Abstract

For this analysis, we developed a statistical model for the global prediction of new COVID deaths for the top 10 countries based on the highest amount of deaths. A variety of supervised and unsupervised learning methods were used.

1. Intro

The COVID-19 virus has caused a global pandemic which has detrimentally affected the world causing loss of population and extreme use of various resources. Medical facilities resources have been exacerbated, labor forces have dwindled, and businesses have needed to adapt to wildly changing markets. The purpose of this project was to develop a statistical model for the global prediction of new COVID deaths for the top ten leading countries for benefit of global preparations and accommodations of physical, medical, and populous resources. Model evaluation was based on MSE comparison between models for prediction accuracy. Work for this group was divided equally among colleagues. Work was divided into four parts, data discovery and visualization, tree based methods, linear methods, and unsupervised methods. A number of models were tested and compared with the mentioned methods before deciding on the final working model. Our initial presumption is that tree methods will likely be the most accurate for this analysis. We are testing multiple models to see if other models may be more accurate than our initial thought. This may also prove to be incorrect, as a more complex model does not always mean more accurate predictions. There also is potential for certain models to over-fit due to variables tha directly impact new deaths included in models.

2. Method

The methodology in this analysis consisted of diagnosing a world issue, exploring data based around the issue, building various models to compare accuracy, and finally analyze model results for insights.

2.1 Data

Data was collected from one source using the code below to extract a csv file at the link “https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv”. This resource can be found through a browser at with the link “https://github.com/owid/covid-19-data”. The input data was filtered to the top 10 leading countries in deaths. Variables that were not scaled to thousands were appropriately changed to this scaling and variables that were scaled in another fashion which had a thousand counterpart were removed to reduce duplicated variables and model noise. Some other variables with unneeded information, such as excess_mortality_rate, were also removed for noise reduction.

Reading the initial data set and filtering

require(dplyr)

dataset <- read.csv("https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv", stringsAsFactors = T) %>%   select(-c(continent, location, weekly_icu_admissions, weekly_icu_admissions_per_million, weekly_hosp_admissions,
            weekly_hosp_admissions_per_million, hosp_patients_per_million, total_boosters_per_hundred, continent,
            location, weekly_icu_admissions, weekly_icu_admissions_per_million, weekly_hosp_admissions,
            weekly_hosp_admissions_per_million, icu_patients_per_million, total_deaths_per_million,
            new_deaths_per_million, new_tests, excess_mortality_cumulative, total_vaccinations_per_hundred,
            people_fully_vaccinated_per_hundred, new_vaccinations_smoothed_per_million, total_cases_per_million,
            new_people_vaccinated_smoothed_per_hundred, excess_mortality_cumulative_absolute, new_cases_per_million,
            excess_mortality_cumulative_per_million, excess_mortality_cumulative, excess_mortality, total_tests,
            people_vaccinated_per_hundred, new_deaths_smoothed_per_million, new_cases_smoothed_per_million,
            new_tests_smoothed, new_deaths_smoothed, reproduction_rate,
            new_tests_smoothed_per_thousand, tests_per_case, new_vaccinations_smoothed, tests_units,
            new_people_vaccinated_smoothed, new_cases_smoothed)) %>%
  filter(iso_code %in% c("USA", "IND", "BRA", "RUS", "GBR", "FRA", "TUR", "ITA", "COL", "DEU")) 


## Creating "by thousands" variable
dataset$total_cases_thousand = dataset$total_cases / 1000
dataset$new_cases_thousand = dataset$new_cases / 1000
dataset$new_deaths_thousand = dataset$new_deaths / 1000
dataset$icu_patients_thousand = dataset$icu_patients / 1000
dataset$hosp_patients_thousand = dataset$hosp_patients / 1000
dataset$total_vaccinations_thousand = dataset$total_vaccinations / 1000
dataset$people_vaccinated_thousand = dataset$people_vaccinated / 1000
dataset$people_fully_vaccinated_thousand = dataset$people_fully_vaccinated / 1000
dataset$total_boosters_thousand = dataset$total_boosters / 1000
dataset$new_vaccinations_thousand = dataset$new_vaccinations / 1000
dataset$population_thousand = dataset$population / 1000
dataset$total_deaths_thousand = dataset$total_deaths / 1000

# Remove old scales
dataset = subset(dataset, select = -c(total_cases, new_cases, new_deaths, icu_patients, hosp_patients,
                                       total_vaccinations, people_vaccinated, people_fully_vaccinated,
                                       total_boosters, new_vaccinations, population, total_deaths))  

Dates

dataset$date <- as.Date(dataset$date)

## Creating day of week variable and 

## Creating season variable (using astronimical start dates)



dataset <- mutate(dataset, day_of_week = as.factor(weekdays(date)),
                  season = as.factor(case_when(months(date) %in% c("March", "April", "May") ~ "Spring",
                                     months(date) %in% c("June", "July", "August") ~ "Summer",
                                     months(date) %in% c("September", "October", "November") ~ "Fall",
                                     months(date) %in% c("December", "January", "February") ~ "Winter")))

dataset$year <- factor(lubridate::year(dataset$date))

dataset$month <- factor(lubridate::month(dataset$date))



dataset <- dataset %>% replace(is.na(.), 0)

dataset$iso_code <- factor(dataset$iso_code)



no_date <- select(dataset, -date)

require(caTools)
require(rsample)

## Splitting the data

set.seed(101)


split <- rsample::initial_split(dataset, prop = 0.8, strata = "new_deaths_thousand")

train.dat <- rsample::training(split)
test.dat <- rsample::testing(split)

2.2 Data Visualization

We created an interactive geographical shiny app for exploratory information related to average daily cases, average new vaccinations, average daily deaths, population density, and HDI. Additional time series charts are available here as well for our late used methods. This shiny app is available to view via internet browser at “https://choskins.shinyapps.io/shiny/”.

The figure below depicts the training and testing split of the response variable (new daily deaths by thousands) for the time series.

require(ggplot2)
require(ggpubr)

ggplot(data = train.dat, aes(x = date, y = new_deaths_thousand)) + geom_point(color = "blue") +
  geom_point(data = test.dat, aes(x = date, y = new_deaths_thousand), color = "orange") + theme_classic()

There is no clear trend, other than the potential of month in the number of COVID-19 deaths. The blue points in the figure above indicate the observations in the training set, and the orange points compose the observations in the testing set. The distribution with time is fairly consistent.

A <- ggplot(dataset) + geom_boxplot(aes(x = iso_code, y = new_deaths_thousand, fill = iso_code)) + theme_classic()

B <- ggplot(dataset) + geom_boxplot(aes(x = season, y = new_deaths_thousand, fill = season)) + theme_classic()

C <- ggplot(dataset) + geom_point(aes(x = new_vaccinations_thousand, y = new_deaths_thousand)) + theme_classic() + 
  facet_wrap(~season)
D <- ggplot(dataset) + geom_histogram(aes(x = new_deaths_thousand, fill = month)) + facet_wrap(~month) 

A

The new daily deaths vary significantly depending on the country. Notice that the United States (USA) has the highest median new daily deaths, but India (IND) has the highest single value of new daily deaths.

B

As expected the Winter and Spring seasons have the highest median values for new daily deaths. However, the Summer season has the highest single value of new daily deaths, which occurred, which occurred in late June.

C

The relationship between new daily vaccinations and new daily deaths is interesting to observe. There are bundles of observations near 0 vaccinations in which there were many deaths, which is due to the lag between vaccine availability and the pandemic. The Spring season has a very unique behavior, as all observations are bundled closely together.

D

Each month has a similar distribution of new daily deaths. Each month has the highest counts of new daily deaths near 0, which is likely due to our data preparation, in which we scaled the new daily deaths.

2.3 Models

Multiple models were used for this analysis. They included forward and backward subset selection, multinomial linear models, random forest, ridge and lasso regression, bagging, and generalized boosted regression models.

2.3.1 Decision Tree

To demonstrate a comparative analysis with regression tree, bagging, random forests, and boosting we constructed a regression tree for new_deaths_thousand on the rest of the predictors and calculated the test prediction error.

require(tree)

tree.deaths = tree(new_deaths_thousand ~.-date, data = train.dat)
cv.deaths = cv.tree(tree.deaths)
plot(cv.deaths$size, cv.deaths$dev, type = 'b')

prune.deaths = prune.tree(tree.deaths, best = 11)

## prediction error
yhat = predict(prune.deaths, newdata = test.dat)
tree_mse <- mean((yhat - test.dat$new_deaths_thousand)^2)

tree_mse
## [1] 0.1040313

2.3.2 Bagged Tree

The main difference between random forest (RF) a and boostrapped aggregated decision tree (Bagged Tree) is that in Bagged Trees, the number of variables selected at each node is not restricted. In RF, the number of variables selected is usually decided using the length of the predictors divided by 3 (for numeric responses). We assume that this model will predict accurately, but has possibility to be inaccurate comparatively due to complexity and over-fitting.

require(randomForest)

# bag.deaths

bag.deaths = randomForest(new_deaths_thousand ~.-date, data = train.dat, mtry = 34, importance = TRUE)


## prediction error

yhat.bag = predict(bag.deaths, newdata = test.dat)
bag_mse <- mean((yhat.bag - test.dat$new_deaths_thousand)^2)

bag_mse
## [1] 0.03119207

2.3.3 Bagged Tree

We assume that this model will predict accurately as well, but has possibility to be inaccurate comparatively for similar reasons.

library(gbm)

boost.deaths = gbm(new_deaths_thousand ~.-date, data = train.dat, distribution = "gaussian", n.trees = 500,
                   interaction.depth = 3)

summary(boost.deaths)

##                                                               var     rel.inf
## new_cases_thousand                             new_cases_thousand 55.02597430
## total_deaths_thousand                       total_deaths_thousand  8.88267446
## month                                                       month  8.48560545
## stringency_index                                 stringency_index  4.26941788
## iso_code                                                 iso_code  4.21446789
## total_cases_thousand                         total_cases_thousand  2.83350436
## people_fully_vaccinated_thousand people_fully_vaccinated_thousand  2.36773427
## population_density                             population_density  2.22477511
## new_vaccinations_thousand               new_vaccinations_thousand  2.13787079
## day_of_week                                           day_of_week  2.04988095
## icu_patients_thousand                       icu_patients_thousand  1.62896489
## total_tests_per_thousand                 total_tests_per_thousand  1.26361074
## positive_rate                                       positive_rate  0.85478346
## new_tests_per_thousand                     new_tests_per_thousand  0.82848913
## total_vaccinations_thousand           total_vaccinations_thousand  0.80571454
## hosp_patients_thousand                     hosp_patients_thousand  0.79957341
## people_vaccinated_thousand             people_vaccinated_thousand  0.61423046
## population_thousand                           population_thousand  0.25941600
## season                                                     season  0.09215162
## diabetes_prevalence                           diabetes_prevalence  0.07611676
## total_boosters_thousand                   total_boosters_thousand  0.07323791
## median_age                                             median_age  0.05707419
## gdp_per_capita                                     gdp_per_capita  0.04791565
## cardiovasc_death_rate                       cardiovasc_death_rate  0.03618752
## extreme_poverty                                   extreme_poverty  0.02686811
## hospital_beds_per_thousand             hospital_beds_per_thousand  0.02580326
## male_smokers                                         male_smokers  0.01795690
## aged_65_older                                       aged_65_older  0.00000000
## aged_70_older                                       aged_70_older  0.00000000
## female_smokers                                     female_smokers  0.00000000
## handwashing_facilities                     handwashing_facilities  0.00000000
## life_expectancy                                   life_expectancy  0.00000000
## human_development_index                   human_development_index  0.00000000
## year                                                         year  0.00000000
## prediction error

yhat.boost = predict(boost.deaths, newdata = test.dat, n.trees = 500)
boost_mse <- mean((yhat.boost - test.dat$new_deaths_thousand)^2)

boost_mse
## [1] 0.03035849

2.3.4 Random Forest

We assume that this model will predict accurately, but has possibility to be inaccurate comparatively for similar reasons. Our hopes is for this to be more accurate than bagging or boosting due to its composition consisting of aspects of both bagging and boosting. Once again this may actually decrease accuracy due to complexity.

rf <- randomForest(new_deaths_thousand ~.-date, data = train.dat, mtry = (35/3), importance = T)



rf_predictions <- predict(rf, test.dat[-23])


## prediction error

rf_mse <- mean((rf_predictions - test.dat$new_deaths_thousand)^2)

rf_mse
## [1] 0.0270787

2.3.5 Multiple Linear Regression (MLR)

Multiple linear regression was used in attempt to find meaningful results from a less complex model. As a simple and easy to use model it was favorable for quick and easy to interpreted results. A minimum error of 0.164 was achieved through this model type. We continued after to test other models to see if we could produce more accurate results with a lower error. We anticipate this method may possibly have the highest error rate, since the data we are analyzing are composed from time-series data in which the trends with time have been removed. We do not assume this will be as accurate as the more complex models due to the large amount of variables in each model.

model1 = glm(new_deaths_thousand ~ ., data=train.dat)
results <- summary(model1)

## Extracting variables with low p-values from the generalized multiple linear regression

pvals <- data.frame(results$coefficients)
pvals <- filter(pvals, pvals$Pr...t.. < 0.05)
print(rownames(pvals))
##  [1] "iso_codeCOL"                      "iso_codeDEU"                     
##  [3] "iso_codeFRA"                      "iso_codeGBR"                     
##  [5] "iso_codeIND"                      "iso_codeITA"                     
##  [7] "iso_codeRUS"                      "iso_codeTUR"                     
##  [9] "iso_codeUSA"                      "total_tests_per_thousand"        
## [11] "new_tests_per_thousand"           "positive_rate"                   
## [13] "stringency_index"                 "total_cases_thousand"            
## [15] "new_cases_thousand"               "icu_patients_thousand"           
## [17] "hosp_patients_thousand"           "total_vaccinations_thousand"     
## [19] "people_vaccinated_thousand"       "people_fully_vaccinated_thousand"
## [21] "total_boosters_thousand"          "total_deaths_thousand"           
## [23] "day_of_weekMonday"                "day_of_weekSaturday"             
## [25] "day_of_weekSunday"                "day_of_weekTuesday"              
## [27] "day_of_weekWednesday"             "month3"                          
## [29] "month6"

A MLR model is built based on the coefficients from the model that have low p-values.

model2 <- glm(new_deaths_thousand ~ iso_code + total_tests_per_thousand + stringency_index +
                icu_patients_thousand + total_deaths_thousand + day_of_week +
                month + new_tests_per_thousand + total_cases_thousand + hosp_patients_thousand +
                people_fully_vaccinated_thousand + positive_rate + total_vaccinations_thousand +
                total_boosters_thousand, data = train.dat)

mlr_predictions <- predict(model2, test.dat[-23])

## Prediction Error

mlr_mse <- mean((mlr_predictions - test.dat$new_deaths_thousand)^2)

mlr_mse
## [1] 0.162063

2.3.6 Forward Selection

require(leaps)

set.seed(101)
regfit.fwd <- regsubsets(new_deaths_thousand~.-date, data = train.dat, nvmax = 60,
                         method = "forward", really.big = T)
## Reordering variables and trying again:
fwd.sum <- summary(regfit.fwd)
forward_select=which.min(fwd.sum$bic)
forward_select
## [1] 26

The forward selection method chooses 26 variables (shown below).

coef(regfit.fwd, forward_select)
##                (Intercept)                iso_codeRUS 
##              -1.274865e+00              -1.264948e+00 
##   total_tests_per_thousand     new_tests_per_thousand 
##              -1.085664e-04               1.516359e-02 
##              positive_rate           stringency_index 
##               2.680906e+00               5.670270e-03 
##    total_boosters_thousand  new_vaccinations_thousand 
##              -1.713454e-05              -5.083220e-05 
##      total_deaths_thousand          day_of_weekMonday 
##               2.291455e-03              -4.388191e-02 
##        day_of_weekThursday         day_of_weekTuesday 
##               1.227930e-01               1.293616e-01 
##       day_of_weekWednesday               seasonWinter 
##               1.330975e-01               2.167823e-01 
##                   year2021                     month2 
##              -7.177666e-02              -9.431512e-02 
##                     month3                     month7 
##              -3.208461e-02              -1.406207e-01 
##                     month9                    month10 
##              -1.134665e-01              -1.496193e-01 
##                    month12              aged_70_older 
##              -1.073922e-01              -2.914047e-03 
##            extreme_poverty      cardiovasc_death_rate 
##              -2.042810e-02               5.654257e-03 
##             female_smokers hospital_beds_per_thousand 
##               2.643003e-02              -7.330337e-02 
##                    month11 
##              -6.685557e-02

2.3.7 Backward Selection

set.seed(101)
regfit.bwd <- regsubsets(new_deaths_thousand ~.-date, data = train.dat, nvmax = 60, really.big = T,
                         method = "backward")
## Reordering variables and trying again:
bwd.sum <- summary(regfit.bwd)

backward_select <- which.min(bwd.sum$bic)
backward_select
## [1] 28

Backward selection chooses 28 variables (shown below). Recall that forward selection selected 26 variables.

coef(regfit.bwd, backward_select)
##                (Intercept)                iso_codeCOL 
##               4.094570e-01              -1.258029e+00 
##                iso_codeDEU                iso_codeFRA 
##              -7.865215e-01              -8.891055e-01 
##                iso_codeGBR                iso_codeIND 
##              -7.712876e-01              -4.114450e-01 
##                iso_codeITA                iso_codeRUS 
##              -8.897437e-01              -5.280417e-01 
##                iso_codeTUR                iso_codeUSA 
##              -9.933587e-01               7.344222e-02 
##   total_tests_per_thousand     new_tests_per_thousand 
##              -7.832633e-05               7.091211e-03 
##              positive_rate           stringency_index 
##               3.134842e+00               5.831975e-03 
##         day_of_weekTuesday       day_of_weekWednesday 
##               1.161828e-01               1.157296e-01 
##               seasonWinter                   year2021 
##               5.202780e-02               2.693821e-01 
##                     month2                     month3 
##              -1.802960e-02              -1.195880e-01 
##                     month7                     month9 
##              -8.968866e-02              -3.405191e-02 
##                    month10                    month12 
##              -5.845813e-02               1.539332e-01 
##              aged_70_older            extreme_poverty 
##               0.000000e+00               0.000000e+00 
##      cardiovasc_death_rate             female_smokers 
##               0.000000e+00               0.000000e+00 
## hospital_beds_per_thousand 
##               0.000000e+00

Comparison of Forward and Backward Selection

par(mfrow = c(1, 2))

plot(fwd.sum$bic,xlab=" Number of Variables ", ylab=" BIC",
     type="l", main="Forward Selection: BIC plot")
points (forward_select, fwd.sum$bic[forward_select], col =" red", cex =2, pch =20)
plot(bwd.sum$bic,xlab=" Number of Variables ", ylab=" BIC",
     type="l", main="Backward Selection: BIC plot")
points (backward_select, bwd.sum$bic[backward_select], col =" red",cex =2, pch =20)

The above figure reiterates the optimal number of features selected in each method using BIC as a metric.

Forward and Backward Selection MLR Models

Recall that in the list of coefficients, dummy variables for the categorical variables are included, so the actual number of variables used in both models are not 26 (forward selection) nor 28 (backward selection).

forward_mlr <- glm(new_deaths_thousand ~ new_tests_per_thousand + total_boosters_thousand + season + month + aged_70_older + hospital_beds_per_thousand +new_vaccinations_thousand+
  iso_code + positive_rate + total_deaths_thousand + year + extreme_poverty + stringency_index + day_of_week + cardiovasc_death_rate +
  total_tests_per_thousand  + female_smokers, data = train.dat)

backward_mlr <- glm(new_deaths_thousand ~ iso_code + positive_rate + year + month + extreme_poverty + stringency_index + cardiovasc_death_rate + new_tests_per_thousand+
  total_tests_per_thousand + day_of_week + female_smokers + season + aged_70_older + hospital_beds_per_thousand,
  data = train.dat)

Forward and Backward Selection MLR Test Errors

forward_pred <- predict(forward_mlr, test.dat[-23])
backward_pred <- predict(backward_mlr, test.dat[-23])

sprintf("Forward-Selected Model MSE: %.4f", mean((forward_pred - test.dat$new_deaths_thousand)^2))
## [1] "Forward-Selected Model MSE: 0.1990"
sprintf("Backward-Selected Model MSE %.4f", mean((backward_pred - test.dat$new_deaths_thousand)^2))
## [1] "Backward-Selected Model MSE 0.2028"
f_mse <- mean((forward_pred - test.dat$new_deaths_thousand)^2)
b_mse <- mean((backward_pred - test.dat$new_deaths_thousand)^2)

2.3.7 Ridge Regression

Recall that ridge regression shrinks the coefficients in the model towards 0, but never to 0. This shrinkage leads to a substantial reduction in the variance of the predictions, with a penalty of slightly increased bias. This can result in a lower MSE when an optimal “λ” is selected. The figure below represents how noise is removed from the model. The number of variables that minimize noise while retaining the predictive power of the model will be chosen based on log lambda on the graph. We believe that this and LASSO may be highly accurate as it shrinks coefficients and may be able to reduce noise better than other models.

require(glmnet)

set.seed(101)



x_train = model.matrix(new_deaths_thousand~.-date, train.dat)[,-1]

y_train <- train.dat$new_deaths_thousand

x_test <- model.matrix(new_deaths_thousand ~.-date, test.dat)[, -1]
y_test <- test.dat$new_deaths_thousand

# train = sample(6720, 5377) # 80% training
# test = (-train)


ridge.model1 <- glmnet(x = x_train,
                       y = y_train,
                       alpha = 0, standardize = F)

cv.out <- cv.glmnet(x = x_train,
                       y = y_train,
                       alpha = 0, standardize = F)


plot(ridge.model1, xvar = "lambda")

Finding the best Lambda Using Cross-Validation

set.seed(101)

cv.out <- cv.glmnet(x = x_train,
                       y = y_train,
                       alpha = 0, standardize = F)

plot(cv.out)

bestlam_ridge <- cv.out$lambda.min

Above we chart the impact of different “λ” parameters and select the best one for our ridge regression model. The Lowest MSE occurs at 8.7548363. Now, the training and testing errors are compared.

ridge_train_preds <- predict(cv.out, x_train, s = "lambda.min")

ridge_test_preds <- predict(ridge.model1, x_test, s = bestlam_ridge)

sprintf("Test MSE: %.4f", mean((ridge_test_preds - y_test)^2))
## [1] "Test MSE: 0.2119"
sprintf("Train MSE: %.4f", mean((ridge_train_preds - y_train)^2))
## [1] "Train MSE: 0.2252"
ridge_mse <- mean((ridge_test_preds - y_test)^2)

2.3.8 LASSO Regression

Recall that in LASSO, as opposed to ridge, the coefficients are indeed shrunk to 0. As previously mentioned, we believe that this and ridge regression may be highly accurate as it shrinks coefficients and may be able to reduce noise better than other models.

require(glmnet)


set.seed(101)

lasso.model1 <- glmnet(x = x_train,
                       y = y_train,
                       alpha = 1, standardize = F)



plot(lasso.model1, xvar = "lambda")

Based on the figure above, it is clear that many of the coefficients shrink to 0, which indicates they are not important to the model. This is explored further below.

set.seed(101)

lasso.cv <- cv.glmnet(x = x_train,
                       y = y_train,
                       alpha = 1, standardize = F)

plot(lasso.cv)

best_lasso <- lasso.cv$lambda.min

The ideal lambda value occurs at 1.847081 , as indicated above.

Comparing LASSO training and testing MSE

lasso_train_preds <- predict(lasso.cv, x_train, s = "lambda.min")

lasso_test_preds <- predict(lasso.model1, x_test, s = best_lasso)

sprintf("Test MSE: %.4f", mean((lasso_test_preds - y_test)^2))
## [1] "Test MSE: 0.1677"
sprintf("Train MSE: %.4f", mean((lasso_train_preds - y_train)^2))
## [1] "Train MSE: 0.1832"
lasso_mse <- mean((lasso_test_preds - y_test)^2)

This is an improvement in both the training and testing errors compared to the results from Ridge regression.

LASSO Regression Most Influential Features

require(broom)

coef(lasso.cv, s = "lambda.min") %>%
  tidy() %>%
  filter(row != "(Intercept)") %>%
  ggplot(aes(value, reorder(row, value))) +
  geom_point() +
  xlab("Coefficient") +
  ylab(NULL)

Notice the top 10 variables that contributed to new deaths.

2.3.8 PCR

Our motivation behind using principal component regression (PCR), is this method helps to avoid multicollinearity. In this data set, it is clear that many of the variables are correlated with each other. We assume this will perform better than that of LASSO or ridge regression using the principal component of the variables with assumptions for the best bias variance trade-off model.

require(pls)


set.seed(101)

pcr_model <- pls::pcr(new_deaths_thousand~., data = no_date, scale = F, validation = "CV")

validationplot(pcr_model, val.type = "MSEP")

validationplot(pcr_model, val.type = "R2")

The first figure above represents MSE for each component derived using principal component analysis (PCA). The second figure displays the \(R^2\) score for the number of components. Observe that dimensionality reduction has occured, the number of components (15) that explain about 80% of the variability is less than the number of predictors in the data set.

Below displays the predicted vs actual deaths based on a trained PCR model using the same training and testing split data sets that were used in all the other models.

PCR with 15 Compoonents

set.seed(101)

pcr_trained <- pcr(new_deaths_thousand~.-date, data = train.dat, scale = F, validation = "CV")

pcr_preds <- predict(pcr_trained, test.dat[-23], ncomp = 15)

pcr_mse <- mean((pcr_preds - test.dat$new_deaths_thousand)^2)

3. Results

results_tab <- data.frame(Method = c("Decision Tree", "Bagged Tree", 
                                     "Boosted Tree", "Random Forest",
                                     "MLR", "MLR - Forward", "MLR-Backward",
                                     "LASSO", "Ridge", "PCR"),
                          MSE = c(tree_mse, bag_mse, boost_mse,
                                  rf_mse, mlr_mse, f_mse, b_mse,
                                  lasso_mse, ridge_mse, pcr_mse)) 


knitr::kable(results_tab)
Method MSE
Decision Tree 0.1040313
Bagged Tree 0.0311921
Boosted Tree 0.0303585
Random Forest 0.0270787
MLR 0.1620630
MLR - Forward 0.1990011
MLR-Backward 0.2028190
LASSO 0.1676736
Ridge 0.2119213
PCR 0.1245515

After each model was tested final results shown above were compared. As previously predicted, MLR models had the highest error rate and were not considered for use. Ridge regression and LASSO showed similar results with a higher MSE. PCR was on the lower end of the models compared, but did not compare to the tree based models. The general decision tree, although not faring well, did prove to have a lower MSE than all other non-tree based models. Boosting and bagging methods were applied to try and reduce error rate further, but Random Forest proved to yield the lower MSE. Bagged tree lagged close behind by a difference in MSE of 0.0006745. Boosting however performed even worse than bagging.

4. Discussion

There were other potential problems we could have analyzed, but this one was selected due to the relevancy for current issues as well as ease of understanding aspects of the data. There was little interpretation needed to understand initial data and additionally little cleaning and manipulation of data due to succinct data maintenance from our source. We were able to utilize most all of the skills we learned this semester in this project. Additional methods such as historical clustering and PCA were attempted, but this lead to computational issues and visualizations so large that they were unable to be interpreted. These would have been supplementary to our analysis, and therefore were unused. Each group member contributed equally to this work. Tasks such as data extraction, coding of methods, and compilation of this document were divided equally among members, and assigned based on each members specialized skills. It was an immensely helpful learning experience to get to show what we have learned this semester in one project.

5. Future Work

The models created in this project are applicable to other results as well from the same dataset. We chose new_deaths as the response variable for our models, but others can be easily interchanged and compared for different results. Note that doing so may yield different results for which model is most accurate. Other alternative responses possible could be new cases, new vaccinations, or other COVID related responses. On the other hand, our methodologies would likely not produce accurate results for something such as population, since the data is geared towards COVID information. Other models, such as (SVM) support vector machines which not been covered, could be applied for different results as well and compared to see if error rate is higher or lower than the current results. Further time and information could also yield usable results with PCA and clustering methods attempted.

6. Appendix

  1. A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2(3), 18–22.
  2. Achim Zeileis and Gabor Grothendieck (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software, 14(6), 1-27. doi:10.18637/jss.v014.i06
  3. Alboukadel Kassambara (2020). ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr
  4. Aravind Hebbali (2020). olsrr: Tools for Building OLS Regression Models. R package version 0.5.3. https://CRAN.R-project.org/package=olsrr
  5. Brandon Greenwell, Bradley Boehmke, Jay Cunningham and GBM Developers (2020). gbm: Generalized Boosted Regression Models. R package version 2.1.8. https://CRAN.R-project.org/package=gbm
  6. Brian Ripley (2021). tree: Classification and Regression Trees. R package version 1.0-41. https://CRAN.R-project.org/package=tree
  7. David Robinson, Alex Hayes and Simon Couch (2021). broom: Convert Statistical Objects into Tidy Tibbles. R package version 0.7.9. https://CRAN.R-project.org/package=broom
  8. Douglas Bates and Martin Maechler (2019). Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.2-18. https://CRAN.R-project.org/package=Matrix
  9. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
  10. Hadley Wickham (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr
  11. Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2021). dplyr: A Grammar of Data Manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr
  12. Jarek Tuszynski (2021). caTools: Tools: Moving Window Statistics, GIF, Base64, ROC AUC, etc. R package version 1.18.2. https://CRAN.R-project.org/package=caTools
  13. Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL https://www.jstatsoft.org/v33/i01/.
  14. Julia Silge, Fanny Chow, Max Kuhn and Hadley Wickham (2021). rsample: General Resampling Infrastructure. R package version 0.1.1. https://CRAN.R-project.org/package=rsample
  15. Kristian Hovde Liland, Bjørn-Helge Mevik and Ron Wehrens (2021). pls: Partial Least Squares and Principal Component Regression. R package version 2.8-0. https://CRAN.R-project.org/package=pls
  16. Max Kuhn (2021). caret: Classification and Regression Training. R package version 6.0-88. https://CRAN.R-project.org/package=caret
  17. Ponce et al. (2021). covid19.analytics: An R Package to Obtain, Analyze and Visualize Data from the Coronavirus Disease Pandemic. Journal of Open Source Software, 6(59), 2995. https://doi.org/10.21105/joss.02995
  18. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  19. Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R. Springer, New York. ISBN 978-0-387-75968-5
  20. Thomas Lumley based on Fortran code by Alan Miller (2020). leaps: Regression Subset Selection. R package version 3.1. https://CRAN.R-project.org/package=leaps

6.1 Web App Code

require(ggplot2)
require(ggpubr)


res_dataset <- data.frame(date = test.dat$date, actual_deaths = test.dat$new_deaths_thousand, 
                          decision_tree_pred = yhat,
                          bagged_tree_pred = yhat.bag,
                          boosted_tree_pred = yhat.boost,
                          rf_predicted_cases = rf_predictions,
                          MLR = mlr_predictions,
                          Ridge = ridge_test_preds,
                          LASSO = lasso_test_preds,
                          ForwardMLR = forward_pred,
                          BackwardMLR = backward_pred,
                          country = test.dat$iso_code)


