.076 0.246 0.146 ...
##  $ PSC.Fill         : num  0.4 0.22 0.1 0.2 0.3 0.22 0.14 0.1 0.48 0.1 ...
##  $ PSC.CO2          : num  0.04 0.08 0.02 0.02 0.06 NA 0 0.04 0.04 0.02 ...
##  $ Mnf.Flow         : num  -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 ...
##  $ Carb.Pressure1   : num  117 119 120 125 115 ...
##  $ Fill.Pressure    : num  46 46.2 45.8 40 51.4 46.4 46.2 40 43.8 40.8 ...
##  $ Hyd.Pressure1    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Hyd.Pressure2    : num  NA 0 0 0 0 0 0 0 0 0 ...
##  $ Hyd.Pressure3    : num  NA 0 0 0 0 0 0 0 0 0 ...
##  $ Hyd.Pressure4    : int  96 112 98 132 94 94 108 108 110 106 ...
##  $ Filler.Level     : num  129 120 119 120 116 ...
##  $ Filler.Speed     : int  3986 4012 4010 NA 4018 4010 4010 NA 4010 1006 ...
##  $ Temperature      : num  66 65.6 65.6 74.4 66.4 66.6 66.8 NA 65.8 66 ...
##  $ Usage.cont       : num  21.7 17.6 24.2 18.1 21.3 ...
##  $ Carb.Flow        : int  2950 2916 3056 28 3214 3064 3042 1972 2502 28 ...
##  $ Density          : num  0.88 1.5 0.9 0.74 0.88 0.84 1.48 1.6 1.52 1.48 ...
##  $ MFR              : num  728 736 735 NA 752 ...
##  $ Balling          : num  1.4 2.94 1.45 1.06 1.4 ...
##  $ Pressure.Vacuum  : num  -3.8 -4.4 -4.2 -4 -4 -3.8 -4.2 -4.4 -4.4 -4.2 ...
##  $ PH               : logi  NA NA NA NA NA NA ...
##  $ Oxygen.Filler    : num  0.022 0.03 0.046 NA 0.082 0.064 0.042 0.096 0.046 0.096 ...
##  $ Bowl.Setpoint    : int  130 120 120 120 120 120 120 120 120 120 ...
##  $ Pressure.Setpoint: num  45.2 46 46 46 50 46 46 46 46 46 ...
##  $ Air.Pressurer    : num  143 147 147 146 146 ...
##  $ Alch.Rel         : num  6.56 7.14 6.52 6.48 6.5 6.5 7.18 7.16 7.14 7.78 ...
##  $ Carb.Rel         : num  5.34 5.58 5.34 5.5 5.38 5.42 5.46 5.42 5.44 5.52 ...
##  $ Balling.Lvl      : num  1.48 3.04 1.46 1.48 1.46 1.44 3.02 3 3.1 3.12 ...
Brand.Code Carb.Volume Fill.Ounces PC.Volume Carb.Pressure Carb.Temp PSC PSC.Fill PSC.CO2 Mnf.Flow Carb.Pressure1 Fill.Pressure Hyd.Pressure1 Hyd.Pressure2 Hyd.Pressure3 Hyd.Pressure4 Filler.Level Filler.Speed Temperature Usage.cont Carb.Flow Density MFR Balling Pressure.Vacuum PH Oxygen.Filler Bowl.Setpoint Pressure.Setpoint Air.Pressurer Alch.Rel Carb.Rel Balling.Lvl
B 5.340000 23.96667 0.2633333 68.2 141.2 0.104 0.26 0.04 -100 118.8 46.0 0 NA NA 118 121.2 4002 66.0 16.18 2932 0.88 725.0 1.398 -4.0 8.36 0.022 120 46.4 142.6 6.58 5.32 1.48
A 5.426667 24.00667 0.2386667 68.4 139.6 0.124 0.22 0.04 -100 121.6 46.0 0 NA NA 106 118.6 3986 67.6 19.90 3144 0.92 726.8 1.498 -4.0 8.26 0.026 120 46.8 143.0 6.56 5.30 1.56
B 5.286667 24.06000 0.2633333 70.8 144.8 0.090 0.34 0.16 -100 120.2 46.0 0 NA NA 82 120.0 4020 67.0 17.76 2914 1.58 735.0 3.142 -3.8 8.94 0.024 120 46.6 142.0 7.66 5.84 3.28
A 5.440000 24.00667 0.2933333 63.0 132.6 NA 0.42 0.04 -100 115.2 46.4 0 0 0 92 117.8 4012 65.6 17.42 3062 1.54 730.6 3.042 -4.4 8.24 0.030 120 46.0 146.2 7.14 5.42 3.04
A 5.486667 24.31333 0.1113333 67.2 136.8 0.026 0.16 0.12 -100 118.4 45.8 0 0 0 92 118.6 4010 65.6 17.68 3054 1.54 722.8 3.042 -4.4 8.26 0.030 120 46.0 146.2 7.14 5.44 3.04
A 5.380000 23.92667 0.2693333 66.6 138.4 0.090 0.24 0.04 -100 119.6 45.6 0 0 0 116 120.2 4014 66.2 23.82 2948 1.52 738.8 2.992 -4.4 8.32 0.024 120 46.0 146.6 7.16 5.44 3.02
A 5.313333 23.88667 0.2680000 64.2 136.8 0.128 0.40 0.04 -100 122.2 51.8 0 0 0 124 123.4 NA 65.8 20.74 30 0.84 NA 1.298 -4.4 8.40 0.066 120 46.0 146.2 6.54 5.38 1.44
B 5.320000 24.17333 0.2206667 67.6 141.4 0.154 0.34 0.04 -100 124.2 46.8 0 0 0 132 118.6 1004 65.2 18.96 684 0.84 NA 1.298 -4.4 8.38 0.046 120 46.0 146.4 6.52 5.34 1.44
##   Brand.Code         Carb.Volume     Fill.Ounces      PC.Volume      
##  Length:2571        Min.   :5.040   Min.   :23.63   Min.   :0.07933  
##  Class :character   1st Qu.:5.293   1st Qu.:23.92   1st Qu.:0.23917  
##  Mode  :character   Median :5.347   Median :23.97   Median :0.27133  
##                     Mean   :5.370   Mean   :23.97   Mean   :0.27712  
##                     3rd Qu.:5.453   3rd Qu.:24.03   3rd Qu.:0.31200  
##                     Max.   :5.700   Max.   :24.32   Max.   :0.47800  
##                     NA's   :10      NA's   :38      NA's   :39       
##  Carb.Pressure     Carb.Temp          PSC             PSC.Fill     
##  Min.   :57.00   Min.   :128.6   Min.   :0.00200   Min.   :0.0000  
##  1st Qu.:65.60   1st Qu.:138.4   1st Qu.:0.04800   1st Qu.:0.1000  
##  Median :68.20   Median :140.8   Median :0.07600   Median :0.1800  
##  Mean   :68.19   Mean   :141.1   Mean   :0.08457   Mean   :0.1954  
##  3rd Qu.:70.60   3rd Qu.:143.8   3rd Qu.:0.11200   3rd Qu.:0.2600  
##  Max.   :79.40   Max.   :154.0   Max.   :0.27000   Max.   :0.6200  
##  NA's   :27      NA's   :26      NA's   :33        NA's   :23      
##     PSC.CO2           Mnf.Flow       Carb.Pressure1  Fill.Pressure  
##  Min.   :0.00000   Min.   :-100.20   Min.   :105.6   Min.   :34.60  
##  1st Qu.:0.02000   1st Qu.:-100.00   1st Qu.:119.0   1st Qu.:46.00  
##  Median :0.04000   Median :  65.20   Median :123.2   Median :46.40  
##  Mean   :0.05641   Mean   :  24.57   Mean   :122.6   Mean   :47.92  
##  3rd Qu.:0.08000   3rd Qu.: 140.80   3rd Qu.:125.4   3rd Qu.:50.00  
##  Max.   :0.24000   Max.   : 229.40   Max.   :140.2   Max.   :60.40  
##  NA's   :39        NA's   :2         NA's   :32      NA's   :22     
##  Hyd.Pressure1   Hyd.Pressure2   Hyd.Pressure3   Hyd.Pressure4   
##  Min.   :-0.80   Min.   : 0.00   Min.   :-1.20   Min.   : 52.00  
##  1st Qu.: 0.00   1st Qu.: 0.00   1st Qu.: 0.00   1st Qu.: 86.00  
##  Median :11.40   Median :28.60   Median :27.60   Median : 96.00  
##  Mean   :12.44   Mean   :20.96   Mean   :20.46   Mean   : 96.29  
##  3rd Qu.:20.20   3rd Qu.:34.60   3rd Qu.:33.40   3rd Qu.:102.00  
##  Max.   :58.00   Max.   :59.40   Max.   :50.00   Max.   :142.00  
##  NA's   :11      NA's   :15      NA's   :15      NA's   :30      
##   Filler.Level    Filler.Speed   Temperature      Usage.cont      Carb.Flow   
##  Min.   : 55.8   Min.   : 998   Min.   :63.60   Min.   :12.08   Min.   :  26  
##  1st Qu.: 98.3   1st Qu.:3888   1st Qu.:65.20   1st Qu.:18.36   1st Qu.:1144  
##  Median :118.4   Median :3982   Median :65.60   Median :21.79   Median :3028  
##  Mean   :109.3   Mean   :3687   Mean   :65.97   Mean   :20.99   Mean   :2468  
##  3rd Qu.:120.0   3rd Qu.:3998   3rd Qu.:66.40   3rd Qu.:23.75   3rd Qu.:3186  
##  Max.   :161.2   Max.   :4030   Max.   :76.20   Max.   :25.90   Max.   :5104  
##  NA's   :20      NA's   :57     NA's   :14      NA's   :5       NA's   :2     
##     Density           MFR           Balling       Pressure.Vacuum 
##  Min.   :0.240   Min.   : 31.4   Min.   :-0.170   Min.   :-6.600  
##  1st Qu.:0.900   1st Qu.:706.3   1st Qu.: 1.496   1st Qu.:-5.600  
##  Median :0.980   Median :724.0   Median : 1.648   Median :-5.400  
##  Mean   :1.174   Mean   :704.0   Mean   : 2.198   Mean   :-5.216  
##  3rd Qu.:1.620   3rd Qu.:731.0   3rd Qu.: 3.292   3rd Qu.:-5.000  
##  Max.   :1.920   Max.   :868.6   Max.   : 4.012   Max.   :-3.600  
##  NA's   :1       NA's   :212     NA's   :1                        
##        PH        Oxygen.Filler     Bowl.Setpoint   Pressure.Setpoint
##  Min.   :7.880   Min.   :0.00240   Min.   : 70.0   Min.   :44.00    
##  1st Qu.:8.440   1st Qu.:0.02200   1st Qu.:100.0   1st Qu.:46.00    
##  Median :8.540   Median :0.03340   Median :120.0   Median :46.00    
##  Mean   :8.546   Mean   :0.04684   Mean   :109.3   Mean   :47.62    
##  3rd Qu.:8.680   3rd Qu.:0.06000   3rd Qu.:120.0   3rd Qu.:50.00    
##  Max.   :9.360   Max.   :0.40000   Max.   :140.0   Max.   :52.00    
##  NA's   :4       NA's   :12        NA's   :2       NA's   :12       
##  Air.Pressurer      Alch.Rel        Carb.Rel      Balling.Lvl  
##  Min.   :140.8   Min.   :5.280   Min.   :4.960   Min.   :0.00  
##  1st Qu.:142.2   1st Qu.:6.540   1st Qu.:5.340   1st Qu.:1.38  
##  Median :142.6   Median :6.560   Median :5.400   Median :1.48  
##  Mean   :142.8   Mean   :6.897   Mean   :5.437   Mean   :2.05  
##  3rd Qu.:143.0   3rd Qu.:7.240   3rd Qu.:5.540   3rd Qu.:3.14  
##  Max.   :148.2   Max.   :8.620   Max.   :6.060   Max.   :3.66  
##                  NA's   :9       NA's   :10      NA's   :1