# save(res_dataset, file = "shiny/rf_results.RData")
# res_dataset
res_dataset
##            date actual_deaths decision_tree_pred bagged_tree_pred
## 1    2020-02-26         0.000          0.1075004    -1.143530e-17
## 21   2020-03-17         0.001          0.1075004     1.019267e-03
## 27   2020-03-23         0.009          0.1075004     1.285657e-02
## 29   2020-03-25         0.013          0.1075004     1.508700e-02
## 43   2020-04-08         0.133          0.1075004     1.494007e-01
## 45   2020-04-10         0.107          0.1075004     1.052728e-01
## 60   2020-04-25         0.353          0.1075004     3.317895e-01
## 65   2020-04-30         0.493          0.1075004     3.280617e-01
## 66   2020-05-01         0.406          0.1075004     3.439939e-01
## 71   2020-05-06         0.650          0.1075004     7.166098e-01
## 80   2020-05-15         0.963          1.4568194     9.405024e-01
## 87   2020-05-22         1.001          1.4568194     1.024589e+00
## 88   2020-05-23         0.965          1.4568194     8.774607e-01
## 103  2020-06-07         0.525          1.4568194     6.456220e-01
## 107  2020-06-11         1.239          1.4568194     1.233912e+00
## 108  2020-06-12         0.909          1.4568194     9.896673e-01
## 110  2020-06-14         0.612          1.4568194     6.461896e-01
## 122  2020-06-26         0.990          1.4568194     1.141935e+00
## 134  2020-07-08         1.223          0.8035981     1.149791e+00
## 135  2020-07-09         1.220          0.8035981     1.241797e+00
## 141  2020-07-15         1.233          0.8035981     1.147353e+00
## 142  2020-07-16         1.322          0.8035981     1.139333e+00
## 151  2020-07-25         1.211          0.8035981     1.089331e+00
## 154  2020-07-28         0.921          0.8035981     1.200933e+00
## 155  2020-07-29         1.595          0.9053733     1.356927e+00
## 157  2020-07-31         1.212          0.8035981     1.160550e+00
## 163  2020-08-06         1.237          0.8035981     1.159327e+00
## 172  2020-08-15         0.709          0.8035981     9.501968e-01
## 174  2020-08-17         0.684          0.8035981     5.723898e-01
## 177  2020-08-20         1.204          0.8035981     1.071275e+00
## 190  2020-09-02         1.184          0.8035981     9.987108e-01
## 192  2020-09-04         0.888          0.8035981     8.978090e-01
## 194  2020-09-06         0.447          0.1075004     3.746623e-01
## 195  2020-09-07         0.310          0.1075004     3.085752e-01
## 196  2020-09-08         0.504          0.1075004     4.205177e-01
## 205  2020-09-17         0.829          0.8035981     9.079322e-01
## 206  2020-09-18         0.858          0.8035981     8.772469e-01
## 211  2020-09-23         0.000          0.1075004     2.759227e-02
## 231  2020-10-13         0.309          0.1075004     2.853351e-01
## 233  2020-10-15         0.713          0.8035981     7.170140e-01
## 236  2020-10-18         0.000          0.1075004     1.483350e-02
## 239  2020-10-21         0.566          0.8035981     5.713683e-01
## 241  2020-10-23         0.571          0.8035981     7.386647e-01
## 245  2020-10-27         0.549          0.8035981     7.329810e-01
## 253  2020-11-04         0.610          0.8035981     3.766181e-01
## 255  2020-11-06         0.909          0.8035981     6.850152e-01
## 267  2020-11-18         0.756          0.8035981     6.969716e-01
## 270  2020-11-21         0.376          0.8035981     7.461439e-01
## 272  2020-11-23         0.302          0.8035981     2.594202e-01
## 273  2020-11-24         0.630          0.8035981     6.056001e-01
## 274  2020-11-25         0.654          0.8035981     6.881910e-01
## 276  2020-11-27         0.514          0.8035981     7.029637e-01
## 277  2020-11-28         0.587          0.8035981     8.739747e-01
## 284  2020-12-05         0.664          0.8035981     7.270517e-01
## 300  2020-12-21         0.527          0.8035981     4.114004e-01
## 301  2020-12-22         0.968          0.8035981     9.600528e-01
## 305  2020-12-26         0.307          0.8035981     4.409463e-01
## 319  2021-01-09         1.171          0.8035981     1.099778e+00
## 320  2021-01-10         0.469          0.8035981     6.006907e-01
## 321  2021-01-11         0.480          0.8035981     4.808391e-01
## 324  2021-01-14         1.131          2.3296739     1.525737e+00
## 343  2021-02-02         1.210          0.8035981     1.239181e+00
## 349  2021-02-08         0.000          0.1075004     1.329723e-02
## 350  2021-02-09         1.986          2.3296739     1.565155e+00
## 356  2021-02-15         0.528          0.8035981     8.580516e-01
## 375  2021-03-06         1.555          2.4070561     1.827249e+00
## 376  2021-03-07         1.086          2.4070561     1.678921e+00
## 378  2021-03-09         1.972          2.4070561     2.038162e+00
## 379  2021-03-10         2.286          2.4070561     2.087018e+00
## 381  2021-03-12         2.216          2.4070561     2.114480e+00
## 395  2021-03-26         3.650          2.4070561     3.083084e+00
## 405  2021-04-05         1.319          0.8035981     1.228952e+00
## 406  2021-04-06         4.195          2.4070561     3.717434e+00
## 409  2021-04-09         3.693          2.4070561     3.611454e+00
## 414  2021-04-14         3.459          2.4070561     3.492130e+00
## 425  2021-04-25         1.305          0.8035981     1.292530e+00
## 433  2021-05-03         0.983          0.8035981     7.937491e-01
## 435  2021-05-05         2.811          2.3296739     2.645239e+00
## 439  2021-05-09         1.024          0.8035981     9.447275e-01
## 445  2021-05-15         2.087          2.3296739     2.092445e+00
## 447  2021-05-17         0.786          0.8035981     9.034015e-01
## 458  2021-05-28         2.371          0.8035981     1.297818e+00
## 463  2021-06-02         2.507          3.6000806     2.762674e+00
## 468  2021-06-07         1.010          0.8035981     9.629899e-01
## 469  2021-06-08         2.378          0.8035981     1.535741e+00
## 484  2021-06-23         2.392          3.6000806     2.652773e+00
## 486  2021-06-25         2.001          2.3296739     2.086825e+00
## 495  2021-07-04         0.830          0.8035981     7.474744e-01
## 499  2021-07-08         1.639          0.8035981     1.537107e+00
## 502  2021-07-11         0.595          0.8035981     6.167046e-01
## 504  2021-07-13         1.605          0.8035981     1.397327e+00
## 505  2021-07-14         1.556          0.8035981     1.457750e+00
## 513  2021-07-22         1.412          0.8035981     1.339016e+00
## 514  2021-07-23         1.324          1.3909884     1.961286e+00
## 517  2021-07-26         0.578          0.8035981     6.426231e-01
## 519  2021-07-28         1.344          0.8035981     1.298936e+00
## 520  2021-07-29         1.318          0.8035981     1.196549e+00
## 521  2021-07-30         0.963          0.8035981     1.156420e+00
## 524  2021-08-02         0.389          0.1075004     4.432611e-01
## 534  2021-08-12         1.148          0.8035981     1.065460e+00
## 543  2021-08-21         0.698          0.8035981     8.821170e-01
## 552  2021-08-30         0.266          0.1075004     3.097336e-01
## 575  2021-09-22         0.876          0.8035981     7.806122e-01
## 582  2021-09-29         0.676          0.8035981     6.372190e-01
## 596  2021-10-13         0.176          0.1075004     2.656678e-01
## 597  2021-10-14         0.525          0.1075004     4.666528e-01
## 599  2021-10-16         0.483          0.1075004     3.539170e-01
## 604  2021-10-21         0.451          0.8035981     4.529890e-01
## 606  2021-10-23         0.318          0.1075004     3.666513e-01
## 608  2021-10-25         0.160          0.1075004     1.649481e-01
## 619  2021-11-05         0.389          0.1075004     3.756171e-01
## 624  2021-11-10         0.280          0.1075004     3.236998e-01
## 628  2021-11-14         0.061          0.1075004     9.131047e-02
## 635  2021-11-21         0.072          0.1075004     9.746640e-02
## 636  2021-11-22         0.123          0.1075004     2.776155e-01
## 637  2021-11-23         0.284          0.1075004     2.639607e-01
## 645  2021-12-01         0.283          0.1075004     2.825900e-01
## 647  2021-12-03         0.221          0.1075004     2.903081e-01
## 651  2021-12-07         0.274          0.1075004     2.584654e-01
## 654  2021-12-10         0.000          0.1075004     1.290711e-01
## 659  2020-03-08         0.000          0.1075004     3.220000e-04
## 670  2020-03-19         0.000          0.1075004    -1.600000e-06
## 672  2020-03-21         0.000          0.1075004     2.863333e-05
## 674  2020-03-23         0.001          0.1075004     1.356600e-03
## 678  2020-03-27         0.000          0.1075004     2.664100e-03
## 679  2020-03-28         0.000          0.1075004     3.201733e-03
## 689  2020-04-07         0.004          0.1075004     9.651567e-03
## 697  2020-04-15         0.004          0.1075004     1.094717e-02
## 705  2020-04-23         0.009          0.1075004     1.214927e-02
## 707  2020-04-25         0.008          0.1075004     1.263613e-02
## 708  2020-04-26         0.011          0.1075004     1.150210e-02
## 721  2020-05-09         0.017          0.1075004     1.581780e-02
## 723  2020-05-11         0.016          0.1075004     1.790467e-02
## 727  2020-05-15         0.021          0.1075004     2.008627e-02
## 729  2020-05-17         0.012          0.1075004     1.893063e-02
## 740  2020-05-28         0.019          0.1075004     3.345960e-02
## 742  2020-05-30         0.037          0.1075004     4.054403e-02
## 746  2020-06-03         0.036          0.1075004     5.074943e-02
## 751  2020-06-08         0.049          0.1075004     5.254847e-02
## 768  2020-06-25         0.163          0.1075004     1.253376e-01
## 774  2020-07-01         0.136          0.1075004     1.637666e-01
## 776  2020-07-03         0.136          0.1075004     1.541165e-01
## 777  2020-07-04         0.165          0.1075004     1.567269e-01
## 789  2020-07-16         0.215          0.1075004     2.689389e-01
## 795  2020-07-22         0.207          0.1075004     2.722396e-01
## 799  2020-07-26         0.256          0.1075004     2.947862e-01
## 802  2020-07-29         0.380          0.1075004     3.122654e-01
## 809  2020-08-05         0.309          0.1075004     3.336206e-01
## 812  2020-08-08         0.290          0.1075004     3.120647e-01
## 814  2020-08-10         0.312          0.1075004     3.195226e-01
## 819  2020-08-15         0.318          0.1075004     3.108111e-01
## 826  2020-08-22         0.400          0.1075004     3.203328e-01
## 831  2020-08-27         0.283          0.1075004     2.927406e-01
## 834  2020-08-30         0.300          0.1075004     2.981201e-01
## 838  2020-09-03         0.273          0.1075004     2.707961e-01
## 846  2020-09-11         0.243          0.1075004     2.303488e-01
## 847  2020-09-12         0.216          0.1075004     2.023215e-01
## 848  2020-09-13         0.190          0.1075004     2.177710e-01
## 851  2020-09-16         0.190          0.1075004     2.611305e-01
## 858  2020-09-23         0.349          0.1075004     1.549166e-01
## 859  2020-09-24         0.000          0.1075004     1.331951e-01
## 862  2020-09-27         0.192          0.1075004     1.583395e-01
## 864  2020-09-29         0.187          0.1075004     1.603368e-01
## 866  2020-10-01         0.198          0.1075004     1.767738e-01
## 868  2020-10-03         0.159          0.1075004     1.692243e-01
## 870  2020-10-05         0.132          0.1075004     1.480973e-01
## 876  2020-10-11         0.174          0.1075004     1.577459e-01
## 891  2020-10-26         0.194          0.1075004     1.694415e-01
## 892  2020-10-27         0.217          0.1075004     1.762970e-01
## 897  2020-11-01         0.201          0.1075004     1.787461e-01
## 911  2020-11-15         0.202          0.1075004     1.745441e-01
## 916  2020-11-20         0.168          0.1075004     1.840082e-01
## 917  2020-11-21         0.175          0.1075004     1.828145e-01
## 918  2020-11-22         0.183          0.1075004     1.818912e-01
## 919  2020-11-23         0.192          0.1075004     1.762781e-01
## 935  2020-12-09         0.150          0.1075004     1.888991e-01
## 936  2020-12-10         0.176          0.1075004     1.791708e-01
## 938  2020-12-12         0.197          0.1075004     1.736397e-01
## 946  2020-12-20         0.207          0.1075004     2.202041e-01
## 947  2020-12-21         0.205          0.1075004     2.175483e-01
## 949  2020-12-23         0.243          0.1075004     2.581864e-01
## 950  2020-12-24         0.280          0.1075004     2.575597e-01
## 961  2021-01-04         0.222          0.1075004     2.667969e-01
## 969  2021-01-12         0.331          0.1075004     3.817396e-01
## 972  2021-01-15         0.377          0.7794346     4.008797e-01
## 975  2021-01-18         0.373          0.1075004     3.625332e-01
## 984  2021-01-27         0.395          0.1075004     3.727989e-01
## 989  2021-02-01         0.289          0.1075004     3.050404e-01
## 992  2021-02-04         0.254          0.1075004     3.083418e-01
## 999  2021-02-11         0.250          0.1075004     2.358912e-01
## 1004 2021-02-16         0.163          0.1075004     1.980114e-01
## 1011 2021-02-23         0.144          0.1075004     1.471249e-01
## 1014 2021-02-26         0.122          0.1075004     1.417631e-01
## 1020 2021-03-04         0.107          0.1075004     1.067149e-01
## 1025 2021-03-09         0.078          0.1075004     1.048418e-01
## 1028 2021-03-12         0.092          0.1075004     1.040723e-01
## 1031 2021-03-15         0.100          0.1075004     9.471083e-02
## 1033 2021-03-17         0.130          0.1075004     1.196421e-01
## 1038 2021-03-22         0.120          0.1075004     1.275122e-01
## 1041 2021-03-25         0.125          0.1075004     1.433908e-01
## 1055 2021-04-08         0.247          0.1075004     2.966141e-01
## 1061 2021-04-14         0.337          0.2831279     3.656677e-01
## 1069 2021-04-22         0.430          0.2831279     4.309404e-01
## 1072 2021-04-25         0.465          0.2831279     4.115833e-01
## 1077 2021-04-30         0.490          0.2831279     4.349528e-01
## 1078 2021-05-01         0.272          0.2831279     4.644064e-01
## 1086 2021-05-09         0.495          0.2831279     4.629048e-01
## 1091 2021-05-14         0.490          0.2831279     4.708786e-01
## 1092 2021-05-15         0.530          0.2831279     4.981503e-01
## 1094 2021-05-17         0.509          0.1075004     4.827246e-01
## 1100 2021-05-23         0.496          0.2831279     5.105458e-01
## 1102 2021-05-25         0.459          0.2831279     5.042518e-01
## 1103 2021-05-26         0.514          0.2831279     5.134704e-01
## 1110 2021-06-02         0.511          0.2831279     5.447739e-01
## 1113 2021-06-05         0.532          0.2831279     5.436618e-01
## 1114 2021-06-06         0.539          0.2831279     5.336816e-01
## 1121 2021-06-13         0.586          0.2831279     5.787325e-01
## 1123 2021-06-15         0.599          0.2831279     5.684595e-01
## 1128 2021-06-20         0.599          0.2831279     5.870690e-01
## 1129 2021-06-21         0.648          0.2831279     6.132949e-01
## 1131 2021-06-23         0.645          0.2831279     6.461671e-01
## 1132 2021-06-24         0.689          0.2831279     6.673816e-01
## 1141 2021-07-03         0.591          0.2831279     5.761695e-01
## 1147 2021-07-09         0.576          0.2831279     5.525581e-01
## 1164 2021-07-26         0.314          0.1075004     3.080973e-01
## 1181 2021-08-12         0.144          0.1075004     1.464301e-01
## 1186 2021-08-17         0.108          0.1075004     1.209776e-01
## 1188 2021-08-19         0.120          0.1075004     1.184989e-01
## 1201 2021-09-01         0.071          0.1075004     6.702683e-02
## 1203 2021-09-03         0.061          0.1075004     6.406310e-02
## 1206 2021-09-06         0.053          0.1075004     4.058560e-02
## 1209 2021-09-09         0.053          0.1075004     5.656873e-02
## 1221 2021-09-21         0.038          0.1075004     3.210697e-02
## 1222 2021-09-22         0.044          0.1075004     3.453903e-02
## 1228 2021-09-28         0.041          0.1075004     3.593383e-02
## 1230 2021-09-30         0.038          0.1075004     3.237953e-02
## 1236 2021-10-06         0.032          0.1075004     3.084003e-02
## 1239 2021-10-09         0.033          0.1075004     3.596790e-02
## 1243 2021-10-13         0.034          0.1075004     3.120880e-02
## 1257 2021-10-27         0.026          0.1075004     3.228880e-02
## 1260 2021-10-30         0.033          0.1075004     3.571503e-02
## 1261 2021-10-31         0.023          0.1075004     3.650503e-02
## 1268 2021-11-07         0.045          0.1075004     3.746970e-02
## 1272 2021-11-11         0.040          0.1075004     4.233687e-02
## 1278 2021-11-17         0.047          0.1075004     3.987097e-02
## 1284 2021-11-23         0.050          0.1075004     4.743817e-02
## 1292 2021-12-01         0.058          0.1075004     4.203527e-02
## 1307 2020-01-27         0.000          0.1075004    -2.775558e-17
## 1311 2020-01-31         0.000          0.1075004    -3.352874e-17
## 1313 2020-02-02         0.000          0.1075004    -3.275158e-17
## 1314 2020-02-03         0.000          0.1075004    -3.397282e-17
## 1320 2020-02-09         0.000          0.1075004    -3.264056e-17
## 1327 2020-02-16         0.000          0.1075004     3.733333e-05
## 1332 2020-02-21         0.000          0.1075004     1.794333e-04
## 1336 2020-02-25         0.000          0.1075004     1.876000e-04
## 1337 2020-02-26         0.001          0.1075004     8.447333e-04
## 1340 2020-02-29         0.000          0.1075004     3.852333e-04
## 1348 2020-03-08         0.003          0.1075004     4.392667e-03
## 1353 2020-03-13         0.031          0.1075004     1.429613e-02
## 1356 2020-03-16         0.058          0.1075004     2.514177e-02
## 1368 2020-03-28         0.318          0.3836605     4.711112e-01
## 1373 2020-04-02         0.609          0.3836605     8.726719e-01
## 1383 2020-04-12         0.561          0.7794346     5.067348e-01
## 1385 2020-04-14         0.743          0.7794346     5.828823e-01
## 1386 2020-04-15         1.438          0.3836605     6.851814e-01
## 1400 2020-04-29         0.426          0.3836605     3.197367e-01
## 1410 2020-05-09         0.080          0.3836605     2.121807e-01
## 1412 2020-05-11         0.263          0.3836605     2.052425e-01
## 1415 2020-05-14         0.351          0.3836605     1.601466e-01
## 1424 2020-05-23         0.086          0.1075004     1.009292e-01
## 1435 2020-06-03         0.081          0.1075004     3.849803e-02
## 1437 2020-06-05         0.045          0.1075004     4.768070e-02
## 1438 2020-06-06         0.031          0.1075004     3.348127e-02
## 1444 2020-06-12         0.028          0.1075004     4.574630e-02
## 1446 2020-06-14         0.010          0.1075004     3.014643e-02
## 1452 2020-06-20         0.018          0.1075004     2.620987e-02
## 1456 2020-06-24         0.013          0.1075004     2.995770e-02
## 1457 2020-06-25         0.019          0.1075004     3.120180e-02
## 1459 2020-06-27         0.001          0.1075004     3.456363e-02
## 1463 2020-07-01         0.019          0.1075004     4.596150e-02
## 1469 2020-07-07         0.011          0.1075004     1.647360e-02
## 1470 2020-07-08         0.031          0.1075004     1.913157e-02
## 1473 2020-07-11         0.003          0.1075004     4.118667e-03
## 1477 2020-07-15         0.088          0.1075004     1.521370e-02
## 1492 2020-07-30         0.016          0.1075004     1.189490e-02
## 1494 2020-08-01         0.000          0.1075004     3.582567e-03
## 1513 2020-08-20         0.011          0.1075004     1.921320e-02
## 1514 2020-08-21         0.024          0.1075004     1.834687e-02
## 1520 2020-08-27         0.035          0.1075004     1.978567e-02
## 1532 2020-09-08         0.038          0.1075004     3.295793e-02
## 1533 2020-09-09         0.032          0.1075004     3.058937e-02
## 1535 2020-09-11         0.082          0.1075004     2.629157e-02
## 1540 2020-09-16         0.048          0.1075004     6.118870e-02
## 1541 2020-09-17         0.047          0.1075004     6.649590e-02
## 1553 2020-09-29         0.073          0.1075004     7.423967e-02
## 1555 2020-10-01         0.057          0.1075004     8.323047e-02
## 1559 2020-10-05         0.071          0.1075004     9.428340e-02
## 1561 2020-10-07         0.080          0.2831279     9.947917e-02
## 1567 2020-10-13         0.128          0.1075004     1.003734e-01
## 1570 2020-10-16         0.179          0.2831279     1.428967e-01
## 1579 2020-10-25        -0.021          0.3836605     2.134536e-01
## 1581 2020-10-27         0.528          0.2831279     3.554559e-01
## 1583 2020-10-29         0.233          0.2831279     2.771181e-01
## 1587 2020-11-02         0.428          0.9053733     8.435181e-01
## 1593 2020-11-08         0.270          0.2831279     3.601582e-01
## 1595 2020-11-10         1.231          0.2831279     6.745993e-01
## 1598 2020-11-13         0.933          0.2831279     6.499101e-01
## 1607 2020-11-22         0.214          0.3836605     3.619335e-01
## 1610 2020-11-25         0.388          0.2831279     4.671368e-01
## 1619 2020-12-04         0.630          0.3836605     5.826760e-01
## 1621 2020-12-06         0.174          0.3836605     1.929876e-01
## 1622 2020-12-07         0.366          0.3836605     3.702991e-01
## 1629 2020-12-14         0.376          0.3836605     3.793095e-01
## 1634 2020-12-19         0.189          0.2831279     2.883299e-01
## 1639 2020-12-24         0.291          0.2831279     3.692896e-01
## 1647 2021-01-01         0.133          0.2831279     4.100030e-01
## 1652 2021-01-06         0.282          0.2831279     2.883595e-01
## 1668 2021-01-22         0.649          0.2831279     6.017869e-01
## 1676 2021-01-30         0.241          0.2831279     2.146078e-01
## 1689 2021-02-12         0.645          0.2831279     5.672022e-01
## 1691 2021-02-14         0.167          0.2831279     1.662540e-01
## 1694 2021-02-17         0.310          0.2831279     3.200135e-01
## 1700 2021-02-23         0.431          0.2831279     5.478428e-01
## 1704 2021-02-27         0.185          0.2831279     1.769355e-01
## 1707 2021-03-02         0.418          0.2831279     4.111476e-01
## 1712 2021-03-07         0.130          0.2831279     1.535037e-01
## 1716 2021-03-11         0.265          0.2831279     3.003620e-01
## 1719 2021-03-14         0.141          0.2831279     1.544636e-01
## 1745 2021-04-09         0.331          0.3836605     3.503965e-01
## 1749 2021-04-13         0.345          0.2831279     3.954019e-01
## 1754 2021-04-18         0.140          0.2831279     1.775911e-01
## 1760 2021-04-24         0.217          0.2831279     1.999315e-01
## 1764 2021-04-28         0.315          0.2831279     2.961765e-01
## 1765 2021-04-29         0.306          0.2831279     2.875741e-01
## 1774 2021-05-08         0.176          0.2831279     1.687529e-01
## 1787 2021-05-21         0.123          0.3836605     1.637136e-01
## 1789 2021-05-23         0.071          0.3836605     9.823547e-02
## 1790 2021-05-24         0.062          0.3836605     1.617899e-01
## 1796 2021-05-30         0.044          0.3836605     9.249287e-02
## 1797 2021-05-31         0.126          0.3836605     9.554700e-02
## 1805 2021-06-08         0.075          0.3836605     9.371877e-02
## 1808 2021-06-11         0.074          0.3836605     8.297953e-02
## 1814 2021-06-17         0.056          0.1075004     6.227043e-02
## 1818 2021-06-21         0.040          0.1075004     5.421477e-02
## 1822 2021-06-25         0.033          0.1075004     4.227603e-02
## 1829 2021-07-02         0.024          0.1075004     3.677123e-02
## 1830 2021-07-03         0.017          0.1075004     2.853007e-02
## 1831 2021-07-04         0.011          0.1075004     2.354410e-02
## 1840 2021-07-13         0.054          0.1075004     3.427917e-02
## 1847 2021-07-20         0.033          0.2831279     3.407403e-02
## 1851 2021-07-24         0.022          0.2831279     3.951410e-02
## 1854 2021-07-27         0.029          0.2831279     4.286750e-02
## 1865 2021-08-07         0.032          0.2831279     5.346550e-02
## 1867 2021-08-09         0.084          0.1075004     9.660930e-02
## 1868 2021-08-10         0.080          0.2831279     7.170497e-02
## 1875 2021-08-17         0.124          0.2831279     1.220783e-01
## 1888 2021-08-30         0.151          0.3836605     1.396664e-01
## 1894 2021-09-05         0.049          0.3836605     6.434543e-02
## 1898 2021-09-09         0.095          0.2831279     1.116123e-01
## 1903 2021-09-14         0.209          0.1075004     1.011055e-01
## 1904 2021-09-15         0.016          0.1075004     9.275480e-02
## 1911 2021-09-22         0.080          0.1075004     8.610793e-02
## 1916 2021-09-27         0.099          0.1075004     7.314377e-02
## 1920 2021-10-01         0.061          0.1075004     5.429057e-02
## 1924 2021-10-05         0.071          0.1075004     5.595757e-02
## 1932 2021-10-13         0.053          0.1075004     4.639697e-02
## 1950 2021-10-31         0.013          0.1075004     1.391670e-02
## 1966 2021-11-16         0.048          0.2831279     6.345133e-02
## 1983 2021-12-03         0.129          0.2831279     1.117933e-01
## 1995 2020-01-29         0.000          0.1075004    -2.409184e-17
## 2000 2020-02-03         0.000          0.1075004    -2.864375e-17
## 2002 2020-02-05         0.000          0.1075004    -3.075318e-17
## 2006 2020-02-09         0.000          0.1075004    -2.897682e-17
## 2010 2020-02-13         0.000          0.1075004    -3.608225e-17
## 2014 2020-02-17         0.000          0.1075004    -3.719247e-17
## 2020 2020-02-23         0.000          0.1075004    -3.563816e-17
## 2024 2020-02-27         0.000          0.1075004     1.450000e-05
## 2027 2020-03-01         0.000          0.1075004     1.460000e-05
## 2037 2020-03-11         0.001          0.1075004     2.796767e-03
## 2044 2020-03-18         0.004          0.1075004     3.565630e-02
## 2051 2020-03-25         0.049          0.1075004     6.289020e-02
## 2063 2020-04-06         0.226          0.3836605     2.303950e-01
## 2068 2020-04-11        -0.031          0.3836605     1.917992e-01
## 2077 2020-04-20         0.276          0.3836605     1.707440e-01
## 2088 2020-05-01         0.113          0.3836605     1.511970e-01
## 2100 2020-05-13         0.123          0.1075004     7.435207e-02
## 2107 2020-05-20         0.063          0.1075004     5.579840e-02
## 2115 2020-05-28         0.042          0.1075004     4.616867e-02
## 2116 2020-05-29         0.034          0.1075004     3.028107e-02
## 2118 2020-05-31         0.010          0.1075004     2.291733e-02
## 2122 2020-06-04         0.033          0.1075004     2.774523e-02
## 2130 2020-06-12         0.011          0.1075004     1.822787e-02
## 2142 2020-06-24         0.014          0.1075004     1.540427e-02
## 2144 2020-06-26         0.025          0.1075004     1.273743e-02
## 2149 2020-07-01         0.005          0.1075004     9.586233e-03
## 2152 2020-07-04         0.010          0.1075004     7.474833e-03
## 2153 2020-07-05         0.003          0.1075004     5.821333e-03
## 2155 2020-07-07         0.010          0.1075004     8.337033e-03
## 2158 2020-07-10         0.006          0.1075004     8.990667e-03
## 2160 2020-07-12         0.001          0.1075004     4.848933e-03
## 2162 2020-07-14         0.004          0.1075004     5.964033e-03
## 2172 2020-07-24         0.010          0.1075004     4.266233e-03
## 2193 2020-08-14         0.013          0.1075004     5.643267e-03
## 2195 2020-08-16         0.000          0.1075004     2.381933e-03
## 2196 2020-08-17         0.001          0.1075004     2.738000e-03
## 2199 2020-08-20         0.014          0.1075004     5.300800e-03
## 2205 2020-08-26         0.004          0.1075004     7.631800e-03
## 2207 2020-08-28         0.000          0.1075004     5.887767e-03
## 2208 2020-08-29         0.009          0.1075004     5.479233e-03
## 2212 2020-09-02         0.015          0.1075004     5.780667e-03
## 2233 2020-09-23         0.018          0.1075004     9.574767e-03
## 2236 2020-09-26         0.008          0.1075004     6.095833e-03
## 2243 2020-10-03         0.013          0.1075004     1.010423e-02
## 2248 2020-10-08         0.012          0.1075004     2.660127e-02
## 2249 2020-10-09         0.005          0.1075004     2.519710e-02
## 2252 2020-10-12         0.014          0.1075004     3.928710e-02
## 2258 2020-10-18         0.013          0.1075004     1.983830e-02
## 2276 2020-11-05         0.161          0.2831279     1.927268e-01
## 2295 2020-11-24         0.372          0.2831279     3.759579e-01
## 2304 2020-12-03         0.438          0.2831279     4.649219e-01
## 2310 2020-12-09         0.458          0.2831279     4.477472e-01
## 2318 2020-12-17         0.754          0.7794346     6.589154e-01
## 2321 2020-12-20         0.229          0.3836605     3.373414e-01
## 2328 2020-12-27         0.351          0.3836605     4.062439e-01
## 2334 2021-01-02         0.330          0.3836605     5.511824e-01
## 2336 2021-01-04         0.957          0.3836605     7.250673e-01
## 2337 2021-01-05         1.009          0.7794346     9.617226e-01
## 2347 2021-01-15         0.498          0.3836605     5.826377e-01
## 2353 2021-01-21         0.866          0.3836605     7.429972e-01
## 2355 2021-01-23         0.160          0.3836605     6.980092e-01
## 2361 2021-01-29         0.403          0.3836605     8.031984e-01
## 2366 2021-02-03         0.784          0.3836605     8.278475e-01
## 2372 2021-02-09         0.815          0.3836605     5.064951e-01
## 2373 2021-02-10         0.666          0.3836605     6.605352e-01
## 2376 2021-02-13         0.219          0.3836605     3.145398e-01
## 2378 2021-02-15         0.181          0.3836605     4.395974e-01
## 2379 2021-02-16         0.541          0.3836605     4.858741e-01
## 2386 2021-02-23         0.422          0.3836605     4.309732e-01
## 2388 2021-02-25         0.173          0.3836605     5.417594e-01
## 2400 2021-03-09         0.298          0.3836605     2.559227e-01
## 2404 2021-03-13         0.021          0.3836605     1.333736e-01
## 2405 2021-03-14         0.094          0.3836605     1.051010e-01
## 2412 2021-03-21         0.049          0.3836605     9.658773e-02
## 2420 2021-03-29         0.180          0.3836605     2.533696e-01
## 2424 2021-04-02         0.117          0.3836605     2.593795e-01
## 2425 2021-04-03         0.070          0.3836605     1.617267e-01
## 2432 2021-04-10         0.107          0.2831279     1.760723e-01
## 2435 2021-04-13         0.341          0.2831279     3.411782e-01
## 2436 2021-04-14         0.290          0.2831279     3.329547e-01
## 2437 2021-04-15         0.245          0.2831279     2.792793e-01
## 2447 2021-04-25         0.061          0.3836605     1.445056e-01
## 2459 2021-05-07         0.234          0.3836605     2.536054e-01
## 2469 2021-05-17         0.220          0.3836605     2.048985e-01
## 2471 2021-05-19         0.237          0.3836605     2.489752e-01
## 2475 2021-05-23         0.044          0.3836605     6.992360e-02
## 2477 2021-05-25         0.272          0.3836605     1.445571e-01
## 2484 2021-06-01         0.180          0.3836605     1.474504e-01
## 2489 2021-06-06         0.021          0.1075004     5.633550e-02
## 2492 2021-06-09         0.095          0.1075004     1.044479e-01
## 2517 2021-07-04        -0.001          0.1075004     7.599600e-03
## 2521 2021-07-08         0.049          0.1075004     3.211460e-02
## 2526 2021-07-13         0.027          0.1075004     3.456617e-02
## 2531 2021-07-18         0.001          0.1075004     4.805767e-03
## 2532 2021-07-19         0.034          0.1075004     2.165170e-02
## 2533 2021-07-20         0.019          0.1075004     2.645313e-02
## 2538 2021-07-25         0.003          0.1075004     6.166100e-03
## 2540 2021-07-27         0.019          0.1075004     2.194453e-02
## 2543 2021-07-30         0.041          0.1075004     9.307867e-03
## 2547 2021-08-03         0.025          0.1075004     1.818830e-02
## 2550 2021-08-06         0.024          0.1075004     1.953957e-02
## 2555 2021-08-11         0.017          0.1075004     2.168030e-02
## 2556 2021-08-12         0.019          0.1075004     2.315590e-02
## 2561 2021-08-17         0.022          0.1075004     2.857117e-02
## 2565 2021-08-21         0.003          0.1075004     2.015577e-02
## 2573 2021-08-29         0.010          0.1075004     3.594600e-02
## 2577 2021-09-02         0.045          0.1075004     3.830093e-02
## 2578 2021-09-03         0.024          0.1075004     4.358973e-02
## 2581 2021-09-06         0.059          0.1075004     5.357743e-02
## 2584 2021-09-09         0.096          0.2831279     1.227643e-01
## 2590 2021-09-15         0.067          0.1075004     6.512460e-02
## 2595 2021-09-20         0.081          0.1075004     7.533200e-02
## 2614 2021-10-09         0.024          0.1075004     3.200167e-02
## 2616 2021-10-11         0.095          0.1075004     7.331123e-02
## 2626 2021-10-21         0.109          0.2831279     8.995930e-02
## 2642 2021-11-06         0.037          0.2831279     1.146104e-01
## 2645 2021-11-09         0.237          0.2831279     1.935641e-01
## 2648 2021-11-12         0.229          0.2831279     1.799088e-01
## 2660 2021-11-24         0.350          0.9053733     4.770642e-01
## 2661 2021-11-25         0.357          0.9053733     5.000040e-01
## 2662 2021-11-26         0.303          0.2831279     3.657203e-01
## 2664 2021-11-28         0.073          0.2831279     1.545201e-01
## 2666 2021-11-30         0.444          0.9053733     5.331574e-01
## 2670 2021-12-04         0.092          0.7794346     7.696072e-01
## 2682 2020-02-02         0.000          0.1075004     3.138000e-03
## 2686 2020-02-06         0.000          0.1075004    -3.574918e-17
## 2695 2020-02-15         0.000          0.1075004    -3.841372e-17
## 2697 2020-02-17         0.000          0.1075004    -3.652634e-17
## 2700 2020-02-20         0.000          0.1075004    -3.574918e-17
## 2712 2020-03-03         0.000          0.1075004    -3.752554e-17
## 2718 2020-03-09         0.000          0.1075004    -2.686740e-17
## 2724 2020-03-15         0.000          0.1075004     3.030333e-04
## 2729 2020-03-20         0.001          0.1075004     1.388100e-03
## 2730 2020-03-21        -0.001          0.1075004     1.310233e-03
## 2732 2020-03-23         0.003          0.1075004     2.713267e-03
## 2733 2020-03-24         0.000          0.1075004     2.744733e-03
## 2735 2020-03-26         0.008          0.1075004     2.395033e-03
## 2741 2020-04-01         0.023          0.1075004     2.081000e-02
## 2743 2020-04-03         0.000          0.1075004     1.647980e-02
## 2749 2020-04-09         0.048          0.1075004     2.751257e-02
## 2765 2020-04-25         0.045          0.1075004     5.791597e-02
## 2766 2020-04-26         0.056          0.1075004     5.369720e-02
## 2770 2020-04-30         0.075          0.1075004     6.554263e-02
## 2775 2020-05-05         0.127          0.1075004     1.112540e-01
## 2776 2020-05-06         0.092          0.1075004     1.216963e-01
## 2777 2020-05-07         0.104          0.1075004     1.051696e-01
## 2786 2020-05-16         0.118          0.1075004     1.336680e-01
## 2797 2020-05-27         0.190          0.1075004     1.870084e-01
## 2800 2020-05-30         0.205          0.1075004     2.534714e-01
## 2803 2020-06-02         0.221          0.1075004     4.906991e-01
## 2806 2020-06-05         0.286          0.1075004     2.893202e-01
## 2808 2020-06-07         0.261          0.1075004     3.562408e-01
## 2815 2020-06-14         0.325          0.1075004     4.216213e-01
## 2819 2020-06-18         0.336          0.1075004     4.807245e-01
## 2821 2020-06-20         0.306          0.1075004     4.451001e-01
## 2825 2020-06-24         0.418          0.7794346     4.879239e-01
## 2826 2020-06-25         0.407          0.7794346     4.967266e-01
## 2827 2020-06-26         0.384          0.7794346     4.838627e-01
## 2843 2020-07-12         0.501          0.7794346     5.234780e-01
## 2852 2020-07-21         0.650          0.7794346     6.519474e-01
## 2856 2020-07-25         0.702          0.7794346     7.393691e-01
## 2859 2020-07-28         0.785          0.7794346     7.979754e-01
## 2870 2020-08-08         0.861          0.7794346     9.162731e-01
## 2874 2020-08-12         0.942          0.9053733     9.168061e-01
## 2876 2020-08-14         0.996          0.7794346     9.452132e-01
## 2880 2020-08-18         1.091          0.7794346     9.622910e-01
## 2882 2020-08-20         0.983          0.9053733     9.864560e-01
## 2895 2020-09-02         1.043          0.9053733     1.088590e+00
## 2896 2020-09-03         1.096          0.9053733     1.106720e+00
## 2899 2020-09-06         1.016          0.9053733     1.071045e+00
## 2902 2020-09-09         1.172          0.9053733     1.153640e+00
## 2913 2020-09-20         1.130          0.9053733     1.073057e+00
## 2916 2020-09-23         1.129          0.9053733     1.132168e+00
## 2918 2020-09-25         1.089          0.9053733     1.148998e+00
## 2921 2020-09-28         0.776          0.9053733     1.060681e+00
## 2931 2020-10-08         0.964          0.9053733     9.629609e-01
## 2932 2020-10-09         0.926          0.9053733     9.470137e-01
## 2935 2020-10-12         0.706          0.2831279     7.716035e-01
## 2942 2020-10-19         0.587          0.2831279     5.821300e-01
## 2948 2020-10-25         0.480          0.2831279     5.125298e-01
## 2954 2020-10-31         0.470          0.2831279     5.478075e-01
## 2959 2020-11-05         0.670          0.2831279     5.647721e-01
## 2966 2020-11-12         0.547          0.2831279     5.283691e-01
## 2968 2020-11-14         0.447          0.2831279     5.044685e-01
## 2969 2020-11-15         0.435          0.2831279     4.572431e-01
## 2972 2020-11-18         0.585          0.2831279     5.360158e-01
## 2980 2020-11-26         0.492          0.2831279     5.175132e-01
## 2982 2020-11-28         0.496          0.2831279     5.004991e-01
## 2989 2020-12-05         0.482          0.2831279     4.641739e-01
## 2990 2020-12-06         0.391          0.2831279     4.147716e-01
## 3000 2020-12-16         0.355          0.2831279     3.468242e-01
## 3003 2020-12-19         0.341          0.2831279     3.491986e-01
## 3018 2021-01-03         0.214          0.2831279     2.158558e-01
## 3023 2021-01-08         0.000          0.1075004     2.071673e-02
## 3027 2021-01-12         0.202          0.1075004     2.094753e-01
## 3047 2021-02-01         0.094          0.1075004     9.681230e-02
## 3056 2021-02-10         0.108          0.1075004     9.712073e-02
## 3070 2021-02-24         0.138          0.2831279     1.350296e-01
## 3071 2021-02-25         0.120          0.2831279     1.346390e-01
## 3075 2021-03-01         0.091          0.1075004     1.449468e-01
## 3076 2021-03-02         0.098          0.1075004     1.558566e-01
## 3083 2021-03-09         0.133          0.2831279     1.630767e-01
## 3084 2021-03-10         0.126          0.2831279     1.285534e-01
## 3090 2021-03-16         0.188          0.2831279     1.724726e-01
## 3097 2021-03-23         0.275          0.2831279     2.229339e-01
## 3098 2021-03-24         0.251          0.2831279     2.803351e-01
## 3107 2021-04-02         0.714          0.9053733     6.237336e-01
## 3110 2021-04-05         0.446          0.9053733     6.539509e-01
## 3112 2021-04-07         0.685          0.9053733     7.807093e-01
## 3123 2021-04-18         1.619          2.4070561     1.414763e+00
## 3124 2021-04-19         1.761          2.4070561     1.824239e+00
## 3128 2021-04-23         2.624          2.4070561     2.497957e+00
## 3130 2021-04-25         2.812          2.4070561     2.668765e+00
## 3137 2021-05-02         3.417          3.6000806     3.350146e+00
## 3138 2021-05-03         3.449          3.6000806     3.547405e+00
## 3140 2021-05-05         3.980          3.6000806     3.900702e+00
## 3146 2021-05-11         4.205          3.6000806     4.033232e+00
## 3164 2021-05-29         3.460          3.6000806     4.087364e+00
## 3172 2021-06-06         2.427          3.6000806     2.966842e+00
## 3174 2021-06-08         2.219          3.6000806     4.580507e+00
## 3175 2021-06-09         2.177          3.6000806     4.580871e+00
## 3186 2021-06-20         1.427          0.7794346     1.169153e+00
## 3187 2021-06-21         1.167          0.7794346     1.401571e+00
## 3191 2021-06-25         1.183          0.7794346     1.323154e+00
## 3193 2021-06-27         0.979          0.7794346     9.598142e-01
## 3196 2021-06-30         1.005          0.7794346     1.072704e+00
## 3202 2021-07-06         0.930          0.7794346     8.638549e-01
## 3211 2021-07-15         0.542          0.7794346     6.694720e-01
## 3215 2021-07-19         0.374          0.7794346     1.722717e+00
## 3223 2021-07-27         0.640          0.2831279     5.534033e-01
## 3227 2021-07-31         0.541          0.2831279     5.326621e-01
## 3228 2021-08-01         0.422          0.2831279     4.567811e-01
## 3243 2021-08-16         0.437          0.2831279     3.820483e-01
## 3245 2021-08-18         0.530          0.2831279     4.993461e-01
## 3246 2021-08-19         0.540          0.2831279     4.841822e-01
## 3247 2021-08-20         0.375          0.2831279     4.997431e-01
## 3252 2021-08-25         0.607          0.2831279     5.003659e-01
## 3255 2021-08-28         0.460          0.2831279     4.633446e-01
## 3268 2021-09-10         0.308          0.2831279     2.835779e-01
## 3275 2021-09-17         0.281          0.2831279     3.058574e-01
## 3286 2021-09-28         0.378          0.2831279     2.680501e-01
## 3288 2021-09-30         0.277          0.2831279     2.963132e-01
## 3292 2021-10-04         0.263          0.2831279     2.312946e-01
## 3299 2021-10-11         0.181          0.1075004     1.757495e-01
## 3311 2021-10-23         0.561          0.1075004     4.785737e-01
## 3313 2021-10-25         0.356          0.1075004     2.976399e-01
## 3314 2021-10-26         0.585          0.1075004     4.061853e-01
## 3324 2021-11-05         0.392          0.1075004     3.996265e-01
## 3327 2021-11-08         0.332          0.1075004     2.970752e-01
## 3328 2021-11-09         0.460          0.1075004     3.291996e-01
## 3338 2021-11-19         0.267          0.1075004     4.429341e-01
## 3340 2021-11-21         0.249          0.1075004     2.424100e-01
## 3345 2021-11-26         0.465          0.1075004     4.513637e-01
## 3348 2021-11-29         0.190          0.1075004     2.137181e-01
## 3350 2021-12-01         0.477          0.1075004     3.591614e-01
## 3364 2020-02-02         0.000          0.1075004    -3.230749e-17
## 3365 2020-02-03         0.000          0.1075004    -3.186340e-17
## 3366 2020-02-04         0.000          0.1075004    -3.175238e-17
## 3369 2020-02-07         0.000          0.1075004    -2.764455e-17
## 3370 2020-02-08         0.000          0.1075004    -3.896883e-17
## 3376 2020-02-14         0.000          0.1075004    -3.508305e-17
## 3386 2020-02-24         0.004          0.1075004     3.566033e-03
## 3387 2020-02-25         0.003          0.1075004     3.551200e-03
## 3388 2020-02-26         0.002          0.1075004     3.971167e-03
## 3390 2020-02-28         0.004          0.1075004     5.503533e-03
## 3391 2020-02-29         0.008          0.1075004     9.459700e-03
## 3392 2020-03-01         0.005          0.1075004     1.060737e-02
## 3393 2020-03-02         0.018          0.1075004     2.216157e-02
## 3396 2020-03-05         0.041          0.1075004     3.476517e-02
## 3408 2020-03-17         0.345          0.1075004     4.686965e-01
## 3415 2020-03-24         0.743          0.3836605     7.831372e-01
## 3431 2020-04-09         0.610          0.3836605     6.277979e-01
## 3432 2020-04-10         0.570          0.3836605     6.436754e-01
## 3447 2020-04-25         0.415          0.1075004     3.650212e-01
## 3451 2020-04-29         0.323          0.1075004     3.838430e-01
## 3467 2020-05-15         0.242          0.1075004     1.849616e-01
## 3469 2020-05-17         0.145          0.1075004     1.430301e-01
## 3478 2020-05-26         0.078          0.1075004     8.858900e-02
## 3480 2020-05-28         0.070          0.1075004     9.940257e-02
## 3481 2020-05-29         0.087          0.1075004     1.035177e-01
## 3489 2020-06-06         0.072          0.1075004     8.244540e-02
## 3496 2020-06-13         0.078          0.1075004     5.633417e-02
## 3497 2020-06-14         0.044          0.1075004     4.013377e-02
## 3506 2020-06-23         0.018          0.1075004     2.033897e-02
## 3511 2020-06-28         0.022          0.1075004     1.563670e-02
## 3512 2020-06-29         0.006          0.1075004     1.730313e-02
## 3519 2020-07-06         0.008          0.1075004     1.515910e-02
## 3538 2020-07-25         0.005          0.1075004     7.622600e-03
## 3548 2020-08-04         0.005          0.1075004     9.425767e-03
## 3552 2020-08-08         0.013          0.1075004     5.762900e-03
## 3553 2020-08-09         0.002          0.1075004     5.061833e-03
## 3554 2020-08-10         0.004          0.1075004     6.143167e-03
## 3559 2020-08-15         0.158          0.1075004     4.890067e-03
## 3560 2020-08-16         0.004          0.1075004     4.866933e-03
## 3564 2020-08-20         0.006          0.1075004     5.914400e-03
## 3570 2020-08-26         0.013          0.1075004     7.642367e-03
## 3575 2020-08-31         0.006          0.1075004     7.449767e-03
## 3578 2020-09-03         0.010          0.1075004     1.115540e-02
## 3590 2020-09-15         0.009          0.1075004     1.248807e-02
## 3605 2020-09-30         0.019          0.1075004     2.277273e-02
## 3611 2020-10-06         0.028          0.1075004     3.464563e-02
## 3615 2020-10-10         0.029          0.1075004     2.743530e-02
## 3619 2020-10-14         0.043          0.1075004     5.408163e-02
## 3624 2020-10-19         0.073          0.1075004     7.828457e-02
## 3628 2020-10-23         0.091          0.2831279     1.753950e-01
## 3629 2020-10-24         0.151          0.2831279     1.607790e-01
## 3631 2020-10-26         0.141          0.2831279     1.816321e-01
## 3632 2020-10-27         0.221          0.2831279     2.156756e-01
## 3633 2020-10-28         0.205          0.2831279     2.259584e-01
## 3635 2020-10-30         0.199          0.2831279     2.538516e-01
## 3636 2020-10-31         0.297          0.2831279     2.216608e-01
## 3639 2020-11-03         0.353          0.2831279     2.898099e-01
## 3640 2020-11-04         0.352          0.2831279     2.647594e-01
## 3641 2020-11-05         0.428          0.2831279     2.706286e-01
## 3644 2020-11-08         0.331          0.7794346     4.965473e-01
## 3669 2020-12-03         0.993          0.7794346     6.818615e-01
## 3672 2020-12-06         0.564          0.7794346     6.170816e-01
## 3680 2020-12-14         0.491          0.3836605     4.594429e-01
## 3681 2020-12-15         0.846          0.3836605     6.187777e-01
## 3682 2020-12-16         0.680          0.7794346     6.146942e-01
## 3685 2020-12-19         0.553          0.7794346     5.483218e-01
## 3692 2020-12-26         0.261          0.3836605     4.234248e-01
## 3699 2021-01-02         0.364          0.3836605     4.455949e-01
## 3701 2021-01-04         0.348          0.3836605     4.181978e-01
## 3705 2021-01-08         0.620          0.2831279     4.806967e-01
## 3706 2021-01-09         0.483          0.2831279     4.010568e-01
## 3707 2021-01-10         0.361          0.2831279     3.749708e-01
## 3708 2021-01-11         0.448          0.3836605     3.760880e-01
## 3710 2021-01-13         0.507          0.3836605     4.670891e-01
## 3713 2021-01-16         0.475          0.2831279     3.936953e-01
## 3714 2021-01-17         0.377          0.3836605     3.148559e-01
## 3717 2021-01-20         0.524          0.3836605     4.891892e-01
## 3721 2021-01-24         0.299          0.3836605     3.161786e-01
## 3727 2021-01-30         0.421          0.3836605     3.700071e-01
## 3729 2021-02-01         0.329          0.3836605     3.495340e-01
## 3737 2021-02-09         0.422          0.3836605     4.185492e-01
## 3738 2021-02-10         0.336          0.3836605     3.816329e-01
## 3742 2021-02-14         0.221          0.1075004     2.611962e-01
## 3745 2021-02-17         0.369          0.1075004     3.480381e-01
## 3747 2021-02-19         0.348          0.1075004     3.339621e-01
## 3765 2021-03-09         0.376          0.2831279     3.825481e-01
## 3768 2021-03-12         0.380          0.2831279     3.767920e-01
## 3771 2021-03-15         0.354          0.3836605     3.674291e-01
## 3772 2021-03-16         0.502          0.2831279     4.083305e-01
## 3773 2021-03-17         0.431          0.2831279     3.832004e-01
## 3774 2021-03-18         0.423          0.2831279     3.885726e-01
## 3779 2021-03-23         0.551          0.2831279     4.709131e-01
## 3780 2021-03-24         0.460          0.2831279     4.324149e-01
## 3782 2021-03-26         0.457          0.2831279     4.782295e-01
## 3787 2021-03-31         0.467          0.2831279     4.354175e-01
## 3788 2021-04-01         0.501          0.2831279     4.616995e-01
## 3792 2021-04-05         0.296          0.3836605     4.187313e-01
## 3804 2021-04-17         0.310          0.3836605     3.637922e-01
## 3805 2021-04-18         0.251          0.3836605     2.907249e-01
## 3807 2021-04-20         0.390          0.3836605     4.438280e-01
## 3814 2021-04-27         0.373          0.3836605     3.783362e-01
## 3816 2021-04-29         0.288          0.3836605     3.647230e-01
## 3822 2021-05-05         0.267          0.3836605     2.753486e-01
## 3825 2021-05-08         0.224          0.3836605     2.140196e-01
## 3836 2021-05-19         0.149          0.1075004     1.891481e-01
## 3838 2021-05-21         0.218          0.1075004     1.589248e-01
## 3839 2021-05-22         0.125          0.1075004     1.389388e-01
## 3841 2021-05-24         0.110          0.1075004     1.199700e-01
## 3842 2021-05-25         0.166          0.1075004     1.329994e-01
## 3848 2021-05-31         0.082          0.1075004     1.053778e-01
## 3856 2021-06-08         0.102          0.1075004     8.084730e-02
## 3860 2021-06-12         0.052          0.1075004     6.419687e-02
## 3862 2021-06-14         0.036          0.1075004     3.974003e-02
## 3863 2021-06-15         0.063          0.1075004     5.409530e-02
## 3865 2021-06-17         0.037          0.1075004     4.108387e-02
## 3877 2021-06-29         0.042          0.1075004     2.759490e-02
## 3878 2021-06-30         0.024          0.1075004     2.009163e-02
## 3879 2021-07-01         0.021          0.1075004     1.985907e-02
## 3880 2021-07-02         0.028          0.1075004     2.169900e-02
## 3881 2021-07-03         0.022          0.1075004     1.809980e-02
## 3894 2021-07-16         0.011          0.1075004     1.272127e-02
## 3897 2021-07-19         0.007          0.1075004     1.986750e-02
## 3898 2021-07-20         0.010          0.1075004     2.521860e-02
## 3902 2021-07-24         0.005          0.1075004     1.611790e-02
## 3904 2021-07-26         0.022          0.1075004     2.064240e-02
## 3906 2021-07-28         0.015          0.1075004     2.426100e-02
## 3907 2021-07-29         0.019          0.1075004     2.257890e-02
## 3911 2021-08-02         0.020          0.1075004     2.217547e-02
## 3915 2021-08-06         0.024          0.1075004     2.738957e-02
## 3916 2021-08-07         0.022          0.1075004     2.768917e-02
## 3920 2021-08-11         0.031          0.1075004     3.708053e-02
## 3927 2021-08-18         0.069          0.1075004     5.138117e-02
## 3929 2021-08-20         0.049          0.1075004     4.885060e-02
## 3933 2021-08-24         0.060          0.1075004     5.389213e-02
## 3936 2021-08-27         0.045          0.1075004     5.267927e-02
## 3937 2021-08-28         0.054          0.1075004     4.398467e-02
## 3938 2021-08-29         0.037          0.1075004     3.689050e-02
## 3942 2021-09-02         0.062          0.1075004     6.019920e-02
## 3944 2021-09-04         0.056          0.1075004     5.575700e-02
## 3949 2021-09-09         0.059          0.1075004     6.572477e-02
## 3952 2021-09-12         0.034          0.1075004     4.168913e-02
## 3967 2021-09-27         0.045          0.1075004     4.372783e-02
## 3980 2021-10-10         0.027          0.1075004     3.410040e-02
## 3989 2021-10-19         0.070          0.1075004     3.995413e-02
## 3990 2021-10-20         0.033          0.1075004     4.024480e-02
## 3995 2021-10-25         0.030          0.1075004     3.484120e-02
## 3996 2021-10-26         0.048          0.1075004     4.425223e-02
## 4004 2021-11-03         0.063          0.1075004     5.230387e-02
## 4009 2021-11-08         0.032          0.1075004     4.911857e-02
## 4014 2021-11-13         0.053          0.1075004     5.173493e-02
## 4016 2021-11-15         0.044          0.1075004     5.357017e-02
## 4020 2021-11-19         0.048          0.1075004     6.234827e-02
## 4024 2021-11-23         0.083          0.1075004     7.805807e-02
## 4036 2021-12-05         0.043          0.1075004     1.043499e-01
## 4037 2021-12-06         0.092          0.1075004     1.267999e-01
## 4038 2021-12-07         0.099          0.1075004     1.132311e-01
## 4045 2020-02-01         0.000          0.1075004    -3.597123e-17
## 4055 2020-02-11         0.000          0.1075004    -3.608225e-17
## 4060 2020-02-16         0.000          0.1075004    -3.497203e-17
## 4070 2020-02-26         0.000          0.1075004    -3.463896e-17
## 4074 2020-03-01         0.000          0.1075004    -3.441691e-17
## 4080 2020-03-07         0.000          0.1075004     1.280200e-02
## 4083 2020-03-10         0.000          0.1075004     1.027200e-02
## 4086 2020-03-13         0.000          0.1075004     9.343400e-03
## 4095 2020-03-22         0.000          0.1075004     1.593333e-04
## 4098 2020-03-25         0.002          0.1075004     5.287000e-04
## 4106 2020-04-02         0.006          0.1075004     1.076320e-02
## 4109 2020-04-05         0.002          0.1075004     1.039413e-02
## 4110 2020-04-06         0.002          0.1075004     1.292463e-02
## 4112 2020-04-08         0.005          0.1075004     1.530817e-02
## 4115 2020-04-11         0.012          0.1075004     1.953737e-02
## 4118 2020-04-14         0.022          0.1075004     3.040527e-02
## 4122 2020-04-18         0.040          0.1075004     5.047347e-02
## 4123 2020-04-19         0.048          0.1075004     5.998933e-02
## 4131 2020-04-27         0.047          0.1075004     7.340270e-02
## 4147 2020-05-13         0.096          0.1075004     1.058270e-01
## 4150 2020-05-16         0.119          0.1075004     1.264059e-01
## 4154 2020-05-20         0.135          0.1075004     1.412254e-01
## 4160 2020-05-26         0.174          0.1075004     1.460566e-01
## 4168 2020-06-03         0.177          0.1075004     1.815036e-01
## 4169 2020-06-04         0.168          0.1075004     1.831999e-01
## 4170 2020-06-05         0.144          0.1075004     1.920447e-01
## 4174 2020-06-09         0.171          0.1075004     1.716754e-01
## 4184 2020-06-19         0.181          0.1075004     1.849733e-01
## 4189 2020-06-24         0.154          0.1075004     1.709401e-01
## 4193 2020-06-28         0.102          0.1075004     1.228250e-01
## 4197 2020-07-02         0.147          0.1075004     1.596813e-01
## 4204 2020-07-09         0.176          0.1075004     1.722652e-01
## 4209 2020-07-14         0.175          0.1075004     1.577173e-01
## 4216 2020-07-21         0.153          0.1075004     1.497621e-01
## 4224 2020-07-29         0.167          0.1075004     1.469700e-01
## 4225 2020-07-30         0.128          0.1075004     1.425631e-01
## 4230 2020-08-04         0.144          0.1075004     1.207296e-01
## 4231 2020-08-05         0.138          0.1075004     1.208844e-01
## 4234 2020-08-08         0.129          0.1075004     1.136697e-01
## 4235 2020-08-09         0.076          0.1075004     7.529550e-02
## 4236 2020-08-10         0.070          0.1075004     7.179563e-02
## 4239 2020-08-13         0.122          0.1075004     1.162536e-01
## 4241 2020-08-15         0.118          0.1075004     1.130655e-01
## 4247 2020-08-21         0.090          0.1075004     1.195446e-01
## 4249 2020-08-23         0.073          0.1075004     6.918727e-02
## 4252 2020-08-26         0.114          0.1075004     1.170273e-01
## 4255 2020-08-29         0.111          0.1075004     1.118923e-01
## 4258 2020-09-01         0.122          0.1075004     1.180169e-01
## 4263 2020-09-06         0.061          0.1075004     7.374470e-02
## 4266 2020-09-09         0.141          0.1075004     1.195714e-01
## 4269 2020-09-12         0.117          0.1075004     1.099663e-01
## 4272 2020-09-15         0.150          0.1075004     1.229489e-01
## 4275 2020-09-18         0.132          0.1075004     1.375539e-01
## 4278 2020-09-21         0.071          0.1075004     8.287520e-02
## 4283 2020-09-26         0.167          0.1075004     1.459671e-01
## 4288 2020-10-01         0.166          0.1075004     1.803193e-01
## 4289 2020-10-02         0.185          0.1075004     2.203394e-01
## 4299 2020-10-12         0.123          0.1075004     1.620583e-01
## 4303 2020-10-16         0.230          0.1075004     2.855673e-01
## 4307 2020-10-20         0.268          0.1075004     3.383482e-01
## 4317 2020-10-30         0.351          0.8035981     3.565329e-01
## 4320 2020-11-02         0.238          0.8035981     2.580298e-01
## 4325 2020-11-07         0.356          0.8035981     3.654234e-01
## 4332 2020-11-14         0.380          0.8035981     4.167162e-01
## 4336 2020-11-18         0.449          0.8035981     4.358083e-01
## 4337 2020-11-19         0.457          0.8035981     4.508493e-01
## 4349 2020-12-01         0.559          0.8035981     5.258866e-01
## 4352 2020-12-04         0.557          0.8035981     5.289225e-01
## 4356 2020-12-08         0.552          0.8035981     5.414559e-01
## 4360 2020-12-12         0.553          0.8035981     5.629571e-01
## 4363 2020-12-15         0.564          0.8035981     5.427457e-01
## 4365 2020-12-17         0.574          0.8035981     5.764235e-01
## 4369 2020-12-21         0.481          0.8035981     4.909960e-01
## 4370 2020-12-22         0.551          0.8035981     5.509094e-01
## 4378 2020-12-30         0.585          0.8035981     5.535709e-01
## 4401 2021-01-22         0.566          0.8035981     5.531245e-01
## 4404 2021-01-25         0.444          0.8035981     4.630421e-01
## 4409 2021-01-30         0.502          0.8035981     5.296614e-01
## 4411 2021-02-01         0.427          0.8035981     4.758389e-01
## 4423 2021-02-13         0.492          0.1075004     5.087867e-01
## 4424 2021-02-14         0.422          0.1075004     4.086814e-01
## 4428 2021-02-18         0.469          0.1075004     4.535042e-01
## 4429 2021-02-19         0.461          0.1075004     4.518979e-01
## 4435 2021-02-25         0.437          0.1075004     4.163724e-01
## 4437 2021-02-27         0.430          0.1075004     4.316139e-01
## 4442 2021-03-04         0.467          0.1075004     4.183503e-01
## 4443 2021-03-05         0.453          0.1075004     4.176588e-01
## 4444 2021-03-06         0.432          0.1075004     4.128944e-01
## 4454 2021-03-16         0.437          0.1075004     3.978043e-01
## 4461 2021-03-23         0.419          0.1075004     3.837293e-01
## 4466 2021-03-28         0.331          0.1075004     3.391719e-01
## 4471 2021-04-02         0.392          0.1075004     3.833330e-01
## 4472 2021-04-03         0.377          0.1075004     3.829798e-01
## 4473 2021-04-04         0.350          0.1075004     3.258332e-01
## 4474 2021-04-05         0.336          0.1075004     3.143173e-01
## 4475 2021-04-06         0.382          0.1075004     3.432920e-01
## 4483 2021-04-14         0.393          0.1075004     3.814048e-01
## 4486 2021-04-17         0.392          0.1075004     3.842798e-01
## 4489 2021-04-20         0.372          0.1075004     3.502797e-01
## 4495 2021-04-26         0.349          0.1075004     3.296192e-01
## 4499 2021-04-30         0.388          0.1075004     3.838333e-01
## 4522 2021-05-23         0.353          0.1075004     3.634990e-01
## 4529 2021-05-30         0.349          0.1075004     3.711071e-01
## 4531 2021-06-01         0.366          0.1075004     3.730903e-01
## 4542 2021-06-12         0.393          0.1075004     3.816965e-01
## 4545 2021-06-15         0.374          0.1075004     3.621529e-01
## 4552 2021-06-22         0.539          0.8035981     5.144127e-01
## 4557 2021-06-27         0.591          0.8035981     5.455758e-01
## 4558 2021-06-28         0.601          0.8035981     5.213838e-01
## 4559 2021-06-29         0.643          0.8035981     6.168075e-01
## 4564 2021-07-04         0.650          0.8035981     6.474378e-01
## 4569 2021-07-09         0.715          0.8035981     7.689863e-01
## 4577 2021-07-17         0.776          0.8035981     7.433441e-01
## 4586 2021-07-26         0.717          0.8035981     7.549351e-01
## 4590 2021-07-30         0.776          0.8035981     7.732087e-01
## 4592 2021-08-01         0.774          0.8035981     7.717688e-01
## 4607 2021-08-16         0.789          0.8035981     7.611133e-01
## 4608 2021-08-17         0.785          0.8035981     7.718069e-01
## 4612 2021-08-21         0.777          0.8035981     7.738187e-01
## 4628 2021-09-06         0.776          0.8035981     7.457133e-01
## 4631 2021-09-09         0.775          0.8035981     7.729683e-01
## 4634 2021-09-12         0.773          0.8035981     7.369796e-01
## 4645 2021-09-23         0.802          0.8035981     6.723889e-01
## 4646 2021-09-24         0.810          0.8035981     7.970494e-01
## 4648 2021-09-26         0.795          0.8035981     7.896168e-01
## 4651 2021-09-29         0.846          0.8035981     8.176412e-01
## 4653 2021-10-01         0.875          0.8035981     8.401455e-01
## 4656 2021-10-04         0.877          0.8035981     8.039440e-01
## 4657 2021-10-05         0.876          0.8035981     8.740622e-01
## 4666 2021-10-14         0.965          0.8035981     9.352567e-01
## 4674 2021-10-22         1.038          0.8035981     1.024421e+00
## 4675 2021-10-23         1.048          0.8035981     1.022614e+00
## 4678 2021-10-26         1.075          0.8035981     1.065184e+00
## 4681 2021-10-29         1.145          0.8035981     1.090142e+00
## 4682 2021-10-30         1.132          0.8035981     1.085031e+00
## 4690 2021-11-07         1.146          0.8035981     1.081225e+00
## 4696 2021-11-13         1.212          0.8035981     1.185867e+00
## 4698 2021-11-15         1.187          0.8035981     1.177730e+00
## 4709 2021-11-26         1.200          0.8035981     1.207352e+00
## 4714 2021-12-01         1.191          0.8035981     1.156310e+00
## 4725 2021-12-12         1.102          0.8035981     1.093770e+00
## 4726 2020-03-11         0.000          0.1075004    -7.771561e-18
## 4727 2020-03-12         0.000          0.1075004     1.358000e-03
## 4729 2020-03-14         0.000          0.1075004     2.460000e-03
## 4732 2020-03-17         0.001          0.1075004     4.675333e-04
## 4735 2020-03-20         0.001          0.1075004     1.671800e-03
## 4743 2020-03-28         0.016          0.1075004     3.129070e-02
## 4749 2020-04-03         0.069          0.1075004     8.411877e-02
## 4753 2020-04-07         0.076          0.1075004     8.784720e-02
## 4755 2020-04-09         0.096          0.1075004     9.437770e-02
## 4757 2020-04-11         0.095          0.1075004     1.132626e-01
## 4759 2020-04-13         0.098          0.1075004     1.065990e-01
## 4760 2020-04-14         0.107          0.1075004     1.143443e-01
## 4765 2020-04-19         0.127          0.1075004     1.156531e-01
## 4771 2020-04-25         0.106          0.1075004     1.024826e-01
## 4788 2020-05-12         0.053          0.1075004     5.576840e-02
## 4789 2020-05-13         0.058          0.1075004     5.388280e-02
## 4790 2020-05-14         0.055          0.1075004     5.195323e-02
## 4791 2020-05-15         0.048          0.1075004     5.249810e-02
## 4792 2020-05-16         0.041          0.1075004     5.086247e-02
## 4794 2020-05-18         0.031          0.1075004     3.605773e-02
## 4807 2020-05-31         0.025          0.1075004     2.751480e-02
## 4819 2020-06-12         0.015          0.1075004     2.032367e-02
## 4825 2020-06-18         0.021          0.1075004     2.099083e-02
## 4827 2020-06-20         0.022          0.1075004     2.314230e-02
## 4843 2020-07-06         0.016          0.1075004     1.958723e-02
## 4846 2020-07-09         0.018          0.1075004     1.918307e-02
## 4852 2020-07-15         0.017          0.1075004     1.896307e-02
## 4853 2020-07-16         0.021          0.1075004     1.774893e-02
## 4854 2020-07-17         0.018          0.1075004     1.746763e-02
## 4859 2020-07-22         0.019          0.1075004     1.744623e-02
## 4872 2020-08-04         0.018          0.1075004     1.791043e-02
## 4880 2020-08-12         0.018          0.1075004     2.245717e-02
## 4881 2020-08-13         0.021          0.1075004     2.035457e-02
## 4887 2020-08-19         0.023          0.1075004     2.106857e-02
## 4890 2020-08-22         0.022          0.1075004     2.180927e-02
## 4893 2020-08-25         0.024          0.1075004     2.667820e-02
## 4897 2020-08-29         0.039          0.1075004     3.460780e-02
## 4898 2020-08-30         0.042          0.1075004     2.833137e-02
## 4902 2020-09-03         0.049          0.1075004     5.097477e-02
## 4903 2020-09-04         0.053          0.1075004     5.195117e-02
## 4904 2020-09-05         0.056          0.1075004     5.498933e-02
## 4911 2020-09-12         0.048          0.1075004     6.080030e-02
## 4916 2020-09-17         0.066          0.1075004     6.414923e-02
## 4917 2020-09-18         0.062          0.1075004     6.675343e-02
## 4925 2020-09-26         0.071          0.1075004     6.484623e-02
## 4926 2020-09-27         0.068          0.1075004     6.011493e-02
## 4927 2020-09-28         0.065          0.1075004     6.131920e-02
## 4929 2020-09-30         0.065          0.1075004     5.794313e-02
## 4941 2020-10-12         0.058          0.1075004     5.870483e-02
## 4946 2020-10-17         0.071          0.1075004     6.780913e-02
## 4954 2020-10-25         0.072          0.1075004     7.201280e-02
## 4971 2020-11-11         0.086          0.1075004     8.677620e-02
## 4980 2020-11-20         0.141          0.1075004     1.202992e-01
## 4982 2020-11-22         0.139          0.1075004     1.176569e-01
## 4983 2020-11-23         0.153          0.1075004     1.417678e-01
## 4986 2020-11-26         0.174          0.2831279     1.874717e-01
## 4990 2020-11-30         0.188          0.2831279     1.887605e-01
## 4992 2020-12-02         0.193          0.2831279     2.099707e-01
## 5002 2020-12-12         0.222          0.2831279     2.272367e-01
## 5003 2020-12-13         0.218          0.2831279     2.356068e-01
## 5013 2020-12-23         0.259          0.2831279     2.502018e-01
## 5024 2021-01-03         0.193          0.1075004     1.909121e-01
## 5031 2021-01-10         0.176          0.1075004     1.826376e-01
## 5032 2021-01-11         0.174          0.1075004     1.839760e-01
## 5034 2021-01-13         0.173          0.1075004     1.779686e-01
## 5036 2021-01-15         0.169          0.1075004     1.780436e-01
## 5042 2021-01-21         0.153          0.1075004     1.511312e-01
## 5045 2021-01-24         0.140          0.1075004     1.336000e-01
## 5057 2021-02-05         0.110          0.1075004     1.121160e-01
## 5061 2021-02-09         0.098          0.1075004     1.006594e-01
## 5066 2021-02-14         0.094          0.1075004     1.213180e-01
## 5067 2021-02-15         0.091          0.1075004     9.140043e-02
## 5072 2021-02-20         0.080          0.1075004     7.896650e-02
## 5074 2021-02-22         0.078          0.1075004     7.853353e-02
## 5075 2021-02-23         0.075          0.1075004     7.935260e-02
## 5079 2021-02-27         0.071          0.1075004     7.285153e-02
## 5082 2021-03-02         0.068          0.1075004     7.686840e-02
## 5083 2021-03-03         0.065          0.1075004     7.210553e-02
## 5084 2021-03-04         0.068          0.1075004     6.976300e-02
## 5088 2021-03-08         0.064          0.1075004     6.824833e-02
## 5089 2021-03-09         0.066          0.1075004     7.405033e-02
## 5091 2021-03-11         0.063          0.1075004     7.241103e-02
## 5101 2021-03-21         0.102          0.2831279     9.372530e-02
## 5104 2021-03-24         0.146          0.2831279     1.449638e-01
## 5105 2021-03-25         0.157          0.2831279     1.477594e-01
## 5108 2021-03-28         0.153          0.2831279     1.463373e-01
## 5113 2021-04-02         0.179          0.2831279     2.056353e-01
## 5123 2021-04-12         0.243          0.2831279     2.453656e-01
## 5128 2021-04-17         0.288          0.7794346     3.133426e-01
## 5130 2021-04-19         0.341          0.7794346     3.326568e-01
## 5135 2021-04-24         0.339          0.7794346     3.409097e-01
## 5137 2021-04-26         0.353          0.7794346     3.476081e-01
## 5140 2021-04-29         0.339          0.7794346     3.471964e-01
## 5141 2021-04-30         0.394          0.7794346     3.386818e-01
## 5142 2021-05-01         0.373          0.7794346     3.438886e-01
## 5154 2021-05-13         0.238          0.1075004     2.443986e-01
## 5155 2021-05-14         0.242          0.1075004     2.458440e-01
## 5162 2021-05-21         0.214          0.1075004     2.130174e-01
## 5171 2021-05-30         0.134          0.1075004     1.362438e-01
## 5178 2021-06-06         0.096          0.1075004     8.956367e-02
## 5185 2021-06-13         0.053          0.1075004     7.349567e-02
## 5194 2021-06-22         0.057          0.1075004     5.911710e-02
## 5203 2021-07-01         0.042          0.1075004     4.862057e-02
## 5204 2021-07-02         0.055          0.1075004     4.685930e-02
## 5206 2021-07-04         0.050          0.1075004     4.198060e-02
## 5208 2021-07-06         0.037          0.1075004     4.945543e-02
## 5214 2021-07-12         0.049          0.1075004     4.456243e-02
## 5216 2021-07-14         0.043          0.1075004     5.302397e-02
## 5219 2021-07-17         0.038          0.1075004     5.622740e-02
## 5223 2021-07-21         0.059          0.1075004     6.086953e-02
## 5226 2021-07-24         0.058          0.1075004     5.978313e-02
## 5230 2021-07-28         0.076          0.2831279     7.903353e-02
## 5232 2021-07-30         0.069          0.2831279     8.562753e-02
## 5239 2021-08-06         0.101          0.2831279     1.316955e-01
## 5240 2021-08-07         0.112          0.2831279     1.407340e-01
## 5253 2021-08-20         0.204          0.2831279     2.136210e-01
## 5256 2021-08-23         0.232          0.2831279     2.148497e-01
## 5261 2021-08-28         0.245          0.2831279     2.323413e-01
## 5264 2021-08-31         0.252          0.2831279     2.370049e-01
## 5265 2021-09-01         0.290          0.2831279     2.679742e-01
## 5274 2021-09-10         0.214          0.2831279     2.597906e-01
## 5290 2021-09-26         0.228          0.2831279     2.088462e-01
## 5291 2021-09-27         0.206          0.2831279     2.293707e-01
## 5292 2021-09-28         0.239          0.2831279     2.411123e-01
## 5294 2021-09-30         0.216          0.2831279     2.153616e-01
## 5296 2021-10-02         0.203          0.2831279     2.159465e-01
## 5300 2021-10-06         0.236          0.2831279     2.178316e-01
## 5301 2021-10-07         0.217          0.2831279     2.065023e-01
## 5306 2021-10-12         0.237          0.2831279     2.176620e-01
## 5318 2021-10-24         0.195          0.2831279     1.987646e-01
## 5324 2021-10-30         0.203          0.2831279     2.100707e-01
## 5325 2021-10-31         0.201          0.2831279     2.047874e-01
## 5326 2021-11-01         0.217          0.2831279     2.155128e-01
## 5329 2021-11-04         0.228          0.2831279     2.181140e-01
## 5331 2021-11-06         0.203          0.2831279     2.032087e-01
## 5348 2021-11-23         0.208          0.2831279     2.047137e-01
## 5357 2021-12-02         0.192          0.2831279     2.052317e-01
## 5360 2021-12-05         0.185          0.2831279     2.000695e-01
## 5367 2021-12-12         0.182          0.2831279     1.892026e-01
## 5371 2020-02-03         0.000          0.1075004     4.000000e-07
## 5379 2020-02-11         0.000          0.1075004    -3.241851e-17
## 5382 2020-02-14         0.000          0.1075004    -3.508305e-17
## 5383 2020-02-15         0.000          0.1075004     1.110000e-03
## 5395 2020-02-27         0.000          0.1075004    -3.608225e-17
## 5399 2020-03-02         0.000          0.1075004     2.133333e-05
## 5408 2020-03-11         0.000          0.1075004     6.232833e-03
## 5410 2020-03-13         0.001          0.1075004     7.813433e-03
## 5416 2020-03-19         0.046          0.1075004     3.080220e-02
## 5420 2020-03-23         0.076          0.1075004     9.855287e-02
## 5422 2020-03-25         0.191          0.1075004     1.303568e-01
## 5426 2020-03-29         0.213          0.1075004     2.219519e-01
## 5436 2020-04-08         1.032          0.3836605     9.580366e-01
## 5441 2020-04-13         0.725          0.3836605     7.350190e-01
## 5445 2020-04-17         0.914          0.3836605     9.758250e-01
## 5449 2020-04-21         1.224          0.3836605     7.876147e-01
## 5452 2020-04-24         1.018          0.3836605     7.417711e-01
## 5470 2020-05-12         0.615          0.1075004     3.906971e-01
## 5472 2020-05-14         0.353          0.1075004     3.101053e-01
## 5474 2020-05-16         0.411          0.1075004     2.397427e-01
## 5475 2020-05-17         0.067          0.1075004     2.622202e-01
## 5479 2020-05-21         0.273          0.1075004     2.799220e-01
## 5480 2020-05-22         0.291          0.1075004     3.045240e-01
## 5484 2020-05-26         0.131          0.1075004     2.608364e-01
## 5486 2020-05-28         0.343          0.1075004     2.409515e-01
## 5489 2020-05-31         0.060          0.1075004     2.044142e-01
## 5492 2020-06-03         0.254          0.1075004     2.080789e-01
## 5498 2020-06-09         0.197          0.1075004     1.133209e-01
## 5500 2020-06-11         0.076          0.1075004     1.038995e-01
## 5504 2020-06-15         0.029          0.1075004     6.067340e-02
## 5505 2020-06-16         0.120          0.1075004     8.575833e-02
## 5508 2020-06-19         0.084          0.1075004     7.115430e-02
## 5513 2020-06-24         0.087          0.1075004     7.303663e-02
## 5516 2020-06-27         0.040          0.1075004     5.039243e-02
## 5520 2020-07-01         0.097          0.1075004     3.757647e-02
## 5529 2020-07-10         0.034          0.1075004     3.258347e-02
## 5539 2020-07-20         0.010          0.1075004     1.488523e-02
## 5540 2020-07-21         0.025          0.1075004     1.853573e-02
## 5542 2020-07-23         0.009          0.1075004     2.009707e-02
## 5546 2020-07-27         0.003          0.1075004     1.540837e-02
## 5551 2020-08-01         0.013          0.1075004     1.129933e-02
## 5555 2020-08-05         0.014          0.1075004     1.604843e-02
## 5565 2020-08-15         0.003          0.1075004     1.049103e-02
## 5573 2020-08-23         0.006          0.1075004     4.728267e-03
## 5577 2020-08-27         0.012          0.1075004     1.199443e-02
## 5578 2020-08-28         0.009          0.1075004     8.953100e-03
## 5579 2020-08-29         0.012          0.1075004     9.840967e-03
## 5588 2020-09-07         0.003          0.1075004     1.363837e-02
## 5592 2020-09-11         0.006          0.1075004     2.179240e-02
## 5593 2020-09-12         0.009          0.1075004     1.974990e-02
## 5594 2020-09-13         0.005          0.1075004     1.490797e-02
## 5597 2020-09-16         0.020          0.1075004     2.458590e-02
## 5602 2020-09-21         0.011          0.1075004     2.398393e-02
## 5631 2020-10-20         0.241          0.2831279     1.527655e-01
## 5638 2020-10-27         0.367          0.2831279     2.193590e-01
## 5642 2020-10-31         0.326          0.2831279     2.833083e-01
## 5643 2020-11-01         0.162          0.2831279     2.639387e-01
## 5649 2020-11-07         0.413          0.2831279     3.698600e-01
## 5650 2020-11-08         0.156          0.2831279     3.241618e-01
## 5653 2020-11-11         0.596          0.2831279     4.537390e-01
## 5654 2020-11-12         0.563          0.2831279     4.153652e-01
## 5656 2020-11-14         0.462          0.2831279     3.841037e-01
## 5657 2020-11-15         0.168          0.2831279     3.407630e-01
## 5660 2020-11-18         0.529          0.2831279     4.904070e-01
## 5661 2020-11-19         0.502          0.2831279     4.510198e-01
## 5668 2020-11-26         0.498          0.2831279     4.916214e-01
## 5673 2020-12-01         0.603          0.1075004     5.401160e-01
## 5681 2020-12-09         0.533          0.2831279     5.331994e-01
## 5692 2020-12-20         0.326          0.2831279     3.844080e-01
## 5701 2020-12-29         0.458          0.2831279     6.926823e-01
## 5709 2021-01-06         1.042          0.7794346     1.038679e+00
## 5711 2021-01-08         1.333          2.3296739     1.395438e+00
## 5725 2021-01-22         1.401          0.7794346     1.335203e+00
## 5726 2021-01-23         1.352          0.7794346     1.169466e+00
## 5733 2021-01-30         1.205          0.7794346     1.089538e+00
## 5754 2021-02-20         0.446          0.3836605     3.643974e-01
## 5756 2021-02-22         0.178          0.3836605     3.460860e-01
## 5766 2021-03-04         0.242          0.1075004     3.061434e-01
## 5786 2021-03-24         0.098          0.1075004     8.913170e-02
## 5787 2021-03-25         0.063          0.1075004     8.296700e-02
## 5794 2021-04-01         0.051          0.1075004     5.055057e-02
## 5803 2021-04-10         0.040          0.1075004     2.999853e-02
## 5812 2021-04-19         0.006          0.1075004     3.103107e-02
## 5814 2021-04-21         0.020          0.1075004     2.831433e-02
## 5816 2021-04-23         0.041          0.1075004     2.215343e-02
## 5817 2021-04-24         0.032          0.1075004     2.437290e-02
## 5822 2021-04-29         0.025          0.1075004     2.020990e-02
## 5830 2021-05-07         0.015          0.1075004     1.431883e-02
## 5833 2021-05-10         0.005          0.1075004     7.367633e-03
## 5834 2021-05-11         0.020          0.1075004     1.454767e-02
## 5835 2021-05-12         0.011          0.1075004     1.426970e-02
## 5840 2021-05-17         0.005          0.1075004     5.192167e-03
## 5853 2021-05-30         0.006          0.1075004     7.623333e-03
## 5857 2021-06-03         0.018          0.1075004     1.168853e-02
## 5863 2021-06-09         0.006          0.1075004     1.218597e-02
## 5866 2021-06-12         0.012          0.1075004     1.590730e-02
## 5871 2021-06-17         0.019          0.1075004     1.285583e-02
## 5874 2021-06-20         0.006          0.1075004     9.414500e-03
## 5876 2021-06-22         0.027          0.1075004     2.084913e-02
## 5878 2021-06-24         0.021          0.2831279     2.584183e-02
## 5880 2021-06-26         0.023          0.2831279     3.216233e-02
## 5883 2021-06-29         0.023          0.2831279     3.510667e-02
## 5888 2021-07-04         0.015          0.2831279     1.880717e-02
## 5893 2021-07-09         0.030          0.2831279     3.882620e-02
## 5895 2021-07-11         0.026          0.2831279     2.615183e-02
## 5902 2021-07-18         0.028          0.2831279     3.540590e-02
## 5904 2021-07-20         0.102          0.2831279     7.519913e-02
## 5906 2021-07-22         0.084          0.2831279     7.004627e-02
## 5910 2021-07-26         0.014          0.2831279     3.971653e-02
## 5914 2021-07-30         0.068          0.2831279     9.850127e-02
## 5915 2021-07-31         0.072          0.2831279     9.088920e-02
## 5919 2021-08-04         0.121          0.2831279     1.074785e-01
## 5926 2021-08-11         0.108          0.2831279     1.198424e-01
## 5927 2021-08-12         0.095          0.2831279     1.053193e-01
## 5929 2021-08-14         0.094          0.2831279     9.896053e-02
## 5933 2021-08-18         0.111          0.2831279     1.322574e-01
## 5937 2021-08-22         0.049          0.2831279     5.566890e-02
## 5939 2021-08-24         0.174          0.2831279     1.540472e-01
## 5946 2021-08-31         0.051          0.2831279     1.756254e-01
## 5955 2021-09-09         0.167          0.2831279     1.709355e-01
## 5958 2021-09-12         0.056          0.2831279     6.551817e-02
## 5966 2021-09-20         0.050          0.2831279     5.795267e-02
## 5969 2021-09-23         0.195          0.2831279     1.612882e-01
## 5985 2021-10-09         0.156          0.2831279     1.254472e-01
## 5993 2021-10-17         0.057          0.2831279     4.698270e-02
## 5997 2021-10-21         0.118          0.2831279     1.861601e-01
## 5999 2021-10-23         0.135          0.2831279     1.649148e-01
## 6003 2021-10-27         0.209          0.2831279     2.181066e-01
## 6004 2021-10-28         0.166          0.2831279     2.030701e-01
## 6007 2021-10-31         0.074          0.2831279     5.451153e-02
## 6011 2021-11-04         0.219          0.2831279     2.060034e-01
## 6014 2021-11-07         0.062          0.2831279     5.754823e-02
## 6021 2021-11-14         0.063          0.2831279     5.503080e-02
## 6027 2021-11-20         0.150          0.2831279     1.558183e-01
## 6028 2021-11-21         0.061          0.2831279     5.108220e-02
## 6031 2021-11-24         0.149          0.2831279     1.684233e-01
## 6033 2021-11-26         0.160          0.2831279     1.555274e-01
## 6040 2021-12-03         0.146          0.2831279     1.494673e-01
## 6045 2021-12-08         0.163          0.2831279     1.656386e-01
## 6046 2021-12-09         0.148          0.2831279     1.514282e-01
## 6047 2021-12-10         0.120          0.2831279     1.449374e-01
## 6064 2020-02-05         0.000          0.1075004    -3.230749e-17
## 6069 2020-02-10         0.000          0.1075004    -3.474998e-17
## 6074 2020-02-15         0.000          0.1075004    -3.508305e-17
## 6075 2020-02-16         0.000          0.1075004    -3.574918e-17
## 6078 2020-02-19         0.000          0.1075004    -3.519407e-17
## 6079 2020-02-20         0.000          0.1075004    -3.375078e-17
## 6080 2020-02-21         0.000          0.1075004    -2.675637e-17
## 6087 2020-02-28         0.000          0.1075004    -3.619327e-17
## 6097 2020-03-09         0.001          0.1075004     4.123833e-03
## 6098 2020-03-10         0.006          0.1075004     5.760500e-03
## 6102 2020-03-14         0.007          0.1075004     1.492743e-02
## 6105 2020-03-17         0.037          0.1075004     3.386720e-02
## 6109 2020-03-21         0.103          0.1075004     1.305665e-01
## 6117 2020-03-29         0.555          0.1075004     6.466045e-01
## 6118 2020-03-30         0.707          1.4568194     9.431008e-01
## 6125 2020-04-06         1.733          1.4568194     1.641138e+00
## 6130 2020-04-11         2.141          1.4568194     1.885405e+00
## 6131 2020-04-12         1.889          1.4568194     1.838448e+00
## 6134 2020-04-15         2.587          1.4568194     2.191732e+00
## 6139 2020-04-20         2.245          1.4568194     1.768874e+00
## 6140 2020-04-21         2.483          1.4568194     2.317890e+00
## 6148 2020-04-29         2.391          1.4568194     2.001202e+00
## 6159 2020-05-10         1.001          1.4568194     1.215316e+00
## 6160 2020-05-11         1.034          1.4568194     1.248454e+00
## 6176 2020-05-27         1.478          0.8035981     8.769998e-01
## 6177 2020-05-28         1.089          0.8035981     1.014889e+00
## 6179 2020-05-30         0.950          0.8035981     9.524260e-01
## 6181 2020-06-01         0.771          0.8035981     5.877778e-01
## 6187 2020-06-07         0.457          0.8035981     5.519483e-01
## 6188 2020-06-08         0.511          0.8035981     4.880339e-01
## 6199 2020-06-19         0.626          0.8035981     6.788471e-01
## 6209 2020-06-29         0.369          0.8035981     3.970777e-01
## 6211 2020-07-01         0.698          0.8035981     8.429192e-01
## 6212 2020-07-02         0.739          0.8035981     8.418413e-01
## 6215 2020-07-05         0.322          0.8035981     4.319294e-01
## 6220 2020-07-10         0.816          0.9053733     9.537813e-01
## 6223 2020-07-13         0.435          0.8035981     6.379073e-01
## 6226 2020-07-16         0.961          0.9053733     9.963843e-01
## 6230 2020-07-20         0.529          0.8035981     7.274729e-01
## 6232 2020-07-22         1.225          0.9053733     1.064369e+00
## 6234 2020-07-24         1.094          0.9053733     1.055964e+00
## 6236 2020-07-26         0.534          0.8035981     6.535334e-01
## 6248 2020-08-07         1.291          0.8035981     1.136491e+00
## 6250 2020-08-09         0.572          0.8035981     5.363851e-01
## 6255 2020-08-14         1.309          0.8035981     1.036967e+00
## 6258 2020-08-17         0.469          0.8035981     5.362178e-01
## 6263 2020-08-22         0.979          0.8035981     9.568802e-01
## 6270 2020-08-29         0.983          0.8035981     8.968638e-01
## 6271 2020-08-30         0.449          0.8035981     4.947046e-01
## 6283 2020-09-11         1.156          0.8035981     9.003650e-01
## 6285 2020-09-13         0.400          0.8035981     3.843201e-01
## 6288 2020-09-16         0.955          0.8035981     9.946768e-01
## 6297 2020-09-25         0.915          0.8035981     8.861424e-01
## 6300 2020-09-28         0.341          0.8035981     4.088597e-01
## 6304 2020-10-02         0.841          0.8035981     8.549034e-01
## 6306 2020-10-04         0.369          0.8035981     4.439470e-01
## 6310 2020-10-08         0.982          0.8035981     9.290467e-01
## 6318 2020-10-16         0.943          1.3909884     9.264559e-01
## 6329 2020-10-27         1.011          1.3909884     9.680924e-01
## 6342 2020-11-09         0.759          1.3909884     8.382849e-01
## 6344 2020-11-11         1.443          1.3909884     1.241410e+00
## 6366 2020-12-03         2.969          2.4070561     2.756750e+00
## 6368 2020-12-05         2.390          2.4070561     2.283174e+00
## 6369 2020-12-06         1.403          2.4070561     1.650188e+00
## 6375 2020-12-12         2.533          2.4070561     2.550413e+00
## 6382 2020-12-19         2.754          2.4070561     2.524603e+00
## 6393 2020-12-30         3.933          2.4070561     3.358346e+00
## 6395 2021-01-01         2.194          3.6000806     2.608210e+00
## 6397 2021-01-03         1.437          3.6000806     2.492703e+00
## 6399 2021-01-05         3.604          3.6000806     3.826297e+00
## 6403 2021-01-09         3.256          3.6000806     3.371334e+00
## 6411 2021-01-17         1.991          3.6000806     2.712348e+00
## 6412 2021-01-18         1.565          3.6000806     2.793244e+00
## 6413 2021-01-19         2.401          3.6000806     3.911049e+00
## 6418 2021-01-24         1.858          3.6000806     2.659198e+00
## 6419 2021-01-25         1.770          3.6000806     2.874924e+00
## 6421 2021-01-27         4.128          3.6000806     