We observed the dataset has 33 variables and 2571 observations. All the entire data is numerical except the variable Brand.Code and some random missing values. Amount all the manufacturing processes at ABC Beverage, there is response variable (PH) which we will find the predictive model.

Data Preparation

Checking for Missing Values

## The dataset contains missing values for a total record of :  724
## 
## The test dataset contains missing values for a total record of :  366
## 
## The percentage of the overall missing values in the dataframe is:  0.85
## %

The actual dataset has missing values which represents about .85% of the total record. The first variable Brand.code has empty values, we will fill those with NA and evaluate again. Thus, we want to visualize these missing values to see how we can treat them.

## Warning: package 'VIM' was built under R version 4.0.5
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep

## `summarise()` has grouped output by 'variables'. You can override using the `.groups` argument.
variables number.missing
MFR 212
Brand.Code 120
Filler.Speed 57
PC.Volume 39
PSC.CO2 39
Fill.Ounces 38
PSC 33
Carb.Pressure1 32
Hyd.Pressure4 30
Carb.Pressure 27
Carb.Temp 26
PSC.Fill 23
Fill.Pressure 22
Filler.Level 20
Hyd.Pressure2 15
Hyd.Pressure3 15
Temperature 14
Oxygen.Filler 12
Pressure.Setpoint 12
Hyd.Pressure1 11
Carb.Rel 10
Carb.Volume 10
Alch.Rel 9
Usage.cont 5
PH 4
Bowl.Setpoint 2
Carb.Flow 2
Mnf.Flow 2
Balling 1
Balling.Lvl 1
Density 1
## `summarise()` has grouped output by 'variables'. You can override using the `.groups` argument.

After carefully inspected the data, we observed that the variable Brand.Code has 120 missing values. The variable Brand.Code is a categorical datatype and we have no clue how each character is attributed. Therefore, it makes sense to delete these observations as there are no pertinence and would be hard to impute.

The response variable PH only have 4 missing values which represents (4/2571)*100 = 0.156% of the total observations. In addition, variable MFR appears to have the most missing values(212) or 8.24%. Therefore, it is safe to impute these missing values rather deleting them with potential to introduce biasing in the overall report. These missing values are not stack in a row neither in column which add more support toward imputation Vs. deletion. However, We attempt to delete any row where more than 50% of values are missing. This is to detect if the missing variables are at random or in a stack. Before we apply the imputation method, we would like to visualize the distribution of PH and MFR.

Imputation Method

## [1] 2451   33
## `summarise()` has grouped output by 'variables'. You can override using the `.groups` argument.
variables number.missing
MFR 199
Filler.Speed 54
PSC.CO2 37
PC.Volume 35
Fill.Ounces 34
Carb.Pressure1 31
PSC 30
Carb.Pressure 26
Hyd.Pressure4 26
Carb.Temp 23
Fill.Pressure 19
PSC.Fill 19
Filler.Level 18
Hyd.Pressure2 15
Hyd.Pressure3 15
Temperature 13
Hyd.Pressure1 11
Oxygen.Filler 11
Pressure.Setpoint 11
Carb.Volume 10
Alch.Rel 8
Carb.Rel 8
Usage.cont 5
PH 4
Bowl.Setpoint 2
Carb.Flow 2
Mnf.Flow 2
Balling 1
Density 1

Let’s impute and train the dataset.

## We clearly see that there is no row ith more than 50% missing values

Now we have imputed and trained the data, let’s visualize the data distribution and correlation.

## Warning: package 'ggthemes' was built under R version 4.0.5

From data distribution, we see that the the response variable PH and PC.Volume, Carb.Temp, Carb.Pressure, Fill.Ounces, Carb.Temp have a nearly normal distribution. Air.Pressurer, Mnf.Flow, Oxygen.Filler seem to carry out some outliers. But at this time, we don’t have much information about this ABC Beverage production, we cannot make up the reality of each data.

Modeling

Random Forest model is taking forever to output the result. So, we decided to skip it and try other model.

Partial Least Square

plsTune_model <- train(trainX, trainY,

 method = "pls",

 ## The default tuning grid evaluates

 ## components 1... tuneLength

 tuneLength = 20,

 trControl = trainControl(method = 'cv'),

 preProc = c("center", "scale"))

plsTune_model
## Partial Least Squares 
## 
## 1962 samples
##   24 predictor
## 
## Pre-processing: centered (24), scaled (24) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 1765, 1766, 1766, 1767, 1765, 1766, ... 
## Resampling results across tuning parameters:
## 
##   ncomp  RMSE       Rsquared   MAE      
##    1     0.8944526  0.2084566  0.7096512
##    2     0.8500287  0.2848535  0.6674477
##    3     0.8415433  0.2995823  0.6552234
##    4     0.8345556  0.3111808  0.6510362
##    5     0.8316803  0.3162315  0.6471487
##    6     0.8301915  0.3187882  0.6448294
##    7     0.8298546  0.3194020  0.6434899
##    8     0.8299076  0.3193567  0.6436537
##    9     0.8299011  0.3194576  0.6433087
##   10     0.8299954  0.3192963  0.6433714
##   11     0.8299935  0.3192892  0.6434168
##   12     0.8300420  0.3192256  0.6434630
##   13     0.8300951  0.3191415  0.6435261
##   14     0.8301257  0.3190925  0.6435518
##   15     0.8302130  0.3189633  0.6436104
##   16     0.8302699  0.3188697  0.6436422
##   17     0.8302671  0.3188746  0.6436371
##   18     0.8302627  0.3188821  0.6436305
##   19     0.8302645  0.3188790  0.6436318
##   20     0.8302658  0.3188772  0.6436327
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 7.
plot(plsTune_model)

Cubist Model

cubist_model <- train(x = trainX,
                y = trainY,
                method = 'cubist')
cubist_model
## Cubist 
## 
## 1962 samples
##   24 predictor
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 1962, 1962, 1962, 1962, 1962, 1962, ... 
## Resampling results across tuning parameters:
## 
##   committees  neighbors  RMSE       Rsquared   MAE      
##    1          0          0.9606675  0.2997340  0.6579803
##    1          5          0.9524572  0.3284958  0.6523413
##    1          9          0.9490128  0.3250238  0.6490548
##   10          0          0.6987576  0.5229419  0.5053949
##   10          5          0.6837112  0.5463524  0.4944870
##   10          9          0.6842059  0.5442682  0.4952738
##   20          0          0.6701765  0.5604086  0.4858149
##   20          5          0.6542271  0.5809799  0.4739299
##   20          9          0.6550634  0.5794689  0.4752895
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were committees = 20 and neighbors = 5.

Boosted Trees Model

gbmGrid <- expand.grid(.interaction.depth = seq(1, 7, by = 2),
                       .n.trees = seq(100, 1000, by = 50),
                       .shrinkage = c(0.01, 0.1, 0.5),
                       .n.minobsinnode=c(5,10,15))

set.seed(100)

boostedTrees_model <- train(x = trainX,
                y = trainY,
                method = "gbm",
                tuneGrid = gbmGrid,