3.817899e+00
## 6422 2021-01-28         3.850          3.6000806     3.693605e+00
## 6427 2021-02-02         3.533          3.6000806     3.080864e+00
## 6436 2021-02-11         3.191          3.6000806     2.806475e+00
## 6440 2021-02-15         0.949          0.8035981     1.177726e+00
## 6443 2021-02-18         2.607          2.3296739     2.346740e+00
## 6452 2021-02-27         1.521          0.8035981     1.616320e+00
## 6454 2021-03-01         1.319          0.8035981     1.058313e+00
## 6455 2021-03-02         1.933          0.8035981     1.401090e+00
## 6456 2021-03-03         2.581          2.4070561     1.868657e+00
## 6458 2021-03-05         1.723          0.8035981     1.547759e+00
## 6461 2021-03-08         0.705          0.8035981     8.615139e-01
## 6462 2021-03-09         1.784          0.8035981     1.356759e+00
## 6473 2021-03-20         0.773          0.8035981     1.018258e+00
## 6479 2021-03-26         1.168          2.4070561     1.515043e+00
## 6480 2021-03-27         0.814          0.8035981     9.401268e-01
## 6484 2021-03-31         1.101          2.4070561     1.366514e+00
## 6494 2021-04-10         0.724          2.4070561     7.349564e-01
## 6499 2021-04-15         0.905          2.4070561     9.961885e-01
## 6504 2021-04-20         0.847          0.8035981     8.240071e-01
## 6512 2021-04-28         0.994          0.8035981     8.016706e-01
## 6519 2021-05-05         0.813          0.8035981     8.182445e-01
## 6521 2021-05-07         0.824          0.8035981     7.026016e-01
## 6525 2021-05-11         0.700          0.8035981     7.633724e-01
## 6527 2021-05-13         0.790          0.8035981     7.088294e-01
## 6529 2021-05-15         0.529          0.8035981     5.617291e-01
## 6532 2021-05-18         0.780          0.8035981     6.842800e-01
## 6534 2021-05-20         0.684          0.8035981     7.314389e-01
## 6536 2021-05-22         0.484          0.8035981     6.100155e-01
## 6538 2021-05-24         0.438          0.8035981     5.304383e-01
## 6547 2021-06-02         0.564          0.8035981     6.118820e-01
## 6549 2021-06-04         0.527          0.8035981     5.983315e-01
## 6553 2021-06-08         0.331          0.3836605     3.493270e-01
## 6560 2021-06-15         0.334          0.3836605     3.025145e-01
## 6561 2021-06-16         0.383          0.3836605     3.282677e-01
## 6569 2021-06-24         0.340          0.3836605     3.131747e-01
## 6575 2021-06-30         0.295          0.8035981     4.649034e-01
## 6582 2021-07-07         0.321          0.8035981     3.873233e-01
## 6585 2021-07-10         0.083          0.3836605     1.501283e-01
## 6591 2021-07-16         0.358          1.3909884     4.936368e-01
## 6596 2021-07-21         0.352          0.8035981     3.826164e-01
## 6608 2021-08-02         0.361          1.3909884     5.809516e-01
## 6615 2021-08-09         0.506          1.3909884     8.416411e-01
## 6616 2021-08-10         0.865          1.3909884     9.749820e-01
## 6617 2021-08-11         0.779          1.3909884     9.628324e-01
## 6620 2021-08-14         0.254          0.8035981     4.753206e-01
## 6623 2021-08-17         1.028          1.3909884     1.228617e+00
## 6625 2021-08-19         1.781          1.3909884     1.308806e+00
## 6628 2021-08-22         0.170          0.8035981     3.265273e-01
## 6636 2021-08-30         1.764          1.3909884     1.427079e+00
## 6644 2021-09-07         2.134          2.4070561     1.762512e+00
## 6646 2021-09-09         3.284          2.4070561     2.669145e+00
## 6647 2021-09-10         2.430          2.4070561     2.230108e+00
## 6649 2021-09-12         0.313          0.8035981     3.606927e-01
## 6655 2021-09-18         0.915          0.8035981     6.746952e-01
## 6657 2021-09-20         2.356          2.4070561     1.936376e+00
## 6658 2021-09-21         2.355          2.4070561     2.610628e+00
## 6661 2021-09-24         2.484          2.4070561     2.460796e+00
## 6670 2021-10-03         0.477          0.8035981     3.638645e-01
## 6674 2021-10-07         2.477          1.3909884     2.315945e+00
## 6687 2021-10-20         3.200          1.3909884     2.368086e+00
## 6689 2021-10-22         1.893          1.3909884     1.857884e+00
## 6695 2021-10-28         1.840          1.3909884     1.709340e+00
## 6706 2021-11-08         1.263          1.3909884     1.444001e+00
## 6714 2021-11-16         1.318          1.3909884     1.466804e+00
## 6715 2021-11-17         1.657          1.3909884     1.850411e+00
## 6721 2021-11-23         1.316          1.3909884     1.443133e+00
## 6722 2021-11-24         1.682          1.3909884     1.625036e+00
## 6727 2021-11-29         1.969          1.3909884     1.471064e+00
## 6730 2021-12-02         3.801          2.4070561     2.109720e+00
## 6734 2021-12-06         1.384          2.4070561     1.567196e+00
## 6735 2021-12-07         1.609          2.4070561     1.607512e+00
## 6740 2021-12-12         0.167          0.8035981     5.340603e-01
##      boosted_tree_pred rf_predicted_cases          MLR           s1
## 1         0.0775436830       6.025698e-05  0.707908506  0.211395440
## 21        0.0731960916       3.071552e-03  0.713823868  0.219319919
## 27        0.0498493784       1.149607e-02  0.558315541  0.221735228
## 29        0.1212133882       1.384257e-02  0.738001930  0.221716233
## 43        0.1872469795       1.253206e-01  0.882844835  0.224856440
## 45        0.1825257611       1.084392e-01  0.846698400  0.224569643
## 60        0.3280217977       3.361964e-01  0.772568954  0.231162511
## 65        0.5244170067       4.091075e-01  0.874619923  0.235705024
## 66        0.5088933288       3.732970e-01  0.950501107  0.233869469
## 71        0.5917408871       6.704970e-01  0.993357177  0.242654841
## 80        0.7481402098       8.566679e-01  0.958959719  0.255353749
## 87        0.8240470679       1.002575e+00  0.960221037  0.266905419
## 88        0.6784500360       8.481040e-01  0.886047316  0.264122724
## 103       0.6080148069       6.660656e-01  0.656330593  0.290808721
## 107       0.9008684411       1.208249e+00  0.892109695  0.309503748
## 108       0.8144489367       9.748984e-01  0.871019903  0.307188810
## 110       0.6129206342       6.641214e-01  0.660626884  0.300910161
## 122       1.2932196912       1.116383e+00  0.883721706  0.356598933
## 134       1.1925534595       1.146997e+00  0.830112080  0.384797053
## 135       1.1753262923       1.230036e+00  0.817823099  0.387654027
## 141       1.1562663696       1.146711e+00  0.837817568  0.397719806
## 142       1.1449531552       1.137800e+00  0.827990272  0.405931709
## 151       1.0398939106       1.081906e+00  0.741986062  0.439671886
## 154       1.1312675965       1.180538e+00  0.853735212  0.433496580
## 155       1.3522806331       1.231986e+00  0.843957678  0.465971892
## 157       1.1151994835       1.158704e+00  0.811611210  0.457835616
## 163       1.1537354997       1.157511e+00  0.844372596  0.472200854
## 172       0.8474898926       9.698277e-01  0.758947792  0.491894224
## 174       0.5489263588       5.624779e-01  0.691196858  0.474079885
## 177       0.8978076988       1.063726e+00  0.859179052  0.503727283
## 190       0.9365595684       9.974233e-01  0.917423400  0.538680612
## 192       0.9078789066       9.267290e-01  0.886194014  0.552843497
## 194       0.3056794889       3.846297e-01  0.676573890  0.522633488
## 195       0.3199108320       3.551624e-01  0.742212813  0.514014139
## 196       0.4804767841       4.955447e-01  0.923831587  0.524131574
## 205       0.7982409055       9.320606e-01  0.917724081  0.559151152
## 206       0.8972280319       8.739458e-01  0.899399458  0.570844081
## 211       0.2462293274       2.704960e-01  0.934133016  0.539777788
## 231       0.3343223896       3.172850e-01  0.940214235  0.584567654
## 233       0.6079061294       6.950525e-01  0.928419039  0.605526286
## 236       0.0922201412       1.226725e-01  0.697365884  0.582579009
## 239       0.5650106661       5.549870e-01  0.947197938  0.610877250
## 241       0.6415534925       6.289460e-01  0.903629207  0.618626254
## 245       0.6841041708       6.006643e-01  0.938948129  0.616604537
## 253       0.5179149696       3.493172e-01  1.005367261  0.620245372
## 255       0.7208391023       5.810790e-01  0.970240812  0.639049507
## 267       0.6272607316       6.592905e-01  1.012399477  0.652737255
## 270       0.5543482505       6.475636e-01  0.904670137  0.658409458
## 272       0.3505173324       2.642227e-01  0.837855062  0.645326977
## 273       0.6120298083       5.976501e-01  1.017963626  0.661336135
## 274       0.7628315991       6.824305e-01  1.026637280  0.680755914
## 276       0.6381002359       6.635155e-01  0.994074662  0.672595497
## 277       0.7333992664       7.450738e-01  0.923314056  0.701954656
## 284       0.7419100265       7.284893e-01  1.002479570  0.703236468
## 300       0.5647263308       4.193856e-01  0.961716169  0.731708081
## 301       1.0066243800       9.466442e-01  1.141995228  0.763632319
## 305       0.4978873272       4.383909e-01  1.036393611  0.737892702
## 319       1.0509119766       1.063037e+00  1.027475460  0.819914488
## 320       0.6245509845       6.086370e-01  0.891508392  0.791487851
## 321       0.6222064729       5.200174e-01  0.961319983  0.789476352
## 324       1.6585040898       1.322321e+00  1.151749163  0.843250505
## 343       1.2442974372       1.219995e+00  1.122725163  0.893866517
## 349       0.2995309315       2.707985e-01  0.952905649  0.856996200
## 350       1.9786366313       1.513729e+00  1.138876134  0.933319226
## 356       0.9503970238       7.984948e-01  0.971388589  0.909156923
## 375       1.7173493968       1.755063e+00  0.970629736  0.999197820
## 376       1.7583806684       1.682024e+00  0.838886576  1.011672468
## 378       2.1409873230       1.993370e+00  1.086775179  1.013265477
## 379       2.0675109014       2.043895e+00  1.088949503  1.026682097
## 381       2.3613663621       2.096191e+00  1.059449708  1.040536687
## 395       3.1969137664       3.109370e+00  1.148901607  1.106928841
## 405       1.7257856277       1.373039e+00  1.103400855  1.082074330
## 406       3.5290963944       3.728564e+00  1.283449969  1.147071103
## 409       3.5152286321       3.620257e+00  1.250079753  1.161655869
## 414       3.2845562270       3.467106e+00  1.286370653  1.156275511
## 425       1.5733946350       1.297392e+00  1.011426047  1.123429801
## 433       1.1344438123       9.800689e-01  1.161590382  1.140202298
## 435       2.6899052291       2.663815e+00  1.341163456  1.192510865
## 439       1.0787255306       1.046884e+00  1.098712061  1.154890182
## 445       1.9272345753       2.107550e+00  1.248093495  1.203842296
## 447       0.8750015599       9.163199e-01  1.179341410  1.180163593
## 458       1.2592275815       1.409396e+00  1.343920187  1.232863216
## 463       2.7313016974       2.609852e+00  1.293932635  1.294957624
## 468       0.9206684030       9.624977e-01  1.114674482  1.243255775
## 469       1.4103331061       1.599761e+00  1.294087106  1.269228863
## 484       2.6925464434       2.464011e+00  1.342166733  1.370927767
## 486       2.2265327839       2.137106e+00  1.312736304  1.342261268
## 495       0.8590242514       8.506783e-01  0.999737838  1.216253739
## 499       1.3304901184       1.534217e+00  1.222023506  1.188175906
## 502       0.7545753314       7.319804e-01  0.988196135  1.095610470
## 504       1.3268939529       1.412452e+00  1.232377234  1.112612257
## 505       1.5113212864       1.443960e+00  1.240106892  1.134013339
## 513       1.2290621372       1.315806e+00  1.205392573  1.031483923
## 514       1.9895244163       1.984594e+00  1.193729736  1.104747933
## 517       0.7867922096       6.170364e-01  1.038598510  0.984737927
## 519       1.2802911108       1.273114e+00  1.222594070  1.031417382
## 520       1.2567800791       1.176076e+00  1.195568392  0.993976613
## 521       1.1875781065       1.132299e+00  1.180830057  1.016273529
## 524       0.6601456186       4.864867e-01  1.038462887  0.973802104
## 534       1.0574251711       1.033255e+00  1.165108913  0.962433490
## 543       0.7973053719       8.451538e-01  1.044288702  0.897031051
## 552       0.3701619789       3.451131e-01  0.956376519  0.880930760
## 575       0.8910587637       6.881509e-01  1.041659622  0.821962753
## 582       0.6286905720       5.956841e-01  0.988066741  0.750325815
## 596       0.3878670770       2.867715e-01  0.909895134  0.678929016
## 597       0.4085626080       4.557144e-01  0.874070122  0.679921995
## 599       0.3516907062       3.507065e-01  0.771867837  0.667637854
## 604       0.5032482717       3.929322e-01  0.817194587  0.632504657
## 606       0.2761762272       3.413212e-01  0.709891874  0.611396932
## 608       0.2240471849       2.247490e-01  0.621866379  0.624548874
## 619       0.3107542010       3.525055e-01  0.747198091  0.560874558
## 624       0.3345504509       2.832185e-01  0.752395265  0.520315855
## 628       0.0841539787       9.796905e-02  0.482452775  0.472288278
## 635       0.0768024782       1.213901e-01  0.467130194  0.442981468
## 636       0.1457958092       1.556384e-01  0.516273136  0.418020213
## 637       0.3217767957       2.550288e-01  0.699520786  0.445929636
## 645       0.3117408488       2.626875e-01  0.719176017  0.383252590
## 647       0.2196337211       2.749540e-01  0.676662257  0.401678462
## 651       0.3118967112       2.320492e-01  0.692950670  0.370219224
## 654       0.1639832282       1.522636e-01  0.638117501  0.332062496
## 659      -0.0521763923       1.992060e-03 -0.660489016  0.172898036
## 670      -0.0139948716       1.311907e-04 -0.362191998  0.178706129
## 672      -0.0346725265       1.789266e-03 -0.458458066  0.178740283
## 674      -0.0357505791       9.722807e-04 -0.522834391  0.179165154
## 678       0.0289286861       2.881707e-03 -0.321773040  0.184288663
## 679       0.0079701149       3.286716e-03 -0.396220712  0.184312279
## 689       0.0411534086       8.575673e-03 -0.146389207  0.184523009
## 697       0.0429519532       1.140026e-02 -0.151820125  0.184001495
## 705       0.0338253332       1.156965e-02 -0.166162657  0.184184048
## 707       0.0131476784       1.260067e-02 -0.257744010  0.184689603
## 708      -0.0058376168       1.214664e-02 -0.394413795  0.184682709
## 721       0.0083533370       1.628964e-02 -0.159109328  0.185242395
## 723       0.0072752844       1.771172e-02 -0.228108381  0.185418421
## 727       0.0293119082       1.927792e-02 -0.084539704  0.185651031
## 729      -0.0106319582       1.903226e-02 -0.295617882  0.185768073
## 740       0.0311651735       3.406318e-02 -0.062351271  0.187029720
## 742       0.0104875186       4.235415e-02 -0.158524803  0.187491963
## 746       0.0574754763       5.256309e-02 -0.142343093  0.187220361
## 751       0.0265931489       5.734184e-02 -0.322002004  0.187600772
## 768       0.1782938662       1.290727e-01  0.509711291  0.191854873
## 774       0.2293628464       1.588397e-01  0.508121437  0.193825967
## 776       0.1807174882       1.544956e-01  0.469474318  0.193576201
## 777       0.1797078756       1.531112e-01  0.366842037  0.194277255
## 789       0.2746570254       2.400244e-01  0.470609941  0.201883401
## 795       0.2697418358       2.734196e-01  0.579893861  0.204152377
## 799       0.2393092749       2.919682e-01  0.381510267  0.206860850
## 802       0.2924445665       3.079771e-01  0.657985192  0.209068444
## 809       0.3226912610       3.295152e-01  0.636364498  0.215412088
## 812       0.3136257801       3.131355e-01  0.591343356  0.216365371
## 814       0.2934232729       3.216973e-01  0.480358709  0.218132767
## 819       0.3232159800       3.087158e-01  0.543224351  0.223185364
## 826       0.3155643679       3.003259e-01  0.533926501  0.227451353
## 831       0.3354616133       2.913234e-01  0.605790371  0.229437919
## 834       0.2393241420       3.010701e-01  0.333329826  0.229476048
## 838       0.2425662690       2.726770e-01  0.508244920  0.229535725
## 846       0.2103194596       2.329310e-01  0.445924320  0.232540910
## 847       0.1777936516       2.040302e-01  0.357041115  0.232453154
## 848       0.1588083564       2.219676e-01  0.209177162  0.233352652
## 851       0.2268368345       2.353862e-01  0.454470152  0.235005539
## 858       0.2115713376       1.544107e-01  0.416595873  0.236891808
## 859       0.2104108536       1.554082e-01  0.402256938  0.237085823
## 862       0.1588083564       1.742066e-01  0.144110788  0.238903397
## 864       0.2167624462       1.518523e-01  0.374186635  0.238458998
## 866       0.2012699449       1.615651e-01  0.342792033  0.238958449
## 868       0.1686527430       1.749037e-01  0.241571470  0.240593555
## 870       0.1566471312       1.544377e-01  0.178068939  0.241885774
## 876       0.1519353572       1.586040e-01  0.111691006  0.246170227
## 891       0.1521063846       1.694332e-01  0.148468903  0.252604609
## 892       0.1658110148       1.782279e-01  0.331299258  0.252152266
## 897       0.1262827763       1.770770e-01  0.120314548  0.256005129
## 911       0.0854186494       1.721878e-01  0.110925552  0.260879983
## 916       0.1614718549       1.895374e-01  0.339254332  0.263685502
## 917       0.1026670583       1.875446e-01  0.245491237  0.263228894
## 918       0.0989472599       1.855719e-01  0.107249732  0.264528992
## 919       0.1015890056       1.847467e-01  0.172684777  0.263645861
## 935       0.1941994708       1.846927e-01  0.449732607  0.271717668
## 936       0.2075598630       1.818695e-01  0.431607928  0.272385424
## 938       0.1758353586       1.779589e-01  0.349994329  0.273721118
## 946       0.2124398659       2.298595e-01  0.274274300  0.281803669
## 947       0.2012601437       2.301759e-01  0.342604606  0.282161228
## 949       0.2580376652       2.544635e-01  0.542808131  0.286898511
## 950       0.3037055286       2.564418e-01  0.522798933  0.288441283
## 961       0.2160176783       2.685057e-01  0.505188902  0.291797684
## 969       0.3809841365       3.375218e-01  0.728614550  0.306499473
## 972       0.4735506736       3.864140e-01  0.701366308  0.316212916
## 975       0.3164889305       3.707770e-01  0.517575875  0.313552912
## 984       0.3577544528       3.807031e-01  0.526964481  0.320863301
## 989       0.2657669464       3.018619e-01  0.168251186  0.319738134
## 992       0.2858005834       3.078868e-01  0.287512626  0.321703273
## 999       0.2331028145       2.264031e-01  0.199691659  0.320981578
## 1004      0.2470482327       1.936355e-01  0.184514505  0.320155755
## 1011      0.2445794988       1.465491e-01  0.153330774  0.325195716
## 1014      0.1994525594       1.386179e-01  0.101229162  0.328049111
## 1020      0.1438683766       1.091734e-01  0.037071522  0.338080776
## 1025      0.1563757205       9.999983e-02  0.058963264  0.354343393
## 1028      0.1749179371       1.025380e-01  0.047946897  0.376546141
## 1031      0.0929543052       1.060362e-01 -0.091083590  0.324041964
## 1033      0.1841359511       1.246020e-01  0.108920082  0.325525269
## 1038      0.1518104932       1.277928e-01  0.008997843  0.326643055
## 1041      0.1851334375       1.364875e-01  0.213437932  0.330025746
## 1055      0.3651693942       2.870342e-01  0.634021734  0.340063562
## 1061      0.4220016703       3.518847e-01  0.613769498  0.347080716
## 1069      0.4882739723       4.324587e-01  0.590455844  0.355724030
## 1072      0.3870559987       4.344667e-01  0.350085225  0.355519456
## 1077      0.4429502408       4.526920e-01  0.548306121  0.361569278
## 1078      0.4182474973       4.763771e-01  0.575219275  0.361730693
## 1086      0.4042372838       4.719820e-01  0.476847883  0.378028025
## 1091      0.4183931495       4.793197e-01  0.707691903  0.381549352
## 1092      0.4424836976       5.006828e-01  0.623440713  0.365623559
## 1094      0.3083451772       4.835044e-01  0.548023686  0.363087995
## 1100      0.4499492451       5.058960e-01  0.550139867  0.375429710
## 1102      0.4978046902       4.983031e-01  0.808254756  0.379117964
## 1103      0.4989198581       5.061970e-01  0.824696700  0.383090568
## 1110      0.4956832973       5.443766e-01  0.787630996  0.394755254
## 1113      0.5022977823       5.459967e-01  0.704879868  0.398933906
## 1114      0.4353581800       5.285421e-01  0.572439943  0.393326281
## 1121      0.4838030941       5.849505e-01  0.592308456  0.404470143
## 1123      0.5480385094       5.691912e-01  0.857623487  0.433032025
## 1128      0.5401834782       5.992461e-01  0.628560422  0.412664237
## 1129      0.4705329051       6.107870e-01  0.690303435  0.411196896
## 1131      0.5704449277       6.519347e-01  0.847914741  0.419148023
## 1132      0.6499469398       6.692569e-01  0.835621775  0.422413148
## 1141      0.4632156861       5.801466e-01  0.528281005  0.406293552
## 1147      0.4637216206       5.538088e-01  0.597424325  0.471655167
## 1164      0.1871984345       3.086202e-01  0.127651335  0.242774512
## 1181      0.1365579106       1.466644e-01  0.028206530  0.203322597
## 1186      0.1347436980       1.152245e-01  0.010391570  0.193717013
## 1188      0.1204259695       1.111728e-01 -0.019007195  0.196961371
## 1201      0.0832580836       6.690770e-02  0.005610181  0.476301705
## 1203      0.0744123800       6.813620e-02 -0.112544570  0.182841516
## 1206      0.0524242696       4.636287e-02 -0.183775725  0.475719148
## 1209      0.0678636549       5.283030e-02 -0.112422215  0.172133395
## 1221      0.0810183916       3.357322e-02 -0.025718613  0.476428325
## 1222      0.0761995934       3.536752e-02 -0.113348687  0.165935703
## 1228      0.0810183916       3.671792e-02 -0.037346009  0.476927174
## 1230      0.0670729734       3.327626e-02 -0.047529321  0.476725046
## 1236      0.0675916158       3.333037e-02 -0.126306532  0.124736099
## 1239      0.0377873410       3.568158e-02 -0.249774223  0.113520150
## 1243      0.0675916158       3.368987e-02 -0.146025041  0.097978395
## 1257      0.0746501061       3.413443e-02 -0.132283651  0.055573834
## 1260      0.0385780225       3.468752e-02 -0.248155909  0.043228071
## 1261      0.0262328464       3.511241e-02 -0.382767115  0.044727069
## 1268      0.0360398345       3.659425e-02 -0.309491955  0.030856856
## 1272      0.0753304742       4.065260e-02 -0.068108168  0.023060995
## 1278      0.0874282671       4.078040e-02 -0.038418500  0.011703162
## 1284      0.0962391276       4.633520e-02 -0.030638683 -0.003749393
## 1292      0.0858644993       5.450907e-02 -0.072762487 -0.029574180
## 1307     -0.0586505696       1.740769e-04 -0.240641702  0.181826605
## 1311     -0.0370791732       1.664769e-04 -0.097157857  0.181828107
## 1313     -0.0944675630       1.876923e-06 -0.382451109  0.181825241
## 1314     -0.0510495077       7.435897e-07 -0.314808961  0.181825951
## 1320     -0.0944675630       1.876923e-06 -0.382450883  0.181825561
## 1327     -0.0944675630       4.835366e-05 -0.382451330  0.181825813
## 1332     -0.0294781113       1.201203e-04 -0.171325426  0.181827897
## 1336     -0.0116318390       1.891719e-04 -0.121908053  0.183071855
## 1337     -0.0299135373       1.675560e-04 -0.121142314  0.183074063
## 1340     -0.0546189421       5.009182e-04 -0.196775073  0.186216827
## 1348     -0.1053153972       4.700483e-03 -0.399081787  0.187788461
## 1353     -0.0381917639       1.221100e-02 -0.187869646  0.189097988
## 1356     -0.0612445897       1.836610e-02 -0.309475148  0.191945677
## 1368      0.3561311480       4.079748e-01 -0.023528808  0.203853599
## 1373      0.7181384814       8.314822e-01  0.292299223  0.204676221
## 1383      0.8161010224       6.410167e-01  0.089954233  0.255821562
## 1385      0.9959461062       7.607985e-01  0.336478160  0.226296691
## 1386      0.7807751861       6.878734e-01  0.328940656  0.213370909
## 1400      0.5163266469       3.216980e-01  0.260359522  0.211805830
## 1410      0.2644977955       1.928094e-01  0.201119546  0.214133401
## 1412      0.1835031776       2.183671e-01  0.109822457  0.212328699
## 1415      0.1860275178       1.479426e-01  0.261119082  0.212644556
## 1424      0.1533279803       7.215745e-02  0.189420694  0.212531005
## 1435      0.0612657457       7.224170e-02  0.161686882  0.208078419
## 1437      0.0617011717       5.263075e-02  0.119858242  0.211855047
## 1438      0.0365603410       3.773225e-02  0.042038654  0.211856278
## 1444      0.0617011717       4.724908e-02  0.105605705  0.212111608
## 1446     -0.0032882800       2.326375e-02 -0.109163551  0.211752470
## 1452      0.0365603410       2.382046e-02  0.023564703  0.212071920
## 1456      0.0380045424       2.924816e-02  0.097959145  0.208746720
## 1457      0.0288779224       2.632376e-02  0.079562844  0.208731919
## 1459      0.0132991377       1.992546e-02 -0.022709702  0.208971102
## 1463      0.0192321766       2.872863e-02 -0.025271128  0.209542961
## 1469      0.0375138749       1.866469e-02 -0.032350871  0.209137886
## 1470      0.0192321766       2.075409e-02 -0.033099832  0.209499077
## 1473     -0.0036194884       6.106748e-03 -0.159722989  0.208196921
## 1477      0.0207136060       1.486846e-02 -0.044007614  0.208792090
## 1492      0.0076408024       1.208827e-02 -0.056582869  0.210076395
## 1494     -0.0022467072       3.475433e-03 -0.153343042  0.208893744
## 1513      0.0428792794       1.691160e-02  0.006775503  0.216270834
## 1514      0.0524413254       1.671843e-02 -0.014174649  0.216734858
## 1520      0.1132016478       5.212546e-02  0.021246046  0.224206846
## 1532      0.0895801801       2.919508e-02  0.105552543  0.225057195
## 1533      0.0861916683       3.020606e-02  0.109977022  0.227359811
## 1535      0.1129693114       3.024939e-02  0.074631175  0.229502689
## 1540      0.1125338854       6.320644e-02  0.123837908  0.233008164
## 1541      0.1034072654       6.962212e-02  0.115426356  0.233647807
## 1553      0.1080765228       7.646979e-02  0.175624063  0.240590645
## 1555      0.1172694423       8.391419e-02  0.171925674  0.247084210
## 1559      0.0216660513       9.657284e-02  0.051236481  0.243324637
## 1561      0.1839392322       9.384425e-02  0.259866791  0.257778568
## 1567      0.1588098861       1.064836e-01  0.311346296  0.258902417
## 1570      0.2062295918       1.314704e-01  0.301499401  0.275366735
## 1579      0.0397910826       2.106382e-01  0.245820066  0.276132167
## 1581      0.2749762876       3.950760e-01  0.566606565  0.309588816
## 1583      0.2524401427       3.149450e-01  0.576889901  0.326763018
## 1587      0.5425847012       6.418776e-01  0.557541972  0.402689307
## 1593      0.3585094608       3.372542e-01  0.471939895  0.358065380
## 1595      0.5750700832       7.467646e-01  0.704082085  0.346491910
## 1598      0.5298066890       7.174930e-01  0.635419466  0.354344494
## 1607      0.3873843542       3.807639e-01  0.315749752  0.358729514
## 1610      0.5183131976       4.811290e-01  0.526112171  0.364287453
## 1619      0.4933013516       5.764481e-01  0.499766286  0.365420975
## 1621      0.2919182697       2.252675e-01  0.275802615  0.366474346
## 1622      0.2823264999       3.889719e-01  0.360678390  0.359728935
## 1629      0.2823264999       3.697548e-01  0.349339414  0.365331343
## 1634      0.2241345984       2.879431e-01  0.348195458  0.382488764
## 1639      0.3375286516       3.281312e-01  0.409577496  0.391131652
## 1647      0.3909087552       3.610003e-01  0.397955597  0.396526344
## 1652      0.4368741934       3.124786e-01  0.484128233  0.406802685
## 1668      0.4353885372       5.946856e-01  0.495619381  0.426286201
## 1676      0.3390322057       2.375366e-01  0.416018611  0.435463094
## 1689      0.4297454253       5.549908e-01  0.402251487  0.447553371
## 1691      0.1874160453       1.845692e-01  0.166879341  0.443261242
## 1694      0.4466457169       3.438000e-01  0.434199140  0.455891788
## 1700      0.4986429711       4.809876e-01  0.461832263  0.456743411
## 1704      0.3308123729       1.955278e-01  0.366201704  0.465942626
## 1707      0.3538563098       3.774665e-01  0.388171184  0.467607435
## 1712      0.1679158787       1.731175e-01  0.145949618  0.472940384
## 1716      0.2667661338       3.006956e-01  0.401407413  0.484816463
## 1719      0.2092753485       1.637255e-01  0.169895734  0.483702397
## 1745      0.2108069270       3.203732e-01  0.684391122  0.511719521
## 1749      0.5512060774       3.735825e-01  0.748393605  0.554793523
## 1754      0.2349876068       1.854502e-01  0.488323536  0.545806784
## 1760      0.3101902290       2.056162e-01  0.639424263  0.558375222
## 1764      0.3691628125       2.968856e-01  0.722812786  0.561596912
## 1765      0.3200562740       2.948606e-01  0.695411897  0.557408134
## 1774      0.2420803949       1.602674e-01  0.550365511  0.540219868
## 1787      0.2155368915       1.620787e-01  0.525696989  0.503785027
## 1789      0.0802596520       1.028736e-01  0.282771283  0.490826897
## 1790      0.0685168892       1.562415e-01  0.347257249  0.485669686
## 1796      0.0598259609       9.279870e-02  0.245069264  0.479150114
## 1797      0.0849095640       1.246238e-01  0.331836150  0.477508668
## 1805      0.0880029377       7.842717e-02  0.345980853  0.467497829
## 1808      0.0701566654       7.374667e-02  0.287439960  0.458341213
## 1814      0.0186540524       5.810570e-02  0.269277626  0.443173861
## 1818      0.0078023345       5.119017e-02  0.071955133  0.431133873
## 1822      0.0296975278       4.515383e-02  0.192559396  0.424481768
## 1829      0.0188114322       3.443810e-02  0.056308700  0.408649058
## 1830     -0.0068262511       2.636750e-02 -0.029674422  0.402282890
## 1831     -0.0483560449       2.053757e-02 -0.179768674  0.395072540
## 1840      0.0869972726       2.942978e-02  0.074280157  0.390699964
## 1847      0.2451950523       3.907133e-02  0.122793080  0.386318369
## 1851      0.1629292755       3.548757e-02  0.028011250  0.380059410
## 1854      0.2318387468       4.287793e-02  0.140102617  0.382533714
## 1865      0.1643020567       5.429560e-02  0.057835529  0.366098016
## 1867     -0.0077258640       8.775693e-02  0.033745327  0.353177227
## 1868      0.2548858965       7.402713e-02  0.203247573  0.374348289
## 1875      0.2347646513       1.207692e-01  0.199989136  0.370378024
## 1888      0.0145051951       1.388847e-01 -0.001738991  0.347224354
## 1894      0.0131525085       6.877270e-02 -0.102134299  0.338994546
## 1898      0.1259259336       1.064973e-01  0.146123084  0.347590705
## 1903      0.1438441874       8.668513e-02  0.134139528  0.341461732
## 1904      0.0114437246       8.818563e-02  0.125614311  0.327586230
## 1911      0.0463702159       8.070617e-02  0.098016631  0.328740465
## 1916     -0.0203587381       6.660983e-02 -0.083861091  0.319128600
## 1920      0.0105791023       6.089653e-02  0.051107928  0.320901876
## 1924      0.0625655885       5.795103e-02  0.063189261  0.318735091
## 1932     -0.0070604226       4.702917e-02  0.053151842  0.309715839
## 1950     -0.0511293263       1.571437e-02 -0.194823383  0.299330593
## 1966      0.2206550028       5.769677e-02  0.192310690  0.304303747
## 1983      0.1940035210       1.159458e-01  0.321974169  0.315139584
## 1995     -0.0231174250       6.980000e-04  0.152529376  0.164257327
## 2000     -0.0463986905      -4.074519e-17 -0.101307814  0.164256376
## 2002     -0.0155163631      -4.241052e-17  0.078362344  0.164256993
## 2006     -0.0731213542      -4.141132e-17 -0.168949872  0.164254858
## 2010     -0.0246429830      -4.285461e-17  0.073321065  0.165083763
## 2014     -0.0463986905      -4.285461e-17 -0.091981947  0.165081423
## 2020     -0.0731213542      -4.274359e-17 -0.159624095  0.165080713
## 2024     -0.0246429830       2.560000e-05  0.082664912  0.165931606
## 2027     -0.0839691884       4.426667e-05 -0.217508791  0.167204598
## 2037     -0.0263641973       3.652371e-03  0.043106552  0.168868340
## 2044     -0.0028511486       2.615607e-02  0.076231216  0.174884117
## 2051      0.1041116335       6.949282e-02  0.134709597  0.181377994
## 2063      0.0570804039       2.154788e-01  0.133346882  0.184934723
## 2068      0.0784256327       2.021579e-01  0.204973169  0.186007339
## 2077      0.1929609064       1.881544e-01  0.140989488  0.187028176
## 2088      0.1821055289       1.451107e-01  0.366762704  0.187684619
## 2100      0.0969311338       6.652142e-02  0.366775611  0.186521776
## 2107      0.0969311338       5.870669e-02  0.351560748  0.185936874
## 2115      0.0878045138       4.527318e-02  0.331124529  0.186205493
## 2116      0.0880854301       3.316432e-02  0.309300892  0.186307780
## 2118      0.0382344956       2.648758e-02  0.126873795  0.181444461
## 2122      0.0448444100       2.481378e-02  0.233101687  0.186073956
## 2130      0.0451253264       1.775420e-02  0.208357287  0.186444533
## 2142      0.0539710300       1.357112e-02  0.248970384  0.187248432
## 2144      0.0451253264       1.167923e-02  0.212941728  0.187585195
## 2149      0.0355709745       1.002311e-02  0.138706835  0.187531100
## 2152      0.0057666997       6.739906e-03  0.028034311  0.187564153
## 2153     -0.0288068261       3.749038e-03 -0.094904865  0.180967624
## 2155      0.0403897727       9.427054e-03  0.123362799  0.186268090
## 2158      0.0267252709       8.057681e-03  0.087643483  0.186384034
## 2160     -0.0305355006       5.047802e-03 -0.109986206  0.179249437
## 2162      0.0403897727       6.115923e-03  0.122696732  0.186407809
## 2172      0.0267252709       4.537743e-03  0.087058561  0.187179800
## 2193      0.0302322337       4.868501e-03  0.094905807  0.189354911
## 2195     -0.0388683334       1.883857e-03 -0.092509374  0.178066557
## 2196      0.0081956098       2.719376e-03 -0.048531282  0.189711525
## 2199      0.0299513173       4.897550e-03  0.117028004  0.189912194
## 2205      0.0390779373       6.860639e-03  0.136322980  0.190674587
## 2207      0.0302322337       5.189323e-03  0.100460018  0.190993427
## 2208      0.0071394809       5.057655e-03  0.026139560  0.190248662
## 2212      0.0435262198       5.860075e-03  0.163404736  0.191190791
## 2233      0.0435262198       1.116430e-02  0.148974775  0.191917362
## 2236      0.0137219450       7.967417e-03  0.039002267  0.192026706
## 2243     -0.0051059990       1.128713e-02  0.037290240  0.193317897
## 2248      0.0501743503       2.328995e-02  0.136015717  0.197297866
## 2249      0.0504552666       2.399828e-02  0.114872465  0.197355480
## 2252      0.0164790957       3.255622e-02 -0.026449944  0.200012089
## 2258     -0.0280176643       2.489560e-02  0.019367826  0.180221524
## 2276      0.2371480006       1.931212e-01  0.274531738  0.236254260
## 2295      0.2595942960       3.286568e-01  0.324148660  0.252400242
## 2304      0.4124770958       4.579665e-01  0.393434460  0.271994301
## 2310      0.4706974082       4.756557e-01  0.417661236  0.281053871
## 2318      0.7580967541       6.345687e-01  0.446899353  0.301650180
## 2321      0.3613880070       3.316776e-01  0.524232509  0.248490637
## 2328      0.4221224888       3.774538e-01  0.587304681  0.262820559
## 2334      0.5989381283       5.577369e-01  0.351842699  0.306422686
## 2336      0.5978600757       6.748413e-01  0.283715390  0.309150238
## 2337      0.8465085208       1.008736e+00  0.466197034  0.316605189
## 2347      0.6812500437       6.917197e-01  0.421354987  0.321763297
## 2353      0.7222435167       8.027422e-01  0.438021537  0.326815462
## 2355      0.6607609646       7.698728e-01  0.339516323  0.331839033
## 2361      0.7706903278       8.693829e-01  0.407820966  0.336339738
## 2366      0.6614207414       8.431849e-01  0.364999593  0.338978497
## 2372      0.5652129339       5.429140e-01  0.355262400  0.333868424
## 2373      0.5568706511       6.517148e-01  0.353455690  0.337846072
## 2376      0.3590269166       3.268214e-01  0.237076029  0.335034086
## 2378      0.3579488639       4.643129e-01  0.166829745  0.334302729
## 2379      0.4826207816       5.288248e-01  0.343715020  0.335307667
## 2386      0.4453852662       4.154189e-01  0.333499602  0.337029364
## 2388      0.4763246827       4.561296e-01  0.317250580  0.342937472
## 2400      0.2229111236       2.730793e-01  0.241809901  0.340517185
## 2404      0.1781619165       1.532024e-01  0.131899773  0.344508556
## 2405      0.0579596902       1.074371e-01  0.164981042  0.292763039
## 2412      0.0721098354       9.949070e-02  0.200906069  0.294456516
## 2420      0.1259231115       2.135965e-01  0.080368746  0.350484355
## 2424      0.2960303328       2.223580e-01  0.371754234  0.357045539
## 2425      0.1511059857       1.301982e-01  0.298558315  0.345306104
## 2432      0.2997768606       1.406473e-01  0.315657769  0.363544764
## 2435      0.4318007237       3.145479e-01  0.430296073  0.377996700
## 2436      0.4020493521       3.015132e-01  0.432366299  0.384078905
## 2437      0.3631698994       2.721541e-01  0.419446422  0.376855435
## 2447      0.2341030643       1.334160e-01  0.529619568  0.305747849
## 2459      0.3510175107       2.386673e-01  0.511452948  0.367437061
## 2469      0.1666659265       2.021939e-01  0.349263188  0.338931834
## 2471      0.2545246781       2.289111e-01  0.518361270  0.350341017
## 2475      0.0959268180       7.486589e-02  0.393035038  0.255958310
## 2477      0.1193918275       1.556455e-01  0.496424101  0.318742949
## 2484      0.1076691266       1.447170e-01  0.353819648  0.280346925
## 2489     -0.0031708154       5.683423e-02  0.141498867  0.170220836
## 2492      0.0977414371       1.064081e-01  0.310131130  0.232847094
## 2517     -0.0226359860       9.667533e-03 -0.153021645  0.010045655
## 2521      0.0507222245       3.106548e-02  0.071267185  0.074280707
## 2526      0.0489307690       3.345958e-02  0.071463135  0.058873927
## 2531     -0.0226359860       7.443233e-03 -0.174809587 -0.037894923
## 2532      0.0132296433       2.440846e-02 -0.124843886  0.032070382
## 2533      0.0492545659       2.892997e-02  0.050738377  0.034139579
## 2538     -0.0226359860       9.095000e-03 -0.172375155 -0.057532794
## 2540      0.0492545659       2.923233e-02  0.034209787  0.016459509
## 2543      0.0274649890       7.475067e-03 -0.011089553  0.006724989
## 2547      0.0411125886       1.825065e-02  0.009462693 -0.001765115
## 2550      0.0503083832       1.778228e-02 -0.033874490 -0.009397429
## 2555      0.0682196992       2.099248e-02 -0.004421729 -0.013871735
## 2556      0.0590930792       1.875902e-02 -0.020696047 -0.017949446
## 2561      0.0730384974       2.637188e-02 -0.010763889 -0.028787663
## 2565      0.0264758772       1.797473e-02 -0.127289818 -0.039532364
## 2573     -0.0022393080       2.012550e-02 -0.054317206 -0.122236066
## 2577      0.1279552043       3.876590e-02  0.006450570 -0.043361154
## 2578      0.0292195836       3.451457e-02 -0.015274036 -0.055723746
## 2581      0.0298461072       4.723890e-02 -0.156872154 -0.055371574
## 2584      0.2216900166       8.308815e-02  0.008982126 -0.040054376
## 2590      0.1370818243       6.526910e-02  0.013768326 -0.056948056
## 2595      0.0298461072       7.095424e-02 -0.167927023 -0.071952377
## 2614      0.0135776451       2.816686e-02 -0.129954128 -0.089667056
## 2616      0.0124995925       7.595864e-02 -0.214397089 -0.092063668
## 2626      0.1480579243       8.704103e-02 -0.038754206 -0.080951805
## 2642      0.1742786092       9.922927e-02 -0.054536187 -0.077961712
## 2645      0.2630281511       1.942139e-01  0.060151258 -0.056442788
## 2648      0.2338445837       1.816074e-01  0.030454615 -0.054315063
## 2660      0.5262876720       4.151969e-01  0.132196348 -0.020166510
## 2661      0.5258972384       4.073428e-01  0.117970054 -0.029164390
## 2662      0.4195241467       3.485171e-01  0.100658179 -0.042910147
## 2664      0.3825647425       1.343052e-01  0.446552461 -0.187769907
## 2666      0.5119316938       4.302705e-01  0.135595879 -0.051374055
## 2670      0.4545659329       3.413678e-01  0.088045232 -0.103283431
## 2682     -0.0584174468      -3.830269e-17 -0.045270587  0.241047220
## 2686     -0.0187544967      -4.329870e-17  0.187674619  0.241049398
## 2695     -0.0394321515       5.000000e-07  0.091404565  0.241047996
## 2697     -0.0405102042      -4.329870e-17  0.022371607  0.241047059
## 2700     -0.0187544967      -4.329870e-17  0.187674619  0.241049398
## 2712     -0.0146327462       3.675144e-03  0.120046528  0.241049783
## 2718     -0.0557354620       1.291053e-05 -0.030861998  0.243534835
## 2724     -0.0736427046       3.380439e-04 -0.078271104  0.245338858
## 2729     -0.0160243236       6.714849e-03  0.244811241  0.250142916
## 2730      0.0023063156       8.398381e-03  0.203471615  0.251009533
## 2732      0.0460868186       4.707400e-03  0.174472830  0.252552379
## 2733      0.0887588478       4.774100e-03  0.371471987  0.252495587
## 2735      0.0669288659       3.328462e-03  0.372520217  0.254541955
## 2741      0.1020728022       2.225344e-02  0.606918321  0.255129659
## 2743      0.0787980797       1.244505e-02  0.489900957  0.254623428
## 2749      0.0785171633       2.775224e-02  0.519456492  0.255648631
## 2765      0.0692302394       5.746380e-02  0.439396599  0.257314110
## 2766      0.0502449442       5.995780e-02  0.288928527  0.257286206
## 2770      0.0806513449       7.353375e-02  0.493518512  0.257954765
## 2775      0.1120328198       1.188567e-01  0.588171196  0.257910523
## 2776      0.1176556205       1.220566e-01  0.593012876  0.258735303
## 2777      0.1085290006       1.058429e-01  0.582692686  0.258755923
## 2786      0.1432153334       1.357612e-01  0.501094145  0.262484746
## 2797      0.2627390709       1.926122e-01  0.663510576  0.269309820
## 2800      0.2937802919       2.416214e-01  0.558749093  0.271899844
## 2803      0.3273151792       3.614540e-01  0.589592369  0.274898642
## 2806      0.3163985472       2.831270e-01  0.561907034  0.277485363
## 2808      0.2645151336       3.423809e-01  0.358532284  0.280234522
## 2815      0.3249194323       4.520711e-01  0.370693176  0.285990989
## 2819      0.4177522018       4.702874e-01  0.617355608  0.291554012
## 2821      0.4091380525       4.303384e-01  0.523865562  0.295268664
## 2825      0.5171191761       4.349605e-01  0.645077602  0.300955558
## 2826      0.5221600595       4.361471e-01  0.631549563  0.302473582
## 2827      0.5493488297       4.340022e-01  0.612098802  0.304891314
## 2843      0.5540889579       5.443936e-01  0.350166468  0.339170186
## 2852      0.7576334154       6.845870e-01  0.641140558  0.368579221
## 2856      0.7239086102       7.620388e-01  0.581866816  0.391580456
## 2859      0.8048306475       7.832477e-01  0.661095224  0.404010279
## 2870      0.9009986777       9.213259e-01  0.534275799  0.456745261
## 2874      0.9909346434       9.515469e-01  0.641756474  0.475262940
## 2876      0.9096193403       9.525692e-01  0.592925144  0.481670621
## 2880      0.9736469497       9.440127e-01  0.604067250  0.497458018
## 2882      0.9337148681       9.680913e-01  0.593523061  0.510618714
## 2895      1.1982339811       1.083495e+00  0.684613920  0.586786650
## 2896      1.1067912221       1.098987e+00  0.668278119  0.591735785
## 2899      1.0232001573       1.088964e+00  0.445572634  0.616209818
## 2902      1.2273050737       1.154958e+00  0.711067411  0.637971547
## 2913      0.9014720906       1.104277e+00  0.516573338  0.696687649
## 2916      1.1410239334       1.118846e+00  0.778187050  0.712085962
## 2918      1.1060669897       1.137125e+00  0.725631580  0.722216294
## 2921      0.9823848721       1.035052e+00  0.577557133  0.724171422
## 2931      0.9236894771       9.406503e-01  0.719303803  0.772361767
## 2932      0.9067798784       9.261613e-01  0.696278611  0.779738984
## 2935      0.6219266022       7.858505e-01  0.555062726  0.775768083
## 2942      0.4443735842       6.062248e-01  0.544592942  0.793843968
## 2948      0.4105908764       5.270816e-01  0.447185555  0.812547151
## 2954      0.4498633480       5.515451e-01  0.589120507  0.831532644
## 2959      0.4837818249       5.711840e-01  0.751663499  0.846910014
## 2966      0.4813060772       5.296067e-01  0.760274340  0.864790189
## 2968      0.4384103109       5.024680e-01  0.666835638  0.866784984
## 2969      0.3239614199       4.633036e-01  0.531212063  0.858894269
## 2972      0.4948302613       5.364595e-01  0.782684301  0.880315869
## 2980      0.4769482158       5.112407e-01  0.795446597  0.901776325
## 2982      0.4355964249       4.938839e-01  0.697513892  0.905936772
## 2989      0.4516610363       4.790277e-01  0.751302507  0.916742561
## 2990      0.3993909772       4.213574e-01  0.615724476  0.916017743
## 3000      0.3431438035       3.484976e-01  0.859329136  0.925599486
## 3003      0.2913574957       3.500449e-01  0.739858361  0.932791404
## 3018      0.1816304589       2.241982e-01  0.575769894  0.942936446
## 3023      0.0379969564       1.179801e-01  0.783331029  0.932055467
## 3027      0.2773631300       2.011858e-01  0.828283945  0.952189311
## 3047      0.0545017494       1.045274e-01  0.575070803  0.958124007
## 3056      0.1527528058       9.559870e-02  0.757816885  0.967561828
## 3070      0.2191092115       1.132510e-01  0.769686686  0.970664336
## 3071      0.2081976182       1.165445e-01  0.754827811  0.974319053
## 3075      0.0542794023       1.154731e-01  0.509000279  0.966343426
## 3076      0.1635002961       1.235631e-01  0.688691319  0.972498726
## 3083      0.2469652610       1.289141e-01  0.691037276  0.974997139
## 3084      0.2742148211       1.294655e-01  0.697560192  0.977253907
## 3090      0.3380561818       1.766750e-01  0.720909410  0.988740478
## 3097      0.3737140522       2.564927e-01  0.766632367  0.997309186
## 3098      0.4032544203       3.043794e-01  0.777300285  1.001209979
## 3107      0.6572563165       6.349711e-01  0.983470932  1.074051177
## 3110      0.4604168613       6.811396e-01  0.924776528  1.077270963
## 3112      0.9428743209       7.551292e-01  1.144222705  1.089195014
## 3123      1.8791383370       1.525972e+00  1.171718300  1.255988357
## 3124      2.0480574438       1.938599e+00  1.271362915  1.292845973
## 3128      2.5491231804       2.490719e+00  1.525620010  1.654372924
## 3130      2.7044438542       2.717915e+00  1.372919417  1.414185147
## 3137      3.5392536893       3.553739e+00  1.591552432  1.570585566
## 3138      3.7234052953       3.617405e+00  1.670663887  1.604514212
## 3140      3.9221595691       3.854796e+00  1.893897867  1.703505896
## 3146      4.2100307701       4.011872e+00  1.944281221  1.764684135
## 3164      4.1246171976       3.832545e+00  1.650258370  1.848233078
## 3172      2.8489062580       2.959292e+00  1.318960667  1.785224963
## 3174      3.9728161479       4.029231e+00  1.559255086  1.793115283
## 3175      3.6908224560       4.310664e+00  1.565932702  1.793613994
## 3186      1.3687024759       1.427915e+00  1.340773443  1.738366753
## 3187      1.3044161121       1.338834e+00  1.410291337  1.827050589
## 3191      1.0984926061       1.283458e+00  1.561939938  1.750688800
## 3193      1.1650099743       1.035206e+00  1.347706971  1.661860759
## 3196      0.8565440868       9.768031e-01  1.583156087  1.618285861
## 3202      0.8505166076       8.432104e-01  1.446753286  1.595395194
## 3211      1.3080377215       6.356909e-01  1.382586969  1.530676500
## 3215      1.0468841857       1.750212e+00  1.187931737  1.408358933
## 3223      1.0429249788       5.744516e-01  1.321925331  1.440085675
## 3227      0.6643353676       7.139344e-01  1.436949597  2.362342493
## 3228      0.4761648994       4.757351e-01  1.063791238  1.302668096
## 3243      0.4076370408       3.749861e-01  1.088508079  1.146675558
## 3245      0.4413922816       4.898736e-01  1.263252415  1.248725371
## 3246      0.6003054014       4.893896e-01  1.248642707  1.217251680
## 3247      0.3847211363       4.963285e-01  1.222980656  1.245728677
## 3252      0.4391266768       5.352153e-01  1.235324138  1.259030183
## 3255      0.4174307298       4.818190e-01  1.112455369  1.223081171
## 3268      0.6458726662       3.034243e-01  1.112989433  0.863804385
## 3275      0.3318638783       3.157948e-01  1.016579311  0.797776441
## 3286      0.3860689199       2.761894e-01  0.846812629  0.511284089
## 3288      0.2450943017       2.901169e-01  0.799042556  0.530542549
## 3292      0.3006384152       2.169603e-01  0.567666562  0.423113783
## 3299      0.0254886481       2.014371e-01  0.438097954  0.279790318
## 3311      0.5234870729       5.077547e-01  0.325126132  0.120540221
## 3313      0.3747986189       3.843096e-01  0.207798313  0.049581411
## 3314      0.4787744495       5.031626e-01  0.362425568  0.127637603
## 3324      0.3055623608       3.961598e-01  0.210389839 -0.133315927
## 3327      0.2227065833       3.347847e-01  0.021886396 -0.077962678
## 3328      0.3304018019       3.499451e-01  0.173427855 -0.113401590
## 3338      0.4258646970       4.319265e-01 -0.151871458 -0.294291429
## 3340      0.4221261433       2.650713e-01 -0.424291434 -0.350527268
## 3345      0.3389646037       4.222494e-01 -0.388331116 -0.328620416
## 3348      0.2549987849       2.662521e-01 -0.610222683 -0.525517718
## 3350      0.5131755399       4.045721e-01 -0.433022110 -0.513404395
## 3364     -0.0486429698       4.443838e-06 -0.273655185  0.155627683
## 3365     -0.0307357272       1.277171e-06 -0.206013037  0.155628392
## 3366      0.0103669886       7.771709e-07 -0.027108929  0.155630987
## 3369     -0.0086991033       1.267717e-05 -0.062529236  0.155630766
## 3370     -0.0296576745       6.777171e-06 -0.136980033  0.155629394
## 3376     -0.0086991033       6.677171e-06 -0.062529236  0.155629831
## 3386     -0.0322171566       3.412886e-03 -0.129452906  0.162414854
## 3387      0.0073162459       4.151052e-03  0.050035571  0.162439114
## 3388     -0.0029041425       4.776698e-03  0.050658249  0.162483865
## 3390     -0.0117498461       7.480379e-03  0.016329764  0.162633838
## 3391     -0.0327084173       1.002778e-02 -0.056897769  0.162667179
## 3392     -0.0625415467       1.593759e-02 -0.272892812  0.163042911
## 3393     -0.0110306720       3.798100e-02  0.073945670  0.163702946
## 3396      0.1094816406       4.332004e-02  0.432847048  0.165092377
## 3408      0.3561685681       4.365610e-01  0.793997525  0.172713568
## 3415      0.7890259849       7.273686e-01  0.903215045  0.179224275
## 3431      0.6442244474       6.133377e-01  0.643511947  0.185708010
## 3432      0.6490306079       6.125703e-01  0.597183058  0.185713780
## 3447      0.3207075380       3.772973e-01  0.329589446  0.187208606
## 3451      0.3166504688       3.630189e-01  0.400895291  0.187062775
## 3467      0.1700764886       1.895966e-01  0.297491721  0.182410747
## 3469      0.1403587678       1.554054e-01  0.085480718  0.182748260
## 3478      0.1250396351       1.016708e-01  0.280165748  0.180222243
## 3480      0.1056926268       1.086014e-01  0.263423450  0.180231616
## 3481      0.1059735431       1.036162e-01  0.238821995  0.180062619
## 3489      0.0420548682       7.210552e-02  0.048259230  0.179168653
## 3496      0.0363737057       5.010745e-02  0.036098614  0.178716174
## 3497      0.0173574539       4.531765e-02 -0.100240452  0.178633275
## 3506      0.0816764524       2.060382e-02  0.130568847  0.177727909
## 3511      0.0201907463       1.746515e-02 -0.114710275  0.177415398
## 3512      0.0380979889       1.981972e-02 -0.048872985  0.177335029
## 3519      0.0158216222       1.502780e-02 -0.163110506  0.177038324
## 3538      0.0065393617       7.641070e-03 -0.091631528  0.176138817
## 3548      0.0535538806       9.188873e-03  0.017858165  0.175162876
## 3552      0.0065224594       6.279992e-03 -0.087931172  0.175097893
## 3553     -0.0054560778       5.928373e-03 -0.223439573  0.175179335
## 3554      0.0124511648       6.344640e-03 -0.155931061  0.174970481
## 3559      0.0065224594       5.728726e-03 -0.076209030  0.175169706
## 3560     -0.0054560778       5.807640e-03 -0.213628543  0.175007007
## 3564      0.0248037381       6.221106e-03  0.027953715  0.175730452
## 3570      0.0299841744       7.248540e-03  0.054993751  0.176051159
## 3575      0.0030480306       6.832403e-03 -0.123207497  0.175559066
## 3578      0.0253058370       9.795133e-03  0.071672408  0.175818717
## 3590      0.0509954052       1.263592e-02  0.093065889  0.175149228
## 3605      0.0372618349       2.157451e-02  0.100203003  0.174953577
## 3611      0.0286542792       2.614732e-02  0.115108796  0.176087611
## 3615      0.0120371941       3.042262e-02  0.043267160  0.179558664
## 3619      0.0636492144       6.111523e-02  0.199459694  0.182388328
## 3624      0.0649214689       8.113543e-02  0.086778119  0.186875205
## 3628      0.2838823472       1.745234e-01  0.334315338  0.201043746
## 3629      0.2556627274       1.692377e-01  0.285289348  0.202651944
## 3631      0.2283932207       2.043210e-01  0.263120764  0.202946067
## 3632      0.3942524289       2.665504e-01  0.473225387  0.208962137
## 3633      0.3904316434       2.797137e-01  0.501812998  0.213281578
## 3635      0.4838640544       3.061705e-01  0.517265479  0.222473901
## 3636      0.4463433155       2.696036e-01  0.466574410  0.225032729
## 3639      0.5253173946       4.084565e-01  0.690888375  0.226812019
## 3640      0.5255098726       3.674676e-01  0.708825813  0.230835557
## 3641      0.4936019123       3.843758e-01  0.713919308  0.236678659
## 3644      0.4365614870       4.334803e-01  0.534201527  0.242286787
## 3669      0.7274336591       7.171210e-01  0.765240531  0.276703744
## 3672      0.4940151433       5.850606e-01  0.506055811  0.275810579
## 3680      0.4585789873       4.987440e-01  0.537374500  0.276285466
## 3681      0.7011546449       6.320451e-01  0.712325704  0.279720956
## 3682      0.8020167848       5.667571e-01  0.737823324  0.318498166
## 3685      0.4812609659       5.191704e-01  0.640932817  0.284851681
## 3692      0.3897636725       4.365531e-01  0.569878728  0.284887030
## 3699      0.4602455391       4.397743e-01  0.602833771  0.292763597
## 3701      0.4027438227       4.185009e-01  0.540656760  0.293754719
## 3705      0.4508739189       5.140607e-01  0.707928141  0.303638468
## 3706      0.4505584177       4.473780e-01  0.619061364  0.306713960
## 3707      0.3643930224       4.108769e-01  0.481199912  0.305874838
## 3708      0.3447535479       4.194389e-01  0.544187646  0.300960367
## 3710      0.4785180889       4.977687e-01  0.711169313  0.305607516
## 3713      0.3647056326       4.436097e-01  0.513470965  0.307012652
## 3714      0.3017389896       3.838738e-01  0.346387537  0.303402928
## 3717      0.3866433115       4.955428e-01  0.539452823  0.305371723
## 3721      0.3061846105       3.677117e-01  0.252957717  0.305186129
## 3727      0.3133621121       4.072769e-01  0.384394638  0.308339657
## 3729      0.2378864154       3.538147e-01  0.228616896  0.304040847
## 3737      0.3604292436       3.940482e-01  0.408746732  0.307516787
## 3738      0.3592482148       3.663673e-01  0.407972290  0.310043195
## 3742      0.2756760179       2.609040e-01  0.147032639  0.308885962
## 3745      0.3382733561       3.373088e-01  0.401582093  0.311960541
## 3747      0.3452817897       3.138967e-01  0.364776391  0.316147208
## 3765      0.4833452808       3.720725e-01  0.426531944  0.331641744
## 3768      0.4695891759       3.662018e-01  0.410645147  0.340651807
## 3771      0.3878425068       3.543716e-01  0.272335381  0.331211220
## 3772      0.5550504087       3.970266e-01  0.469389921  0.335894313
## 3773      0.5058348117       3.833747e-01  0.473926530  0.339515379
## 3774      0.4781043082       3.876232e-01  0.460471510  0.341937028
## 3779      0.5631441855       4.517008e-01  0.497012016  0.340838937
## 3780      0.5370769833       4.333699e-01  0.499322748  0.344098616
## 3782      0.5385003056       4.611717e-01  0.462034066  0.347940681
## 3787      0.5116179477       4.767694e-01  0.493855106  0.350140682
## 3788      0.5550725610       4.832552e-01  0.615659205  0.348428868
## 3792      0.4157342506       4.289851e-01  0.437790751  0.337389139
## 3804      0.3312968127       3.698072e-01  0.442084866  0.342719490
## 3805      0.2882497408       3.118016e-01  0.293153380  0.337745944
## 3807      0.4188345189       4.053562e-01  0.538688709  0.338235384
## 3814      0.3440820744       3.396832e-01  0.496122870  0.331333149
## 3816      0.2792644637       3.166130e-01  0.476225512  0.335138355
## 3822      0.3190111804       2.643787e-01  0.549355748  0.319024283
## 3825      0.2544242788       2.098741e-01  0.416606574  0.312489699
## 3836      0.1625892099       1.750844e-01  0.440304706  0.283215280
## 3838      0.1537435063       1.561411e-01  0.385424528  0.278508024
## 3839      0.1208453880       1.386862e-01  0.304821394  0.272635131
## 3841      0.0730595095       1.133251e-01  0.209226910  0.261451497
## 3842      0.1377669525       1.296711e-01  0.392013857  0.258731461
## 3848      0.0764547853       8.503723e-02  0.174593135  0.236314057
## 3856      0.0820134486       7.303873e-02  0.237070516  0.199261910
## 3860      0.0419887854       4.946983e-02  0.111527069  0.184312154
## 3862      0.0459228704       4.339073e-02  0.027795309  0.179436664
## 3863      0.0820134486       4.988257e-02  0.212397516  0.177637508
## 3865      0.0505651431       3.999380e-02  0.187648228  0.174208173
## 3877      0.0627134692       3.264003e-02  0.156775698  0.146751281
## 3878      0.0524930808       2.864160e-02  0.153238778  0.144720533
## 3879      0.0288442109       2.014803e-02 -0.010098859  0.138971203
## 3880      0.0291251273       2.207173e-02 -0.034216586  0.136292050
## 3881      0.0081665561       1.816633e-02 -0.109647846  0.133631825
## 3894      0.0261922508       1.810423e-02 -0.013456892  0.110834926
## 3897      0.0269562087       1.763652e-02 -0.164812667  0.103358866
## 3898      0.0754473663       2.271273e-02  0.023720387  0.102268326
## 3902      0.0567583784       1.611847e-02 -0.092766217  0.091730518
## 3904      0.0318719139       1.855220e-02 -0.172559761  0.087588672
## 3906      0.0985022003       2.217743e-02  0.017086513  0.084752730
## 3907      0.0893755803       2.239017e-02  0.001302808  0.083104475
## 3911      0.0245262846       2.114960e-02 -0.195987494  0.070082863
## 3915      0.0611199265       2.585630e-02 -0.027286442  0.066807833
## 3916      0.0282218082       2.367923e-02 -0.099496170  0.063964801
## 3920      0.0699656301       3.183097e-02  0.005174109  0.059596472
## 3927      0.0699656301       4.837167e-02  0.015333851  0.053126910
## 3929      0.0611199265       4.853753e-02 -0.020772697  0.051196011
## 3933      0.0801860185       5.304623e-02  0.017866589  0.048371006
## 3936      0.0760131130       5.363467e-02 -0.022500426  0.047384099
## 3937      0.0282218082       4.686610e-02 -0.098811360  0.044429862
## 3938      0.0092365130       4.100220e-02 -0.242732674  0.041764424
## 3942      0.0652872927       6.398227e-02  0.015953148  0.041565451
## 3944      0.0326700907       5.666603e-02 -0.084367965  0.037599199
## 3949      0.0652872927       6.568203e-02 -0.004364583  0.033377737
## 3952      0.0136847955       4.378820e-02 -0.245999883  0.027201942
## 3967     -0.0013797012       4.430690e-02 -0.224525896  0.011965777
## 3980     -0.0367252045       3.409177e-02 -0.297212509 -0.001693378
## 3989      0.0110104348       4.177260e-02 -0.043761072 -0.012021446
## 3990      0.0418010473       3.988823e-02 -0.056755522 -0.012797616
## 3995     -0.0238542113       3.681913e-02 -0.249015864 -0.020759195
## 3996      0.0676631873       4.546963e-02 -0.040640850 -0.021296009
## 4004      0.0705251975       5.065527e-02  0.026885407 -0.031853155
## 4009      0.0375879587       5.020203e-02 -0.184408767 -0.040864109
## 4014      0.0500828686       5.250260e-02 -0.092205622 -0.048735144
## 4016      0.0375879587       5.881980e-02 -0.180460562 -0.053831229
## 4020      0.0990251350       6.473833e-02 -0.016172881 -0.058205806
## 4024      0.1120970618       7.654083e-02  0.033167179 -0.066806472
## 4036      0.0639171470       7.563867e-02 -0.163426251 -0.109279785
## 4037      0.0305823714       9.617731e-02 -0.148096891 -0.115321408
## 4038      0.1701614375       1.047403e-01  0.057626080 -0.114843431
## 4045      0.0256717498      -4.274359e-17  0.151189998  0.245168380
## 4055      0.0602948228      -4.318768e-17  0.261061147  0.245170037
## 4060     -0.0065167982      -4.352074e-17  0.014514891  0.245166733
## 4070      0.0554760246      -4.363176e-17  0.261827197  0.245169931
## 4074     -0.0071446659      -4.085621e-17 -0.066714386  0.245166735
## 4080      0.0158308954       1.287900e-02  0.084083177  0.246375872
## 4083      0.0596669551       8.058000e-03  0.210160896  0.247822165
## 4086      0.0460024533       2.222233e-03  0.176998746  0.247821291
## 4095     -0.0178390820       1.101152e-03  0.039622270  0.253217681
## 4098      0.0441537408       6.691738e-04  0.294358248  0.253316637
## 4106      0.0832536272       1.000645e-02  0.461341024  0.257509483
## 4109      0.0303874244       1.090334e-02  0.233603414  0.257412908
## 4110      0.0482946670       1.271798e-02  0.301418844  0.257453841
## 4112      0.0923802471       1.600151e-02  0.488187216  0.257692022
## 4115      0.0701005158       2.241455e-02  0.385028287  0.258310203
## 4118      0.1047235888       2.609746e-02  0.515448467  0.259697938
## 4122      0.1114535291       5.135744e-02  0.441380390  0.262351274
## 4123      0.0862717392       5.562045e-02  0.317238675  0.263876891
## 4131      0.0971722238       6.867858e-02  0.389985078  0.266273928
## 4147      0.2633881788       1.029241e-01  0.706679976  0.277193302
## 4150      0.2139385628       1.153419e-01  0.584197434  0.277949483
## 4154      0.2130507532       1.337247e-01  0.668408715  0.279418587
## 4160      0.2213359893       1.568184e-01  0.651500184  0.282209306
## 4168      0.2755700882       1.827979e-01  0.542683961  0.284615635
## 4169      0.2846362253       1.839354e-01  0.528665072  0.285295983
## 4170      0.2642486369       1.914215e-01  0.506948533  0.285582311
## 4174      0.2302834565       1.699736e-01  0.530746109  0.286321584
## 4184      0.1844541917       1.800568e-01  0.494944763  0.289561514
## 4189      0.1784067088       1.642723e-01  0.524542767  0.290483737
## 4193      0.1153065470       1.275592e-01  0.274692716  0.291264091
## 4197      0.1992597579       1.593568e-01  0.394597786  0.292392440
## 4204      0.2000041887       1.664883e-01  0.398659039  0.294157587
## 4209      0.1899049284       1.564360e-01  0.403628920  0.294785110
## 4216      0.1899049284       1.450668e-01  0.397007633  0.295774271
## 4224      0.1862635625       1.466756e-01  0.397162790  0.297253298
## 4225      0.1771369426       1.421562e-01  0.382789181  0.297480642
## 4230      0.1917107113       1.104394e-01  0.396441066  0.298199204
## 4231      0.1868919130       1.184548e-01  0.398510172  0.298450490
## 4234      0.1458925218       1.145245e-01  0.288055893  0.298966786
## 4235      0.1129595431       8.298625e-02  0.149131113  0.299133727
## 4236      0.1369471510       7.437922e-02  0.214338026  0.299296649
## 4239      0.1785097238       1.164719e-01  0.382800822  0.299771234
## 4241      0.1458925218       1.125307e-01  0.285512925  0.300093710
## 4247      0.2237081662       1.401751e-01  0.343941612  0.319889560
## 4249      0.1129595431       7.725765e-02  0.130951963  0.299953891
## 4252      0.1876363438       1.167156e-01  0.379379152  0.300329535
## 4255      0.1458925218       1.103900e-01  0.268314115  0.300898279
## 4258      0.1874204567       1.131111e-01  0.373398880  0.298720059
## 4263      0.1086692886       7.616226e-02  0.128867829  0.299883347
## 4266      0.1833460892       1.162928e-01  0.380370521  0.300784238
## 4269      0.1416022673       1.124921e-01  0.272323911  0.301477347
## 4272      0.1881648874       1.257713e-01  0.382433297  0.302122347
## 4275      0.1745003856       1.356473e-01  0.349361370  0.303021673
## 4278      0.1265765312       8.012621e-02  0.204398213  0.303972864
## 4283      0.1416022673       1.324294e-01  0.285331819  0.306707738
## 4288      0.2082036148       1.630586e-01  0.387337684  0.309781152
## 4289      0.2782628448       2.060241e-01  0.379185714  0.339603164
## 4299      0.2205887944       1.671337e-01  0.246500814  0.320746672
## 4303      0.3026109299       2.652752e-01  0.407593272  0.324399241
## 4307      0.3944205704       2.823829e-01  0.441258376  0.328483037
## 4317      0.4010366025       3.454588e-01  0.416491327  0.338261312
## 4320      0.3761562006       2.734633e-01  0.330983511  0.341004114
## 4325      0.4336355797       3.542346e-01  0.419381621  0.347905403
## 4332      0.4502199509       3.968464e-01  0.428319555  0.357686416
## 4336      0.4945075972       4.313941e-01  0.547673612  0.361153374
## 4337      0.4813557235       4.434929e-01  0.537098693  0.364827538
## 4349      0.5451745644       5.070696e-01  0.655223463  0.384307017
## 4352      0.5215524951       5.184231e-01  0.631236728  0.389685861
## 4356      0.5604578979       5.239938e-01  0.673739695  0.394846381
## 4360      0.5120247363       5.565066e-01  0.571465199  0.402847979
## 4363      0.6108264564       5.301605e-01  0.665525890  0.406133358
## 4365      0.5558515397       5.750298e-01  0.670088386  0.410660989
## 4369      0.5109279055       4.910720e-01  0.510274387  0.418287000
## 4370      0.5896080285       5.458720e-01  0.693639971  0.419340795
## 4378      0.5646451044       5.494638e-01  0.711003670  0.430215016
## 4401      0.5702212318       5.505859e-01  0.649189236  0.457661359
## 4404      0.5090921436       4.752487e-01  0.496446022  0.459113775
## 4409      0.5302126278       5.252152e-01  0.554970655  0.463543613
## 4411      0.4689000386       4.620474e-01  0.405287726  0.464245101
## 4423      0.3520663078       4.641742e-01  0.453640973  0.472181782
## 4424      0.3005698891       4.248922e-01  0.327772447  0.472351187
## 4428      0.3645849575       4.529848e-01  0.557887816  0.474665006
## 4429      0.3648658739       4.454562e-01  0.534947823  0.475378842
## 4435      0.3667129342       4.229326e-01  0.562594910  0.477480935
## 4437      0.3340494814       4.213642e-01  0.463508527  0.478938593
## 4442      0.3282817028       4.163423e-01  0.453889442  0.478815132
## 4443      0.2994756543       4.133953e-01  0.422137349  0.472878312
## 4444      0.2665775360       4.096815e-01  0.347856911  0.472529279
## 4454      0.3473862631       4.046052e-01  0.475127019  0.554280884
## 4461      0.3210440461       3.854731e-01  0.475241104  0.558062161
## 4466      0.2073023403       3.535494e-01  0.198168555  0.490330267
## 4471      0.3516003420       3.798185e-01  0.524859763  0.464202685
## 4472      0.3187022237       3.808707e-01  0.450180678  0.466706697
## 4473      0.2857692450       3.344001e-01  0.310777352  0.463218035
## 4474      0.3097568528       3.158857e-01  0.385692921  0.464411767
## 4475      0.3645204131       3.462531e-01  0.567397171  0.467245378
## 4483      0.4319382519       3.831733e-01  0.588454861  0.540674217
## 4486      0.4165366470       3.896630e-01  0.481222715  0.538836168
## 4489      0.3707955509       3.576498e-01  0.553725167  0.463265530
## 4495      0.3160319906       3.354817e-01  0.372863235  0.458668082
## 4499      0.4230925483       3.826741e-01  0.540857836  0.535836806
## 4522      0.2899251638       3.604554e-01  0.379969923  0.444550777
## 4529      0.3284635117       3.683008e-01  0.375162417  0.443635292
## 4531      0.4022293758       3.751209e-01  0.519675642  0.456149502
## 4542      0.3690168467       3.823677e-01  0.423890352  0.448579350
## 4545      0.4273364280       3.852962e-01  0.562328427  0.444381668
## 4552      0.5289604906       4.838396e-01  0.572676239  0.458736187
## 4557      0.5202072450       5.651220e-01  0.343412138  0.453882773
## 4558      0.5419179631       5.645228e-01  0.400930141  0.454556240
## 4559      0.6119814015       6.272500e-01  0.575051514  0.456667486
## 4564      0.5555034509       6.632560e-01  0.228723347  0.455950071
## 4569      0.6646046740       7.403479e-01  0.420335778  0.465832124
## 4577      0.5844600551       7.481795e-01  0.341279523  0.443536636
## 4586      0.5892577529       7.602116e-01  0.250169054  0.441487140
## 4590      0.7342939664       7.746678e-01  0.426174077  0.548773236
## 4592      0.6305537275       7.691481e-01  0.215406191  0.535619058
## 4607      0.5764538651       7.606896e-01  0.224877415  0.420786372
## 4608      0.7101417679       7.658632e-01  0.446980873  0.526203751
## 4612      0.6495963265       7.713587e-01  0.326833604  0.530432498
## 4628      0.6841124678       7.572855e-01  0.278814127  0.516490655
## 4631      0.7324513600       7.748246e-01  0.443937948  0.523979494
## 4634      0.7127834219       7.623505e-01  0.221404820  0.520248844
## 4645      0.7551723912       7.434416e-01  0.620586405  0.660532861
## 4646      0.8016117804       7.990349e-01  0.411487104  0.469894961
## 4648      0.7357318041       7.949988e-01  0.202628909  0.474833042
## 4651      0.8233196256       8.337412e-01  0.396762196  0.362490614
## 4653      0.8468144930       8.645549e-01  0.406689155  0.478636995
## 4656      0.7315023358       8.657596e-01  0.215154355  0.356367032
## 4657      0.9205158045       8.889071e-01  0.445398536  0.473468655
## 4666      0.8764070570       9.729792e-01  0.385446453  0.345731720
## 4674      1.0002032020       1.035013e+00  0.819073295  4.028003509
## 4675      0.9201910083       1.036587e+00  0.747014629  4.056201848
## 4678      1.0427676480       1.045112e+00  0.740645384  0.851208764
## 4681      1.1362898907       1.102551e+00  0.447174043  0.550427892
## 4682      1.0720145707       1.102601e+00  0.376031595  0.552164894
## 4690      1.1400742577       1.158869e+00  0.319359961  0.507656723
## 4696      1.1706844644       1.199260e+00  0.381093845  0.395322446
## 4698      0.9960745162       1.202853e+00  0.300417616  0.388815827
## 4709      1.1830626325       1.208074e+00  0.473854946  0.496859750
## 4714      1.2846104790       1.179362e+00  0.568384273  0.483606584
## 4725      0.9107994939       1.124267e+00  0.128176443  0.311017899
## 4726     -0.0200174456       2.479651e-04 -0.171632269  0.183507656
## 4727     -0.0291440656       1.337267e-02 -0.185999415  0.183506572
## 4729     -0.0498217204       1.269900e-02 -0.282269288  0.183505425
## 4732     -0.0166800767       4.883095e-04 -0.122609329  0.187950419
## 4735     -0.0303445786       1.923000e-03 -0.148691341  0.188925454
## 4743      0.0016325128       2.953451e-02 -0.192924137  0.193438639
## 4749      0.0617555300       8.173315e-02  0.480895119  0.195289448
## 4753      0.1281255247       8.704198e-02  0.504473279  0.197141714
## 4755      0.1221802336       9.357070e-02  0.498348987  0.197797207
## 4757      0.0895630316       1.099067e-01  0.398952389  0.199686274
## 4759      0.0884849790       1.038586e-01  0.300839779  0.198964825
## 4760      0.1246969899       1.128846e-01  0.457159801  0.199184295
## 4765      0.0600813196       1.171800e-01  0.138874609  0.200652442
## 4771      0.0466096328       1.033317e-01  0.218514990  0.200597081
## 4788      0.0824168492       5.493136e-02  0.303895317  0.201310571
## 4789      0.0775980509       5.225201e-02  0.295439067  0.201331223
## 4790      0.0684714310       4.909401e-02  0.274952082  0.201406796
## 4791      0.0594957980       4.742632e-02  0.249113468  0.201553121
## 4792      0.0385372268       4.765578e-02  0.172338203  0.201528794
## 4794      0.0353249925       3.766499e-02  0.105045840  0.201218310
## 4807      0.0551798275       3.040747e-02  0.011586551  0.201446034
## 4819      0.0312241282       1.949922e-02  0.081195649  0.200238170
## 4825      0.0315794449       2.119801e-02  0.120584982  0.200638781
## 4827      0.0109017901       2.259930e-02  0.023435787  0.200666597
## 4843     -0.0077144375       1.947455e-02 -0.175603568  0.201081967
## 4846      0.0140412699       1.990294e-02 -0.014321465  0.201084072
## 4852      0.0231678899       1.893676e-02 -0.001665141  0.201136729
## 4853      0.0140412699       1.777642e-02 -0.015166012  0.201143891
## 4854      0.0143221863       1.755350e-02 -0.036181230  0.201156940
## 4859      0.0246493193       1.713453e-02 -0.036171991  0.198058012
## 4872      0.0308408987       1.775701e-02 -0.030531297  0.198489814
## 4880      0.0241683608       1.837249e-02 -0.028268432  0.199577584
## 4881      0.0171759224       1.955363e-02 -0.043767686  0.199621734
## 4887      0.0263025424       2.047815e-02 -0.034243872  0.199724769
## 4890     -0.0035017324       2.037413e-02 -0.149375902  0.199709441
## 4893      0.0311213406       2.463640e-02 -0.040621437  0.199890091
## 4897     -0.0052304069       3.494538e-02 -0.150872599  0.199907921
## 4898     -0.0242157021       3.264546e-02 -0.287482620  0.199852965
## 4902      0.0189012122       4.790972e-02 -0.032837025  0.199453991
## 4903      0.0191821286       5.150703e-02 -0.049644416  0.199833084
## 4904     -0.0017764426       5.317720e-02 -0.124406896  0.199905452
## 4911      0.0633295620       6.144739e-02 -0.078986874  0.203729601
## 4916      0.0867712569       6.566860e-02  0.017854205  0.203907019
## 4917      0.0870521733       6.721833e-02 -0.003338649  0.204033048
## 4925     -0.0101200745       6.612289e-02 -0.085647696  0.203307642
## 4926     -0.0291053697       6.266798e-02 -0.222946913  0.203268513
## 4927     -0.0111981272       6.280385e-02 -0.155735047  0.203203201
## 4929      0.0196842003       6.219082e-02  0.021180962  0.203160139
## 4941     -0.0282116963       5.824010e-02 -0.158985555  0.203580664
## 4946     -0.0289480186       6.860766e-02 -0.091279505  0.203429639
## 4954     -0.0479333138       7.164984e-02 -0.219132931  0.203915020
## 4971      0.0106876675       8.800382e-02  0.076335116  0.203887096
## 4980      0.0364446583       1.253395e-01  0.069971005  0.207595415
## 4982     -0.0154387552       1.290919e-01 -0.128226323  0.208924673
## 4983      0.0024684874       1.414807e-01 -0.052223517  0.209870412
## 4986      0.2516884438       1.833079e-01  0.208327377  0.240076646
## 4990      0.1992509164       1.859930e-01  0.305491456  0.243658986
## 4992      0.3492994286       2.001969e-01  0.648009829  0.247985348
## 5002      0.2409510854       2.317987e-01  0.426724753  0.314060578
## 5003      0.2050764887       2.348847e-01  0.281636858  0.313560663
## 5013      0.2462254116       2.517917e-01  0.489003474  0.320944620
## 5024      0.1838692881       1.992294e-01  0.146571363  0.323130799
## 5031      0.0729555516       1.789614e-01  0.089573653  0.324603018
## 5032      0.0916072249       1.802839e-01  0.150753134  0.326118742
## 5034      0.1344290995       1.757030e-01  0.311967413  0.326440641
## 5036      0.2152076242       1.745928e-01  0.280008836  0.378120111
## 5042      0.1721749231       1.520491e-01  0.267918152  0.408455691
## 5045      0.1205724260       1.366972e-01  0.022498230  0.416076261
## 5057      0.1095034235       1.122835e-01  0.196167604  0.516338440
## 5061      0.1238344680       1.010966e-01  0.245053869  0.531285057
## 5066      0.0486242852       9.649078e-02  0.008115945  0.329144469
## 5067      0.1021344473       9.204803e-02  0.085036774  0.335562218
## 5072      0.0841227713       8.231087e-02  0.161551022  0.328513513
## 5074      0.0830447187       8.163764e-02  0.094534607  0.330682930
## 5075      0.1770832857       7.983990e-02  0.276170750  0.334868239
## 5079      0.1104649884       7.616727e-02  0.182899069  0.328920169
## 5082      0.1112444025       7.134850e-02  0.212276551  0.331914037
## 5083      0.0924427830       6.931790e-02  0.215693165  0.330406777
## 5084      0.0833161631       6.898797e-02  0.203516562  0.330073774
## 5088      0.0496209085       6.853997e-02  0.058816824  0.329903026
## 5089      0.1351987061       7.018253e-02  0.254386082  0.334372249
## 5091      0.1072704667       7.000553e-02  0.254022357  0.333792979
## 5101      0.1226838424       1.008156e-01  0.061627353  0.337502866
## 5104      0.2335041283       1.429852e-01  0.328186218  0.354371048
## 5105      0.2203522546       1.488898e-01  0.321627791  0.351607171
## 5108      0.1528895259       1.639894e-01  0.150612925  0.390279449
## 5113      0.3519416072       1.898779e-01  0.545366558  0.373006731
## 5123      0.2936925532       2.531315e-01  0.497089892  0.409889458
## 5128      0.4000562641       3.115757e-01  0.630232464  0.432806406
## 5130      0.3727241913       3.274213e-01  0.566958415  0.431692475
## 5135      0.3564687508       3.392246e-01  0.600165079  0.433419848
## 5137      0.2999740576       3.438883e-01  0.512732242  0.436089002
## 5140      0.3699234127       3.421860e-01  0.622656486  0.443089079
## 5141      0.3803523702       3.400119e-01  0.582296118  0.434920069
## 5142      0.3782488416       3.353030e-01  0.596337141  0.430119171
## 5154      0.2258036079       2.393563e-01  0.494385016  0.418425292
## 5155      0.2260845243       2.377048e-01  0.462335957  0.420543867
## 5162      0.1535176787       2.132819e-01  0.399536496  0.424573242
## 5171      0.0985174569       1.380112e-01  0.144345922  0.411223655
## 5178      0.0109996786       9.051983e-02  0.009245767  0.407328019
## 5185      0.0109996786       7.534589e-02 -0.001421552  0.407684312
## 5194      0.0765475940       5.902153e-02  0.247697682  0.387070504
## 5203      0.0367322525       4.755789e-02  0.100820548  0.369122362
## 5204      0.0762462128       4.626626e-02  0.074328728  0.369136993
## 5206     -0.0148702447       4.288506e-02 -0.144056885  0.358770158
## 5208      0.0664145444       4.880089e-02  0.093919236  0.350351472
## 5214      0.0223308118       4.473762e-02 -0.098234881  0.331087342
## 5216      0.0672344122       4.662376e-02  0.076285679  0.324751654
## 5219      0.0210899629       4.959553e-02 -0.036567014  0.308820745
## 5223      0.0600107409       5.723167e-02  0.084392555  0.304516669
## 5226      0.0677875749       6.027083e-02 -0.006830210  0.303457487
## 5230      0.2388275831       8.097110e-02  0.145979860  0.308850147
## 5232      0.2345412822       8.667550e-02  0.128877345  0.297593103
## 5239      0.2166202495       1.257294e-01  0.173492256  0.286965529
## 5240      0.2064047572       1.469160e-01  0.103441705  0.286233938
## 5253      0.2558700072       2.153261e-01  0.028443743  0.241854800
## 5256      0.2220193013       2.189857e-01 -0.117451839  0.237174168
## 5261      0.1429061011       2.449236e-01 -0.064081319  0.215801179
## 5264      0.2505803058       2.486804e-01  0.043110823  0.226401703
## 5265      0.2245153490       2.679753e-01  0.073848021  0.223497421
## 5274      0.2128560909       2.591681e-01  0.093524267  0.214070079
## 5290      0.1787621721       2.044611e-01 -0.117777465  0.196963882
## 5291      0.1966694146       2.236798e-01 -0.052096988  0.202609719
## 5292      0.2751822101       2.269825e-01  0.115871938  0.202045779
## 5294      0.2472539707       2.137496e-01  0.102754920  0.192989246
## 5296      0.1549991904       2.134138e-01  0.013016191  0.197402024
## 5300      0.2315679672       2.181424e-01  0.126791313  0.201519594
## 5301      0.2184160935       2.063648e-01  0.112779703  0.200668919
## 5306      0.2401607148       2.173727e-01  0.134880340  0.206344752
## 5318      0.1305979704       2.033088e-01 -0.128953060  0.201868068
## 5324      0.1211248714       2.094980e-01 -0.049865024  0.199334102
## 5325      0.1053715200       2.072015e-01 -0.187614177  0.200671277
## 5326      0.1389177956       2.159047e-01 -0.059105928  0.208139493
## 5329      0.1693811064       2.153119e-01  0.113080332  0.209948390
## 5331      0.1588237857       2.021887e-01  0.023959098  0.207354243
## 5348      0.2100228962       1.980535e-01  0.112368048  0.216505486
## 5357      0.1709950419       2.016365e-01  0.177033516  0.215989198
## 5360      0.1289588641       2.016449e-01 -0.064343284  0.213458787
## 5367      0.0872405365       1.886508e-01 -0.080439480  0.213526272
## 5371     -0.0359364492       2.433333e-05 -0.158026706  0.141509094
## 5379      0.0166844722      -4.274359e-17  0.020877718  0.141507457
## 5382     -0.0006965726       1.200000e-06 -0.014542498  0.141506429
## 5383     -0.0216551438       1.600000e-06 -0.088993295  0.141505057
## 5395     -0.0009774890       7.266667e-06  0.007277936  0.141514668
## 5399     -0.0467842834       1.784155e-04 -0.239250277  0.141548950
## 5408     -0.0026987032       6.822831e-03 -0.059530712  0.141975297
## 5410     -0.0115444068       1.030121e-02 -0.092566144  0.142375801
## 5416     -0.0118253232       3.318556e-02 -0.039510319  0.145984802
## 5420      0.0202090625       1.180888e-01 -0.126059977  0.154581977
## 5422      0.1349638443       1.636538e-01  0.056009944  0.155525219
## 5426      0.0415681067       2.725397e-01 -0.149254151  0.157962674
## 5436      1.0099124248       9.759008e-01  1.309479226  0.165701237
## 5441      0.8361346055       7.403597e-01  1.055135175  0.166956987
## 5445      0.9014228606       9.114657e-01  1.148329308  0.169332997
## 5449      0.8497376747       8.199761e-01  1.049203112  0.170791696
## 5452      0.7676228609       7.296897e-01  0.947539432  0.172087912
## 5470      0.4026170240       3.664671e-01  0.662148618  0.174940818
## 5472      0.2332912278       3.370174e-01  0.611847775  0.173599239
## 5474      0.2126135730       2.729294e-01  0.492575958  0.173339507
## 5475      0.1490221102       2.801838e-01  0.350032296  0.173198740
## 5479      0.2332912278       3.087265e-01  0.536980967  0.174512427
## 5480      0.2335721442       3.089089e-01  0.508787280  0.174154609
## 5484      0.2631354047       2.850699e-01  0.496235813  0.174133377
## 5486      0.2251286690       2.685122e-01  0.457470780  0.174365421
## 5489      0.0804325141       1.813712e-01  0.200352702  0.173572016
## 5492      0.0951441094       1.794556e-01  0.328203124  0.173742489
## 5498      0.2369572089       1.222265e-01  0.298007866  0.174507268
## 5500      0.2010556808       1.111480e-01  0.273765524  0.174362492
## 5504      0.0705302805       6.952438e-02  0.101290218  0.174172541
## 5505      0.1712957350       9.442025e-02  0.279567476  0.174259241
## 5508      0.1371730718       6.842573e-02  0.237016771  0.174175390
## 5513      0.1460187754       8.109810e-02  0.260587608  0.173976842
## 5516      0.1162145006       5.297727e-02  0.135543844  0.173748877
## 5520      0.1206119620       4.288924e-02  0.118967585  0.173081159
## 5529      0.0330793732       3.164439e-02  0.066848655  0.172123424
## 5539     -0.0021605034       1.579161e-02 -0.092892471  0.171308441
## 5540      0.0611216712       2.027238e-02  0.085135544  0.171045987
## 5542      0.0274625224       2.011658e-02  0.072117024  0.171098407
## 5546     -0.0095703403       1.587351e-02 -0.097046210  0.170600017
## 5551      0.0179216628       1.013246e-02 -0.011413499  0.170863275
## 5555      0.0412405020       1.619420e-02  0.099675896  0.170510326
## 5565     -0.0089578023       1.095446e-02 -0.014133207  0.168747842
## 5573     -0.0411463502       6.088024e-03 -0.154568982  0.167622031
## 5577      0.0138540342       1.091379e-02  0.081135431  0.167561270
## 5578      0.0141349505       8.951810e-03  0.059467420  0.167198261
## 5579     -0.0089578023       1.008542e-02 -0.015289619  0.166882189
## 5588     -0.0096395361       1.327788e-02 -0.047017558  0.167498227
## 5592      0.0418765312       2.019913e-02  0.107837335  0.167707396
## 5593      0.0089784129       1.882100e-02  0.033255870  0.167618109
## 5594     -0.0232101351       1.482933e-02 -0.104196085  0.167409212
## 5597      0.0624646328       2.466390e-02  0.149233481  0.168066130
## 5602      0.0064395055       2.426910e-02 -0.023102249  0.168358130
## 5631      0.2748643614       1.525178e-01  0.347105403  0.199772310
## 5638      0.4611780954       2.219843e-01  0.418195814  0.210714988
## 5642      0.3651994868       2.489419e-01  0.328846525  0.214730381
## 5643      0.2522810958       2.536286e-01  0.260445225  0.217177643
## 5649      0.3793382373       3.732302e-01  0.404338722  0.225640256
## 5650      0.2786658719       3.170485e-01  0.260991872  0.222560616
## 5653      0.4138644545       4.544032e-01  0.495577059  0.227173148
## 5654      0.4440348733       4.162131e-01  0.492328913  0.238828391
## 5656      0.3272226701       3.917532e-01  0.402515757  0.235411779
## 5657      0.2846610993       3.235471e-01  0.271859600  0.235003879
## 5660      0.3732615977       5.087884e-01  0.528442934  0.233214894
## 5661      0.3537753485       4.453248e-01  0.502181087  0.237394200
## 5668      0.3614398151       4.875205e-01  0.456991680  0.238420551
## 5673      0.3553572412       5.274866e-01  0.512813226  0.237711045
## 5681      0.3159176519       5.073047e-01  0.507669072  0.246075391
## 5692      0.3573640839       3.697317e-01  0.384117284  0.279703166
## 5701      0.7183653290       6.999082e-01  0.756794637  0.315358828
## 5709      1.0664616636       9.344607e-01  0.879881833  0.351803687
## 5711      1.3014428610       1.127809e+00  0.840560765  0.363957936
## 5725      1.3034791607       1.332060e+00  0.765850002  0.369416690
## 5726      1.0800911883       1.093027e+00  0.674041752  0.364260327
## 5733      0.9025906880       9.013794e-01  0.584467802  0.359560357
## 5754      0.4169260318       4.178383e-01  0.363268017  0.331996676
## 5756      0.3743060724       3.719472e-01  0.297488007  0.328338980
## 5766      0.2133407762       2.908402e-01  0.328959475  0.317841122
## 5786      0.1242859265       9.133403e-02  0.309814303  0.274751420
## 5787      0.1151593065       8.317430e-02  0.259245248  0.272176821
## 5794      0.1220343985       5.729836e-02  0.344739967  0.252748181
## 5803      0.0584560208       3.334347e-02  0.185606956  0.232257079
## 5812      0.0209468295       2.257100e-02  0.109533323  0.203909312
## 5814      0.0541116603       2.765993e-02  0.301960353  0.200790221
## 5816      0.0512808779       2.265393e-02  0.216333870  0.196444912
## 5817      0.0417059811       2.142977e-02  0.123853369  0.194845419
## 5822     -0.0056064091       1.998367e-02  0.239021916  0.178638313
## 5830      0.0047956194       1.383610e-02  0.267708811  0.158093076
## 5833     -0.0236493109       6.604000e-03  0.132842844  0.145768455
## 5834      0.0217832789       1.188063e-02  0.293627857  0.146287207
## 5835      0.0072330165       1.328193e-02  0.319958006  0.145705119
## 5840     -0.0236493109       4.892881e-03  0.120752740  0.127607704
## 5853     -0.0270505417       6.054681e-03 -0.003306090  0.092007561
## 5857      0.0018651100       1.157359e-02  0.142870796  0.090076142
## 5863      0.0109917300       1.050832e-02  0.145027129  0.074985414
## 5866     -0.0060547370       1.337155e-02 -0.003679306  0.070588597
## 5871      0.0431005136       1.301439e-02  0.125560403  0.062071419
## 5874     -0.0085019836       1.012795e-02 -0.102840667  0.051918014
## 5876      0.1038322608       1.918175e-02  0.125776189  0.057162543
## 5878      0.1144390106       2.175343e-02  0.132087325  0.056141265
## 5880      0.1019414260       2.746853e-02  0.010604270  0.056029154
## 5883      0.1925919866       2.592297e-02  0.146767263  0.052654921
## 5888      0.0814527578       1.619050e-02 -0.167345878  0.051357152
## 5893      0.1456002035       3.678717e-02  0.036705910  0.063453998
## 5895      0.0822279789       2.580727e-02 -0.153591142  0.057109192
## 5902      0.0938588940       4.281133e-02 -0.109445943  0.078251472
## 5904      0.1980381427       7.603590e-02  0.124610647  0.078941469
## 5906      0.1527906907       7.788380e-02  0.128721788  0.074543544
## 5910      0.1217835318       5.488163e-02 -0.066210604  0.060293756
## 5914      0.1480980981       9.949833e-02  0.059367212  0.064793151
## 5915      0.1469416730       9.206527e-02 -0.027470933  0.062234590
## 5919      0.1583165829       1.086819e-01  0.098400268  0.064485993
## 5926      0.1583165829       1.158457e-01  