 ## The gbm() function produces copious amounts

 ## of output, so pass in the verbose option

 ## to avoid printing a lot to the screen.

verbose = FALSE)

boostedTrees_model 
## Stochastic Gradient Boosting 
## 
## 1962 samples
##   24 predictor
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 1962, 1962, 1962, 1962, 1962, 1962, ... 
## Resampling results across tuning parameters:
## 
##   shrinkage  interaction.depth  n.minobsinnode  n.trees  RMSE       Rsquared 
##   0.01       1                   5               100     0.9027671  0.2502947
##   0.01       1                   5               150     0.8815385  0.2756013
##   0.01       1                   5               200     0.8666240  0.2916629
##   0.01       1                   5               250     0.8560026  0.3034460
##   0.01       1                   5               300     0.8479230  0.3119501
##   0.01       1                   5               350     0.8416749  0.3187636
##   0.01       1                   5               400     0.8365414  0.3241339
##   0.01       1                   5               450     0.8322917  0.3287534
##   0.01       1                   5               500     0.8288068  0.3327444
##   0.01       1                   5               550     0.8257497  0.3362609
##   0.01       1                   5               600     0.8231628  0.3392515
##   0.01       1                   5               650     0.8209173  0.3419249
##   0.01       1                   5               700     0.8188495  0.3443666
##   0.01       1                   5               750     0.8170694  0.3464877
##   0.01       1                   5               800     0.8155779  0.3481619
##   0.01       1                   5               850     0.8140004  0.3500223
##   0.01       1                   5               900     0.8126801  0.3516072
##   0.01       1                   5               950     0.8113651  0.3531645
##   0.01       1                   5              1000     0.8102601  0.3545122
##   0.01       1                  10               100     0.9024451  0.2502413
##   0.01       1                  10               150     0.8815489  0.2748070
##   0.01       1                  10               200     0.8664225  0.2915997
##   0.01       1                  10               250     0.8559163  0.3028739
##   0.01       1                  10               300     0.8477081  0.3115384
##   0.01       1                  10               350     0.8412165  0.3187059
##   0.01       1                  10               400     0.8360950  0.3240338
##   0.01       1                  10               450     0.8320385  0.3285838
##   0.01       1                  10               500     0.8282869  0.3329763
##   0.01       1                  10               550     0.8255219  0.3362783
##   0.01       1                  10               600     0.8229146  0.3392254
##   0.01       1                  10               650     0.8206803  0.3416794
##   0.01       1                  10               700     0.8187129  0.3440697
##   0.01       1                  10               750     0.8168601  0.3462422
##   0.01       1                  10               800     0.8151603  0.3483854
##   0.01       1                  10               850     0.8135789  0.3502210
##   0.01       1                  10               900     0.8123004  0.3516902
##   0.01       1                  10               950     0.8110097  0.3533543
##   0.01       1                  10              1000     0.8097855  0.3548235
##   0.01       1                  15               100     0.9024960  0.2514522
##   0.01       1                  15               150     0.8815048  0.2753039
##   0.01       1                  15               200     0.8662897  0.2919083
##   0.01       1                  15               250     0.8553841  0.3034022
##   0.01       1                  15               300     0.8471240  0.3130230
##   0.01       1                  15               350     0.8405611  0.3201025
##   0.01       1                  15               400     0.8354190  0.3256030
##   0.01       1                  15               450     0.8311603  0.3300512
##   0.01       1                  15               500     0.8275274  0.3343211
##   0.01       1                  15               550     0.8244565  0.3376167
##   0.01       1                  15               600     0.8218576  0.3407923
##   0.01       1                  15               650     0.8195754  0.3434856
##   0.01       1                  15               700     0.8175824  0.3457152
##   0.01       1                  15               750     0.8157892  0.3479945
##   0.01       1                  15               800     0.8142122  0.3498783
##   0.01       1                  15               850     0.8127814  0.3516448
##   0.01       1                  15               900     0.8113430  0.3534111
##   0.01       1                  15               950     0.8101490  0.3547820
##   0.01       1                  15              1000     0.8088807  0.3562373
##   0.01       3                   5               100     0.8555142  0.3519710
##   0.01       3                   5               150     0.8262012  0.3716789
##   0.01       3                   5               200     0.8086755  0.3847245
##   0.01       3                   5               250     0.7976414  0.3938499
##   0.01       3                   5               300     0.7898598  0.4008618
##   0.01       3                   5               350     0.7839291  0.4069497
##   0.01       3                   5               400     0.7789721  0.4120751
##   0.01       3                   5               450     0.7747340  0.4167354
##   0.01       3                   5               500     0.7712358  0.4206367
##   0.01       3                   5               550     0.7679987  0.4243096
##   0.01       3                   5               600     0.7652624  0.4274786
##   0.01       3                   5               650     0.7627651  0.4303772
##   0.01       3                   5               700     0.7606055  0.4327767
##   0.01       3                   5               750     0.7585261  0.4353192
##   0.01       3                   5               800     0.7567266  0.4374163
##   0.01       3                   5               850     0.7550021  0.4395014
##   0.01       3                   5               900     0.7532885  0.4415504
##   0.01       3                   5               950     0.7518498  0.4433222
##   0.01       3                   5              1000     0.7505270  0.4449478
##   0.01       3                  10               100     0.8545496  0.3545292
##   0.01       3                  10               150     0.8254726  0.3732090
##   0.01       3                  10               200     0.8077311  0.3859062
##   0.01       3                  10               250     0.7964670  0.3950914
##   0.01       3                  10               300     0.7886586  0.4023268
##   0.01       3                  10               350     0.7827179  0.4082658
##   0.01       3                  10               400     0.7775886  0.4138511
##   0.01       3                  10               450     0.7735223  0.4182805
##   0.01       3                  10               500     0.7699901  0.4223111
##   0.01       3                  10               550     0.7670937  0.4253377
##   0.01       3                  10               600     0.7645356  0.4282445
##   0.01       3                  10               650     0.7619647  0.4312929
##   0.01       3                  10               700     0.7596374  0.4340060
##   0.01       3                  10               750     0.7578581  0.4360215
##   0.01       3                  10               800     0.7561868  0.4378967
##   0.01       3                  10               850     0.7547150  0.4395191
##   0.01       3                  10               900     0.7533277  0.4410516
##   0.01       3                  10               950     0.7519528  0.4427347
##   0.01       3                  10              1000     0.7507514  0.4441559
##   0.01       3                  15               100     0.8544778  0.3549477
##   0.01       3                  15               150     0.8245308  0.3744610
##   0.01       3                  15               200     0.8066716  0.3872027
##   0.01       3                  15               250     0.7955440  0.3964313
##   0.01       3                  15               300     0.7875589  0.4038156
##   0.01       3                  15               350     0.7812853  0.4102765
##   0.01       3                  15               400     0.7765724  0.4151654
##   0.01       3                  15               450     0.7724145  0.4198120
##   0.01       3                  15               500     0.7690770  0.4232892
##   0.01       3                  15               550     0.7660649  0.4266313
##   0.01       3                  15               600     0.7635632  0.4294646
##   0.01       3                  15               650     0.7612590  0.4319540
##   0.01       3                  15               700     0.7593158  0.4340742
##   0.01       3                  15               750     0.7575283  0.4360555
##   0.01       3                  15               800     0.7558236  0.4380592
##   0.01       3                  15               850     0.7543579  0.4398040
##   0.01       3                  15               900     0.7529737  0.4413530
##   0.01       3                  15               950     0.7518567  0.4425805
##   0.01       3                  15              1000     0.7507306  0.4438734
##   0.01       5                   5               100     0.8358282  0.3912097
##   0.01       5                   5               150     0.8043342  0.4078942
##   0.01       5                   5               200     0.7858836  0.4196588
##   0.01       5                   5               250     0.7737868  0.4293560
##   0.01       5                   5               300     0.7656006  0.4365528
##   0.01       5                   5               350     0.7591330  0.4428930
##   0.01       5                   5               400     0.7541990  0.4476640
##   0.01       5                   5               450     0.7500267  0.4521338
##   0.01       5                   5               500     0.7463090  0.4561466
##   0.01       5                   5               550     0.7432599  0.4595804
##   0.01       5                   5               600     0.7405068  0.4627111
##   0.01       5                   5               650     0.7381097  0.4653630
##   0.01       5                   5               700     0.7359694  0.4678506
##   0.01       5                   5               750     0.7338192  0.4704391
##   0.01       5                   5               800     0.7320142  0.4725385
##   0.01       5                   5               850     0.7303108  0.4745682
##   0.01       5                   5               900     0.7288214  0.4762678
##   0.01       5                   5               950     0.7273795  0.4780001
##   0.01       5                   5              1000     0.7260450  0.4795973
##   0.01       5                  10               100     0.8355243  0.3912746
##   0.01       5                  10               150     0.8036535  0.4083769
##   0.01       5                  10               200     0.7846877  0.4208908
##   0.01       5                  10               250     0.7728169  0.4299885
##   0.01       5                  10               300     0.7645951  0.4375976
##   0.01       5                  10               350     0.7581178  0.4438740
##   0.01       5                  10               400     0.7532771  0.4485964
##   0.01       5                  10               450     0.7494803  0.4523875
##   0.01       5                  10               500     0.7460237  0.4560315
##   0.01       5                  10               550     0.7430784  0.4592822
##   0.01       5                  10               600     0.7406058  0.4619384
##   0.01       5                  10               650     0.7382983  0.4645207
##   0.01       5                  10               700     0.7362674  0.4668649
##   0.01       5                  10               750     0.7344093  0.4689140
##   0.01       5                  10               800     0.7326811  0.4709881
##   0.01       5                  10               850     0.7312508  0.4725762
##   0.01       5                  10               900     0.7298714  0.4742309
##   0.01       5                  10               950     0.7286537  0.4756507
##   0.01       5                  10              1000     0.7275466  0.4769854
##   0.01       5                  15               100     0.8349695  0.3927294
##   0.01       5                  15               150     0.8027217  0.4095341
##   0.01       5                  15               200     0.7842334  0.4213725
##   0.01       5                  15               250     0.7723330  0.4308354
##   0.01       5                  15               300     0.7640408  0.4382072
##   0.01       5                  15               350     0.7576391  0.4442793
##   0.01       5                  15               400     0.7528115  0.4489488
##   0.01       5                  15               450     0.7487833  0.4531094
##   0.01       5                  15               500     0.7454506  0.4565508
##   0.01       5                  15               550     0.7426294  0.4595644
##   0.01       5                  15               600     0.7403451  0.4620977
##   0.01       5                  15               650     0.7384301  0.4640509
##   0.01       5                  15               700     0.7365012  0.4661844
##   0.01       5                  15               750     0.7346917  0.4682866
##   0.01       5                  15               800     0.7329535  0.4703334
##   0.01       5                  15               850     0.7315192  0.4719599
##   0.01       5                  15               900     0.7302569  0.4733923
##   0.01       5                  15               950     0.7289481  0.4749821
##   0.01       5                  15              1000     0.7279076  0.4761958
##   0.01       7                   5               100     0.8238805  0.4150075
##   0.01       7                   5               150     0.7905616  0.4308842
##   0.01       7                   5               200     0.7706340  0.4434165
##   0.01       7                   5               250     0.7580872  0.4527427
##   0.01       7                   5               300     0.7494473  0.4601728
##   0.01       7                   5               350     0.7429788  0.4661906
##   0.01       7                   5               400     0.7376600  0.4715507
##   0.01       7                   5               450     0.7334188  0.4758186
##   0.01       7                   5               500     0.7298358  0.4795314
##   0.01       7                   5               550     0.7267613  0.4828920
##   0.01       7                   5               600     0.7240402  0.4859766
##   0.01       7                   5               650     0.7215861  0.4887380
##   0.01       7                   5               700     0.7194663  0.4910795
##   0.01       7                   5               750     0.7177064  0.4930762
##   0.01       7                   5               800     0.7160316  0.4949800
##   0.01       7                   5               850     0.7145732  0.4966015
##   0.01       7                   5               900     0.7131405  0.4982568
##   0.01       7                   5               950     0.7119393  0.4996425
##   0.01       7                   5              1000     0.7107692  0.5010478
##   0.01       7                  10               100     0.8227179  0.4157569
##   0.01       7                  10               150     0.7891811  0.4320987
##   0.01       7                  10               200     0.7694886  0.4444190
##   0.01       7                  10               250     0.7570935  0.4534086
##   0.01       7                  10               300     0.7483162  0.4612163
##   0.01       7                  10               350     0.7416065  0.4675517
##   0.01       7                  10               400     0.7368393  0.4720784
##   0.01       7                  10               450     0.7324423  0.4766580
##   0.01       7                  10               500     0.7288858  0.4803558
##   0.01       7                  10               550     0.7261132  0.4832123
##   0.01       7                  10               600     0.7236701  0.4858341
##   0.01       7                  10               650     0.7215393  0.4881196
##   0.01       7                  10               700     0.7195608  0.4903521
##   0.01       7                  10               750     0.7176336  0.4925868
##   0.01       7                  10               800     0.7160881  0.4943331
##   0.01       7                  10               850     0.7145952  0.4960522
##   0.01       7                  10               900     0.7132756  0.4976391
##   0.01       7                  10               950     0.7122504  0.4987965
##   0.01       7                  10              1000     0.7112355  0.4999683
##   0.01       7                  15               100     0.8224930  0.4161225
##   0.01       7                  15               150     0.7887043  0.4325848
##   0.01       7                  15               200     0.7687527  0.4450733
##   0.01       7                  15               250     0.7562679  0.4542501
##   0.01       7                  15               300     0.7474978  0.4618884
##   0.01       7                  15               350     0.7408831  0.4682301
##   0.01       7                  15               400     0.7357730  0.4732812
##   0.01       7                  15               450     0.7320648  0.4767104
##   0.01       7                  15               500     0.7286523  0.4802026
##   0.01       7                  15               550     0.7258382  0.4831476
##   0.01       7                  15               600     0.7235908  0.4853986
##   0.01       7                  15               650     0.7212496  0.4880174
##   0.01       7                  15               700     0.7195224  0.4898705
##   0.01       7                  15               750     0.7180864  0.4914259
##   0.01       7                  15               800     0.7167232  0.4929726
##   0.01       7                  15               850     0.7154455  0.4944563
##   0.01       7                  15               900     0.7141713  0.4959910
##   0.01       7                  15               950     0.7132654  0.4969828
##   0.01       7                  15              1000     0.7123372  0.4980368
##   0.10       1                   5               100     0.8112588  0.3515058
##   0.10       1                   5               150     0.8040465  0.3602463
##   0.10       1                   5               200     0.7993697  0.3663881
##   0.10       1                   5               250     0.7980254  0.3678428
##   0.10       1                   5               300     0.7971964  0.3692517
##   0.10       1                   5               350     0.7963904  0.3706122
##   0.10       1                   5               400     0.7965299  0.3706981
##   0.10       1                   5               450     0.7959076  0.3717838
##   0.10       1                   5               500     0.7971226  0.3706399
##   0.10       1                   5               550     0.7978471  0.3698693
##   0.10       1                   5               600     0.7981815  0.3701316
##   0.10       1                   5               650     0.7983727  0.3699341
##   0.10       1                   5               700     0.7987420  0.3699112
##   0.10       1                   5               750     0.7992481  0.3697536
##   0.10       1                   5               800     0.7998780  0.3691365
##   0.10       1                   5               850     0.8007361  0.3681273
##   0.10       1                   5               900     0.8018715  0.3671511
##   0.10       1                   5               950     0.8026531  0.3664625
##   0.10       1                   5              1000     0.8032905  0.3657363
##   0.10       1                  10               100     0.8107716  0.3525870
##   0.10       1                  10               150     0.8035668  0.3608138
##   0.10       1                  10               200     0.8006496  0.3642544
##   0.10       1                  10               250     0.7990834  0.3662778
##   0.10       1                  10               300     0.7975165  0.3686819
##   0.10       1                  10               350     0.7971470  0.3695231
##   0.10       1                  10               400     0.7974609  0.3692953
##   0.10       1                  10               450     0.7976625  0.3696692
##   0.10       1                  10               500     0.7977919  0.3696538
##   0.10       1                  10               550     0.7977366  0.3701725
##   0.10       1                  10               600     0.7984458  0.3695995
##   0.10       1                  10               650     0.7986790  0.3694401
##   0.10       1                  10               700     0.7998073  0.3684138
##   0.10       1                  10               750     0.8007689  0.3675597
##   0.10       1                  10               800     0.8009586  0.3677854
##   0.10       1                  10               850     0.8020075  0.3667478
##   0.10       1                  10               900     0.8023987  0.3663600
##   0.10       1                  10               950     0.8031337  0.3657337
##   0.10       1                  10              1000     0.8036076  0.3656234
##   0.10       1                  15               100     0.8101899  0.3531851
##   0.10       1                  15               150     0.8016768  0.3639267
##   0.10       1                  15               200     0.7985774  0.3674681
##   0.10       1                  15               250     0.7964984  0.3702395
##   0.10       1                  15               300     0.7960392  0.3709973
##   0.10       1                  15               350     0.7957270  0.3716878
##   0.10       1                  15               400     0.7957921  0.3719468
##   0.10       1                  15               450     0.7963083  0.3714386
##   0.10       1                  15               500     0.7966666  0.3713756
##   0.10       1                  15               550     0.7969764  0.3713142
##   0.10       1                  15               600     0.7975056  0.3711609
##   0.10       1                  15               650     0.7982081  0.3705943
##   0.10       1                  15               700     0.7984827  0.3703562
##   0.10       1                  15               750     0.7988578  0.3704084
##   0.10       1                  15               800     0.7994539  0.3700207
##   0.10       1                  15               850     0.7996774  0.3700637
##   0.10       1                  15               900     0.8008559  0.3685960
##   0.10       1                  15               950     0.8010875  0.3686577
##   0.10       1                  15              1000     0.8022279  0.3675526
##   0.10       3                   5               100     0.7555901  0.4354095
##   0.10       3                   5               150     0.7481190  0.4444274
##   0.10       3                   5               200     0.7445625  0.4491732
##   0.10       3                   5               250     0.7410394  0.4543711
##   0.10       3                   5               300     0.7394350  0.4569992
##   0.10       3                   5               350     0.7377529  0.4597695
##   0.10       3                   5               400     0.7364678  0.4621092
##   0.10       3                   5               450     0.7349594  0.4645127
##   0.10       3                   5               500     0.7338912  0.4664436
##   0.10       3                   5               550     0.7333741  0.4675530
##   0.10       3                   5               600     0.7328053  0.4685641
##   0.10       3                   5               650     0.7329162  0.4688659
##   0.10       3                   5               700     0.7328768  0.4692122
##   0.10       3                   5               750     0.7332230  0.4690354
##   0.10       3                   5               800     0.7333792  0.4692508
##   0.10       3                   5               850     0.7332650  0.4697718
##   0.10       3                   5               900     0.7330931  0.4702930
##   0.10       3                   5               950     0.7332424  0.4702686
##   0.10       3                   5              1000     0.7329998  0.4709350
##   0.10       3                  10               100     0.7568676  0.4328851
##   0.10       3                  10               150     0.7500663  0.4416002
##   0.10       3                  10               200     0.7467577  0.4461213
##   0.10       3                  10               250     0.7434131  0.4511608
##   0.10       3                  10               300     0.7413177  0.4544264
##   0.10       3                  10               350     0.7401238  0.4565153
##   0.10       3                  10               400     0.7383416  0.4595258
##   0.10       3                  10               450     0.7378177  0.4606103
##   0.10       3                  10               500     0.7376372  0.4612353
##   0.10       3                  10               550     0.7373065  0.4620408
##   0.10       3                  10               600     0.7376378  0.4620826
##   0.10       3                  10               650     0.7378998  0.4621307
##   0.10       3                  10               700     0.7379989  0.4623657
##   0.10       3                  10               750     0.7376856  0.4631547
##   0.10       3                  10               800     0.7378352  0.4632925
##   0.10       3                  10               850     0.7378711  0.4635913
##   0.10       3                  10               900     0.7381368  0.4634891
##   0.10       3                  10               