0.104804518  0.066059419
## 5927      0.1416578768       1.033995e-01  0.091820079  0.069983139
## 5929      0.1262545730       9.880787e-02 -0.016423290  0.067229361
## 5933      0.1548097505       1.279462e-01  0.114382001  0.072150048
## 5937      0.0970895695       6.247007e-02 -0.129331175  0.071539543
## 5939      0.1866776901       1.461572e-01  0.125422574  0.071938638
## 5946      0.1651775841       1.570314e-01  0.130348997  0.076836029
## 5955      0.1498478001       1.707727e-01  0.151241388  0.086526166
## 5958      0.0984272706       8.186357e-02 -0.102753953  0.078043458
## 5966      0.1128276807       7.608117e-02 -0.042034428  0.088395279
## 5969      0.1568959582       1.614774e-01  0.134657637  0.090519414
## 5985      0.0883058133       1.235808e-01  0.013866791  0.085115322
## 5993      0.0728946571       6.210023e-02 -0.085369985  0.076964182
## 5997      0.1348701771       1.781763e-01  0.173174013  0.086694488
## 5999      0.1000652304       1.640835e-01  0.056508840  0.071254057
## 6003      0.1394259997       2.034188e-01  0.184213182  0.063010442
## 6004      0.1157868560       1.981965e-01  0.166366557  0.056640818
## 6007      0.0421714350       8.432317e-02 -0.069616721  0.046453077
## 6011      0.1342874448       1.992225e-01  0.205501829  0.039626443
## 6014      0.0659505588       8.228550e-02 -0.050076376  0.021379759
## 6021      0.0597669407       7.410457e-02 -0.057676101  0.004963644
## 6027      0.1096001212       1.511201e-01  0.060890473 -0.004271256
## 6028      0.0742268820       6.132123e-02 -0.056235816 -0.011433495
## 6031      0.1437471607       1.610182e-01  0.190306244 -0.013270259
## 6033      0.1372137132       1.557875e-01  0.137528323 -0.012680069
## 6040      0.0962939392       1.458084e-01  0.191015957 -0.032597127
## 6045      0.1167632088       1.597603e-01  0.155725548 -0.054237276
## 6046      0.1028206535       1.474660e-01  0.139917969 -0.057591038
## 6047      0.0868676055       1.471663e-01  0.056485746 -0.055246003
## 6064      0.0697735579       5.501702e-05  0.192211796  0.274305839
## 6069      0.0205313332       5.501702e-05  0.012541684  0.274303415
## 6074      0.0348126386       6.225035e-05  0.081574732  0.274304480
## 6075     -0.0131403650       5.501702e-05 -0.055100374  0.274302833
## 6078      0.0697735579       5.501702e-05  0.192211932  0.274306031
## 6079      0.0554902935       5.501702e-05  0.177844787  0.274305882
## 6080      0.0557712098       1.310170e-04  0.156025620  0.274306916
## 6087      0.0557712098       5.501702e-05  0.156025665  0.274305108
## 6097      0.0340811237       4.889171e-03  0.108163816  0.276618014
## 6098      0.0864570995       5.758162e-03  0.290763709  0.276738603
## 6102      0.0448997289       1.512985e-02  0.209883532  0.279683005
## 6105      0.0925002136       4.557487e-02  0.329397062  0.283804102
## 6109      0.2690058879       1.352667e-01  0.304281468  0.291559953
## 6117      0.4646248024       5.857234e-01  0.368367296  0.308899712
## 6118      0.8308146186       8.850647e-01  0.453796041  0.316054750
## 6125      1.6831781808       1.741279e+00  0.777159817  0.340645490
## 6130      1.7765601591       2.002520e+00  0.799216563  0.350436840
## 6131      1.6078246390       1.878928e+00  0.667209180  0.350226193
## 6134      1.7855788868       2.121048e+00  0.904997961  0.355715969
## 6139      1.5271402580       1.924446e+00  0.681595237  0.370368498
## 6140      1.8625454838       2.200603e+00  0.833205707  0.369169196
## 6148      1.6275653856       2.009814e+00  0.715854521  0.386256152
## 6159      1.2145769625       1.118829e+00  0.448606624  0.400696461
## 6160      1.2436892581       1.135557e+00  0.505591647  0.401918262
## 6176      1.1492466845       8.606701e-01  0.631410836  0.426673544
## 6177      1.0800446220       1.025893e+00  0.609855119  0.430215980
## 6179      1.1692649232       9.621309e-01  0.512760850  0.435741887
## 6181      0.7211400165       5.888245e-01  0.341358494  0.431453869
## 6187      0.7087726679       5.733488e-01  0.267772139  0.441062782
## 6188      0.6832164157       5.408166e-01  0.335573689  0.440311540
## 6199      0.7019146547       6.578306e-01  0.487022911  0.470377159
## 6209      0.7049123257       4.135668e-01  0.401657131  0.500901501
## 6211      0.7999763408       8.104775e-01  0.483739612  0.518223441
## 6212      0.8188985140       7.859481e-01  0.477068931  0.526211452
## 6215      0.5999880436       4.440835e-01  0.261747852  0.530122898
## 6220      0.8863613617       9.151848e-01  0.491378954  0.564460230
## 6223      0.7127809149       6.612609e-01  0.353894544  0.566056318
## 6226      0.9673227580       9.749785e-01  0.908230074  0.602154865
## 6230      0.7575463174       7.830791e-01  0.790021200  0.603529449
## 6232      1.1451818806       1.105602e+00  1.020961923  0.622336797
## 6234      0.9215767953       1.061028e+00  1.010749298  0.634923180
## 6236      0.7103978458       6.980343e-01  0.759777121  0.625305650
## 6248      1.0164332278       1.147158e+00  1.015726163  0.674630533
## 6250      0.6482089724       5.857838e-01  0.781875362  0.668809448
## 6255      0.9384554098       1.065523e+00  0.982126922  0.701319517
## 6258      0.6115827025       5.915663e-01  0.818958490  0.681539211
## 6263      0.7941999309       9.228057e-01  0.830904379  0.703336285
## 6270      0.8713433708       8.603979e-01  0.796120890  0.720883403
## 6271      0.6214952137       5.116354e-01  0.653761196  0.714304292
## 6283      0.9294540744       9.225184e-01  0.860446032  0.754196078
## 6285      0.5564088127       4.088013e-01  0.626359133  0.745427650
## 6288      0.9684169315       9.885610e-01  0.877548850  0.756377604
## 6297      0.9015798628       8.786850e-01  0.857234196  0.789999800
## 6300      0.6595987777       4.168805e-01  0.712408395  0.782116069
## 6304      0.8562840321       8.619674e-01  0.870080640  0.814616642
## 6306      0.4979788947       4.356384e-01  0.659865431  0.800726988
## 6310      0.9882483446       9.067463e-01  0.932678305  0.835580173
## 6318      1.0908839150       9.276863e-01  0.988822619  0.873478365
## 6329      1.1811411192       9.885223e-01  1.139597072  0.927683163
## 6342      0.6735827483       8.551527e-01  1.286459808  1.056235378
## 6344      1.4990107049       1.234503e+00  1.528820132  1.104526058
## 6366      2.9843231566       2.706687e+00  2.122497292  1.420216826
## 6368      2.2134709796       2.311138e+00  2.035940097  1.447178170
## 6369      1.3630432754       1.660481e+00  1.918134543  1.418811483
## 6375      2.4229272130       2.638220e+00  2.184526722  1.545549304
## 6382      2.3821109645       2.639083e+00  2.305844453  1.630087738
## 6393      3.2117131606       3.435828e+00  2.608436815  1.795375911
## 6395      2.7552317381       2.492026e+00  2.555707018  1.753726072
## 6397      2.3163745142       2.295801e+00  2.419033511  1.822505999
## 6399      4.1470497834       3.704500e+00  2.722324373  1.888209885
## 6403      3.1388951478       3.290213e+00  2.604779744  1.975832682
## 6411      2.2096519085       2.567049e+00  2.460483085  1.999455037
## 6412      2.4706208354       2.754363e+00  2.523296275  1.985977000
## 6413      3.8732239078       3.899998e+00  2.697321101  2.025872033
## 6418      2.3129150831       2.462021e+00  2.317829727  2.031559579
## 6419      2.6504616288       2.738082e+00  2.387382495  2.062604140
## 6421      4.0294832842       3.775482e+00  2.542497418  2.101083431
## 6422      3.9520700502       3.665784e+00  2.503741185  2.121982530
## 6427      3.1429269862       3.103596e+00  2.347690233  2.104379262
## 6436      2.9799480844       2.781635e+00  2.100861198  2.153821477
## 6440      1.0719613253       1.237288e+00  1.848770941  2.094465260
## 6443      2.5142360149       2.311881e+00  1.951115065  2.130997758
## 6452      1.5375589298       1.613672e+00  1.666190453  2.148543087
## 6454      0.8964821899       1.095614e+00  1.498357000  2.143606320
## 6455      1.4943305282       1.466068e+00  1.666719925  2.155099410
## 6456      1.9449592629       1.887076e+00  1.653614758  2.173368766
## 6458      1.6401251181       1.573201e+00  1.573905199  2.165873953
## 6461      0.8645982462       8.860703e-01  1.392310525  2.088025755
## 6462      1.2749880269       1.363130e+00  1.568592191  2.092973682
## 6473      0.9017232416       9.634476e-01  1.369539477  1.932487998
## 6479      1.3208715926       1.310564e+00  1.440338818  1.936662923
## 6480      0.7955834327       8.747988e-01  1.352741448  1.887286754
## 6484      1.1744571557       1.191981e+00  1.462226181  1.886391027
## 6494      0.9939771955       7.792592e-01  1.433213723  1.561953855
## 6499      0.9141378388       9.601354e-01  1.517186736  1.526899803
## 6504      1.1856946399       8.333628e-01  1.504943617  1.496541034
## 6512      0.6815950527       8.238202e-01  1.396547169  1.456795694
## 6519      0.8729183010       8.253345e-01  1.407282942  1.381352476
## 6521      0.7439945380       7.228350e-01  1.329507678  1.362659411
## 6525      0.7335044472       7.433636e-01  1.307288022  1.314472178
## 6527      0.7571361410       7.351719e-01  1.259975268  1.305823437
## 6529      0.4733826225       5.539965e-01  1.125156498  1.271724761
## 6532      0.6957477257       6.889753e-01  1.212583400  1.251926527
## 6534      0.5962598115       7.032920e-01  1.170844168  1.233486327
## 6536      0.4979383985       5.869114e-01  1.039928334  1.197302791
## 6538      0.4839975120       4.601818e-01  0.952742189  1.187688860
## 6547      0.5453486151       6.246859e-01  0.958969565  1.129671628
## 6549      0.4403755880       5.739549e-01  0.889231381  1.121661084
## 6553      0.3849263423       4.178232e-01  0.889994985  1.094587188
## 6560      0.3396094033       3.432878e-01  0.864523801  1.056573893
## 6561      0.3801331195       3.592996e-01  0.855795107  1.052257504
## 6569      0.3585254615       3.461258e-01  0.818238397  1.019544204
## 6575      0.5074959708       3.669593e-01  0.832542277  1.005351538
## 6582      0.3753777875       3.392410e-01  0.757512123  0.998384735
## 6585      0.0661876325       1.278473e-01  0.647340701  0.974588786
## 6591      0.6592708661       4.877977e-01  0.817413788  1.041162339
## 6596      0.3664890453       3.820194e-01  0.940078630  1.015567270
## 6608      0.4439045648       5.688425e-01  1.120570045  1.108582970
## 6615      0.6559775624       8.782288e-01  1.344365209  1.196243337
## 6616      1.0031621682       9.648316e-01  1.565088205  1.147005619
## 6617      1.1039767421       1.003801e+00  1.610628515  1.185548645
## 6620      0.3049360040       4.689807e-01  1.543172282  1.097984133
## 6623      1.3638494947       1.190165e+00  1.754211164  1.215499738
## 6625      1.4835213058       1.310730e+00  1.770744342  1.229034411
## 6628      0.0606806664       3.417400e-01  1.573320556  1.115999878
## 6636      1.0748192072       1.496151e+00  1.719594659  1.384086146
## 6644      2.4486166834       1.791317e+00  1.959250889  1.437373206
## 6646      2.4169029671       2.449731e+00  1.940095652  1.350271823
## 6647      2.2670813754       2.192100e+00  1.907721500  1.426636403
## 6649      0.2383499598       3.677030e-01  1.655967073  1.238751499
## 6655      1.1080691847       7.024303e-01  1.748844983  1.300679635
## 6657      2.1727504211       2.102587e+00  1.664328675  1.439514868
## 6658      2.7126095264       2.612314e+00  1.835857817  1.374377002
## 6661      2.6572845239       2.511505e+00  1.733425314  1.446496426
## 6670      0.3817615016       3.901486e-01  1.352851141  1.302743426
## 6674      2.3290350582       2.282743e+00  1.541885127  1.369583046
## 6687      2.2884161830       2.172168e+00  1.425975788  1.347759730
## 6689      2.0089801692       1.836482e+00  1.355786460  1.354022449
## 6695      1.6215614160       1.642861e+00  1.309837740  1.298826450
## 6706      1.1855797776       1.520004e+00  1.064942975  1.254228826
## 6714      1.3984798037       1.457860e+00  1.265974853  1.186004313
## 6715      1.5976022908       1.777616e+00  1.269359462  1.202397436
## 6721      1.4748673620       1.427157e+00  1.286466721  1.144494313
## 6722      1.4085160999       1.592859e+00  1.289389369  1.150399958
## 6727      1.4425947006       1.463368e+00  1.154372519  1.224813174
## 6730      2.0310810782       1.876187e+00  1.313573815  1.146533211
## 6734      1.2229432691       1.519843e+00  1.162382832  1.160922699
## 6735      1.5545520624       1.599474e+00  1.357605404  1.088744596
## 6740      0.4730991223       4.322305e-01  0.954091633  1.159339648
##              s1.1    ForwardMLR  BackwardMLR country
## 1     0.183506235  5.215864e-01  0.605388123     BRA
## 21    0.184011114  6.418681e-01  0.753982778     BRA
## 27    0.185144887  5.438130e-01  0.659727388     BRA
## 29    0.184893034  7.162989e-01  0.832398303     BRA
## 43    0.193088090  8.261920e-01  0.955636373     BRA
## 45    0.190894144  7.907604e-01  0.920831853     BRA
## 60    0.208308863  7.159909e-01  0.839399486     BRA
## 65    0.218808735  8.293678e-01  0.954244234     BRA
## 66    0.209110969  8.939422e-01  1.034364243     BRA
## 71    0.235854859  9.508627e-01  1.089935071     BRA
## 80    0.265350157  9.222157e-01  1.055477425     BRA
## 87    0.286486074  9.260071e-01  1.055013613     BRA
## 88    0.270014979  8.494680e-01  0.973583551     BRA
## 103   0.299755905  5.848020e-01  0.713243018     BRA
## 107   0.352739297  8.246220e-01  0.948796459     BRA
## 108   0.336262825  8.073807e-01  0.931364809     BRA
## 110   0.301743662  5.904126e-01  0.712736652     BRA
## 122   0.445118362  8.189210e-01  0.930457773     BRA
## 134   0.460428706  7.865532e-01  0.901311081     BRA
## 135   0.456746447  7.711156e-01  0.885170051     BRA
## 141   0.455762237  7.928196e-01  0.901084890     BRA
## 142   0.480508962  7.828421e-01  0.885422253     BRA
## 151   0.527862304  6.907761e-01  0.786306036     BRA
## 154   0.488382781  8.024631e-01  0.900368647     BRA
## 155   0.609576073  7.633430e-01  0.855724392     BRA
## 157   0.548202469  7.297491e-01  0.820919871     BRA
## 163   0.562003948  7.813323e-01  0.872836382     BRA
## 172   0.541827297  6.811387e-01  0.760783103     BRA
## 174   0.454228545  6.228448e-01  0.704349076     BRA
## 177   0.562999414  7.781802e-01  0.856492322     BRA
## 190   0.597498348  8.232621e-01  0.899116693     BRA
## 192   0.620960159  7.910925e-01  0.867445061     BRA
## 194   0.479054861  5.742123e-01  0.649323270     BRA
## 195   0.456862561  6.521369e-01  0.725765895     BRA
## 196   0.479478020  8.269083e-01  0.901902412     BRA
## 205   0.579628181  8.144734e-01  0.881005238     BRA
## 206   0.602002420  8.000855e-01  0.867445061     BRA
## 211   0.446135956  8.231666e-01  0.886624670     BRA
## 231   0.517450223  7.882345e-01  0.838122285     BRA
## 233   0.594854360  7.734466e-01  0.821096584     BRA
## 236   0.482344518  5.385892e-01  0.585543143     BRA
## 239   0.587232490  7.936222e-01  0.838469455     BRA
## 241   0.611489256  7.297583e-01  0.772415110     BRA
## 245   0.607595328  7.603407e-01  0.801489269     BRA
## 253   0.591470954  8.403094e-01  0.859173828     BRA
## 255   0.663417694  8.047464e-01  0.824139995     BRA
## 267   0.652487401  8.270725e-01  0.838361704     BRA
## 270   0.652576151  7.129687e-01  0.721436626     BRA
## 272   0.587964432  6.558022e-01  0.665473855     BRA
## 273   0.650099212  8.275045e-01  0.837841850     BRA
## 274   0.720922273  8.487017e-01  0.858884386     BRA
## 276   0.669108356  8.161302e-01  0.824575517     BRA
## 277   0.753848803  7.402389e-01  0.748425834     BRA
## 284   0.724064873  9.522837e-01  0.975784077     BRA
## 300   0.689062715  9.089351e-01  0.924778128     BRA
## 301   0.814582753  1.079376e+00  1.096731041     BRA
## 305   0.668991012  9.677766e-01  0.980164746     BRA
## 319   0.885606413  1.036858e+00  1.084586615     BRA
## 320   0.755524716  8.959333e-01  0.947663092     BRA
## 321   0.740864429  9.799674e-01  1.028586870     BRA
## 324   0.921841533  1.195091e+00  1.246036831     BRA
## 343   0.917480310  1.163313e+00  1.225510203     BRA
## 349   0.710291712  9.955472e-01  1.052771957     BRA
## 350   1.018048264  1.176583e+00  1.227490577     BRA
## 356   0.857590914  1.022505e+00  1.073750247     BRA
## 375   1.056790389  9.158679e-01  0.947575276     BRA
## 376   1.105073613  7.814119e-01  0.811937106     BRA
## 378   1.070255493  1.032351e+00  1.064112647     BRA
## 379   1.110833718  1.035331e+00  1.064351355     BRA
## 381   1.141575699  1.009962e+00  1.031152810     BRA
## 395   1.183854269  1.162601e+00  1.080558953     BRA
## 405   0.983105899  1.026722e+00  1.018491296     BRA
## 406   1.223181936  1.199102e+00  1.190917992     BRA
## 409   1.258207409  1.176521e+00  1.156318416     BRA
## 414   1.187460437  1.221505e+00  1.190574454     BRA
## 425   1.036506027  9.452436e-01  0.880029124     BRA
## 433   1.011617334  1.102762e+00  1.037404991     BRA
## 435   1.213364682  1.279710e+00  1.210035515     BRA
## 439   1.082221648  1.038925e+00  0.956754461     BRA
## 445   1.210631728  1.206688e+00  1.114017349     BRA
## 447   1.063882992  1.144125e+00  1.057220543     BRA
## 458   1.167912122  1.328692e+00  1.225976907     BRA
## 463   1.366943679  1.253853e+00  1.158042349     BRA
## 468   1.139708785  1.062457e+00  0.954375771     BRA
## 469   1.205502952  1.229515e+00  1.126178122     BRA
## 484   1.497134157  1.255826e+00  1.125542515     BRA
## 486   1.354834146  1.227452e+00  1.091878831     BRA
## 495   1.105697076  9.307441e-01  0.788646679     BRA
## 499   1.157521094  1.138675e+00  1.002385197     BRA
## 502   0.995078384  9.144288e-01  0.766610833     BRA
## 504   1.074642502  1.161539e+00  1.019635814     BRA
## 505   1.139484022  1.176113e+00  1.035098576     BRA
## 513   1.025381360  1.153623e+00  1.003029535     BRA
## 514   1.287860105  1.148489e+00  1.000294055     BRA
## 517   0.895003131  1.002066e+00  0.846618292     BRA
## 519   1.028327747  1.187882e+00  1.035098576     BRA
## 520   0.977786883  1.159297e+00  1.001907944     BRA
## 521   0.992191615  1.153838e+00  1.000294055     BRA
## 524   0.882807922  1.054421e+00  0.899348171     BRA
## 534   0.936052981  1.165512e+00  1.007356693     BRA
## 543   0.859924688  1.084691e+00  0.908321943     BRA
## 552   0.787192327  1.041788e+00  0.868154552     BRA
## 575   0.813882636  1.250346e+00  1.081679971     BRA
## 582   0.684679954  1.233171e+00  1.065153329     BRA
## 596   0.598677404  1.204457e+00  1.054320501     BRA
## 597   0.592260336  1.156539e+00  1.018401446     BRA
## 599   0.590323883  1.080410e+00  0.938083614     BRA
## 604   0.579433488  1.114453e+00  0.984902060     BRA
## 606   0.548249373  1.017150e+00  0.886038044     BRA
## 608   0.511060613  9.368076e-01  0.829604017     BRA
## 619   0.476895868  1.098952e+00  1.004061550     BRA
## 624   0.442917185  1.125180e+00  1.038866071     BRA
## 628   0.388478636  8.707319e-01  0.785939758     BRA
## 635   0.355268681  9.266772e-01  0.869235152     BRA
## 636   0.311404007  9.825377e-01  0.930763302     BRA
## 637   0.363462304  1.166325e+00  1.121814294     BRA
## 645   0.299552724  1.341509e+00  1.337779933     BRA
## 647   0.308179157  1.310458e+00  1.321759468     BRA
## 651   0.284577871  1.334830e+00  1.356216818     BRA
## 654   0.218245247  1.287542e+00  1.321759468     BRA
## 659   0.187698057 -9.609374e-01 -1.026144076     COL
## 670   0.187728506 -5.210719e-01 -0.572010483     COL
## 672   0.187863293 -6.164987e-01 -0.670874499     COL
## 674   0.187900365 -6.614030e-01 -0.711739820     COL
## 678   0.187923461 -3.449100e-01 -0.381316058     COL
## 679   0.188012559 -4.223012e-01 -0.462748425     COL
## 689   0.188614830 -2.161202e-01 -0.239245549     COL
## 697   0.188386514 -2.339145e-01 -0.259694125     COL
## 705   0.188790127 -2.514450e-01 -0.277066996     COL
## 707   0.189050429 -3.322772e-01 -0.360306100     COL
## 708   0.188966671 -4.727599e-01 -0.496995525     COL
## 721   0.190098655 -2.481162e-01 -0.262342416     COL
## 723   0.190592414 -3.075199e-01 -0.318776444     COL
## 727   0.190968378 -1.706368e-01 -0.180910050     COL
## 729   0.191163646 -3.884958e-01 -0.399031841     COL
## 740   0.194266114 -1.523600e-01 -0.163478401     COL
## 742   0.195589951 -2.477273e-01 -0.262342416     COL
## 746   0.195150569 -2.502593e-01 -0.248940705     COL
## 751   0.195312792 -4.228650e-01 -0.421766503     COL
## 768   0.205277506  5.139461e-01  0.487357786     COL
## 774   0.209058003  5.439156e-01  0.525954291     COL
## 776   0.206303470  5.056137e-01  0.488010601     COL
## 777   0.208472061  3.952238e-01  0.374493828     COL
## 789   0.228221624  4.995607e-01  0.479627808     COL
## 795   0.227908157  6.282584e-01  0.602820088     COL
## 799   0.232659633  4.322377e-01  0.404340287     COL
## 802   0.236028264  7.200057e-01  0.689325310     COL
## 809   0.247923778  7.203485e-01  0.694243033     COL
## 812   0.245156851  6.836386e-01  0.651453870     COL
## 814   0.248151939  5.746831e-01  0.546765232     COL
## 819   0.256963615  6.266515e-01  0.593654516     COL
## 826   0.258386192  6.145946e-01  0.580402313     COL
## 831   0.255969732  6.806724e-01  0.650029994     COL
## 834   0.250261645  3.978028e-01  0.369138247     COL
## 838   0.252919641  4.997001e-01  0.474122163     COL
## 846   0.252562969  4.339298e-01  0.408440489     COL
## 847   0.250678191  3.391366e-01  0.310671319     COL
## 848   0.252986865  1.853199e-01  0.161064537     COL
## 851   0.255740945  4.364027e-01  0.410813926     COL
## 858   0.253759964  3.915505e-01  0.365812381     COL
## 859   0.253359471  3.734085e-01  0.348262199     COL
## 862   0.256330518  1.075328e-01  0.083547739     COL
## 864   0.252063866  3.402915e-01  0.316925757     COL
## 866   0.251856260  2.832792e-01  0.256592209     COL
## 868   0.256313143  1.821946e-01  0.151414878     COL
## 870   0.258986534  1.284004e-01  0.100997299     COL
## 876   0.267306716  4.733240e-02  0.020285320     COL
## 891   0.275165113  7.188355e-02  0.039949228     COL
## 892   0.271489002  2.480557e-01  0.215905417     COL
## 897   0.277844817  4.010922e-02 -0.008531505     COL
## 911   0.275122747  2.506132e-02 -0.023013670     COL
## 916   0.280137546  2.643854e-01  0.212042060     COL
## 917   0.276774975  1.644751e-01  0.108256108     COL
## 918   0.280718039  2.037720e-02 -0.029478965     COL
## 919   0.275503241  9.916580e-02  0.047770953     COL
## 935   0.285902277  4.755427e-01  0.436508039     COL
## 936   0.287275817  4.548494e-01  0.413580049     COL
## 938   0.289620668  3.762350e-01  0.330620593     COL
## 946   0.306122571  3.034316e-01  0.259953604     COL
## 947   0.305382896  3.853035e-01  0.340336776     COL
## 949   0.320404012  5.835035e-01  0.533579274     COL
## 950   0.323995806  5.584631e-01  0.509441988     COL
## 961   0.311529701  6.751238e-01  0.668079911     COL
## 969   0.333808384  9.628598e-01  0.963097617     COL
## 972   0.364461035  9.401869e-01  0.933562193     COL
## 975   0.341391074  7.527487e-01  0.749236410     COL
## 984   0.344726705  7.246199e-01  0.723008799     COL
## 989   0.329419687  3.817169e-01  0.409847029     COL
## 992   0.331526128  4.832181e-01  0.511057497     COL
## 999   0.319234273  3.796363e-01  0.410655288     COL
## 1004  0.311057755  3.612926e-01  0.394844973     COL
## 1011  0.314262410  3.239556e-01  0.358775726     COL
## 1014  0.314960699  2.701228e-01  0.304937906     COL
## 1020  0.322232414  1.299130e-01  0.170763559     COL
## 1025  0.332913795  1.538865e-01  0.196746915     COL
## 1028  0.350689987  1.484644e-01  0.188376420     COL
## 1031  0.308711125  1.577871e-02  0.056016968     COL
## 1033  0.316216148  2.123197e-01  0.251192209     COL
## 1038  0.319133524  1.322918e-01  0.167800868     COL
## 1041  0.326451067  3.340347e-01  0.365753770     COL
## 1055  0.353214021  7.536967e-01  0.782999583     COL
## 1061  0.372317626  7.328936e-01  0.759108426     COL
## 1069  0.388770950  7.033202e-01  0.727923876     COL
## 1072  0.382230980  4.585277e-01  0.482394061     COL
## 1077  0.387851567  6.488105e-01  0.669887831     COL
## 1078  0.389269920  6.588783e-01  0.689450900     COL
## 1086  0.402392683  5.321087e-01  0.559860455     COL
## 1091  0.403861151  7.510108e-01  0.773247769     COL
## 1092  0.398133004  6.787723e-01  0.695319987     COL
## 1094  0.375482162  6.080794e-01  0.633378990     COL
## 1100  0.414201808  6.114033e-01  0.627982657     COL
## 1102  0.413911677  8.769495e-01  0.891074231     COL
## 1103  0.424184066  8.964679e-01  0.907713819     COL
## 1110  0.444451222  8.422979e-01  0.862210018     COL
## 1113  0.455643175  7.591595e-01  0.774043282     COL
## 1114  0.436540576  6.220257e-01  0.642450304     COL
## 1121  0.461299854  6.321382e-01  0.644279657     COL
## 1123  0.472365680  8.884924e-01  0.899717169     COL
## 1128  0.463802231  6.746258e-01  0.684498968     COL
## 1129  0.445726981  7.491365e-01  0.758395136     COL
## 1131  0.474163255  9.008238e-01  0.904133616     COL
## 1132  0.487096975  8.858090e-01  0.889437117     COL
## 1141  0.455890368  5.813077e-01  0.595024189     COL
## 1147  0.494501588  6.092589e-01  0.621945435     COL
## 1164  0.275410043  1.085933e-01  0.130228826     COL
## 1181  0.232085735 -8.178182e-03  0.023840394     COL
## 1186  0.224347704 -2.754529e-02  0.007328123     COL
## 1188  0.222834803 -6.201072e-02 -0.028080132     COL
## 1201  0.434493674 -1.329807e-01 -0.089288212     COL
## 1203  0.206653242 -1.769274e-01 -0.130349873     COL
## 1206  0.431063585 -3.180496e-01 -0.272574742     COL
## 1209  0.202412901 -1.764651e-01 -0.132598048     COL
## 1221  0.432225699 -1.707278e-01 -0.125898638     COL
## 1222  0.196457073 -1.730202e-01 -0.128950765     COL
## 1228  0.433561951 -1.850247e-01 -0.139351297     COL
## 1230  0.432517765 -1.966380e-01 -0.152969997     COL
## 1236  0.164723541 -1.989686e-01 -0.157167010     COL
## 1239  0.153521446 -3.244139e-01 -0.283299992     COL
## 1243  0.140251240 -2.139974e-01 -0.170212083     COL
## 1257  0.109825728 -1.852794e-01 -0.142320291     COL
## 1260  0.103524730 -3.003783e-01 -0.262095721     COL
## 1261  0.103357198 -4.397647e-01 -0.395951855     COL
## 1268  0.092671958 -3.468033e-01 -0.319548655     COL
## 1272  0.086651386 -9.873308e-02 -0.073642920     COL
## 1278  0.074977115 -3.087376e-02 -0.001612745     COL
## 1284  0.064437207 -1.920324e-02  0.010471490     COL
## 1292  0.045817987 -1.362141e-01 -0.108104703     COL
## 1307  0.168870535 -3.357267e-01 -0.422998530     FRA
## 1311  0.168870649 -1.989022e-01 -0.285132135     FRA
## 1313  0.168870707 -4.628888e-01 -0.523938398     FRA
## 1314  0.168870707 -3.818299e-01 -0.443683001     FRA
## 1320  0.168870993 -4.628888e-01 -0.523938398     FRA
## 1327  0.168871050 -4.628880e-01 -0.523938398     FRA
## 1332  0.168871050 -2.450045e-01 -0.305816607     FRA
## 1336  0.168879274 -1.672192e-01 -0.224540726     FRA
## 1337  0.168887612 -1.656800e-01 -0.224193555     FRA
## 1340  0.169050439 -1.694743e-01 -0.223356013     FRA
## 1348  0.169652412 -4.138948e-01 -0.453064927     FRA
## 1353  0.174708961 -1.959590e-01 -0.234943136     FRA
## 1356  0.177974480 -2.647576e-01 -0.299968215     FRA
## 1368  0.189873096 -4.075764e-02 -0.069187149     FRA
## 1373  0.180781402  1.520056e-01  0.137290026     FRA
## 1383  0.380861501 -7.604166e-02 -0.098263414     FRA
## 1385  0.247019023  1.770930e-01  0.154315727     FRA
## 1386  0.189458310  1.798880e-01  0.154662898     FRA
## 1400  0.172560120  1.859264e-01  0.154662898     FRA
## 1410  0.181202058  1.588403e-01  0.136389694     FRA
## 1412  0.180370651  4.143502e-02  0.017512223     FRA
## 1415  0.181806163  2.025883e-01  0.174322436     FRA
## 1424  0.181649315  1.679763e-01  0.135560380     FRA
## 1435  0.166515469  1.298042e-01  0.110850999     FRA
## 1437  0.182234660  9.447146e-02  0.076108006     FRA
## 1438  0.182230886  1.359695e-02 -0.006270945     FRA
## 1444  0.183328634  9.110224e-02  0.072824678     FRA
## 1446  0.181712856 -1.316749e-01 -0.146624699     FRA
## 1452  0.182829023  1.429106e-02 -0.006199952     FRA
## 1456  0.181488794  2.368918e-02 -0.003614349     FRA
## 1457  0.181450668  2.037710e-03 -0.024395971     FRA
## 1459  0.182331113 -9.866713e-02 -0.127002408     FRA
## 1463  0.184624332 -8.230454e-02 -0.097308479     FRA
## 1469  0.182617998 -8.593181e-02 -0.100548511     FRA
## 1470  0.184157177 -8.450681e-02 -0.100239204     FRA
## 1473  0.181922551 -2.341517e-01 -0.252017946     FRA
## 1477  0.183980073 -1.115081e-01 -0.130902735     FRA
## 1492  0.187446654 -1.157422e-01 -0.137763013     FRA
## 1494  0.182123764 -1.882343e-01 -0.201739310     FRA
## 1513  0.203739740 -6.073886e-03 -0.027812923     FRA
## 1514  0.204647554 -2.266685e-02 -0.044861205     FRA
## 1520  0.231525838  1.264245e-02 -0.013538977     FRA
## 1532  0.217696296  9.037360e-02  0.068201638     FRA
## 1533  0.225734124  9.474909e-02  0.071619154     FRA
## 1535  0.230608550  5.888981e-02  0.034418729     FRA
## 1540  0.236008885  9.956356e-02  0.075169893     FRA
## 1541  0.236481039  8.824224e-02  0.064105732     FRA
## 1553  0.235165249  1.401181e-01  0.119954796     FRA
## 1555  0.257087069  1.116440e-01  0.088253309     FRA
## 1559  0.229832245  2.502478e-03 -0.027024787     FRA
## 1561  0.285548715  2.049859e-01  0.176829982     FRA
## 1567  0.269894547  2.323012e-01  0.195453154     FRA
## 1570  0.323066473  2.176236e-01  0.175397539     FRA
## 1579  0.260801894  1.212264e-01  0.100998257     FRA
## 1581  0.379842502  4.534020e-01  0.400425911     FRA
## 1583  0.434037226  4.445081e-01  0.389843810     FRA
## 1587  0.688662260  5.186527e-01  0.451532536     FRA
## 1593  0.430318136  3.383239e-01  0.309108704     FRA
## 1595  0.368167400  5.797759e-01  0.521419974     FRA
## 1598  0.379664201  4.920477e-01  0.437414532     FRA
## 1607  0.347539833  1.418540e-01  0.113087705     FRA
## 1610  0.364053887  3.793480e-01  0.333488657     FRA
## 1619  0.348470222  4.957975e-01  0.462689417     FRA
## 1621  0.347554608  2.532568e-01  0.237827941     FRA
## 1622  0.317184772  3.679596e-01  0.329381874     FRA
## 1629  0.321144733  3.698406e-01  0.322295918     FRA
## 1634  0.383510307  3.172904e-01  0.261977367     FRA
## 1639  0.404759746  3.833102e-01  0.315469053     FRA
## 1647  0.401634836  4.540989e-01  0.475358558     FRA
## 1652  0.429041756  5.607518e-01  0.552038610     FRA
## 1668  0.437978644  5.617788e-01  0.542112920     FRA
## 1676  0.449448494  4.531385e-01  0.442054683     FRA
## 1689  0.447426130  4.632594e-01  0.459658027     FRA
## 1691  0.432850655  1.967158e-01  0.225710657     FRA
## 1694  0.468613038  4.919552e-01  0.492195477     FRA
## 1700  0.453763243  5.228684e-01  0.520927331     FRA
## 1704  0.474230523  4.551273e-01  0.463846369     FRA
## 1707  0.471433449  3.744785e-01  0.378835592     FRA
## 1712  0.472290527  1.395461e-01  0.173268669     FRA
## 1716  0.501256479  3.854423e-01  0.381174013     FRA
## 1719  0.497861979  1.526852e-01  0.183182547     FRA
## 1745  0.430208242  5.950125e-01  0.592581952     FRA
## 1749  0.595255704  6.418521e-01  0.648558802     FRA
## 1754  0.562008011  3.564793e-01  0.390515221     FRA
## 1760  0.580488389  5.225219e-01  0.536415962     FRA
## 1764  0.577218279  6.105183e-01  0.620578161     FRA
## 1765  0.556557777  5.853259e-01  0.589678101     FRA
## 1774  0.530127651  3.909080e-01  0.429224372     FRA
## 1787  0.469967130  4.230053e-01  0.429771711     FRA
## 1789  0.456791678  1.536788e-01  0.194373700     FRA
## 1790  0.426085456  2.329511e-01  0.269768661     FRA
## 1796  0.445165131  1.411073e-01  0.181488868     FRA
## 1797  0.410432402  2.642296e-01  0.273974142     FRA
## 1805  0.420024716  2.678995e-01  0.302279859     FRA
## 1808  0.404907396  2.271672e-01  0.256875808     FRA
## 1814  0.387296274  2.244464e-01  0.259288076     FRA
## 1818  0.374427983  2.439252e-02  0.055782779     FRA
## 1822  0.371340205  1.619053e-01  0.191825953     FRA
## 1829  0.360114988  6.588356e-02  0.104235978     FRA
## 1830  0.359325107 -2.643738e-02  0.018264737     FRA
## 1831  0.356648035 -1.904505e-01 -0.125445982     FRA
## 1840  0.357716490  1.141188e-01  0.151044470     FRA
## 1847  0.391059164  1.885990e-01  0.222042389     FRA
## 1851  0.415174804  1.118527e-01  0.124175094     FRA
## 1854  0.418628001  2.203351e-01  0.242053684     FRA
## 1865  0.408165975  1.580101e-01  0.169515201     FRA
## 1867  0.332389303  2.168746e-01  0.208415997     FRA
## 1868  0.420149369  3.681565e-01  0.373258309     FRA
## 1875  0.404572440  3.768919e-01  0.384566983     FRA
## 1888  0.329421851  1.849971e-01  0.189861025     FRA
## 1894  0.336727708  2.755899e-02  0.104502182     FRA
## 1898  0.365660208  3.124117e-01  0.347009889     FRA
## 1903  0.348328445  3.058168e-01  0.348971245     FRA
## 1904  0.289876984  2.963039e-01  0.344279173     FRA
## 1911  0.312888192  2.782635e-01  0.333148933     FRA
## 1916  0.287183756  1.168337e-01  0.161437757     FRA
## 1920  0.298945291  2.396965e-01  0.273432142     FRA
## 1924  0.300372332  2.370285e-01  0.295899950     FRA
## 1932  0.277052686  2.313933e-01  0.297954384     FRA
## 1950  0.282914761 -4.165873e-02  0.068448608     FRA
## 1966  0.322708615  3.799600e-01  0.458382177     FRA
## 1983  0.410298976  6.077260e-01  0.711536616     FRA
## 1995  0.163685813 -3.307231e-02 -0.164642565     DEU
## 2000  0.163694381 -2.516396e-01 -0.357997951     DEU
## 2002  0.163686271 -7.917552e-02 -0.185327036     DEU
## 2006  0.163690440 -3.326985e-01 -0.438253348     DEU
## 2010  0.163686500 -6.767417e-02 -0.171506289     DEU
## 2014  0.163686500 -2.225343e-01 -0.326804332     DEU
## 2020  0.163686500 -3.035933e-01 -0.407059729     DEU
## 2024  0.163765257 -3.851649e-02 -0.140256465     DEU
## 2027  0.163899815 -3.832558e-01 -0.474056434     DEU
## 2037  0.165623432 -8.845843e-02 -0.176897008     DEU
## 2044  0.176838892  1.351042e-02 -0.067635035     DEU
## 2051  0.183406116  1.423583e-01  0.070291346     DEU
## 2063  0.182780851  6.594616e-02  0.005233590     DEU
## 2068  0.181928475  1.261887e-01  0.061667618     DEU
## 2077  0.179724999  6.861321e-02  0.005233590     DEU
## 2088  0.177401576  2.910511e-01  0.241063667     DEU
## 2100  0.177403070  2.621214e-01  0.205612289     DEU
## 2107  0.176712618  2.380881e-01  0.179589505     DEU
## 2115  0.176832320  2.207691e-01  0.162216633     DEU
## 2116  0.177092806  2.027632e-01  0.144784984     DEU
## 2118  0.170486183  1.859989e-02 -0.041201353     DEU
## 2122  0.175660926  1.034029e-01  0.059217199     DEU
## 2130  0.176564539  8.549653e-02  0.041785550     DEU
## 2142  0.176303554  1.407187e-01  0.097442021     DEU
## 2144  0.177481204  1.051115e-01  0.062637500     DEU
## 2149  0.176817019  4.311509e-02  0.012963663     DEU
## 2152  0.176660545 -6.989375e-02 -0.103273224     DEU
## 2153  0.169536169 -1.946215e-01 -0.225360736     DEU
## 2155  0.176162426 -2.127430e-03 -0.034258243     DEU
## 2158  0.176429847 -3.620158e-02 -0.068715593     DEU
## 2160  0.168658613 -2.386522e-01 -0.272611799     DEU
## 2162  0.176271129 -2.087232e-03 -0.034258243     DEU
## 2172  0.178456219 -3.615177e-02 -0.068715593     DEU
## 2193  0.182609532  4.109950e-03 -0.021397209     DEU
## 2195  0.167843825 -1.872175e-01 -0.214867120     DEU
## 2196  0.183517957 -1.327093e-01 -0.159263604     DEU
## 2199  0.183346766  2.217447e-02 -0.003965560     DEU
## 2205  0.183143538  5.437642e-02  0.029032223     DEU
## 2207  0.183840791  1.874122e-02 -0.005772298     DEU
## 2208  0.180451001 -5.864203e-02 -0.087204664     DEU
## 2212  0.183498391  7.100590e-02  0.054261815     DEU
## 2233  0.186186654  1.770833e-02 -0.002954589     DEU
## 2236  0.185317541 -9.529090e-02 -0.119191476     DEU
## 2243  0.187550195 -1.204850e-01 -0.146550946     DEU
## 2248  0.201237123 -2.500316e-02 -0.047686930     DEU
## 2249  0.200483924 -4.303447e-02 -0.065118579     DEU
## 2252  0.209247504 -1.798231e-01 -0.202984973     DEU
## 2258  0.179132817 -1.061446e-01 -0.130744400     DEU
## 2276  0.291269646  1.156852e-01  0.080012059     DEU
## 2295  0.285158596  1.350033e-01  0.097037759     DEU
## 2304  0.324640219  3.355646e-01  0.314414583     DEU
## 2310  0.337167436  3.552335e-01  0.331787455     DEU
## 2318  0.369226656  4.193394e-01  0.397709977     DEU
## 2321  0.240088508  5.372751e-01  0.499643289     DEU
## 2328  0.271260625  5.963766e-01  0.553373494     DEU
## 2334  0.309639450  4.035159e-01  0.418950429     DEU
## 2336  0.316057852  3.452059e-01  0.362516402     DEU
## 2337  0.341503647  5.315398e-01  0.550465058     DEU
## 2347  0.313146954  4.951893e-01  0.505553630     DEU
## 2353  0.315688854  5.176333e-01  0.522985279     DEU
## 2355  0.333712318  4.232264e-01  0.424121263     DEU
## 2361  0.338019157  5.043076e-01  0.505553630     DEU
## 2366  0.337835211  4.964494e-01  0.519673679     DEU
## 2372  0.311499295  4.979619e-01  0.519326509     DEU
## 2373  0.325946643  4.999140e-01  0.519673679     DEU
## 2376  0.315151612  3.884184e-01  0.403436792     DEU
## 2378  0.309835995  3.291007e-01  0.347002764     DEU
## 2379  0.312958083  5.004270e-01  0.519326509     DEU
## 2386  0.313457292  4.930208e-01  0.508928636     DEU
## 2388  0.335362185  4.772844e-01  0.491902935     DEU
## 2400  0.319259306  3.237262e-01  0.343067830     DEU
## 2404  0.335207554  2.130579e-01  0.227178114     DEU
## 2405  0.278025177  2.643807e-01  0.270512220     DEU
## 2412  0.283847851  2.898956e-01  0.292371761     DEU
## 2420  0.339460311  1.409417e-01  0.155119174     DEU
## 2424  0.365222320  3.737619e-01  0.400598727     DEU
## 2425  0.314886577  2.963814e-01  0.319166361     DEU
## 2432  0.378069426  2.964673e-01  0.319166361     DEU
## 2435  0.422349579  4.069559e-01  0.435056077     DEU
## 2436  0.430240857  4.071476e-01  0.435403248     DEU
## 2437  0.406168407  3.905178e-01  0.418030377     DEU
## 2447  0.310854108  5.346731e-01  0.539533259     DEU
## 2459  0.365726533  4.591196e-01  0.498562411     DEU
## 2469  0.316037695  3.265112e-01  0.360696016     DEU
## 2471  0.338803134  4.950662e-01  0.533366931     DEU
## 2475  0.236139008  4.014136e-01  0.422158094     DEU
## 2477  0.288909120  4.978083e-01  0.533019761     DEU
## 2484  0.256424238  3.493753e-01  0.398770503     DEU
## 2489  0.160614034  1.557781e-01  0.189556955     DEU
## 2492  0.214249859  3.383814e-01  0.388719800     DEU
## 2517  0.026968518 -1.848270e-02  0.029092040     DEU
## 2521  0.087048572  2.291381e-01  0.286868571     DEU
## 2526  0.075905342  2.459922e-01  0.303894272     DEU
## 2531 -0.010325761  8.140303e-03  0.053854974     DEU
## 2532  0.059176310  7.823046e-02  0.131570528     DEU
## 2533  0.059549304  2.473464e-01  0.303894272     DEU
## 2538 -0.025307195  3.172804e-02  0.075870740     DEU
## 2540  0.046861482  2.479322e-01  0.303894272     DEU
## 2543  0.041176901  2.143412e-01  0.269436922     DEU
## 2547  0.035588705  2.355488e-01  0.293996252     DEU
## 2550  0.032196066  2.016775e-01  0.259538901     DEU
## 2555  0.033825483  2.365325e-01  0.294343422     DEU
## 2556  0.031533156  2.194991e-01  0.276970551     DEU
## 2561  0.024143790  2.365109e-01  0.293996252     DEU
## 2565  0.023010330  1.121275e-01  0.162481623     DEU
## 2573 -0.059113905  2.177179e-01  0.258024683     DEU
## 2577  0.043135605  2.425739e-01  0.307427181     DEU
## 2578 -0.003159033  2.244568e-01  0.289995532     DEU
## 2581  0.011374521  8.818564e-02  0.152129138     DEU
## 2584  0.078236270  2.414614e-01  0.307427181     DEU
## 2590  0.029769711  2.284683e-01  0.293550229     DEU
## 2595 -0.006176224  5.592318e-02  0.120879314     DEU
## 2614 -0.013786712  4.121691e-02  0.103135342     DEU
## 2616 -0.021983590 -6.743630e-02 -0.005344256     DEU
## 2626  0.025266674  1.108337e-01  0.181147407     DEU
## 2642  0.047666678  8.496059e-02  0.147538936     DEU
## 2645  0.118171819  1.908464e-01  0.263428653     DEU
## 2648  0.131382903  1.583705e-01  0.239369176     DEU
## 2660  0.249827779  2.961215e-01  0.430310406     DEU
## 2661  0.226127968  2.711948e-01  0.412937535     DEU
## 2662  0.183898018  2.609601e-01  0.411130797     DEU
## 2664 -0.085245056  6.820854e-01  0.803669252     DEU
## 2666  0.181156123  2.746057e-01  0.445588147     DEU
## 2670  0.046750001  3.524626e-01  0.577140450     DEU
## 2682  0.163168806 -5.734209e-02 -0.037483790     IND
## 2686  0.163164809  1.785770e-01  0.198069651     IND
## 2695  0.163164809  8.315021e-02  0.099205635     IND
## 2697  0.163164809  2.371684e-02  0.042771607     IND
## 2700  0.163164809  1.785770e-01  0.198069651     IND
## 2712  0.163164923  4.213827e-02  0.070030293     IND
## 2718  0.163183316 -4.141929e-02 -0.008656390     IND
## 2724  0.163215704 -5.933645e-02 -0.021241306     IND
## 2729  0.163380438  3.944123e-01  0.442476691     IND
## 2730  0.163531240  3.740509e-01  0.419237935     IND
## 2732  0.163609480  3.949035e-01  0.446006367     IND
## 2733  0.163343981  5.870394e-01  0.638851658     IND
## 2735  0.163490058  6.321219e-01  0.688328534     IND
## 2741  0.165715851  8.383145e-01  0.904089674     IND
## 2743  0.163404310  7.079153e-01  0.777580186     IND
## 2749  0.166820322  7.350154e-01  0.803661939     IND
## 2765  0.171738839  6.463733e-01  0.708717020     IND
## 2766  0.171235808  4.897215e-01  0.556322520     IND
## 2770  0.172408135  6.924450e-01  0.759493817     IND
## 2775  0.177928132  7.250946e-01  0.800856620     IND
## 2776  0.180658035  7.313555e-01  0.805690682     IND
## 2777  0.179941049  7.184584e-01  0.792797786     IND
## 2786  0.187935085  6.398743e-01  0.709319613     IND
## 2797  0.201570505  8.125149e-01  0.881676138     IND
## 2800  0.207133931  7.060903e-01  0.771217938     IND
## 2803  0.210528611  7.370788e-01  0.822399150     IND
## 2806  0.214795616  7.117378e-01  0.795647506     IND
## 2808  0.221644433  5.026177e-01  0.585529993     IND
## 2815  0.228454186  5.162751e-01  0.596729387     IND
## 2819  0.239618231  7.701903e-01  0.847035389     IND
## 2821  0.248673629  6.774843e-01  0.750119994     IND
## 2825  0.258369372  8.020317e-01  0.875989757     IND
## 2826  0.260861874  7.850632e-01  0.858916653     IND
## 2827  0.267002002  7.693982e-01  0.843414233     IND
## 2843  0.329159337  5.144055e-01  0.592717926     IND
## 2852  0.383513681  8.099618e-01  0.882471895     IND
## 2856  0.438513484  7.526414e-01  0.815742821     IND
## 2859  0.458874823  8.238099e-01  0.890371102     IND
## 2870  0.545940927  6.925385e-01  0.753705963     IND
## 2874  0.570250295  7.945693e-01  0.855619872     IND
## 2876  0.568345483  7.404376e-01  0.800729796     IND
## 2880  0.581292543  7.389468e-01  0.797281761     IND
## 2882  0.606657566  7.219867e-01  0.777644814     IND
## 2895  0.720863040  7.828669e-01  0.834968768     IND
## 2896  0.723357259  7.605387e-01  0.811398766     IND
## 2899  0.768718827  5.267586e-01  0.575563865     IND
## 2902  0.803473853  7.928389e-01  0.837446749     IND
## 2913  0.825578918  5.656402e-01  0.598839815     IND
## 2916  0.837584653  8.209024e-01  0.850765598     IND
## 2918  0.842572756  7.616351e-01  0.788853893     IND
## 2921  0.796282228  6.087223e-01  0.636372292     IND
## 2931  0.838688327  6.578858e-01  0.670146208     IND
## 2932  0.854060620  6.358099e-01  0.648129799     IND
## 2935  0.792387863  4.942520e-01  0.504371793     IND
## 2942  0.781340177  4.366135e-01  0.439589626     IND
## 2948  0.792102148  3.102648e-01  0.311049229     IND
## 2954  0.814738597  4.375087e-01  0.431070010     IND
## 2959  0.830149162  6.069537e-01  0.584492860     IND
## 2966  0.836600513  6.054476e-01  0.579952437     IND
## 2968  0.826051456  5.094574e-01  0.480870620     IND
## 2969  0.784961012  3.688642e-01  0.344255803     IND
## 2972  0.852210509  6.237709e-01  0.596648779     IND
## 2980  0.861649774  6.499289e-01  0.621450184     IND
## 2982  0.861100205  5.497264e-01  0.516827429     IND
## 2989  0.851468708  7.155708e-01  0.698848719     IND
## 2990  0.840998519  5.750169e-01  0.562013698     IND
## 3000  0.819981630  8.148606e-01  0.798449785     IND
## 3003  0.834630416  6.891984e-01  0.668735712     IND
## 3018  0.810333372  6.085502e-01  0.637984098     IND
## 3023  0.747300772  8.196143e-01  