950     0.7379457  0.4640441
##   0.10       3                  10              1000     0.7382079  0.4640268
##   0.10       3                  15               100     0.7557882  0.4345089
##   0.10       3                  15               150     0.7495388  0.4422570
##   0.10       3                  15               200     0.7452435  0.4483760
##   0.10       3                  15               250     0.7430042  0.4517632
##   0.10       3                  15               300     0.7412229  0.4544964
##   0.10       3                  15               350     0.7396444  0.4570332
##   0.10       3                  15               400     0.7397018  0.4574871
##   0.10       3                  15               450     0.7394826  0.4580923
##   0.10       3                  15               500     0.7391679  0.4590423
##   0.10       3                  15               550     0.7390278  0.4597181
##   0.10       3                  15               600     0.7390187  0.4600707
##   0.10       3                  15               650     0.7390962  0.4603995
##   0.10       3                  15               700     0.7386837  0.4612917
##   0.10       3                  15               750     0.7391790  0.4610697
##   0.10       3                  15               800     0.7389922  0.4616885
##   0.10       3                  15               850     0.7392808  0.4616941
##   0.10       3                  15               900     0.7392533  0.4620530
##   0.10       3                  15               950     0.7392122  0.4624829
##   0.10       3                  15              1000     0.7394658  0.4624996
##   0.10       5                   5               100     0.7362709  0.4626804
##   0.10       5                   5               150     0.7301807  0.4705809
##   0.10       5                   5               200     0.7266291  0.4756483
##   0.10       5                   5               250     0.7246079  0.4788072
##   0.10       5                   5               300     0.7237179  0.4804787
##   0.10       5                   5               350     0.7229059  0.4820340
##   0.10       5                   5               400     0.7229003  0.4824524
##   0.10       5                   5               450     0.7223303  0.4835508
##   0.10       5                   5               500     0.7218949  0.4845304
##   0.10       5                   5               550     0.7211347  0.4858849
##   0.10       5                   5               600     0.7213289  0.4858986
##   0.10       5                   5               650     0.7214198  0.4861209
##   0.10       5                   5               700     0.7208408  0.4869973
##   0.10       5                   5               750     0.7207277  0.4874372
##   0.10       5                   5               800     0.7208796  0.4874461
##   0.10       5                   5               850     0.7205821  0.4879508
##   0.10       5                   5               900     0.7204459  0.4883385
##   0.10       5                   5               950     0.7206220  0.4883006
##   0.10       5                   5              1000     0.7205012  0.4886044
##   0.10       5                  10               100     0.7356597  0.4633844
##   0.10       5                  10               150     0.7291443  0.4720249
##   0.10       5                  10               200     0.7271574  0.4750940
##   0.10       5                  10               250     0.7260502  0.4768252
##   0.10       5                  10               300     0.7246916  0.4790878
##   0.10       5                  10               350     0.7240519  0.4805588
##   0.10       5                  10               400     0.7235385  0.4816196
##   0.10       5                  10               450     0.7227065  0.4830327
##   0.10       5                  10               500     0.7224803  0.4838434
##   0.10       5                  10               550     0.7224667  0.4842086
##   0.10       5                  10               600     0.7221528  0.4848872
##   0.10       5                  10               650     0.7219081  0.4855292
##   0.10       5                  10               700     0.7217965  0.4858717
##   0.10       5                  10               750     0.7219567  0.4859240
##   0.10       5                  10               800     0.7220143  0.4860561
##   0.10       5                  10               850     0.7223475  0.4858827
##   0.10       5                  10               900     0.7224687  0.4858673
##   0.10       5                  10               950     0.7224909  0.4860810
##   0.10       5                  10              1000     0.7226302  0.4860551
##   0.10       5                  15               100     0.7350345  0.4643460
##   0.10       5                  15               150     0.7295487  0.4714437
##   0.10       5                  15               200     0.7270981  0.4751918
##   0.10       5                  15               250     0.7251423  0.4782838
##   0.10       5                  15               300     0.7237194  0.4805407
##   0.10       5                  15               350     0.7229083  0.4821578
##   0.10       5                  15               400     0.7227463  0.4828301
##   0.10       5                  15               450     0.7226331  0.4833655
##   0.10       5                  15               500     0.7225154  0.4840332
##   0.10       5                  15               550     0.7225639  0.4842236
##   0.10       5                  15               600     0.7220245  0.4854115
##   0.10       5                  15               650     0.7225033  0.4850714
##   0.10       5                  15               700     0.7226956  0.4851669
##   0.10       5                  15               750     0.7231415  0.4848797
##   0.10       5                  15               800     0.7229614  0.4853294
##   0.10       5                  15               850     0.7231293  0.4854095
##   0.10       5                  15               900     0.7234255  0.4852351
##   0.10       5                  15               950     0.7238738  0.4848497
##   0.10       5                  15              1000     0.7241675  0.4846651
##   0.10       7                   5               100     0.7223310  0.4823206
##   0.10       7                   5               150     0.7171421  0.4892966
##   0.10       7                   5               200     0.7143861  0.4932923
##   0.10       7                   5               250     0.7122205  0.4966068
##   0.10       7                   5               300     0.7114626  0.4979458
##   0.10       7                   5               350     0.7102122  0.4999633
##   0.10       7                   5               400     0.7094835  0.5013095
##   0.10       7                   5               450     0.7089838  0.5022806
##   0.10       7                   5               500     0.7085873  0.5030294
##   0.10       7                   5               550     0.7082374  0.5037410
##   0.10       7                   5               600     0.7084055  0.5037271
##   0.10       7                   5               650     0.7085002  0.5037275
##   0.10       7                   5               700     0.7085411  0.5038271
##   0.10       7                   5               750     0.7084580  0.5040296
##   0.10       7                   5               800     0.7087398  0.5038580
##   0.10       7                   5               850     0.7086284  0.5040770
##   0.10       7                   5               900     0.7087874  0.5039586
##   0.10       7                   5               950     0.7087830  0.5040781
##   0.10       7                   5              1000     0.7088418  0.5040429
##   0.10       7                  10               100     0.7246512  0.4788129
##   0.10       7                  10               150     0.7195343  0.4858621
##   0.10       7                  10               200     0.7173694  0.4891368
##   0.10       7                  10               250     0.7162628  0.4911886
##   0.10       7                  10               300     0.7151130  0.4931989
##   0.10       7                  10               350     0.7146553  0.4942004
##   0.10       7                  10               400     0.7144476  0.4947133
##   0.10       7                  10               450     0.7141286  0.4954680
##   0.10       7                  10               500     0.7140670  0.4958560
##   0.10       7                  10               550     0.7146888  0.4953029
##   0.10       7                  10               600     0.7147805  0.4954205
##   0.10       7                  10               650     0.7145153  0.4959674
##   0.10       7                  10               700     0.7147572  0.4958428
##   0.10       7                  10               750     0.7146624  0.4961339
##   0.10       7                  10               800     0.7148909  0.4959649
##   0.10       7                  10               850     0.7150541  0.4959153
##   0.10       7                  10               900     0.7152709  0.4957213
##   0.10       7                  10               950     0.7154659  0.4955612
##   0.10       7                  10              1000     0.7155349  0.4955282
##   0.10       7                  15               100     0.7225575  0.4818629
##   0.10       7                  15               150     0.7194175  0.4860821
##   0.10       7                  15               200     0.7170371  0.4897166
##   0.10       7                  15               250     0.7157168  0.4919205
##   0.10       7                  15               300     0.7153167  0.4929559
##   0.10       7                  15               350     0.7146005  0.4943051
##   0.10       7                  15               400     0.7146521  0.4946860
##   0.10       7                  15               450     0.7150489  0.4945677
##   0.10       7                  15               500     0.7149200  0.4950250
##   0.10       7                  15               550     0.7146899  0.4956165
##   0.10       7                  15               600     0.7149702  0.4954393
##   0.10       7                  15               650     0.7148640  0.4958558
##   0.10       7                  15               700     0.7152209  0.4955583
##   0.10       7                  15               750     0.7153228  0.4956232
##   0.10       7                  15               800     0.7152933  0.4957815
##   0.10       7                  15               850     0.7153998  0.4958196
##   0.10       7                  15               900     0.7154947  0.4958181
##   0.10       7                  15               950     0.7153523  0.4961430
##   0.10       7                  15              1000     0.7154829  0.4961029
##   0.50       1                   5               100     0.8176303  0.3449692
##   0.50       1                   5               150     0.8222078  0.3425312
##   0.50       1                   5               200     0.8278153  0.3392491
##   0.50       1                   5               250     0.8320259  0.3356701
##   0.50       1                   5               300     0.8358577  0.3326873
##   0.50       1                   5               350     0.8365760  0.3342871
##   0.50       1                   5               400     0.8391532  0.3341995
##   0.50       1                   5               450     0.8417877  0.3320557
##   0.50       1                   5               500     0.8457234  0.3296505
##   0.50       1                   5               550     0.8481537  0.3286733
##   0.50       1                   5               600     0.8501551  0.3268854
##   0.50       1                   5               650     0.8525556  0.3257078
##   0.50       1                   5               700     0.8559217  0.3227333
##   0.50       1                   5               750     0.8572627  0.3226848
##   0.50       1                   5               800     0.8608790  0.3200202
##   0.50       1                   5               850     0.8637417  0.3177198
##   0.50       1                   5               900     0.8681353  0.3146784
##   0.50       1                   5               950     0.8694706  0.3139158
##   0.50       1                   5              1000     0.8741808  0.3107950
##   0.50       1                  10               100     0.8202601  0.3407824
##   0.50       1                  10               150     0.8227222  0.3409693
##   0.50       1                  10               200     0.8250012  0.3422395
##   0.50       1                  10               250     0.8295444  0.3390052
##   0.50       1                  10               300     0.8331593  0.3355927
##   0.50       1                  10               350     0.8362265  0.3345444
##   0.50       1                  10               400     0.8407577  0.3318576
##   0.50       1                  10               450     0.8424562  0.3310506
##   0.50       1                  10               500     0.8439409  0.3306252
##   0.50       1                  10               550     0.8475220  0.3278512
##   0.50       1                  