0.848813180     IND
## 3027  0.816509438  8.618178e-01  0.890437792     IND
## 3047  0.797081441  6.012769e-01  0.651911324     IND
## 3056  0.816877587  7.670340e-01  0.817966470     IND
## 3070  0.831756974  7.855430e-01  0.835806221     IND
## 3071  0.830632582  7.673220e-01  0.819660109     IND
## 3075  0.812257652  4.633361e-01  0.521768577     IND
## 3076  0.823214122  6.331010e-01  0.693962868     IND
## 3083  0.828375024  6.077629e-01  0.673708006     IND
## 3084  0.847273466  6.181788e-01  0.678846667     IND
## 3090  0.866696907  6.323647e-01  0.698682530     IND
## 3097  0.934581977  6.645650e-01  0.729960850     IND
## 3098  0.959506773  6.739590e-01  0.737098123     IND
## 3107  1.113967058  7.953637e-01  0.882129619     IND
## 3110  1.147947986  7.779300e-01  0.864027359     IND
## 3112  1.271074268  9.887478e-01  1.064390971     IND
## 3123  1.932345379  9.741974e-01  1.016051573     IND
## 3124  1.885036985  1.081262e+00  1.138818006     IND
## 3128  2.501810831  1.348375e+00  1.367823567     IND
## 3130  2.348572767  1.160981e+00  1.174532355     IND
## 3137  2.525901130  1.313895e+00  1.323101872     IND
## 3138  2.500531631  1.389005e+00  1.405989681     IND
## 3140  2.760595735  1.591079e+00  1.602958485     IND
## 3146  2.596126654  1.635795e+00  1.634726029     IND
## 3164  2.061457690  1.164642e+00  1.118313165     IND
## 3172  1.822888220  7.705406e-01  0.709471933     IND
## 3174  1.793582497  9.980796e-01  0.947787096     IND
## 3175  1.797752180  1.003258e+00  0.949198191     IND
## 3186  1.623129358  7.619178e-01  0.682868347     IND
## 3187  1.579163052  7.918834e-01  0.758496288     IND
## 3191  1.576229818  9.453113e-01  0.887654695     IND
## 3193  1.546905254  7.512466e-01  0.660921575     IND
## 3196  1.542304638  1.006555e+00  0.904092214     IND
## 3202  1.488304405  8.959583e-01  0.815989189     IND
## 3211  1.406673152  8.775561e-01  0.795047468     IND
## 3215  1.336003742  7.493517e-01  0.635237516     IND
## 3223  1.345820526  8.626415e-01  0.773176350     IND
## 3227  2.113561876  7.913629e-01  0.660912338     IND
## 3228  1.285672228  6.817117e-01  0.561085780     IND
## 3243  1.117662148  7.298931e-01  0.603850055     IND
## 3245  1.156857583  8.580173e-01  0.773878795     IND
## 3246  1.149506633  8.518329e-01  0.757515667     IND
## 3247  1.134715066  8.176056e-01  0.738624982     IND
## 3252  1.147409467  8.324236e-01  0.773950292     IND
## 3255  1.099638391  7.238346e-01  0.668925011     IND
## 3268  0.877502744  8.471161e-01  0.742226708     IND
## 3275  0.788543165  8.175060e-01  0.734900243     IND
## 3286  0.517259547  8.571869e-01  0.760583417     IND
## 3288  0.524659396  8.208281e-01  0.740199337     IND
## 3292  0.433698810  6.512771e-01  0.555151930     IND
## 3299  0.317033782  6.129208e-01  0.502804500     IND
## 3311  0.186613994  6.377229e-01  0.517270439     IND
## 3313  0.142329898  5.610450e-01  0.427957333     IND
## 3314  0.137660074  6.942032e-01  0.600135208     IND
## 3324 -0.005760870  7.819550e-01  0.620884869     IND
## 3327 -0.030547969  6.138045e-01  0.483759299     IND
## 3328 -0.038205732  7.642233e-01  0.623763299     IND
## 3338 -0.220056944  7.070762e-01  0.570007977     IND
## 3340 -0.269244111  4.930318e-01  0.351998304     IND
## 3345 -0.379210623  6.913338e-01  0.614634762     IND
## 3348 -0.447706875  6.077035e-01  0.474805227     IND
## 3350 -0.480270247  9.713247e-01  0.882899315     IND
## 3364  0.171495279 -4.125130e-01 -0.461289632     ITA
## 3365  0.171495279 -3.314540e-01 -0.381034234     ITA
## 3366  0.171495279 -1.605283e-01 -0.208710490     ITA
## 3369  0.171499391 -1.946295e-01 -0.243167840     ITA
## 3370  0.171495336 -2.720207e-01 -0.324600207     ITA
## 3376  0.171495336 -1.946295e-01 -0.243167840     ITA
## 3386  0.171801868 -9.593540e-02 -0.128623268     ITA
## 3387  0.171877868  7.561216e-02  0.043864130     ITA
## 3388  0.172038010  7.666866e-02  0.044080161     ITA
## 3390  0.172467434  4.142634e-02  0.009375922     ITA
## 3391  0.172505156 -3.606579e-02 -0.072087855     ITA
## 3392  0.173855719 -3.291305e-01 -0.353863792     ITA
## 3393  0.172963696  9.629478e-02  0.062351786     ITA
## 3396  0.174785962  4.826115e-01  0.443829590     ITA
## 3408  0.187373892  8.271246e-01  0.779860051     ITA
## 3415  0.196295066  8.834123e-01  0.831041172     ITA
## 3431  0.195490839  4.928930e-01  0.457423039     ITA
## 3432  0.194611616  4.511415e-01  0.415843124     ITA
## 3447  0.189692607  2.498917e-01  0.210063211     ITA
## 3451  0.188763851  3.390890e-01  0.302295560     ITA
## 3467  0.183233825  2.095389e-01  0.179398943     ITA
## 3469  0.182668365  6.384538e-03 -0.021901896     ITA
## 3478  0.181040162  1.815928e-01  0.149629364     ITA
## 3480  0.181689746  1.668835e-01  0.131889460     ITA
## 3481  0.181299997  1.473187e-01  0.113275339     ITA
## 3489  0.179807890 -5.501566e-02 -0.078959460     ITA
## 3496  0.179662190 -6.158797e-02 -0.083443353     ITA
## 3497  0.179565240 -2.001148e-01 -0.218963001     ITA
## 3506  0.178115667  4.446123e-02  0.027736498     ITA
## 3511  0.178060516 -2.021892e-01 -0.219457618     ITA
## 3512  0.177832694 -1.236196e-01 -0.140589795     ITA
## 3519  0.177771501 -2.251860e-01 -0.228478276     ITA
## 3538  0.176994987 -1.590529e-01 -0.168875641     ITA
## 3548  0.176111229 -3.219201e-02 -0.031511152     ITA
## 3552  0.176506356 -1.384950e-01 -0.143409693     ITA
## 3553  0.176947388 -2.786470e-01 -0.278186620     ITA
## 3554  0.176095792 -1.985686e-01 -0.197754427     ITA
## 3559  0.177382916 -1.250320e-01 -0.130579737     ITA
## 3560  0.176739321 -2.675920e-01 -0.267624789     ITA
## 3564  0.177991180 -7.830762e-03 -0.011147311     ITA
## 3570  0.179855068  2.436173e-02  0.018607221     ITA
## 3575  0.178105213 -1.509031e-01 -0.153303483     ITA
## 3578  0.179531994  2.398101e-02  0.027003370     ITA
## 3590  0.178310668  3.537535e-02  0.039487100     ITA
## 3605  0.180188804  2.603643e-02  0.024322473     ITA
## 3611  0.183517759  2.041726e-02  0.017992218     ITA
## 3615  0.196207099 -5.109018e-02 -0.062792996     ITA
## 3619  0.203385300  1.112960e-01  0.100051435     ITA
## 3624  0.213344662 -7.240207e-03 -0.015464827     ITA
## 3628  0.255610141  2.652266e-01  0.250246451     ITA
## 3629  0.258485180  2.104014e-01  0.190915966     ITA
## 3631  0.249573389  1.965864e-01  0.185209972     ITA
## 3632  0.270773331  3.976739e-01  0.381438508     ITA
## 3633  0.284067729  4.233552e-01  0.402433312     ITA
## 3635  0.311459753  4.301939e-01  0.406648387     ITA
## 3636  0.315701005  3.715620e-01  0.342989493     ITA
## 3639  0.305303275  5.883922e-01  0.549458671     ITA
## 3640  0.316090724  6.036280e-01  0.559728586     ITA
## 3641  0.333770662  5.993110e-01  0.553993903     ITA
## 3644  0.331445227  4.050051e-01  0.362516039     ITA
## 3669  0.327406033  6.836739e-01  0.646379442     ITA
## 3672  0.312656655  4.181605e-01  0.385121616     ITA
## 3680  0.290318050  4.771387e-01  0.445773438     ITA
## 3681  0.302333102  6.525233e-01  0.615503761     ITA
## 3682  0.350734634  6.818880e-01  0.662246337     ITA
## 3685  0.311385125  6.036077e-01  0.556653436     ITA
## 3692  0.291744938  5.360477e-01  0.499138049     ITA
## 3699  0.302084634  6.778998e-01  0.685827940     ITA
## 3701  0.299015694  6.242166e-01  0.633482309     ITA
## 3705  0.329210673  7.790583e-01  0.778655413     ITA
## 3706  0.339901209  6.863863e-01  0.678728522     ITA
## 3707  0.335160636  5.406026e-01  0.539666064     ITA
## 3708  0.310969842  6.051029e-01  0.607544189     ITA
## 3710  0.325180923  7.697617e-01  0.763289726     ITA
## 3713  0.328822188  5.556619e-01  0.537540590     ITA
## 3714  0.313853014  3.770345e-01  0.368513513     ITA
## 3717  0.318689708  5.742416e-01  0.558631637     ITA
## 3721  0.311888276  2.788977e-01  0.270085881     ITA
## 3727  0.316595602  4.332336e-01  0.409717538     ITA
## 3729  0.297209335  3.022936e-01  0.323249148     ITA
## 3737  0.308395835  4.935036e-01  0.498732709     ITA
## 3738  0.317994974  4.970306e-01  0.496996701     ITA
## 3742  0.311346721  2.256581e-01  0.235957919     ITA
## 3745  0.315802815  5.066469e-01  0.507962731     ITA
## 3747  0.330177364  4.713735e-01  0.472668269     ITA
## 3765  0.353936857  4.333500e-01  0.431450380     ITA
## 3768  0.384028518  4.104601e-01  0.404495721     ITA
## 3771  0.338597228  2.509330e-01  0.262805491     ITA
## 3772  0.359574189  4.485944e-01  0.440933812     ITA
## 3773  0.370785697  4.502573e-01  0.441214013     ITA
## 3774  0.378827734  4.311528e-01  0.423521361     ITA
## 3779  0.356282856  4.556950e-01  0.449195545     ITA
## 3780  0.366653725  4.592224e-01  0.448369370     ITA
## 3782  0.378780960  4.196918e-01  0.409935838     ITA
## 3787  0.379124007  4.427211e-01  0.431252882     ITA
## 3788  0.372351847  5.177999e-01  0.518446981     ITA
## 3792  0.326623222  3.434678e-01  0.369739352     ITA
## 3804  0.343987520  3.613767e-01  0.356741464     ITA
## 3805  0.332882217  2.040881e-01  0.212948075     ITA
## 3807  0.329842889  4.655051e-01  0.468225883     ITA
## 3814  0.318607766  4.354676e-01  0.434882975     ITA
## 3816  0.332390033  4.217328e-01  0.417929828     ITA
## 3822  0.308283481  4.888771e-01  0.496934428     ITA
## 3825  0.301430044  3.663402e-01  0.369863424     ITA
## 3836  0.263603965  4.137730e-01  0.423603632     ITA
## 3838  0.257726985  3.684641e-01  0.381487995     ITA
## 3839  0.252193749  2.901270e-01  0.296898024     ITA
## 3841  0.237298431  1.865028e-01  0.213730287     ITA
## 3842  0.237363345  3.763383e-01  0.389563513     ITA
## 3848  0.214625322  1.934038e-01  0.224265653     ITA
## 3856  0.185688378  2.543464e-01  0.287409852     ITA
## 3860  0.173952703  1.346753e-01  0.163939690     ITA
## 3862  0.167853701  5.321904e-02  0.099466639     ITA
## 3863  0.167442756  2.421127e-01  0.275537191     ITA
## 3865  0.163805988  2.190862e-01  0.253443176     ITA
## 3877  0.138998078  2.125826e-01  0.247951685     ITA
## 3878  0.137400216  2.120807e-01  0.246928053     ITA
## 3879  0.135730317 -1.980376e-02  0.019415821     ITA
## 3880  0.133306346 -3.632457e-02  0.002202451     ITA
## 3881  0.131810356 -1.094708e-01 -0.078328718     ITA
## 3894  0.112411029  1.306289e-01  0.178285728     ITA
## 3897  0.103255351 -1.343975e-02  0.044966536     ITA
## 3898  0.107122466  1.801784e-01  0.225997450     ITA
## 3902  0.104966588  4.820302e-02  0.080896542     ITA
## 3904  0.093595457 -3.117922e-02  0.022955667     ITA
## 3906  0.099755951  1.680218e-01  0.204936120     ITA
## 3907  0.099816271  1.491082e-01  0.188651959     ITA
## 3911  0.081883892 -7.821452e-02 -0.024953562     ITA
## 3915  0.089814668  1.211136e-01  0.159535527     ITA
## 3916  0.089746364  5.039179e-02  0.078770255     ITA
## 3920  0.085737580  1.527482e-01  0.191071714     ITA
## 3927  0.082305143  1.616124e-01  0.198810196     ITA
## 3929  0.081234518  1.257244e-01  0.163984910     ITA
## 3933  0.074178853  1.648133e-01  0.198774389     ITA
## 3936  0.078721309  1.266741e-01  0.160336746     ITA
## 3937  0.073963138  4.998754e-02  0.076172829     ITA
## 3938  0.069709243 -1.030305e-01 -0.066069146     ITA
## 3942  0.069117099  1.712834e-01  0.212203831     ITA
## 3944  0.064816003  7.527017e-02  0.108106365     ITA
## 3949  0.057837726  1.538847e-01  0.194773525     ITA
## 3952  0.051775626 -8.967926e-02 -0.047118246     ITA
## 3967  0.026598032 -5.451671e-02  0.003487825     ITA
## 3980  0.016107400 -1.162922e-01 -0.070975598     ITA
## 3989  0.005104879  1.687164e-01  0.178198274     ITA
## 3990  0.007335720  1.429640e-01  0.170815263     ITA
## 3995 -0.005038841 -4.510986e-02  0.015157931     ITA
## 3996 -0.001028598  1.862282e-01  0.204474917     ITA
## 4004 -0.009543695  2.706745e-01  0.269816062     ITA
## 4009 -0.021458377  2.797629e-02  0.081971033     ITA
## 4014 -0.017435755  1.284661e-01  0.155661859     ITA
## 4016 -0.034113272  2.534684e-02  0.089017524     ITA
## 4020 -0.023764356  1.985028e-01  0.240618814     ITA
## 4024 -0.035653706  2.513163e-01  0.285026029     ITA
## 4036 -0.068468888  1.318458e-01  0.243706867     ITA
## 4037 -0.096296537  2.030242e-01  0.346724866     ITA
## 4038 -0.077283186  4.281087e-01  0.536656827     ITA
## 4045  0.177230883  2.306502e-02 -0.032699348     RUS
## 4055  0.177230883  1.345574e-01  0.083190369     RUS
## 4060  0.177230883 -1.174273e-01 -0.169388773     RUS
## 4070  0.177230883  1.360957e-01  0.083537539     RUS
## 4074  0.177230883 -2.699316e-01 -0.314453833     RUS
## 4080  0.177194695 -8.547081e-02 -0.130846313     RUS
## 4083  0.177200721  7.673653e-02  0.039601275     RUS
## 4086  0.177244048  4.528075e-02  0.007699799     RUS
## 4095  0.177397342  3.213455e-02  0.007293830     RUS
## 4098  0.177808226  2.944064e-01  0.268582121     RUS
## 4106  0.180206928  5.011198e-01  0.496190552     RUS
## 4109  0.179741446  2.717967e-01  0.266054059     RUS
## 4110  0.180973479  3.463215e-01  0.339991409     RUS
## 4112  0.181874353  5.284833e-01  0.519600988     RUS
## 4115  0.183982052  4.239968e-01  0.411583668     RUS
## 4118  0.188753919  5.592058e-01  0.550429481     RUS
## 4122  0.197540486  4.897202e-01  0.473911742     RUS
## 4123  0.202993465  3.632940e-01  0.351378651     RUS
## 4131  0.205419984  4.489556e-01  0.434969847     RUS
## 4147  0.227951413  7.236419e-01  0.714442246     RUS
## 4150  0.225850154  5.969544e-01  0.582417821     RUS
## 4154  0.225611648  6.776830e-01  0.666880244     RUS
## 4160  0.228325047  6.552611e-01  0.645861565     RUS
## 4168  0.229305647  5.100718e-01  0.509444554     RUS
## 4169  0.230805639  4.929784e-01  0.491835929     RUS
## 4170  0.230672720  4.751652e-01  0.473860488     RUS
## 4174  0.231455086  4.752018e-01  0.473611316     RUS
## 4184  0.231829997  4.396967e-01  0.434140786     RUS
## 4189  0.229828255  4.657537e-01  0.460186894     RUS
## 4193  0.229109413  2.079297e-01  0.203498180     RUS
## 4197  0.229819570  3.415452e-01  0.349814541     RUS
## 4204  0.230203909  3.460889e-01  0.351997518     RUS
## 4209  0.230208999  3.379093e-01  0.344915442     RUS
## 4216  0.229815624  3.199015e-01  0.325202252     RUS
## 4224  0.229557675  3.205781e-01  0.322289998     RUS
## 4225  0.229826874  3.032385e-01  0.304398508     RUS
## 4230  0.229105005  3.424732e-01  0.353759766     RUS
## 4231  0.229491521  3.467656e-01  0.354495226     RUS
## 4234  0.229813907  2.339792e-01  0.237481037     RUS
## 4235  0.229836019  8.930579e-02  0.098873686     RUS
## 4236  0.229717948  1.655357e-01  0.177291283     RUS
## 4239  0.229798737  3.271044e-01  0.333346180     RUS
## 4241  0.230038849  2.304314e-01  0.232733269     RUS
## 4247  0.250884595  2.554380e-01  0.273425250     RUS
## 4249  0.229970477  3.891375e-02  0.044063316     RUS
## 4252  0.229693860  2.946020e-01  0.296807927     RUS
## 4255  0.230709719  1.819055e-01  0.178641432     RUS
## 4258  0.230377175  2.148770e-01  0.220827559     RUS
## 4263  0.232576680 -3.559270e-02 -0.030583284     RUS
## 4266  0.233254220  2.288944e-01  0.232977676     RUS
## 4269  0.234482212  1.202543e-01  0.117738957     RUS
## 4272  0.235035971  2.301522e-01  0.234029308     RUS
## 4275  0.236870944  1.999637e-01  0.200432350     RUS
## 4278  0.238526681  5.758397e-02  0.062104018     RUS
## 4283  0.244736971  1.398232e-01  0.134964240     RUS
## 4288  0.251785622  2.209311e-01  0.215430471     RUS
## 4289  0.282924622  2.346057e-01  0.251875000     RUS
## 4299  0.274709084  1.071840e-01  0.111528809     RUS
## 4303  0.282941042  2.629447e-01  0.250511623     RUS
## 4307  0.290059164  2.921736e-01  0.280534986     RUS
## 4317  0.303918620  2.677364e-01  0.249300087     RUS
## 4320  0.306213764  1.967371e-01  0.167206966     RUS
## 4325  0.318599174  2.806319e-01  0.238204292     RUS
## 4332  0.334110617  2.876111e-01  0.241020593     RUS
## 4336  0.330867467  4.160597e-01  0.374396377     RUS
## 4337  0.342459537  4.027842e-01  0.359973627     RUS
## 4349  0.367453096  6.400641e-01  0.616924638     RUS
## 4352  0.374917822  6.201945e-01  0.590261174     RUS
## 4356  0.374802553  6.562177e-01  0.630002855     RUS
## 4360  0.387773221  5.537332e-01  0.516259998     RUS
## 4363  0.385672906  6.305449e-01  0.619742259     RUS
## 4365  0.394321917  6.485333e-01  0.611988334     RUS
## 4369  0.404280322  4.912216e-01  0.461884091     RUS
## 4370  0.403259410  6.686437e-01  0.636628982     RUS
## 4378  0.404715289  6.854361e-01  0.645619772     RUS
## 4401  0.410466205  7.194038e-01  0.720402068     RUS
## 4404  0.404412519  5.668228e-01  0.572049015     RUS
## 4409  0.407449710  6.038857e-01  0.597285098     RUS
## 4411  0.403636342  4.815585e-01  0.511575407     RUS
## 4423  0.400539157  5.099030e-01  0.541128533     RUS
## 4424  0.398429163  3.897014e-01  0.411102710     RUS
## 4428  0.397766685  6.238858e-01  0.640294767     RUS
## 4429  0.398295701  6.042353e-01  0.621276979     RUS
## 4435  0.392642107  6.261002e-01  0.644448906     RUS
## 4437  0.394840143  5.307754e-01  0.539386357     RUS
## 4442  0.386965265  4.430448e-01  0.467278138     RUS
## 4443  0.384929748  3.980569e-01  0.417579052     RUS
## 4444  0.384721233  3.207816e-01  0.337099519     RUS
## 4454  0.464361826  4.508545e-01  0.486635435     RUS
## 4461  0.464259606  4.516737e-01  0.485031634     RUS
## 4466  0.395747557  1.499235e-01  0.162579773     RUS
## 4471  0.370741500  4.612562e-01  0.483431534     RUS
## 4472  0.371691771  3.834541e-01  0.401254534     RUS
## 4473  0.370716605  2.382971e-01  0.263222525     RUS
## 4474  0.370238111  3.446695e-01  0.373114481     RUS
## 4475  0.369041368  5.194844e-01  0.547831354     RUS
## 4483  0.442965522  5.522157e-01  0.594408554     RUS
## 4486  0.447009763  4.450907e-01  0.481700028     RUS
## 4489  0.364081757  4.940338e-01  0.515893716     RUS
## 4495  0.364530641  3.241602e-01  0.344483865     RUS
## 4499  0.441683462  4.982422e-01  0.533165611     RUS
## 4522  0.352596589  3.334929e-01  0.354302994     RUS
## 4529  0.353289030  3.342930e-01  0.350691112     RUS
## 4531  0.351686597  4.596108e-01  0.498129586     RUS
## 4542  0.362876672  3.812875e-01  0.402984600     RUS
## 4545  0.366176001  5.665539e-01  0.599146656     RUS
## 4552  0.375104155  5.850527e-01  0.612932519     RUS
## 4557  0.387640820  3.958634e-01  0.416650693     RUS
## 4558  0.392305927  4.465062e-01  0.476559351     RUS
## 4559  0.388349463  5.873964e-01  0.609643698     RUS
## 4564  0.405115586  2.530529e-01  0.279768035     RUS
## 4569  0.407395999  3.954172e-01  0.407683413     RUS
## 4577  0.399800727  3.234371e-01  0.325269150     RUS
## 4586  0.389492918  2.356877e-01  0.260539143     RUS
## 4590  0.489104813  4.296084e-01  0.465609183     RUS
## 4592  0.484193959  2.479252e-01  0.284087142     RUS
## 4607  0.356377904  3.423002e-01  0.364732671     RUS
## 4608  0.463356421  5.781180e-01  0.610205325     RUS
## 4612  0.462299872  4.623534e-01  0.489824966     RUS
## 4628  0.448022501  4.809110e-01  0.507402294     RUS
## 4631  0.450071165  6.394404e-01  0.667190979     RUS
## 4634  0.451116777  4.520651e-01  0.479192467     RUS
## 4645  0.561205181  6.009959e-01  0.609271159     RUS
## 4646  0.423307402  6.478664e-01  0.672027870     RUS
## 4648  0.429408368  4.328915e-01  0.456151400     RUS
## 4651  0.309715718  5.979574e-01  0.610764250     RUS
## 4653  0.435460715  6.119154e-01  0.631250138     RUS
## 4656  0.318527281  4.076820e-01  0.413540262     RUS
## 4657  0.434764771  6.535620e-01  0.670198129     RUS
## 4666  0.325019800  5.870693e-01  0.587791206     RUS
## 4674  3.078556912  6.613971e-01  0.673724021     RUS
## 4675  3.099101998  5.840144e-01  0.592612415     RUS
## 4678  0.789207836  7.248113e-01  0.711388972     RUS
## 4681  0.530109945  6.837020e-01  0.692007347     RUS
## 4682  0.531954415  6.101213e-01  0.614103342     RUS
## 4690  0.505493333  5.930558e-01  0.573576646     RUS
## 4696  0.374161952  5.604984e-01  0.524184092     RUS
## 4698  0.370595237  4.909717e-01  0.453798032     RUS
## 4709  0.457103369  7.690141e-01  0.766171178     RUS
## 4714  0.447883885  9.991782e-01  1.008354486     RUS
## 4725  0.271327668  3.327291e-01  0.310974774     RUS
## 4726  0.178308395 -3.220778e-01 -0.438359875     TUR
## 4727  0.178304340 -3.396817e-01 -0.455732746     TUR
## 4729  0.178304569 -4.351085e-01 -0.554596762     TUR
## 4732  0.178424560 -1.682300e-01 -0.272172463     TUR
## 4735  0.179001967 -1.732234e-01 -0.275436195     TUR
## 4743  0.185621095 -1.574458e-01 -0.257746218     TUR
## 4749  0.190690757  5.535764e-01  0.451425677     TUR
## 4753  0.195844264  5.736822e-01  0.471817420     TUR
## 4755  0.196920413  5.665922e-01  0.462690303     TUR
## 4757  0.201805674  4.735046e-01  0.366607411     TUR
## 4759  0.198002590  3.737669e-01  0.269929595     TUR
## 4760  0.198074398  5.180787e-01  0.416530752     TUR
## 4765  0.198741297  1.878499e-01  0.088632589     TUR
## 4771  0.195197319  2.553482e-01  0.152928519     TUR
## 4788  0.191831152  3.063828e-01  0.226170138     TUR
## 4789  0.191626230  2.969195e-01  0.216117660     TUR
## 4790  0.191666898  2.721903e-01  0.191703151     TUR
## 4791  0.192019929  2.495805e-01  0.169536312     TUR
## 4792  0.191670224  1.695978e-01  0.085290734     TUR
## 4794  0.189918174  1.114132e-01  0.031224113     TUR
## 4807  0.188978462  3.138181e-04 -0.079172936     TUR
## 4819  0.190537472  7.123711e-03 -0.061766080     TUR
## 4825  0.191188221  4.574203e-02 -0.025085646     TUR
## 4827  0.191015093 -5.111710e-02 -0.124854335     TUR
## 4843  0.190702954 -2.321774e-01 -0.290076093     TUR
## 4846  0.190471985 -8.222742e-02 -0.139436244     TUR
## 4852  0.190212201 -6.715475e-02 -0.124081229     TUR
## 4853  0.190164103 -8.376344e-02 -0.140520133     TUR
## 4854  0.190145243 -1.009374e-01 -0.157052451     TUR
## 4859  0.190087998 -1.775041e-01 -0.242699552     TUR
## 4872  0.190937962 -1.461335e-01 -0.204212788     TUR
## 4880  0.191494848 -1.240888e-01 -0.182643708     TUR
## 4881  0.191621150 -1.430799e-01 -0.201357472     TUR
## 4887  0.191820274 -1.305249e-01 -0.190478678     TUR
## 4890  0.191776767 -2.487239e-01 -0.312208181     TUR
## 4893  0.192508254 -1.384792e-01 -0.197976373     TUR
## 4897  0.192597011 -2.504642e-01 -0.314718021     TUR
## 4898  0.192313906 -3.913595e-01 -0.451113566     TUR
## 4902  0.192867619 -1.561400e-01 -0.210652753     TUR
## 4903  0.192714745 -1.589153e-01 -0.212352529     TUR
## 4904  0.192953068 -2.374747e-01 -0.293705105     TUR
## 4911  0.192160264 -9.802330e-02 -0.144666506     TUR
## 4916  0.192633987 -1.467791e-03 -0.045869922     TUR
## 4917  0.193117039 -1.873449e-02 -0.062707215     TUR
## 4925  0.191909164 -1.178685e-01 -0.167093526     TUR
## 4926  0.191708160 -2.591269e-01 -0.304523604     TUR
## 4927  0.191444178 -1.779299e-01 -0.225234868     TUR
## 4929  0.191281047 -8.833642e-03 -0.055709608     TUR
## 4941  0.191819445 -1.960902e-01 -0.245580329     TUR
## 4946  0.192143136 -1.444710e-01 -0.197809619     TUR
## 4954  0.193297939 -2.747537e-01 -0.325211703     TUR
## 4971  0.195868727  1.587022e-02 -0.058209927     TUR
## 4980  0.206095374  2.721129e-02 -0.047254273     TUR
## 4982  0.210137883 -1.758135e-01 -0.251195125     TUR
## 4983  0.213174255 -8.485474e-02 -0.161918766     TUR
## 4986  0.334309280  1.800404e-01  0.098752556     TUR
## 4990  0.321892192  3.271872e-01  0.234114366     TUR
## 4992  0.327911756  7.992855e-01  0.720266571     TUR
## 5002  0.377997817  4.884526e-01  0.408450002     TUR
## 5003  0.370357374  3.366082e-01  0.261147583     TUR
## 5013  0.352893543  5.344429e-01  0.456473797     TUR
## 5024  0.320355366  3.222877e-01  0.306138531     TUR
## 5031  0.320871444  2.052857e-01  0.181924900     TUR
## 5032  0.325653414  2.792290e-01  0.253876925     TUR
## 5034  0.323688863  4.291724e-01  0.404935636     TUR
## 5036  0.351713167  4.213171e-01  0.404339626     TUR
## 5042  0.370229174  4.000512e-01  0.380918795     TUR
## 5045  0.372940987  1.486240e-01  0.130772970     TUR
## 5057  0.454538436  3.399219e-01  0.343307821     TUR
## 5061  0.467672453  3.926453e-01  0.396540293     TUR
## 5066  0.313039634  1.517615e-01  0.157010006     TUR
## 5067  0.319892958  2.513782e-01  0.257639926     TUR
## 5072  0.316809076  3.205090e-01  0.321418692     TUR
## 5074  0.318053124  2.622982e-01  0.266747867     TUR
## 5075  0.322100601  4.348719e-01  0.441685492     TUR
## 5079  0.320964235  3.459811e-01  0.345372499     TUR
## 5082  0.331757295  2.819651e-01  0.289621154     TUR
## 5083  0.330270359  2.875125e-01  0.293151868     TUR
## 5084  0.329347108  2.728592e-01  0.278561382     TUR
## 5088  0.337762554  1.428649e-01  0.145687926     TUR
## 5089  0.340293902  3.566380e-01  0.364406819     TUR
## 5091  0.341948312  3.566338e-01  0.361758385     TUR
## 5101  0.366916285  1.818058e-01  0.180424359     TUR
## 5104  0.406065056  4.592751e-01  0.456550798     TUR
## 5105  0.402178346  4.523829e-01  0.448347347     TUR
## 5108  0.439786065  2.494239e-01  0.242391703     TUR
## 5113  0.466259352  6.474800e-01  0.649220726     TUR
## 5123  0.537457337  6.026145e-01  0.594801492     TUR
## 5128  0.584055231  7.604642e-01  0.748974493     TUR
## 5130  0.559237144  7.029847e-01  0.693684111     TUR
## 5135  0.512544068  7.060172e-01  0.697276671     TUR
## 5137  0.502380468  6.338524e-01  0.631461295     TUR
## 5140  0.506724825  7.239281e-01  0.723856862     TUR
## 5141  0.483717198  6.853361e-01  0.685668229     TUR
## 5142  0.472138959  6.797692e-01  0.690477292     TUR
## 5154  0.405637662  5.445720e-01  0.565848543     TUR
## 5155  0.405310686  5.140007e-01  0.536772470     TUR
## 5162  0.395868973  4.094223e-01  0.431389605     TUR
## 5171  0.383722289  1.363280e-01  0.152921418     TUR
## 5178  0.374469289 -5.674033e-02 -0.027042015     TUR
## 5185  0.369135300 -8.467731e-02 -0.054770478     TUR
## 5194  0.360218718  1.627947e-01  0.190823957     TUR
## 5203  0.340940298 -2.275445e-02  0.020351139     TUR
## 5204  0.334266834 -4.869644e-02  0.001424996     TUR
## 5206  0.324823735 -2.742071e-01 -0.219785725     TUR
## 5208  0.316697997 -3.295974e-02  0.030834848     TUR
## 5214  0.296088908 -2.121898e-01 -0.137639837     TUR
## 5216  0.293986192 -3.738029e-02  0.039503719     TUR
## 5219  0.288500169 -1.390125e-01 -0.067104531     TUR
## 5223  0.286147180 -9.261328e-03  0.069273016     TUR
## 5226  0.299318085 -9.131421e-02 -0.019464264     TUR
## 5230  0.321848115  8.465266e-02  0.168937920     TUR
## 5232  0.311958995  8.134165e-02  0.168052095     TUR
## 5239  0.315021719  1.620443e-01  0.255276662     TUR
## 5240  0.318023879  9.108341e-02  0.180798879     TUR
## 5253  0.253794877 -3.672605e-02  0.074813690     TUR
## 5256  0.245005011 -1.758427e-01 -0.061706047     TUR
## 5261  0.230642085 -1.275949e-01 -0.015746515     TUR
## 5264  0.243558785 -2.223010e-02  0.100352092     TUR
## 5265  0.249535408  1.798318e-03  0.131321393     TUR
## 5274  0.232138722  1.425066e-01  0.291494105     TUR
## 5290  0.230159284 -6.355991e-02  0.085789176     TUR
## 5291  0.234841389  1.410640e-02  0.164844543     TUR
## 5292  0.240879557  1.549186e-01  0.305111383     TUR
## 5294  0.239877189  1.433976e-01  0.290169187     TUR
## 5296  0.235249099  5.186480e-02  0.198053132     TUR
## 5300  0.244810461  1.682616e-01  0.319204489     TUR
## 5301  0.242776522  1.513526e-01  0.302324940     TUR
## 5306  0.259570148  1.763329e-01  0.329175160     TUR
## 5318  0.227590644 -9.961176e-02  0.054050966     TUR
## 5324  0.222327368 -1.145876e-01  0.026949971     TUR
## 5325  0.226416387 -2.568002e-01 -0.111825179     TUR
## 5326  0.245916968 -1.017596e-01  0.026835680     TUR
## 5329  0.249934264  5.934243e-02  0.188574545     TUR
## 5331  0.242197260 -2.874366e-02  0.097083791     TUR
## 5348  0.247911467  6.335359e-02  0.202528923     TUR
## 5357  0.223675833  2.789266e-01  0.443704907     TUR
## 5360  0.214376405  3.153825e-02  0.197347554     TUR
## 5367  0.208554984  7.800987e-03  0.177142446     TUR
## 5371  0.168044950 -2.809095e-01 -0.300850628     GBR
## 5379  0.168025077 -1.099838e-01 -0.128526883     GBR
## 5382  0.168025248 -1.440850e-01 -0.162984234     GBR
## 5383  0.168021193 -2.214761e-01 -0.244416600     GBR
## 5395  0.168051064 -1.260493e-01 -0.145552584     GBR
## 5399  0.168190020 -4.334138e-01 -0.445915687     GBR
## 5408  0.169765154 -2.609436e-01 -0.273244772     GBR
## 5410  0.170096307 -2.868788e-01 -0.297651420     GBR
## 5416  0.172716318 -1.715862e-01 -0.176128631     GBR
## 5420  0.178273826 -8.105251e-02 -0.068613409     GBR
## 5422  0.180057658  9.899720e-02  0.111869962     GBR
## 5426  0.181460015 -1.536738e-01 -0.141056350     GBR
## 5436  0.193003294  1.330123e+00  1.310014734     GBR
## 5441  0.190204109  1.064872e+00  1.044149484     GBR
## 5445  0.194432446  1.160624e+00  1.138517944     GBR
## 5449  0.194495286  1.044951e+00  1.025122663     GBR
## 5452  0.196144042  9.548810e-01  0.934221540     GBR
## 5470  0.192880599  6.449664e-01  0.642991371     GBR
## 5472  0.189983452  5.713609e-01  0.566075851     GBR
## 5474  0.187941884  4.552291e-01  0.446599855     GBR
## 5475  0.187016341  3.085886e-01  0.304519305     GBR
## 5479  0.190414502  5.016985e-01  0.496456567     GBR
## 5480  0.188403939  4.780191e-01  0.473478067     GBR
## 5484  0.187053124  4.615375e-01  0.458864380     GBR
## 5486  0.187471467  4.238894e-01  0.419598376     GBR
## 5489  0.184855195  1.586402e-01  0.155179349     GBR
## 5492  0.186088080  2.657313e-01  0.274510405     GBR
## 5498  0.185377737  2.571461e-01  0.269400381     GBR
## 5500  0.184775687  2.340345e-01  0.245503258     GBR
## 5504  0.184894301  6.637620e-02  0.076951290     GBR
## 5505  0.185109679  2.372625e-01  0.248512358     GBR
## 5508  0.184706787  1.983481e-01  0.209367367     GBR
## 5513  0.183824425  2.218797e-01  0.231911537     GBR
## 5516  0.183160116  9.558978e-02  0.102925560     GBR
## 5520  0.180702138  9.324046e-02  0.116556544     GBR
## 5529  0.182241389  2.302383e-02  0.043970071     GBR
## 5539  0.181561688 -1.272354e-01 -0.110060063     GBR
## 5540  0.180855610  4.500886e-02  0.060217188     GBR
## 5542  0.181937585  3.137110e-02  0.044351969     GBR
## 5546  0.181131546 -1.298433e-01 -0.112527009     GBR
## 5551  0.180752494 -4.009829e-03  0.014094768     GBR
## 5555  0.180783526  1.115141e-01  0.130624240     GBR
## 5565  0.179865266 -1.573539e-02 -0.003612558     GBR
## 5573  0.178645614 -1.615853e-01 -0.144049498     GBR
## 5577  0.180053897  7.842837e-02  0.093760551     GBR
## 5578  0.178913138  6.056691e-02  0.076952188     GBR
## 5579  0.177994352 -1.736896e-02 -0.005209203     GBR
## 5588  0.184424218 -5.506402e-02 -0.033481187     GBR
## 5592  0.186360964  9.687132e-02  0.113410171     GBR
## 5593  0.186108794  1.924567e-02  0.033380125     GBR
## 5594  0.185346617 -1.231131e-01 -0.104422253     GBR
## 5597  0.187735179  1.409097e-01  0.156940896     GBR
## 5602  0.188916612 -3.057716e-02 -0.010486479     GBR
## 5631  0.269258174  2.861024e-01  0.290601024     GBR
## 5638  0.281863026  3.723061e-01  0.377714133     GBR
## 5642  0.281646785  2.729636e-01  0.270732574     GBR
## 5643  0.288097195  2.145006e-01  0.202285311     GBR
## 5649  0.300634560  3.372718e-01  0.312492724     GBR
## 5650  0.283625157  1.838549e-01  0.167011011     GBR
## 5653  0.296005736  3.947796e-01  0.365504540     GBR
## 5654  0.340090376  3.883744e-01  0.357708876     GBR
## 5656  0.315349903  2.926195e-01  0.260627573     GBR
## 5657  0.308733720  1.505952e-01  0.128394071     GBR
## 5660  0.289521285  4.137718e-01  0.382577446     GBR
## 5661  0.303705384  3.830490e-01  0.350201059     GBR
## 5668  0.286116955  3.396304e-01  0.307292203     GBR
## 5673  0.271912355  5.170241e-01  0.508318726     GBR
## 5681  0.288454448  5.161625e-01  0.496688003     GBR
## 5692  0.377940407  4.083293e-01  0.381578298     GBR
## 5701  0.462788033  7.593745e-01  0.734907253     GBR
## 5709  0.521731813  9.760449e-01  0.973804679     GBR
## 5711  0.549867723  9.235148e-01  0.910801328     GBR
## 5725  0.454884273  7.667038e-01  0.751756304     GBR
## 5726  0.428601054  6.649052e-01  0.658507968     GBR
## 5733  0.389013094  5.831556e-01  0.576945454     GBR
## 5754  0.327790318  4.726315e-01  0.481190041     GBR
## 5756  0.327457099  4.289451e-01  0.413293578     GBR
## 5766  0.301611014  4.300223e-01  0.391732525     GBR
## 5786  0.257366499  4.769828e-01  0.356773032     GBR
## 5787  0.257400907  3.920931e-01  0.320561335     GBR
## 5794  0.234012773  3.958534e-01  0.364388153     GBR
## 5803  0.209003134  2.268121e-01  0.235298906     GBR
## 5812  0.187659157  1.872298e-01  0.139947383     GBR
## 5814  0.179787277  3.986206e-01  0.321793881     GBR
## 5816  0.175536409  2.761023e-01  0.262244169     GBR
## 5817  0.170402853  1.692304e-01  0.172735516     GBR
## 5822  0.157148887  3.354156e-01  0.286437329     GBR
## 5830  0.137978405  3.419497e-01  0.340397645     GBR
## 5833  0.130155894  2.373657e-01  0.208808050     GBR
## 5834  0.128607242  3.750556e-01  0.372218404     GBR
## 5835  0.124771862  4.347393e-01  0.387771101     GBR
## 5840  0.110924132  2.526113e-01  0.220981094     GBR
## 5853  0.081367468  1.189870e-01  0.122394430     GBR
## 5857  0.081887019  2.646890e-01  0.264776103     GBR
## 5863  0.077016091  2.582992e-01  0.228327473     GBR
## 5866  0.072195562  7.437554e-02  0.093020486     GBR
## 5871  0.076050567  2.417059e-01  0.211859583     GBR
## 5874  0.064188971  1.845005e-02 -0.020553821     GBR
## 5876  0.071935998  2.280902e-01  0.221803532     GBR
## 5878  0.089891151  2.509362e-01  0.217810626     GBR
## 5880  0.093075854  1.003480e-01  0.107314186     GBR
## 5883  0.099331390  2.560121e-01  0.240730386     GBR
## 5888  0.110578113 -2.679389e-02 -0.067929333     GBR
## 5893  0.157635850  1.529871e-01  0.145670277     GBR
## 5895  0.139020917 -3.089414e-02 -0.059252935     GBR
## 5902  0.209420431 -8.096268e-05 -0.024210929     GBR
## 5904  0.205984516  1.988726e-01  0.186725273     GBR
## 5906  0.179619088  2.076299e-01  0.177779013     GBR
## 5910  0.118373387 -4.251513e-03 -0.011452958     GBR
## 5914  0.135314764  1.103038e-01  0.102561855     GBR
## 5915  0.120793224  9.628050e-03  0.013316653     GBR
## 5919  0.133852467  1.765756e-01  0.172667518     GBR
## 5926  0.134555089  1.814583e-01  0.177014619     GBR
## 5927  0.148812504  1.652882e-01  0.160639767     GBR
## 5929  0.134114177  4.513893e-02  0.054550772     GBR
## 5933  0.152876188  1.865917e-01  0.182110228     GBR
## 5937  0.147109178 -7.519770e-02 -0.066920894     GBR
## 5939  0.142559774  1.878586e-01  0.189968824     GBR
## 5946  0.150620122  1.924590e-01  0.177347450     GBR
## 5955  0.175116700  2.068008e-01  0.165994958     GBR
## 5958  0.139461313 -7.624391e-02 -0.101444403     GBR
## 5966  0.170714650 -1.263952e-02 -0.032607203     GBR
## 5969  0.171722325  1.602186e-01  0.133069103     GBR
## 5985  0.166422243 -3.135664e-02 -0.005194077     GBR
## 5993  0.173356974 -1.359911e-01 -0.116602948     GBR
## 5997  0.191122973  1.283166e-01  0.161755692     GBR
## 5999  0.158177882 -1.321013e-02  0.053822389     GBR
## 6003  0.146065872  1.154195e-01  0.177225313     GBR
## 6004  0.124382876  8.990194e-02  0.156633728     GBR
## 6007  0.109859355 -1.548836e-01 -0.086205921     GBR
## 6011  0.094586002  1.215765e-01  0.189624207     GBR
## 6014  0.055306536 -1.474622e-01 -0.062938486     GBR
## 6021  0.053824920 -1.697597e-01 -0.062286477     GBR
## 6027  0.047964167 -7.538538e-02  0.072439462     GBR
## 6028  0.042809410 -1.754603e-01 -0.055038921     GBR
## 6031  0.046590717  7.010253e-02  0.199740692     GBR
## 6033  0.067396239 -2.220886e-03  0.155960527     GBR
## 6040  0.045899838  1.614358e-01  0.351909062     GBR
## 6045  0.026411598 -4.337579e-02  0.128392457     GBR
## 6046  0.019590647 -6.329292e-02  0.107788688     GBR
## 6047  0.048200523 -1.051844e-01  0.084437856     GBR
## 6064  0.151657231  4.946051e-01  0.670603993     USA
## 6069  0.151657288  3.221410e-01  0.497933078     USA
## 6074  0.151657402  3.815744e-01  0.554367106     USA
## 6075  0.151657402  2.410821e-01  0.417677681     USA
## 6078  0.151657402  4.946051e-01  0.670603993     USA
## 6079  0.151657402  4.770012e-01  0.653231122     USA
## 6080  0.151665626  4.589655e-01  0.635799472     USA
## 6087  0.151657574  4.589655e-01  0.635799472     USA
## 6097  0.151991732  4.255699e-01  0.608369919     USA
## 6098  0.152459780  6.008403e-01  0.784870029     USA
## 6102  0.154890285  5.734036e-01  0.758450980     USA
## 6105  0.159425415  7.600657e-01  0.957156264     USA
## 6109  0.177346830  8.054513e-01  1.001659039     USA
## 6117  0.224918104  8.990424e-01  1.087980981     USA
## 6118  0.250590292  1.000959e+00  1.187553833     USA
## 6125  0.302064500  1.314283e+00  1.497511280     USA
## 6130  0.300601194  1.327117e+00  1.498123209     USA
## 6131  0.292352502  1.192287e+00  1.367125550     USA
## 6134  0.292936277  1.441217e+00  1.608533863     USA
## 6139  0.316428156  1.224679e+00  1.384620920     USA
## 6140  0.303633357  1.366485e+00  1.525579287     USA
## 6148  0.316280657  1.241872e+00  1.388811403     USA
## 6159  0.303124032  9.452266e-01  1.095606908     USA
## 6160  0.303664478  1.015069e+00  1.162835354     USA
## 6176  0.323449483  1.136882e+00  1.265356933     USA
## 6177  0.333622018  1.111066e+00  1.239424563     USA
## 6179  0.346030924  1.014109e+00  1.138826633     USA
## 6181  0.319029494  8.289026e-01  0.970478448     USA
## 6187  0.331341515  7.408236e-01  0.879776546     USA
## 6188  0.324424150  8.224180e-01  0.959299098     USA
## 6199  0.399167914  9.565041e-01  1.081066627     USA
## 6209  0.450965831  8.747942e-01  0.992714013     USA
## 6211  0.504559753  9.628448e-01  1.088564456     USA
## 6212  0.526941902  9.520200e-01  1.077582036     USA
## 6215  0.511148631  7.267573e-01  0.857274252     USA
## 6220  0.596801104  9.624300e-01  1.079940377     USA
## 6223  0.564992123  8.237511e-01  0.941538861     USA
## 6226  0.651136646  9.944417e-01  1.106717703     USA
## 6230  0.600738234  8.282019e-01  0.939175112     USA
## 6232  0.649183456  1.004690e+00  1.110001624     USA
## 6234  0.672014750  9.640279e-01  1.069094691     USA
## 6236  0.605682137  7.380580e-01  0.849144772     USA
## 6248  0.662938152  9.870770e-01  1.086939274     USA
## 6250  0.616043693  7.584871e-01  0.864181011     USA
## 6255  0.698746071  9.842380e-01  1.079010646     USA
## 6258  0.586122457  8.354587e-01  0.932974728     USA
## 6263  0.633183953  8.756548e-01  0.963723368     USA
## 6270  0.647570817  8.737232e-01  0.956236169     USA
## 6271  0.611641117  7.273589e-01  0.816846226     USA
## 6283  0.687932143  9.643082e-01  1.045080075     USA
## 6285  0.637207435  7.084488e-01  0.795374694     USA
## 6288  0.660430330  9.742645e-01  1.048531408     USA
## 6297  0.720143995  9.526972e-01  1.021246478     USA
## 6300  0.660881546  7.986186e-01  0.873916988     USA
## 6304  0.762128695  9.300288e-01  0.990827228     USA
## 6306  0.683453325  6.976211e-01  0.767851111     USA
## 6310  0.791676055  9.549292e-01  1.006836116     USA
## 6318  0.856137707  9.833254e-01  1.032839605     USA
## 6329  0.928118638  1.027964e+00  1.067628432     USA
## 6342  1.169557436  1.038406e+00  1.049279161     USA
## 6344  1.312714487  1.237396e+00  1.234669634     USA
## 6366  1.822812835  1.549106e+00  1.525801838     USA
## 6368  1.838814674  1.442752e+00  1.420428707     USA
## 6369  1.675615750  1.298732e+00  1.286439209     USA
## 6375  1.923255784  1.484719e+00  1.445220714     USA
## 6382  1.928710179  1.511591e+00  1.456297063     USA
## 6393  2.125466073  1.660322e+00  1.579785300     USA
## 6395  1.917491333  1.708732e+00  1.683528142     USA
## 6397  2.097262435  1.517761e+00  1.492098197     USA
## 6399  2.232418477  1.796789e+00  1.754452607     USA
## 6403  2.404497582  1.663027e+00  1.606007003     USA
## 6411  2.158568699  1.489480e+00  1.425664943     USA
## 6412  2.022671678  1.561873e+00  1.496650798     USA
## 6413  2.125290113  1.736672e+00  1.664642066     USA
## 6418  2.059396122  1.430641e+00  1.352106693     USA
## 6419  2.084844337  1.513006e+00  1.435395517     USA
## 6421  2.150902310  1.697792e+00  1.602058012     USA
## 6422  2.208193189  1.675798e+00  1.580322341     USA
## 6427  2.022713343  1.633294e+00  1.555761115     USA
## 6436  2.026832603  1.547822e+00  1.456147875     USA
## 6440  1.826059701  1.379899e+00  1.283824178     USA
## 6443  1.899463034  1.528807e+00  1.421573232     USA
## 6452  1.890756615  1.403065e+00  1.284769187     USA
## 6454  1.847802945  1.189979e+00  1.081763672     USA
## 6455  1.858952664  1.370492e+00  1.253692742     USA
## 6456  1.899988605  1.369742e+00  1.250770435     USA
## 6458  1.888980898  1.300952e+00  1.186921467     USA
## 6461  1.769990340  1.153994e+00  1.036670418     USA
## 6462  1.804999620  1.337374e+00  1.213359135     USA
## 6473  1.695989632  1.226193e+00  1.092544536     USA
## 6479  1.744421374  1.303171e+00  1.172518429     USA
## 6480  1.674093808  1.229070e+00  1.089826337     USA
## 6484  1.665960560  1.328794e+00  1.190367554     USA
## 6494  1.446927173  1.320797e+00  1.183710270     USA
## 6499  1.422530459  1.425060e+00  1.286022319     USA
## 6504  1.359893588  1.436031e+00  1.289779567     USA
## 6512  1.306686664  1.413631e+00  1.260387676     USA
## 6519  1.221358555  1.498363e+00  1.351387290     USA
## 6521  1.214353620  1.449844e+00  1.308806079     USA
## 6525  1.135995379  1.454368e+00  1.303924383     USA
## 6527  1.140132379  1.430370e+00  1.282216478     USA
## 6529  1.089586935  1.325715e+00  1.177548731     USA
## 6532  1.064719694  1.442171e+00  1.290882393     USA
## 6534  1.057560886  1.419638e+00  1.269744903     USA
## 6536  1.006153218  1.312969e+00  1.160105590     USA
## 6538  1.013919666  1.223891e+00  1.070360635     USA
## 6547  0.946726080  1.279594e+00  1.127140318     USA
## 6549  0.935905503  1.226114e+00  1.080661342     USA
## 6553  0.903608578  1.256929e+00  1.108673533     USA
## 6560  0.866651276  1.326411e+00  1.179888901     USA
## 6561  0.869148969  1.323663e+00  1.176263948     USA
## 6569  0.849699804  1.322654e+00  1.174114934     USA
## 6575  0.848101934  1.348464e+00  1.197800814     USA
## 6582  0.864270826  1.281338e+00  1.139045952     USA
## 6585  0.802277084  1.117534e+00  0.970422472     USA
## 6591  1.081000815  1.249701e+00  1.100614911     USA
## 6596  0.971640837  1.316569e+00  1.160928059     USA
## 6608  1.277379630  1.288253e+00  1.131324585     USA
## 6615  1.545931219  1.326798e+00  1.162754222     USA
## 6616  1.312315180  1.540340e+00  1.373689747     USA
## 6617  1.460001208  1.560018e+00  1.388873076     USA
## 6620  1.040217344  1.422469e+00  1.253626728     USA
## 6623  1.472350096  1.559133e+00  1.387625500     USA
## 6625  1.497829023  1.538913e+00  1.365801399     USA
## 6628  1.016149174  1.290373e+00  1.128968815     USA
## 6636  1.962492995  1.365025e+00  1.195511235     USA
## 6644  2.028892601  1.539876e+00  1.374372863     USA
## 6646  1.612316191  1.529937e+00  1.347835130     USA
## 6647  1.896511464  1.502520e+00  1.321945914     USA
## 6649  1.133264898  1.255509e+00  1.089944243     USA
## 6655  1.250671472  1.410393e+00  1.229171641     USA
## 6657  1.804313090  1.336749e+00  1.159365861     USA
## 6658  1.510317853  1.514691e+00  1.327441734     USA
## 6661  1.746223509  1.453212e+00  1.266213930     USA
## 6670  1.180847526  1.141397e+00  0.994041096     USA
## 6674  1.418265737  1.371586e+00  1.222307714     USA
## 6687  1.360841397  1.315445e+00  1.198899239     USA
## 6689  1.366731119  1.252385e+00  1.156765185     USA
## 6695  1.246649568  1.196219e+00  1.146142689     USA
## 6706  1.302738583  9.834805e-01  1.008003315     USA
## 6714  1.144949727  1.132105e+00  1.210344440     USA
## 6715  1.233009776  1.128692e+00  1.213998305     USA
## 6721  1.107088799  1.080448e+00  1.228111984     USA
## 6722  1.178186902  1.084934e+00  1.234781161     USA
## 6727  1.509844254  9.148229e-01  1.097645989     USA
## 6730  1.240927135  9.825329e-01  1.188497134     USA
## 6734  1.392125607  7.844307e-01  1.036812107     USA
## 6735  1.097468994  9.602140e-01  1.215653413     USA
## 6740  0.965116475  5.046907e-01  0.822801093     USA
library(shiny)
library(shinydashboard)
library(leaflet)
library(plotly)