10               600     0.8518319  0.3237616
##   0.50       1                  10               650     0.8525352  0.3239662
##   0.50       1                  10               700     0.8542273  0.3234852
##   0.50       1                  10               750     0.8576183  0.3209173
##   0.50       1                  10               800     0.8600713  0.3195905
##   0.50       1                  10               850     0.8608784  0.3199532
##   0.50       1                  10               900     0.8637259  0.3171740
##   0.50       1                  10               950     0.8667616  0.3151186
##   0.50       1                  10              1000     0.8673087  0.3151314
##   0.50       1                  15               100     0.8139831  0.3492622
##   0.50       1                  15               150     0.8189168  0.3460760
##   0.50       1                  15               200     0.8220634  0.3456333
##   0.50       1                  15               250     0.8257388  0.3429013
##   0.50       1                  15               300     0.8282468  0.3414054
##   0.50       1                  15               350     0.8334574  0.3379423
##   0.50       1                  15               400     0.8349513  0.3376702
##   0.50       1                  15               450     0.8384973  0.3349734
##   0.50       1                  15               500     0.8408198  0.3335690
##   0.50       1                  15               550     0.8461108  0.3284268
##   0.50       1                  15               600     0.8490912  0.3266017
##   0.50       1                  15               650     0.8530246  0.3247079
##   0.50       1                  15               700     0.8561877  0.3216749
##   0.50       1                  15               750     0.8584988  0.3202490
##   0.50       1                  15               800     0.8592671  0.3207756
##   0.50       1                  15               850     0.8610934  0.3195935
##   0.50       1                  15               900     0.8638287  0.3168791
##   0.50       1                  15               950     0.8657812  0.3167908
##   0.50       1                  15              1000     0.8676599  0.3149820
##   0.50       3                   5               100     0.8169701  0.3748757
##   0.50       3                   5               150     0.8278618  0.3713804
##   0.50       3                   5               200     0.8350191  0.3683560
##   0.50       3                   5               250     0.8399383  0.3664533
##   0.50       3                   5               300     0.8454946  0.3643383
##   0.50       3                   5               350     0.8494067  0.3628236
##   0.50       3                   5               400     0.8518094  0.3615678
##   0.50       3                   5               450     0.8534660  0.3610482
##   0.50       3                   5               500     0.8564701  0.3594146
##   0.50       3                   5               550     0.8578068  0.3589602
##   0.50       3                   5               600     0.8597885  0.3576223
##   0.50       3                   5               650     0.8614178  0.3566090
##   0.50       3                   5               700     0.8620204  0.3566222
##   0.50       3                   5               750     0.8629840  0.3561857
##   0.50       3                   5               800     0.8637936  0.3556904
##   0.50       3                   5               850     0.8637512  0.3561181
##   0.50       3                   5               900     0.8639283  0.3562959
##   0.50       3                   5               950     0.8645526  0.3560619
##   0.50       3                   5              1000     0.8649354  0.3557448
##   0.50       3                  10               100     0.8187213  0.3724422
##   0.50       3                  10               150     0.8267827  0.3712176
##   0.50       3                  10               200     0.8351275  0.3676575
##   0.50       3                  10               250     0.8399528  0.3668985
##   0.50       3                  10               300     0.8439514  0.3661348
##   0.50       3                  10               350     0.8470783  0.3657056
##   0.50       3                  10               400     0.8504964  0.3637031
##   0.50       3                  10               450     0.8538524  0.3617916
##   0.50       3                  10               500     0.8549434  0.3619113
##   0.50       3                  10               550     0.8562977  0.3616281
##   0.50       3                  10               600     0.8579373  0.3610797
##   0.50       3                  10               650     0.8598724  0.3602370
##   0.50       3                  10               700     0.8611792  0.3595756
##   0.50       3                  10               750     0.8624028  0.3591043
##   0.50       3                  10               800     0.8631285  0.3588362
##   0.50       3                  10               850     0.8643816  0.3583345
##   0.50       3                  10               900     0.8646980  0.3583371
##   0.50       3                  10               950     0.8656266  0.3578205
##   0.50       3                  10              1000     0.8660916  0.3577421
##   0.50       3                  15               100     0.8089695  0.3824340
##   0.50       3                  15               150     0.8190651  0.3786007
##   0.50       3                  15               200     0.8265648  0.3752293
##   0.50       3                  15               250     0.8336033  0.3714889
##   0.50       3                  15               300     0.8374661  0.3705100
##   0.50       3                  15               350     0.8426723  0.3672375
##   0.50       3                  15               400     0.8474531  0.3645703
##   0.50       3                  15               450     0.8500113  0.3632378
##   0.50       3                  15               500     0.8512297  0.3633056
##   0.50       3                  15               550     0.8534907  0.3624648
##   0.50       3                  15               600     0.8548682  0.3620510
##   0.50       3                  15               650     0.8558115  0.3617024
##   0.50       3                  15               700     0.8571146  0.3611267
##   0.50       3                  15               750     0.8584259  0.3601942
##   0.50       3                  15               800     0.8586041  0.3607017
##   0.50       3                  15               850     0.8591575  0.3608395
##   0.50       3                  15               900     0.8598483  0.3605310
##   0.50       3                  15               950     0.8602077  0.3605484
##   0.50       3                  15              1000     0.8608371  0.3601079
##   0.50       5                   5               100     0.8349982  0.3668906
##   0.50       5                   5               150     0.8478012  0.3608975
##   0.50       5                   5               200     0.8560201  0.3562409
##   0.50       5                   5               250     0.8596289  0.3547893
##   0.50       5                   5               300     0.8617900  0.3547948
##   0.50       5                   5               350     0.8637241  0.3538381
##   0.50       5                   5               400     0.8655461  0.3527776
##   0.50       5                   5               450     0.8660617  0.3528407
##   0.50       5                   5               500     0.8666410  0.3526851
##   0.50       5                   5               550     0.8669885  0.3524389
##   0.50       5                   5               600     0.8674799  0.3521839
##   0.50       5                   5               650     0.8679594  0.3519046
##   0.50       5                   5               700     0.8681891  0.3517779
##   0.50       5                   5               750     0.8682349  0.3517125
##   0.50       5                   5               800     0.8683843  0.3516454
##   0.50       5                   5               850     0.8685350  0.3515714
##   0.50       5                   5               900     0.8685447  0.3515694
##   0.50       5                   5               950     0.8686538  0.3515171
##   0.50       5                   5              1000     0.8687706  0.3514333
##   0.50       5                  10               100     0.8256026  0.3800482
##   0.50       5                  10               150     0.8352510  0.3756216
##   0.50       5                  10               200     0.8424767  0.3715713
##   0.50       5                  10               250     0.8477803  0.3692073
##   0.50       5                  10               300     0.8506780  0.3675026
##   0.50       5                  10               350     0.8522349  0.3671004
##   0.50       5                  10               400     0.8536781  0.3669274
##   0.50       5                  10               450     0.8554897  0.3655368
##   0.50       5                  10               500     0.8565912  0.3649105
##   0.50       5                  10               550     0.8571724  0.3648001
##   0.50       5                  10               600     0.8574771  0.3646807
##   0.50       5                  10               650     0.8576623  0.3646440
##   0.50       5                  10               700     0.8579649  0.3644880
##   0.50       5                  10               750     0.8581629  0.3644009
##   0.50       5                  10               800     0.8583310  0.3642678
##   0.50       5                  10               850     0.8583358  0.3642694
##   0.50       5                  10               900     0.8584524  0.3642302
##   0.50       5                  10               950     0.8585401  0.3641953
##   0.50       5                  10              1000     0.8586252  0.3641468
##   0.50       5                  15               100     0.8274457  0.3734340
##   0.50       5                  15               150     0.8364601  0.3699155
##   0.50       5                  15               200     0.8421899  0.3682294
##   0.50       5                  15               250     0.8462806  0.3673979
##   0.50       5                  15               300     0.8481417  0.3674281
##   0.50       5                  15               350     0.8496919  0.3667489
##   0.50       5                  15               400     0.8505659  0.3669917
##   0.50       5                  15               450     0.8526049  0.3653987
##   0.50       5                  15               500     0.8535959  0.3647882
##   0.50       5                  15               550     0.8540640  0.3646834
##   0.50       5                  15               600     0.8546776  0.3644946
##   0.50       5                  15               650     0.8548379  0.3645667
##   0.50       5                  15               700     0.8552026  0.3645260
##   0.50       5                  15               750     0.8556478  0.3641796
##   0.50       5                  15               800     0.8558384  0.3641310
##   0.50       5                  15               850     0.8559835  0.3640481
##   0.50       5                  15               900     0.8560631  0.3640370
##   0.50       5                  15               950     0.8560661  0.3640669
##   0.50       5                  15              1000     0.8560888  0.3640574
##   0.50       7                   5               100     0.8376036  0.3740224
##   0.50       7                   5               150     0.8465795  0.3703086
##   0.50       7                   5               200     0.8515756  0.3682676
##   0.50       7                   5               250     0.8550854  0.3661843
##   0.50       7                   5               300     0.8559963  0.3663080
##   0.50       7                   5               350     0.8563145  0.3664926
##   0.50       7                   5               400     0.8569158  0.3662261
##   0.50       7                   5               450     0.8571897  0.3659800
##   0.50       7                   5               500     0.8573873  0.3658053
##   0.50       7                   5               550     0.8575390  0.3657033
##   0.50       7                   5               600     0.8575539  0.3657905
##   0.50       7                   5               650     0.8575791  0.3657542
##   0.50       7                   5               700     0.8575980  0.3657712
##   0.50       7                   5               750     0.8575755  0.3658003
##   0.50       7                   5               800     0.8575808  0.3658096
##   0.50       7                   5               850     0.8575746  0.3658195
##   0.50       7                   5               900     0.8575685  0.3658314
##   0.50       7                   5               950     0.8575836  0.3658215
##   0.50       7                   5              1000     0.8575877  0.3658207
##   0.50       7                  10               100     0.8417455  0.3669289
##   0.50       7                  10               150     0.8521711  0.3619691
##   0.50       7                  10               200     0.8585968  0.3579793
##   0.50       7                  10               250     0.8608282  0.3576599
##   0.50       7                  10               300     0.8628400  0.3561518
##   0.50       7                  10               350     0.8642935  0.3552700
##   0.50       7                  10               400     0.8647922  0.3550053
##   0.50       7                  10               450     0.8650306  0.3548433
##   0.50       7                  10               500     0.8652901  0.3546592
##   0.50       7                  10               550     0.8653929  0.3546340
##   0.50       7                  10               600     0.8655495  0.3545234
##   0.50       7                  10               650     0.8656847  0.3544076
##   0.50       7                  10               700     0.8657230  0.3543912
##   0.50       7                  10               750     0.8657555  0.3543703
##   0.50       7                  10               800     0.8657963  0.3543324
##   0.50       7                  10               850     0.8658359  0.3543079
##   0.50       7                  10               900     0.8658523  0.3543001
##   0.50       7                  10               950     0.8658614  0.3542994
##   0.50       7                  10              1000     0.8658736  0.3542849
##   0.50       7                  15               100     0.8339788  0.3756222
##   0.50       7                  15               150     0.8431838  0.3713549
##   0.50       7                  15               200     0.8468878  0.3701715
##   0.50       7                  15               250     0.8489773  0.3692509
##   0.50       7                  15               300     0.8503006  0.3690962
##   0.50       7                  15               350     0.8512013  0.3686063
##   0.50       7                  15               400     0.8515248  0.3686450
##   0.50       7                  15               450     0.8517966  0.3686039
##   0.50       7                  15               500     0.8519906  0.3687330
##   0.50       7                  15               550     0.8524276  0.3684632
##   0.50       7                  15               600     0.8525433  0.3684123
##   0.50       7                  15               650     0.8526159  0.3684103
##   0.50       7                  15               700     0.8526565  0.3683382
##   0.50       7                  15               750     0.8527200  0.3683108
##   0.50       7                  15               800     0.8527421  0.3683246
##   0.50       7                  15               850     0.8527415  0.3683354
##   0.50       7                  15               900     0.8527484  0.3683415
##   0.50       7                  15               950     0.8527325  0.3683574
##   0.50       7                  15              1000     0.8527385  0.3683571
##   MAE      
##   0.7165315
##   0.6975660
##   0.6841743
##   0.6748375
##   0.6676504
##   0.6622258
##   0.6577789
##   0.6539546
##   0.6508250
##   0.6480024
##   0.6456692
##   0.6436589
##   0.6417023
##   0.6399914
##   0.6384869
##   0.6369867
##   0.6356226
##   0.6342019
##   0.6330082
##   0.7162144
##   0.6975259
##   0.6839439
##   0.6746790
##   0.6673944
##   0.6615995
##   0.6570732
##   0.6534615
##   0.6500632
##   0.6475555
##   0.6451602
##   0.6430084
##   0.6410935
##   0.6393440
##   0.6377073
##   0.6361592
##   0.6348133
##   0.6334423
##   0.6322510
##   0.7163093
##   0.6975345
##   0.6837853
##   0.6741328
##   0.6668582
##   0.6610170
##   0.6564126
##   0.6526000
##   0.6492432
##   0.6464573
##   0.6439760
##   0.6417217
##   0.6398843
##   0.6381200
##   0.6364977
##   0.6350338
##   0.6336012
##   0.6323754
##   0.6310613
##   0.6765912
##   0.6502049
##   0.6343078
##   0.6239918
##   0.6165461
##   0.6107892
##   0.6059297
##   0.6016977
##   0.5981683
##   0.5948455
##   0.5919841
##   0.5893136
##   0.5870634
##   0.5848444
##   0.5828021
##   0.5809951
##   0.5791753
##   0.5776019
##   0.5762593
##   0.6757975
##   0.6495594
##   0.6334269
##   0.6228452
##   0.6152953
##   0.6094036
##   0.6042428
##   0.6002399
##   0.5967496
##   0.5936952
##   0.5909447
##   0.5882710
##   0.5858524
##   0.5839414
##   0.5820938
##   0.5803227
##   0.5787526
##   0.5772853
##   0.5758558
##   0.6755589
##   0.6483998
##   0.6319978
##   0.6216343
##   0.6138838
##   0.6077817
##   0.6029289
##   0.5986817
##   0.5951581
##   0.5920869
##   0.5894264
##   0.5869088
##   0.5847644
##   0.5827627
##   0.5808148
##   0.5791984
##   0.5775122
##   0.5762349
##   0.5749228
##   0.6593188
##   0.6310622
##   0.6137969
##   0.6021733
##   0.5938218
##   0.5871862
##   0.5821303
##   0.5778698
##   0.5740129
##   0.5707424
##   0.5677350
##   0.5650887
##   0.5627780
##   0.5605689
##   0.5586706
##   0.5567906
##   0.5550834
##   0.5536008
##   0.5521563
##   0.6589417
##   0.6299909
##   0.6123891
##   0.6009217
##   0.5925828
##   0.5859364
##   0.5808750
##   0.5768023
##   0.5732230
##   0.5701653
##   0.5676284
##   0.5651980
##   0.5629880
##   0.5610399
##   0.5590714
##   0.5574073
##   0.5558226
##   0.5544616
##   0.5532506
##   0.6582440
##   0.6290561
##   0.6117039
##   0.5999710
##   0.5915460
##   0.5847539
##   0.5796612
##   0.5753731
##   0.5718351
##   0.5687385
##   0.5662931
##   0.5641819
##   0.5621210
##   0.5602128
##   0.5583694
##   0.5568374
##   0.5554444
##   0.5540086
##   0.5528894
##   0.6489661
##   0.6188574
##   0.5999789
##   0.5874214
##   0.5786461
##   0.5718496
##   0.5664970
##   0.5621937
##   0.5584042
##   0.5552829
##   0.5524121
##   0.5497180
##   0.5474387
##   0.5454842
##   0.5435555
##   0.5418539
##   0.5403112
##   0.5390711
##   0.5377413
##   0.6477449
##   0.6171644
##   0.5984513
##   0.5859862
##   0.5769776
##   0.5701639
##   0.5652227
##   0.5607311
##   0.5570053
##   0.5539996
##   0.5514124
##   0.5490557
##   0.5469568
##   0.5448523
##   0.5431199
##   0.5414919
##   0.5400502
##   0.5389095
##   0.5376930
##   0.6472953
##   0.6162655
##   0.5972711
##   0.5845591
##   0.5756202
##   0.5687095
##   0.5636337
##   0.5596480
##   0.5559817
##   0.5528919
##   0.5503771
##   0.5479375
##   0.5460466
##   0.5444431
##   0.5429910
##   0.5416274
##   0.5401765
##   0.5391730
##   0.5381863
##   0.6334881
##   0.6251932
##   0.6194331
##   0.6168148
##   0.6145443
##   0.6126791
##   0.6117815
##   0.6110570
##   0.6112315
##   0.6117214
##   0.6114012
##   0.6112952
##   0.6111255
##   0.6114282
##   0.6117075
##   0.6118566
##   0.6123983
##   0.6127479
##   0.6129743
##   0.6327411
##   0.6241191
##   0.6195357
##   0.6164880
##   0.6135105
##   0.6122608
##   0.6115027
##   0.6112961
##   0.6112668
##   0.6107208
##   0.6108438
##   0.6109242
##   0.6114232
##   0.6118078
##   0.6116273
##   0.6125162
##   0.6122888
##   0.6129892
##   0.6132705
##   0.6322511
##   0.6222765
##   0.6175423
##   0.6144465
##   0.6127889
##   0.6116735
##   0.6111090
##   0.6108402
##   0.6107647
##   0.6107585
##   0.6106368
##   0.6109038
##   0.6111140
##   0.6111734
##   0.6114638
##   0.6114500
##   0.6120840
##   0.6120759
##   0.6127480
##   0.5803268
##   0.5703849
##   0.5654008
##   0.5615104
##   0.5588305
##   0.5571209
##   0.5553206
##   0.5537180
##   0.5525465
##   0.5519524
##   0.5514127
##   0.5514925
##   0.5511896
##   0.5515028
##   0.5516358
##   0.5514404
##   0.5512182
##   0.5511875
##   0.5508421
##   0.5800310
##   0.5721351
##   0.5665524
##   0.5634161
##   0.5605608
##   0.5593934
##   0.5571463
##   0.5560858
##   0.5557044
##   0.5555012
##   0.5555283
##   0.5554358
##   0.5557282
##   0.5551323
##   0.5550752
##   0.5550495
##   0.5552624
##   0.5551347
##   0.5552139
##   0.5786593
##   0.5707894
##   0.5655867
##   0.5629156
##   0.5608477
##   0.5588636
##   0.5582527
##   0.5581207
##   0.5572684
##   0.5572148
##   0.5570240
##   0.5568113
##   0.5564403
##   0.5566337
##   0.5566143
##   0.5567394
##   0.5568093
##   0.5567271
##   0.5569657
##   0.5606517
##   0.5531296
##   0.5489322
##   0.5463914
##   0.5454999
##   0.5443973
##   0.5437687
##   0.5431236
##   0.5422876
##   0.5415927
##   0.5414275
##   0.5412260
##   0.5406929
##   0.5405397
##   0.5407101
##   0.5403520
##   0.5401070
##   0.5402533
##   0.5401865
##   0.5596808
##   0.5516231
##   0.5487006
##   0.5467639
##   0.5449674
##   0.5435442
##   0.5430781
##   0.5421399
##   0.5423804
##   0.5420202
##   0.5416766
##   0.5414589
##   0.5413813
##   0.5413742
##   0.5415347
##   0.5416864
##   0.5415390
##   0.5415262
##   0.5415651
##   0.5583515
##   0.5517047
##   0.5485361
##   0.5464440
##   0.5453053
##   0.5446155
##   0.5443130
##   0.5441529
##   0.5439032
##   0.5440750
##   0.5433451
##   0.5438579
##   0.5437435
##   0.5440202
##   0.5437675
##   0.5438695
##   0.5440567
##   0.5442538
##   0.5445689
##   0.5470475
##   0.5402487
##   0.5369799
##   0.5343050
##   0.5334068
##   0.5320705
##   0.5311612
##   0.5306730
##   0.5306985
##   0.5303867
##   0.5305935
##   0.5304338
##   0.5303045
##   0.5302368
##   0.5303459
##   0.5301100
##   0.5301676
##   0.5302094
##   0.5302515
##   0.5473985
##   0.5413064
##   0.5388137
##   0.5370478
##   0.5359613
##   0.5353158
##   0.5351351
##   0.5347533
##   0.5347018
##   0.5352318
##   0.5348023
##   0.5346489
##   0.5350058
##   0.5349556
##   0.5351404
##   0.5352827
##   0.5354246
##   0.5354241
##   0.5354123
##   0.5467643
##   0.5420682
##   0.5394987
##   0.5378951
##   0.5371288
##   0.5368251
##   0.5367547
##   0.5367503
##   0.5366427
##   0.5364246
##   0.5367191
##   0.5365577
##   0.5366976
##   0.5367411
##   0.5367078
##   0.5367019
##   0.5367877
##   0.5366288
##   0.5366619
##   0.6260326
##   0.6289692
##   0.6334462
##   0.6360899
##   0.6383825
##   0.6383862
##   0.6407107
##   0.6431510
##   0.6461598
##   0.6479065
##   0.6504941
##   0.6523834
##   0.6552015
##   0.6557152
##   0.6583923
##   0.6613319
##   0.6645882
##   0.6657268
##   0.6696734
##   0.6273135
##   0.6281726
##   0.6297823
##   0.6326301
##   0.6348561
##   0.6371556
##   0.6406945
##   0.6432524
##   0.6451704
##   0.6484172
##   0.6518426
##   0.6528874
##   0.6534926
##   0.6567112
##   0.6597282
##   0.6604048
##   0.6625273
##   0.6653238
##   0.6663581
##   0.6228063
##   0.6260780
##   0.6275443
##   0.6310560
##   0.6325061
##   0.6372159
##   0.6397056
##   0.6422473
##   0.6440801
##   0.6483576
##   0.6509055
##   0.6533993
##   0.6571208
##   0.6586361
##   0.6586387
##   0.6603918
##   0.6634114
##   0.6654443
##   0.6672391
##   0.6202514
##   0.6300776
##   0.6357268
##   0.6409373
##   0.6448536
##   0.6482943
##   0.6499999
##   0.6515684
##   0.6541810
##   0.6553118
##   0.6570807
##   0.6583959
##   0.6590922
##   0.6600639
##   0.6601703
##   0.6602427
##   0.6603036
##   0.6610487
##   0.6612666
##   0.6237798
##   0.6307963
##   0.6389619
##   0.6436699
##   0.6472054
##   0.6499762
##   0.6524875
##   0.6550149
##   0.6566790
##   0.6579443
##   0.6591369
##   0.6608484
##   0.6625006
##   0.6631973
##   0.6638231
##   0.6648965
##   0.6652394
##   0.6657093
##   0.6660295
##   0.6158480
##   0.6233988
##   0.6303367
##   0.6358160
##   0.6403353
##   0.6448085
##   0.6491641
##   0.6515796
##   0.6523641
##   0.6542456
##   0.6555397
##   0.6566364
##   0.6576917
##   0.6589834
##   0.6591224
##   0.6599401
##   0.6604026
##   0.6607633
##   0.6611006
##   0.6347825
##   0.6468156
##   0.6527199
##   0.6557980
##   0.6576273
##   0.6591766
##   0.6604945
##   0.6610023
##   0.6615806
##   0.6618291
##   0.6621945
##   0.6625792
##   0.6626816
##   0.6627145
##   0.6628480
##   0.6629759
##   0.6630489
##   0.6631781
##   0.6632356
##   0.6302742
##   0.6378987
##   0.6442935
##   0.6497724
##   0.6521314
##   0.6537054
##   0.6550074
##   0.6568319
##   0.6573422
##   0.6581533
##   0.6582525
##   0.6585348
##   0.6587717
##   0.6589447
##   0.6590978
##   0.6590511
##   0.6591729
##   0.6592121
##   0.6593415
##   0.6331473
##   0.6404490
##   0.6450796
##   0.6492386
##   0.6500474
##   0.6515146
##   0.6524453
##   0.6543188
##   0.6548772
##   0.6553785
##   0.6558582
##   0.6558340
##   0.6562471
##   0.6565654
##   0.6567849
##   0.6568068
##   0.6568449
##   0.6569303
##   0.6569348
##   0.6366651
##   0.6443008
##   0.6482057
##   0.6511808
##   0.6518098
##   0.6521180
##   0.6524906
##   0.6527077
##   0.6527903
##   0.6528299
##   0.6528622
##   0.6528428
##   0.6528354
##   0.6528419
##   0.6528399
##   0.6528312
##   0.6528238
##   0.6528329
##   0.6528428
##   0.6429706
##   0.6527712
##   0.6584631
##   0.6604800
##   0.6621063
##   0.6631601
##   0.6635105
##   0.6636100
##   0.6638352
##   0.6639087
##   0.6640519
##   0.6641147
##   0.6641240
##   0.6641711
##   0.6642133
##   0.6642440
##   0.6642572
##   0.6642590
##   0.6642746
##   0.6384031
##   0.6446733
##   0.6477012
##   0.6497108
##   0.6507464
##   0.6516043
##   0.6518820
##   0.6523114
##   0.6524641
##   0.6528270
##   0.6529354
##   0.6529912
##   0.6530285
##   0.6530624
##   0.6530775
##   0.6530883
##   0.6530950
##   0.6530742
##   0.6530885
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were n.trees = 550, interaction.depth =
##  7, shrinkage = 0.1 and n.minobsinnode = 5.
plot(boostedTrees_model)

K-nearest Neighbors Model

## k-Nearest Neighbors 
## 
## 1962 samples
##   24 predictor
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 1962, 1962, 1962, 1962, 1962, 1962, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE       Rsquared   MAE      
##    5  0.8278116  0.3628391  0.6154042
##    7  0.8077098  0.3786993  0.6047007
##    9  0.8020305  0.3822446  0.6038914
##   11  0.8007580  0.3819450  0.6037865
##   13  0.8005034  0.3812098  0.6050144
##   15  0.7991664  0.3823557  0.6061000
##   17  0.7992378  0.3815188  0.6077787
##   19  0.8002526  0.3797092  0.6097327
##   21  0.8017696  0.3771813  0.6121655
##   23  0.8026414  0.3757101  0.6136102
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 15.

By curiosity, we want to check multilinear regression even we didn’t use it during the semester

## Linear Regression 
## 
## 1962 samples
##   24 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 1766, 1768, 1765, 1766, 1765, 1765, ... 
## Resampling results:
## 
##   RMSE       Rsquared   MAE      
##   0.8294038  0.3207959  0.6428673
## 
## Tuning parameter 'intercept' was held constant at a value of TRUE

Model Selection

Looking at the models to find which gives the optimal resampling and test set performance.

library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.0.5
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
Partial_Least_Squares  <- postResample(pred = predict(plsTune_model, newdata=testX), obs = testY)
Cubist <- postResample(pred = predict(cubist_model, newdata=testX), obs = testY)
Boost_Trees <- postResample(pred = predict(boostedTrees_model, newdata=testX), obs = testY)
MultiLinear <- postResample(pred = predict(linear_model, newdata=testX), obs = testY)
KNN <- postResample(pred = predict(knn_model, newdata=testX), obs = testY)

models_performance <- rbind( "Partial Least Squares Model" = Partial_Least_Squares, "Cubist Model" = Cubist, "Boost Trees" = Boost_Trees, "KNN Model"= KNN, "Multilinear Model" = MultiLinear
  
) 

models_performance %>% 
                  kable() %>%
                          kable_material_dark() # kable_styling(bootstrap_options=c("hover", "striped", "condensed"))
RMSE Rsquared MAE
Partial Least Squares Model 0.8031337 0.3302809 0.6197529
Cubist Model 0.5989889 0.6265360 0.4305935
Boost Trees 0.6458077 0.5675270 0.4743690
KNN Model 0.7323568 0.4464454 0.5448429
Multilinear Model 0.8045229 0.3280464 0.6212196

The best model is Cubist Model based on the test set performance with the following results: RMSE Rsquared MAE 0.5989889 0.6265360 0.4305935

Importance of the predictors on the response variable, PH.

## cubist variable importance
## 
##   only 20 most important variables shown (out of 24)
## 
##                   Overall
## Mnf.Flow           100.00
## Density             81.16
## Temperature         75.36
## Carb.Rel            75.36
## Air.Pressurer       63.77
## Pressure.Vacuum     61.59
## Carb.Pressure1      52.17
## Filler.Level        51.45
## Oxygen.Filler       50.00
## Usage.cont          44.93
## Hyd.Pressure2       44.20
## Carb.Flow           39.86
## Pressure.Setpoint   32.61
## Carb.Temp           28.99
## Carb.Volume         28.26
## Carb.Pressure       26.81
## Hyd.Pressure4       22.46
## Fill.Pressure       22.46
## PC.Volume           21.74
## MFR                 12.32

Evaluation Data

## [1] 9.02 8.99 9.03 9.27 9.03 9.05

Let’s compare the predicted pH and the trained pH

## Warning: package 'hrbrthemes' was built under R version 4.0.5
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
##       Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
##       if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
## Warning: package 'viridis' was built under R version 4.0.4
## Loading required package: viridisLite
## Warning: package 'plotly' was built under R version 4.0.5
## 
## Attaching package: 'plotly'
## The following objects are masked from 'package:plyr':
## 
##     arrange, mutate, rename, summarise
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
## Warning: package 'reshape' was built under R version 4.0.4
## 
## Attaching package: 'reshape'
## The following object is masked from 'package:plotly':
## 
##     rename
## The following objects are masked from 'package:plyr':
## 
##     rename, round_any
## The following object is masked from 'package:Matrix':
## 
##     expand
## The following objects are masked from 'package:tidyr':
## 
##     expand, smiths
## The following object is masked from 'package:dplyr':
## 
##     rename

Report

We given 02 dataset in the form of excel files. These datasets contain the actual data generated from ABC Beverage production and the evaluation data. Our was to use the actual data to predict the response variable ‘PH’. This variable called PH is a measure of how acidic or basic a liquid is. Our study shows that the drink made by the ABC company is of type basic. After the prediction the pH remains basic. We observed that the component ‘Mnf.Flow’ appears to have the most influence on the pH. Therefore, for a negative value of ‘Mnf.Flow’ , the predicted is more basic than the actual/current pH and for positive value of ‘Mnf.Flow’, the predicted pH remain less basic than the actual pH.

Recommendation:

Our study shows that the components below have greater influence on the pH of the drink being made. In other words, by controlling the variation of these components, the process engineers are likely to achieve a better pH. The attached excel file(New_Student_Evaluation) contains the predicted pH.

Components values

Mnf.Flow 100.00000
Density 81.15942
Temperature 75.36232
Carb.Rel 75.36232
Air.Pressurer 63.76812
Pressure.Vacuum 61.59420