load("external1.RData")
load("rf_results.RData")

ui <- dashboardPage(skin = "green",
                    dashboardHeader(title = "COVID-19 Metrics by Country",
                                    titleWidth = 300),
                    dashboardSidebar(width = 300,
                                     sidebarMenu(
                                       menuItem("Map", tabName = "map", icon = icon("map")
                                                ),
                                       
                                       selectInput(inputId = "vars",
                                                   label = "Select the Metric (for Map)",
                                                   choices = c(colnames(map_ds1)[2:5], colnames(map_ds1)[8]),
                                                   selected =  colnames(map_ds1)[2]),
                                       selectInput(inputId = "selected_country",
                                                   label = "Select the Country (for Time Series)",
                                                   choices = c(levels(res_dataset$country)),
                                                   selected = "USA"),
                                       
                                      menuItem("Time-Series (Trees)", tabName = "ts-rf", icon = icon("chart-line")),
          
                                       menuItem("Time-Series (Linear Methods)", tabName = "ts-lin", icon = icon("chart-line")),
                                       menuItem("Time-Series", tabName = "ts-final", icon = icon("chart-line"))
                                       
                                     )),
                    
                    dashboardBody(
                      
                      tabItems(
                        
                        tabItem(tabName = "map",
                                
                      
                      fluidRow(
                                  column(8, leafletOutput("map1", height = 800)),
                                  column(4, dataTableOutput("table1"))
                      )
                      ),
                      
                    tabItem(tabName = "ts-rf",
                            fluidRow(
                              box(plotlyOutput("time_series_trees"))
                            )),
                    tabItem(tabName = "ts-lin",
                            fluidRow(
                              box(plotlyOutput("time_series_linear"))
                            )),
                    tabItem(tabName = "ts-final",
                            fluidRow(
                              box(plotlyOutput("time_series_final"))
                            ))
                      ))         
                      )
library(shinydashboard)
library(shiny)
library(leaflet)
library(dplyr)
library(stats)
library(sf)
library(lubridate)
library(plotly)

load("external1.RData")
load("rf_results.RData")



server <- function(input, output) {

  time_series <- reactive({
    filter(res_dataset, country == input$selected_country)
    
  })
  
  reactive_ds <- reactive({
    select(map_ds1, geometry, "selection" = input$vars)
  })
  
  bw <- reactive({2 * IQR(reactive_ds()$selection) / length(reactive_ds()$selection)^(1/3)})
  

  pal1 <- reactive({colorBin("viridis",
                      domain = seq(from = min(range(reactive_ds()$selection)),
                                   to = max(range(reactive_ds()$selection)), by = bw()))})

  pop <- reactive({paste("Country: ", map_ds1$name, "<br/>",
                         "Value: ", round(reactive_ds()$selection, 3))})
              
  
  
  output$map1 <- renderLeaflet({
    
    
    leaflet(reactive_ds()) %>%
      addProviderTiles(providers$CartoDB) %>%
      addPolygons(data = reactive_ds()$geometry , fillColor = pal1()(reactive_ds()$selection),
                  color = "black", popup = pop()) %>%
     addLegend(pal = pal1(), values = reactive_ds()$selection)
  })
  
  
  output$table1 <- renderDataTable({
    reactive_ds() %>% select(-geometry) %>%
      cbind("Country" = map_ds1$name)
  })
  
  
  output$time_series_trees <- renderPlotly({
   
   p <- time_series() %>% plot_ly(x = ~ date, y = ~rf_predicted_cases, name = "Random Forest", type = "scatter", mode = "lines") %>%
     add_trace(y = ~actual_deaths, name = "Actual Deaths", mode = "lines+markers") %>%
     add_trace(y = ~decision_tree_pred, name = "Decision Tree") %>%
     add_trace(y = ~bagged_tree_pred, name = "Bagged Tree") %>%
     add_trace(y = ~boosted_tree_pred, name = "Boosted Tree") %>%
     layout(title = paste0("Actual vs. Predicted Daily Deaths (thousands) for", " ", input$selected_country),
            yaxis = list(title = "Deaths"))
   
   return(p)
   
   
     
  })
  
  output$time_series_linear <- renderPlotly({
  
  p.all <- time_series() %>% plot_ly(x = ~ date, y = ~MLR, name = "MLR (Reduced by p-values)", type = "scatter", mode = "lines") %>%
    add_trace(y = ~actual_deaths, name = "Actual Deaths", mode = "lines+markers") %>%
    add_trace(y = ~ForwardMLR, "MLR (Forward Selection)") %>%
    add_trace(y = ~BackwardMLR, "MLR (Backward Selection)") %>%
    add_trace(y = ~s1, name = "Ridge") %>%
    add_trace(y = ~s1.1, name = "LASSO") %>%
    layout(title = paste0("Actual vs. Predicted Daily Deaths (thousands) for", " ", input$selected_country),
           yaxis = list(title = "Deaths"))
  
  return(p.all)
  })
  
  
  output$time_series_final <- renderPlotly({
  
  p.final <- time_series() %>% plot_ly(x = ~date, y = ~new_deaths_thousand.15.comps, name = "PCR",
                                       type = "scatter", mode = "lines") %>%
    add_trace(y = ~actual_deaths, name = "Actual Deaths", mode = "lines+markers") %>%
    add_trace(y = ~MLR, name = "MLR (Reduced by p-values") %>%
    add_trace(y = ~s1.1, name = "LASSO")  %>%
    layout(title = paste0("Actual vs. Predicted Daily Deaths (thousands) for", " ", input$selected_country),
           yaxis = list(title = "Deaths"))
  
  return(p.final)
    
  })
  
}
LS0tCnRpdGxlOiAiTUFUSCA2MjQgR3JvdXAgMiBGaW5hbCBQcm9qZWN0IgphdXRob3I6ICJDb2xsaW4gSG9za2lucywgTWVpcmVuIEppYW5nLCBDb3JkZWxsIEpvbmVzLCBTYW11ZWwgSGFyb2xkIgpkYXRlOiAiMTIvMTMvMjAyMSIKb3V0cHV0OgogICBvcGVuaW50cm86OmxhYl9yZXBvcnQKCi0tLQoKCjxzdHlsZSB0eXBlPSJ0ZXh0L2NzcyI+Ci5tYWluLWNvbnRhaW5lciB7CiAgbWF4LXdpZHRoOiAxODAwcHg7CiAgbWFyZ2luLWxlZnQ6IGF1dG87CiAgbWFyZ2luLXJpZ2h0OiBhdXRvOwp9Cjwvc3R5bGU+CgoKCmBgYHtyIHNldHVwLCBpbmNsdWRlID0gRn0KCnNldHdkKCIvVXNlcnMvY29yZGVsbGpvbmVzL0xpYnJhcnkvTW9iaWxlIERvY3VtZW50cy9jb21+YXBwbGV+Q2xvdWREb2NzL1NjaG9vbC9JbnRybyB0byBTdGF0aXN0aWNhbCBMZWFybmluZy9GaW5hbCIpCgpgYGAKCiMgQWJzdHJhY3QKRm9yIHRoaXMgYW5hbHlzaXMsIHdlIGRldmVsb3BlZCBhIHN0YXRpc3RpY2FsIG1vZGVsIGZvciB0aGUgZ2xvYmFsIHByZWRpY3Rpb24gb2YgbmV3IENPVklEIGRlYXRocyBmb3IgdGhlIHRvcCAxMCBjb3VudHJpZXMgYmFzZWQgb24gdGhlIGhpZ2hlc3QgYW1vdW50IG9mIGRlYXRocy4gQSB2YXJpZXR5IG9mIHN1cGVydmlzZWQgYW5kIHVuc3VwZXJ2aXNlZCBsZWFybmluZyBtZXRob2RzIHdlcmUgdXNlZC4gCgojIDEuIEludHJvClRoZSBDT1ZJRC0xOSB2aXJ1cyBoYXMgY2F1c2VkIGEgZ2xvYmFsIHBhbmRlbWljIHdoaWNoIGhhcyBkZXRyaW1lbnRhbGx5IGFmZmVjdGVkIHRoZSB3b3JsZCBjYXVzaW5nIGxvc3Mgb2YgcG9wdWxhdGlvbiBhbmQgZXh0cmVtZSB1c2Ugb2YgdmFyaW91cyByZXNvdXJjZXMuIE1lZGljYWwgZmFjaWxpdGllcyByZXNvdXJjZXMgaGF2ZSBiZWVuIGV4YWNlcmJhdGVkLCBsYWJvciBmb3JjZXMgaGF2ZSBkd2luZGxlZCwgYW5kIGJ1c2luZXNzZXMgaGF2ZSBuZWVkZWQgdG8gYWRhcHQgdG8gd2lsZGx5IGNoYW5naW5nIG1hcmtldHMuIFRoZSBwdXJwb3NlIG9mIHRoaXMgcHJvamVjdCB3YXMgdG8gZGV2ZWxvcCBhIHN0YXRpc3RpY2FsIG1vZGVsIGZvciB0aGUgZ2xvYmFsIHByZWRpY3Rpb24gb2YgbmV3IENPVklEIGRlYXRocyBmb3IgdGhlIHRvcCB0ZW4gbGVhZGluZyBjb3VudHJpZXMgZm9yIGJlbmVmaXQgb2YgZ2xvYmFsIHByZXBhcmF0aW9ucyBhbmQgYWNjb21tb2RhdGlvbnMgb2YgcGh5c2ljYWwsIG1lZGljYWwsIGFuZCBwb3B1bG91cyByZXNvdXJjZXMuIE1vZGVsIGV2YWx1YXRpb24gd2FzIGJhc2VkIG9uIE1TRSBjb21wYXJpc29uIGJldHdlZW4gbW9kZWxzIGZvciBwcmVkaWN0aW9uIGFjY3VyYWN5LiBXb3JrIGZvciB0aGlzIGdyb3VwIHdhcyBkaXZpZGVkIGVxdWFsbHkgYW1vbmcgY29sbGVhZ3Vlcy4gV29yayB3YXMgZGl2aWRlZCBpbnRvIGZvdXIgcGFydHMsIGRhdGEgZGlzY292ZXJ5IGFuZCB2aXN1YWxpemF0aW9uLCB0cmVlIGJhc2VkIG1ldGhvZHMsIGxpbmVhciBtZXRob2RzLCBhbmQgdW5zdXBlcnZpc2VkIG1ldGhvZHMuIEEgbnVtYmVyIG9mIG1vZGVscyB3ZXJlIHRlc3RlZCBhbmQgY29tcGFyZWQgd2l0aCB0aGUgbWVudGlvbmVkIG1ldGhvZHMgYmVmb3JlIGRlY2lkaW5nIG9uIHRoZSBmaW5hbCB3b3JraW5nIG1vZGVsLiBPdXIgaW5pdGlhbCBwcmVzdW1wdGlvbiBpcyB0aGF0IHRyZWUgbWV0aG9kcyB3aWxsIGxpa2VseSBiZSB0aGUgbW9zdCBhY2N1cmF0ZSBmb3IgdGhpcyBhbmFseXNpcy4gV2UgYXJlIHRlc3RpbmcgbXVsdGlwbGUgbW9kZWxzIHRvIHNlZSBpZiBvdGhlciBtb2RlbHMgbWF5IGJlIG1vcmUgYWNjdXJhdGUgdGhhbiBvdXIgaW5pdGlhbCB0aG91Z2h0LiBUaGlzIG1heSBhbHNvIHByb3ZlIHRvIGJlIGluY29ycmVjdCwgYXMgYSBtb3JlIGNvbXBsZXggbW9kZWwgZG9lcyBub3QgYWx3YXlzIG1lYW4gbW9yZSBhY2N1cmF0ZSBwcmVkaWN0aW9ucy4gVGhlcmUgYWxzbyBpcyBwb3RlbnRpYWwgZm9yIGNlcnRhaW4gbW9kZWxzIHRvIG92ZXItZml0IGR1ZSB0byB2YXJpYWJsZXMgdGhhIGRpcmVjdGx5IGltcGFjdCBuZXcgZGVhdGhzIGluY2x1ZGVkIGluIG1vZGVscy4KCiMgMi4gTWV0aG9kClRoZSBtZXRob2RvbG9neSBpbiB0aGlzIGFuYWx5c2lzIGNvbnNpc3RlZCBvZiBkaWFnbm9zaW5nIGEgd29ybGQgaXNzdWUsIGV4cGxvcmluZyBkYXRhIGJhc2VkIGFyb3VuZCB0aGUgaXNzdWUsIGJ1aWxkaW5nIHZhcmlvdXMgbW9kZWxzIHRvIGNvbXBhcmUgYWNjdXJhY3ksIGFuZCBmaW5hbGx5IGFuYWx5emUgbW9kZWwgcmVzdWx0cyBmb3IgaW5zaWdodHMuCgoKIyMgMi4xIERhdGEKRGF0YSB3YXMgY29sbGVjdGVkIGZyb20gb25lIHNvdXJjZSB1c2luZyB0aGUgY29kZSBiZWxvdyB0byBleHRyYWN0IGEgY3N2IGZpbGUgYXQgdGhlIGxpbmsgImh0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9vd2lkL2NvdmlkLTE5LWRhdGEvbWFzdGVyL3B1YmxpYy9kYXRhL293aWQtY292aWQtZGF0YS5jc3YiLiBUaGlzIHJlc291cmNlIGNhbiBiZSBmb3VuZCB0aHJvdWdoIGEgYnJvd3NlciBhdCB3aXRoIHRoZSBsaW5rICJodHRwczovL2dpdGh1Yi5jb20vb3dpZC9jb3ZpZC0xOS1kYXRhIi4gVGhlIGlucHV0IGRhdGEgd2FzIGZpbHRlcmVkIHRvIHRoZSB0b3AgMTAgbGVhZGluZyBjb3VudHJpZXMgaW4gZGVhdGhzLiBWYXJpYWJsZXMgdGhhdCB3ZXJlIG5vdCBzY2FsZWQgdG8gdGhvdXNhbmRzIHdlcmUgYXBwcm9wcmlhdGVseSBjaGFuZ2VkIHRvIHRoaXMgc2NhbGluZyBhbmQgdmFyaWFibGVzIHRoYXQgd2VyZSBzY2FsZWQgaW4gYW5vdGhlciBmYXNoaW9uIHdoaWNoIGhhZCBhIHRob3VzYW5kIGNvdW50ZXJwYXJ0IHdlcmUgcmVtb3ZlZCB0byByZWR1Y2UgZHVwbGljYXRlZCB2YXJpYWJsZXMgYW5kIG1vZGVsIG5vaXNlLiBTb21lIG90aGVyIHZhcmlhYmxlcyB3aXRoIHVubmVlZGVkIGluZm9ybWF0aW9uLCBzdWNoIGFzIGV4Y2Vzc19tb3J0YWxpdHlfcmF0ZSwgd2VyZSBhbHNvIHJlbW92ZWQgZm9yIG5vaXNlIHJlZHVjdGlvbi4KCgojIyMjIFJlYWRpbmcgdGhlIGluaXRpYWwgZGF0YSBzZXQgYW5kIGZpbHRlcmluZwoKYGBge3IsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9CgpyZXF1aXJlKGRwbHlyKQoKZGF0YXNldCA8LSByZWFkLmNzdigiaHR0cHM6Ly9yYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tL293aWQvY292aWQtMTktZGF0YS9tYXN0ZXIvcHVibGljL2RhdGEvb3dpZC1jb3ZpZC1kYXRhLmNzdiIsIHN0cmluZ3NBc0ZhY3RvcnMgPSBUKSAlPiUgICBzZWxlY3QoLWMoY29udGluZW50LCBsb2NhdGlvbiwgd2Vla2x5X2ljdV9hZG1pc3Npb25zLCB3ZWVrbHlfaWN1X2FkbWlzc2lvbnNfcGVyX21pbGxpb24sIHdlZWtseV9ob3NwX2FkbWlzc2lvbnMsCiAgICAgICAgICAgIHdlZWtseV9ob3NwX2FkbWlzc2lvbnNfcGVyX21pbGxpb24sIGhvc3BfcGF0aWVudHNfcGVyX21pbGxpb24sIHRvdGFsX2Jvb3N0ZXJzX3Blcl9odW5kcmVkLCBjb250aW5lbnQsCiAgICAgICAgICAgIGxvY2F0aW9uLCB3ZWVrbHlfaWN1X2FkbWlzc2lvbnMsIHdlZWtseV9pY3VfYWRtaXNzaW9uc19wZXJfbWlsbGlvbiwgd2Vla2x5X2hvc3BfYWRtaXNzaW9ucywKICAgICAgICAgICAgd2Vla2x5X2hvc3BfYWRtaXNzaW9uc19wZXJfbWlsbGlvbiwgaWN1X3BhdGllbnRzX3Blcl9taWxsaW9uLCB0b3RhbF9kZWF0aHNfcGVyX21pbGxpb24sCiAgICAgICAgICAgIG5ld19kZWF0aHNfcGVyX21pbGxpb24sIG5ld190ZXN0cywgZXhjZXNzX21vcnRhbGl0eV9jdW11bGF0aXZlLCB0b3RhbF92YWNjaW5hdGlvbnNfcGVyX2h1bmRyZWQsCiAgICAgICAgICAgIHBlb3BsZV9mdWxseV92YWNjaW5hdGVkX3Blcl9odW5kcmVkLCBuZXdfdmFjY2luYXRpb25zX3Ntb290aGVkX3Blcl9taWxsaW9uLCB0b3RhbF9jYXNlc19wZXJfbWlsbGlvbiwKICAgICAgICAgICAgbmV3X3Blb3BsZV92YWNjaW5hdGVkX3Ntb290aGVkX3Blcl9odW5kcmVkLCBleGNlc3NfbW9ydGFsaXR5X2N1bXVsYXRpdmVfYWJzb2x1dGUsIG5ld19jYXNlc19wZXJfbWlsbGlvbiwKICAgICAgICAgICAgZXhjZXNzX21vcnRhbGl0eV9jdW11bGF0aXZlX3Blcl9taWxsaW9uLCBleGNlc3NfbW9ydGFsaXR5X2N1bXVsYXRpdmUsIGV4Y2Vzc19tb3J0YWxpdHksIHRvdGFsX3Rlc3RzLAogICAgICAgICAgICBwZW9wbGVfdmFjY2luYXRlZF9wZXJfaHVuZHJlZCwgbmV3X2RlYXRoc19zbW9vdGhlZF9wZXJfbWlsbGlvbiwgbmV3X2Nhc2VzX3Ntb290aGVkX3Blcl9taWxsaW9uLAogICAgICAgICAgICBuZXdfdGVzdHNfc21vb3RoZWQsIG5ld19kZWF0aHNfc21vb3RoZWQsIHJlcHJvZHVjdGlvbl9yYXRlLAogICAgICAgICAgICBuZXdfdGVzdHNfc21vb3RoZWRfcGVyX3Rob3VzYW5kLCB0ZXN0c19wZXJfY2FzZSwgbmV3X3ZhY2NpbmF0aW9uc19zbW9vdGhlZCwgdGVzdHNfdW5pdHMsCiAgICAgICAgICAgIG5ld19wZW9wbGVfdmFjY2luYXRlZF9zbW9vdGhlZCwgbmV3X2Nhc2VzX3Ntb290aGVkKSkgJT4lCiAgZmlsdGVyKGlzb19jb2RlICVpbiUgYygiVVNBIiwgIklORCIsICJCUkEiLCAiUlVTIiwgIkdCUiIsICJGUkEiLCAiVFVSIiwgIklUQSIsICJDT0wiLCAiREVVIikpIAoKCiMjIENyZWF0aW5nICJieSB0aG91c2FuZHMiIHZhcmlhYmxlCmRhdGFzZXQkdG90YWxfY2FzZXNfdGhvdXNhbmQgPSBkYXRhc2V0JHRvdGFsX2Nhc2VzIC8gMTAwMApkYXRhc2V0JG5ld19jYXNlc190aG91c2FuZCA9IGRhdGFzZXQkbmV3X2Nhc2VzIC8gMTAwMApkYXRhc2V0JG5ld19kZWF0aHNfdGhvdXNhbmQgPSBkYXRhc2V0JG5ld19kZWF0aHMgLyAxMDAwCmRhdGFzZXQkaWN1X3BhdGllbnRzX3Rob3VzYW5kID0gZGF0YXNldCRpY3VfcGF0aWVudHMgLyAxMDAwCmRhdGFzZXQkaG9zcF9wYXRpZW50c190aG91c2FuZCA9IGRhdGFzZXQkaG9zcF9wYXRpZW50cyAvIDEwMDAKZGF0YXNldCR0b3RhbF92YWNjaW5hdGlvbnNfdGhvdXNhbmQgPSBkYXRhc2V0JHRvdGFsX3ZhY2NpbmF0aW9ucyAvIDEwMDAKZGF0YXNldCRwZW9wbGVfdmFjY2luYXRlZF90aG91c2FuZCA9IGRhdGFzZXQkcGVvcGxlX3ZhY2NpbmF0ZWQgLyAxMDAwCmRhdGFzZXQkcGVvcGxlX2Z1bGx5X3ZhY2NpbmF0ZWRfdGhvdXNhbmQgPSBkYXRhc2V0JHBlb3BsZV9mdWxseV92YWNjaW5hdGVkIC8gMTAwMApkYXRhc2V0JHRvdGFsX2Jvb3N0ZXJzX3Rob3VzYW5kID0gZGF0YXNldCR0b3RhbF9ib29zdGVycyAvIDEwMDAKZGF0YXNldCRuZXdfdmFjY2luYXRpb25zX3Rob3VzYW5kID0gZGF0YXNldCRuZXdfdmFjY2luYXRpb25zIC8gMTAwMApkYXRhc2V0JHBvcHVsYXRpb25fdGhvdXNhbmQgPSBkYXRhc2V0JHBvcHVsYXRpb24gLyAxMDAwCmRhdGFzZXQkdG90YWxfZGVhdGhzX3Rob3VzYW5kID0gZGF0YXNldCR0b3RhbF9kZWF0aHMgLyAxMDAwCgojIFJlbW92ZSBvbGQgc2NhbGVzCmRhdGFzZXQgPSBzdWJzZXQoZGF0YXNldCwgc2VsZWN0ID0gLWModG90YWxfY2FzZXMsIG5ld19jYXNlcywgbmV3X2RlYXRocywgaWN1X3BhdGllbnRzLCBob3NwX3BhdGllbnRzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0b3RhbF92YWNjaW5hdGlvbnMsIHBlb3BsZV92YWNjaW5hdGVkLCBwZW9wbGVfZnVsbHlfdmFjY2luYXRlZCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG90YWxfYm9vc3RlcnMsIG5ld192YWNjaW5hdGlvbnMsIHBvcHVsYXRpb24sIHRvdGFsX2RlYXRocykpICAKCgoKCmBgYAoKCiMjIyMgRGF0ZXMKCgpgYGB7ciBkYXRlLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQoKZGF0YXNldCRkYXRlIDwtIGFzLkRhdGUoZGF0YXNldCRkYXRlKQoKIyMgQ3JlYXRpbmcgZGF5IG9mIHdlZWsgdmFyaWFibGUgYW5kIAoKIyMgQ3JlYXRpbmcgc2Vhc29uIHZhcmlhYmxlICh1c2luZyBhc3Ryb25pbWljYWwgc3RhcnQgZGF0ZXMpCgoKCmRhdGFzZXQgPC0gbXV0YXRlKGRhdGFzZXQsIGRheV9vZl93ZWVrID0gYXMuZmFjdG9yKHdlZWtkYXlzKGRhdGUpKSwKICAgICAgICAgICAgICAgICAgc2Vhc29uID0gYXMuZmFjdG9yKGNhc2Vfd2hlbihtb250aHMoZGF0ZSkgJWluJSBjKCJNYXJjaCIsICJBcHJpbCIsICJNYXkiKSB+ICJTcHJpbmciLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9udGhzKGRhdGUpICVpbiUgYygiSnVuZSIsICJKdWx5IiwgIkF1Z3VzdCIpIH4gIlN1bW1lciIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb250aHMoZGF0ZSkgJWluJSBjKCJTZXB0ZW1iZXIiLCAiT2N0b2JlciIsICJOb3ZlbWJlciIpIH4gIkZhbGwiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9udGhzKGRhdGUpICVpbiUgYygiRGVjZW1iZXIiLCAiSmFudWFyeSIsICJGZWJydWFyeSIpIH4gIldpbnRlciIpKSkKCmRhdGFzZXQkeWVhciA8LSBmYWN0b3IobHVicmlkYXRlOjp5ZWFyKGRhdGFzZXQkZGF0ZSkpCgpkYXRhc2V0JG1vbnRoIDwtIGZhY3RvcihsdWJyaWRhdGU6Om1vbnRoKGRhdGFzZXQkZGF0ZSkpCgoKCmRhdGFzZXQgPC0gZGF0YXNldCAlPiUgcmVwbGFjZShpcy5uYSguKSwgMCkKCmRhdGFzZXQkaXNvX2NvZGUgPC0gZmFjdG9yKGRhdGFzZXQkaXNvX2NvZGUpCgoKCm5vX2RhdGUgPC0gc2VsZWN0KGRhdGFzZXQsIC1kYXRlKQoKcmVxdWlyZShjYVRvb2xzKQpyZXF1aXJlKHJzYW1wbGUpCgojIyBTcGxpdHRpbmcgdGhlIGRhdGEKCnNldC5zZWVkKDEwMSkKCgpzcGxpdCA8LSByc2FtcGxlOjppbml0aWFsX3NwbGl0KGRhdGFzZXQsIHByb3AgPSAwLjgsIHN0cmF0YSA9ICJuZXdfZGVhdGhzX3Rob3VzYW5kIikKCnRyYWluLmRhdCA8LSByc2FtcGxlOjp0cmFpbmluZyhzcGxpdCkKdGVzdC5kYXQgPC0gcnNhbXBsZTo6dGVzdGluZyhzcGxpdCkKCgpgYGAKCgojIyAyLjIgRGF0YSBWaXN1YWxpemF0aW9uCgpXZSBjcmVhdGVkIGFuIGludGVyYWN0aXZlIGdlb2dyYXBoaWNhbCBzaGlueSBhcHAgZm9yIGV4cGxvcmF0b3J5IGluZm9ybWF0aW9uIHJlbGF0ZWQgdG8gYXZlcmFnZSBkYWlseSBjYXNlcywgYXZlcmFnZSBuZXcgdmFjY2luYXRpb25zLCBhdmVyYWdlIGRhaWx5IGRlYXRocywgcG9wdWxhdGlvbiBkZW5zaXR5LCBhbmQgSERJLiBBZGRpdGlvbmFsIHRpbWUgc2VyaWVzIGNoYXJ0cyBhcmUgYXZhaWxhYmxlIGhlcmUgYXMgd2VsbCBmb3Igb3VyIGxhdGUgdXNlZCBtZXRob2RzLiBUaGlzIHNoaW55IGFwcCBpcyBhdmFpbGFibGUgdG8gdmlldyB2aWEgaW50ZXJuZXQgYnJvd3NlciBhdCAiaHR0cHM6Ly9jaG9za2lucy5zaGlueWFwcHMuaW8vc2hpbnkvIi4KClRoZSBmaWd1cmUgYmVsb3cgZGVwaWN0cyB0aGUgdHJhaW5pbmcgYW5kIHRlc3Rpbmcgc3BsaXQgb2YgdGhlIHJlc3BvbnNlIHZhcmlhYmxlIChuZXcgZGFpbHkgZGVhdGhzIGJ5IHRob3VzYW5kcykgZm9yIHRoZSB0aW1lIHNlcmllcy4KCmBgYHtyIHZpejEsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9CgpyZXF1aXJlKGdncGxvdDIpCnJlcXVpcmUoZ2dwdWJyKQoKZ2dwbG90KGRhdGEgPSB0cmFpbi5kYXQsIGFlcyh4ID0gZGF0ZSwgeSA9IG5ld19kZWF0aHNfdGhvdXNhbmQpKSArIGdlb21fcG9pbnQoY29sb3IgPSAiYmx1ZSIpICsKICBnZW9tX3BvaW50KGRhdGEgPSB0ZXN0LmRhdCwgYWVzKHggPSBkYXRlLCB5ID0gbmV3X2RlYXRoc190aG91c2FuZCksIGNvbG9yID0gIm9yYW5nZSIpICsgdGhlbWVfY2xhc3NpYygpCgoKYGBgCgpUaGVyZSBpcyBubyBjbGVhciB0cmVuZCwgb3RoZXIgdGhhbiB0aGUgcG90ZW50aWFsIG9mIG1vbnRoIGluIHRoZSBudW1iZXIgb2YgQ09WSUQtMTkgZGVhdGhzLiBUaGUgYmx1ZSBwb2ludHMgaW4gdGhlIGZpZ3VyZSBhYm92ZSBpbmRpY2F0ZSB0aGUgb2JzZXJ2YXRpb25zIGluIHRoZSB0cmFpbmluZyBzZXQsIGFuZCB0aGUgb3JhbmdlIHBvaW50cyBjb21wb3NlIHRoZSBvYnNlcnZhdGlvbnMgaW4gdGhlIHRlc3Rpbmcgc2V0LiBUaGUgZGlzdHJpYnV0aW9uIHdpdGggdGltZSBpcyBmYWlybHkgY29uc2lzdGVudC4gCgpgYGB7ciB2aXoyLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQoKCgpBIDwtIGdncGxvdChkYXRhc2V0KSArIGdlb21fYm94cGxvdChhZXMoeCA9IGlzb19jb2RlLCB5ID0gbmV3X2RlYXRoc190aG91c2FuZCwgZmlsbCA9IGlzb19jb2RlKSkgKyB0aGVtZV9jbGFzc2ljKCkKCkIgPC0gZ2dwbG90KGRhdGFzZXQpICsgZ2VvbV9ib3hwbG90KGFlcyh4ID0gc2Vhc29uLCB5ID0gbmV3X2RlYXRoc190aG91c2FuZCwgZmlsbCA9IHNlYXNvbikpICsgdGhlbWVfY2xhc3NpYygpCgpDIDwtIGdncGxvdChkYXRhc2V0KSArIGdlb21fcG9pbnQoYWVzKHggPSBuZXdfdmFjY2luYXRpb25zX3Rob3VzYW5kLCB5ID0gbmV3X2RlYXRoc190aG91c2FuZCkpICsgdGhlbWVfY2xhc3NpYygpICsgCiAgZmFjZXRfd3JhcCh+c2Vhc29uKQpEIDwtIGdncGxvdChkYXRhc2V0KSArIGdlb21faGlzdG9ncmFtKGFlcyh4ID0gbmV3X2RlYXRoc190aG91c2FuZCwgZmlsbCA9IG1vbnRoKSkgKyBmYWNldF93cmFwKH5tb250aCkgCgpBCgpgYGAKClRoZSBuZXcgZGFpbHkgZGVhdGhzIHZhcnkgc2lnbmlmaWNhbnRseSBkZXBlbmRpbmcgb24gdGhlIGNvdW50cnkuIE5vdGljZSB0aGF0IHRoZSBVbml0ZWQgU3RhdGVzIChVU0EpIGhhcyB0aGUgaGlnaGVzdCBtZWRpYW4gbmV3IGRhaWx5IGRlYXRocywgYnV0IEluZGlhIChJTkQpIGhhcyB0aGUgaGlnaGVzdCBzaW5nbGUgdmFsdWUgb2YgbmV3IGRhaWx5IGRlYXRocy4KCmBgYHtyLCAgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KQgoKYGBgCgpBcyBleHBlY3RlZCB0aGUgV2ludGVyIGFuZCBTcHJpbmcgc2Vhc29ucyBoYXZlIHRoZSBoaWdoZXN0IG1lZGlhbiB2YWx1ZXMgZm9yIG5ldyBkYWlseSBkZWF0aHMuIEhvd2V2ZXIsIHRoZSBTdW1tZXIgc2Vhc29uIGhhcyB0aGUgaGlnaGVzdCBzaW5nbGUgdmFsdWUgb2YgbmV3IGRhaWx5IGRlYXRocywgd2hpY2ggb2NjdXJyZWQsIHdoaWNoIG9jY3VycmVkIGluIGxhdGUgSnVuZS4KCmBgYHtyLCAgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KQwoKYGBgCgpUaGUgcmVsYXRpb25zaGlwIGJldHdlZW4gbmV3IGRhaWx5IHZhY2NpbmF0aW9ucyBhbmQgbmV3IGRhaWx5IGRlYXRocyBpcyBpbnRlcmVzdGluZyB0byBvYnNlcnZlLiBUaGVyZSBhcmUgYnVuZGxlcyBvZiBvYnNlcnZhdGlvbnMgbmVhciAwIHZhY2NpbmF0aW9ucyBpbiB3aGljaCB0aGVyZSB3ZXJlIG1hbnkgZGVhdGhzLCB3aGljaCBpcyBkdWUgdG8gdGhlIGxhZyBiZXR3ZWVuIHZhY2NpbmUgYXZhaWxhYmlsaXR5IGFuZCB0aGUgcGFuZGVtaWMuIFRoZSBTcHJpbmcgc2Vhc29uIGhhcyBhIHZlcnkgdW5pcXVlIGJlaGF2aW9yLCBhcyBhbGwgb2JzZXJ2YXRpb25zIGFyZSBidW5kbGVkIGNsb3NlbHkgdG9nZXRoZXIuIAoKYGBge3IsICBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQpECmBgYAoKRWFjaCBtb250aCBoYXMgYSBzaW1pbGFyIGRpc3RyaWJ1dGlvbiBvZiBuZXcgZGFpbHkgZGVhdGhzLiBFYWNoIG1vbnRoIGhhcyB0aGUgaGlnaGVzdCBjb3VudHMgb2YgbmV3IGRhaWx5IGRlYXRocyBuZWFyIDAsIHdoaWNoIGlzIGxpa2VseSBkdWUgdG8gb3VyIGRhdGEgcHJlcGFyYXRpb24sIGluIHdoaWNoIHdlIHNjYWxlZCB0aGUgbmV3IGRhaWx5IGRlYXRocy4gCgojIyAyLjMgTW9kZWxzCk11bHRpcGxlIG1vZGVscyB3ZXJlIHVzZWQgZm9yIHRoaXMgYW5hbHlzaXMuIFRoZXkgaW5jbHVkZWQgZm9yd2FyZCBhbmQgYmFja3dhcmQgc3Vic2V0IHNlbGVjdGlvbiwgbXVsdGlub21pYWwgbGluZWFyIG1vZGVscywgcmFuZG9tIGZvcmVzdCwgcmlkZ2UgYW5kIGxhc3NvIHJlZ3Jlc3Npb24sIGJhZ2dpbmcsIGFuZCBnZW5lcmFsaXplZCBib29zdGVkIHJlZ3Jlc3Npb24gbW9kZWxzLgoKCiMjIyAyLjMuMSBEZWNpc2lvbiBUcmVlClRvIGRlbW9uc3RyYXRlIGEgY29tcGFyYXRpdmUgYW5hbHlzaXMgd2l0aCByZWdyZXNzaW9uIHRyZWUsIGJhZ2dpbmcsIHJhbmRvbSBmb3Jlc3RzLCBhbmQgYm9vc3Rpbmcgd2UgY29uc3RydWN0ZWQKYSByZWdyZXNzaW9uIHRyZWUgZm9yIG5ld19kZWF0aHNfdGhvdXNhbmQgb24gdGhlIHJlc3Qgb2YgdGhlIHByZWRpY3RvcnMgYW5kIGNhbGN1bGF0ZWQgdGhlIHRlc3QgcHJlZGljdGlvbiBlcnJvci4gCgpgYGB7ciBkZWMuVHJlZSwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KCnJlcXVpcmUodHJlZSkKCnRyZWUuZGVhdGhzID0gdHJlZShuZXdfZGVhdGhzX3Rob3VzYW5kIH4uLWRhdGUsIGRhdGEgPSB0cmFpbi5kYXQpCmN2LmRlYXRocyA9IGN2LnRyZWUodHJlZS5kZWF0aHMpCnBsb3QoY3YuZGVhdGhzJHNpemUsIGN2LmRlYXRocyRkZXYsIHR5cGUgPSAnYicpCnBydW5lLmRlYXRocyA9IHBydW5lLnRyZWUodHJlZS5kZWF0aHMsIGJlc3QgPSAxMSkKCiMjIHByZWRpY3Rpb24gZXJyb3IKeWhhdCA9IHByZWRpY3QocHJ1bmUuZGVhdGhzLCBuZXdkYXRhID0gdGVzdC5kYXQpCnRyZWVfbXNlIDwtIG1lYW4oKHloYXQgLSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kKV4yKQoKdHJlZV9tc2UKCmBgYAoKIyMjIDIuMy4yIEJhZ2dlZCBUcmVlClRoZSBtYWluIGRpZmZlcmVuY2UgYmV0d2VlbiByYW5kb20gZm9yZXN0IChSRikgYSBhbmQgYm9vc3RyYXBwZWQgYWdncmVnYXRlZCBkZWNpc2lvbiB0cmVlIChCYWdnZWQgVHJlZSkgaXMgdGhhdCBpbiBCYWdnZWQgVHJlZXMsIHRoZSBudW1iZXIgb2YgdmFyaWFibGVzIHNlbGVjdGVkIGF0IGVhY2ggbm9kZSBpcyBub3QgcmVzdHJpY3RlZC4gSW4gUkYsIHRoZSBudW1iZXIgb2YgdmFyaWFibGVzIHNlbGVjdGVkIGlzIHVzdWFsbHkgZGVjaWRlZCB1c2luZyB0aGUgbGVuZ3RoIG9mIHRoZSBwcmVkaWN0b3JzIGRpdmlkZWQgYnkgMyAoZm9yIG51bWVyaWMgcmVzcG9uc2VzKS4gV2UgYXNzdW1lIHRoYXQgdGhpcyBtb2RlbCB3aWxsIHByZWRpY3QgYWNjdXJhdGVseSwgYnV0IGhhcyBwb3NzaWJpbGl0eSB0byBiZSBpbmFjY3VyYXRlIGNvbXBhcmF0aXZlbHkgZHVlIHRvIGNvbXBsZXhpdHkgYW5kIG92ZXItZml0dGluZy4KCmBgYHtyIGJhZ2dlZFRyZWUsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CgpyZXF1aXJlKHJhbmRvbUZvcmVzdCkKCiMgYmFnLmRlYXRocwoKYmFnLmRlYXRocyA9IHJhbmRvbUZvcmVzdChuZXdfZGVhdGhzX3Rob3VzYW5kIH4uLWRhdGUsIGRhdGEgPSB0cmFpbi5kYXQsIG10cnkgPSAzNCwgaW1wb3J0YW5jZSA9IFRSVUUpCgoKIyMgcHJlZGljdGlvbiBlcnJvcgoKeWhhdC5iYWcgPSBwcmVkaWN0KGJhZy5kZWF0aHMsIG5ld2RhdGEgPSB0ZXN0LmRhdCkKYmFnX21zZSA8LSBtZWFuKCh5aGF0LmJhZyAtIHRlc3QuZGF0JG5ld19kZWF0aHNfdGhvdXNhbmQpXjIpCgpiYWdfbXNlCgpgYGAKCiMjIyAyLjMuMyBCYWdnZWQgVHJlZQpXZSBhc3N1bWUgdGhhdCB0aGlzIG1vZGVsIHdpbGwgcHJlZGljdCBhY2N1cmF0ZWx5IGFzIHdlbGwsIGJ1dCBoYXMgcG9zc2liaWxpdHkgdG8gYmUgaW5hY2N1cmF0ZSBjb21wYXJhdGl2ZWx5IGZvciBzaW1pbGFyIHJlYXNvbnMuCmBgYHtyIGJvb3N0LCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQoKbGlicmFyeShnYm0pCgpib29zdC5kZWF0aHMgPSBnYm0obmV3X2RlYXRoc190aG91c2FuZCB+Li1kYXRlLCBkYXRhID0gdHJhaW4uZGF0LCBkaXN0cmlidXRpb24gPSAiZ2F1c3NpYW4iLCBuLnRyZWVzID0gNTAwLAogICAgICAgICAgICAgICAgICAgaW50ZXJhY3Rpb24uZGVwdGggPSAzKQoKc3VtbWFyeShib29zdC5kZWF0aHMpCgojIyBwcmVkaWN0aW9uIGVycm9yCgp5aGF0LmJvb3N0ID0gcHJlZGljdChib29zdC5kZWF0aHMsIG5ld2RhdGEgPSB0ZXN0LmRhdCwgbi50cmVlcyA9IDUwMCkKYm9vc3RfbXNlIDwtIG1lYW4oKHloYXQuYm9vc3QgLSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kKV4yKQoKYm9vc3RfbXNlCgpgYGAKCiMjIyAyLjMuNCBSYW5kb20gRm9yZXN0CldlIGFzc3VtZSB0aGF0IHRoaXMgbW9kZWwgd2lsbCBwcmVkaWN0IGFjY3VyYXRlbHksIGJ1dCBoYXMgcG9zc2liaWxpdHkgdG8gYmUgaW5hY2N1cmF0ZSBjb21wYXJhdGl2ZWx5IGZvciBzaW1pbGFyIHJlYXNvbnMuIE91ciBob3BlcyBpcyBmb3IgdGhpcyB0byBiZSBtb3JlIGFjY3VyYXRlIHRoYW4gYmFnZ2luZyBvciBib29zdGluZyBkdWUgdG8gaXRzIGNvbXBvc2l0aW9uIGNvbnNpc3Rpbmcgb2YgYXNwZWN0cyBvZiBib3RoIGJhZ2dpbmcgYW5kIGJvb3N0aW5nLiBPbmNlIGFnYWluIHRoaXMgbWF5IGFjdHVhbGx5IGRlY3JlYXNlIGFjY3VyYWN5IGR1ZSB0byBjb21wbGV4aXR5LiAKYGBge3IgcmYsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9CgoKCnJmIDwtIHJhbmRvbUZvcmVzdChuZXdfZGVhdGhzX3Rob3VzYW5kIH4uLWRhdGUsIGRhdGEgPSB0cmFpbi5kYXQsIG10cnkgPSAoMzUvMyksIGltcG9ydGFuY2UgPSBUKQoKCgpyZl9wcmVkaWN0aW9ucyA8LSBwcmVkaWN0KHJmLCB0ZXN0LmRhdFstMjNdKQoKCiMjIHByZWRpY3Rpb24gZXJyb3IKCnJmX21zZSA8LSBtZWFuKChyZl9wcmVkaWN0aW9ucyAtIHRlc3QuZGF0JG5ld19kZWF0aHNfdGhvdXNhbmQpXjIpCgpyZl9tc2UKCmBgYAoKIyMjIDIuMy41IE11bHRpcGxlIExpbmVhciBSZWdyZXNzaW9uIChNTFIpCk11bHRpcGxlIGxpbmVhciByZWdyZXNzaW9uIHdhcyB1c2VkIGluIGF0dGVtcHQgdG8gZmluZCBtZWFuaW5nZnVsIHJlc3VsdHMgZnJvbSBhIGxlc3MgY29tcGxleCBtb2RlbC4gQXMgYSBzaW1wbGUgYW5kIGVhc3kgdG8gdXNlIG1vZGVsIGl0IHdhcyBmYXZvcmFibGUgZm9yIHF1aWNrIGFuZCBlYXN5IHRvIGludGVycHJldGVkIHJlc3VsdHMuIEEgbWluaW11bSBlcnJvciBvZiAwLjE2NCB3YXMgYWNoaWV2ZWQgdGhyb3VnaCB0aGlzIG1vZGVsIHR5cGUuIFdlIGNvbnRpbnVlZCBhZnRlciB0byB0ZXN0IG90aGVyIG1vZGVscyB0byBzZWUgaWYgd2UgY291bGQgcHJvZHVjZSBtb3JlIGFjY3VyYXRlIHJlc3VsdHMgd2l0aCBhIGxvd2VyIGVycm9yLgpXZSBhbnRpY2lwYXRlIHRoaXMgbWV0aG9kIG1heSBwb3NzaWJseSBoYXZlIHRoZSBoaWdoZXN0IGVycm9yIHJhdGUsIHNpbmNlIHRoZSBkYXRhIHdlIGFyZSBhbmFseXppbmcgYXJlIGNvbXBvc2VkIGZyb20gdGltZS1zZXJpZXMgZGF0YSBpbiB3aGljaCB0aGUgdHJlbmRzIHdpdGggdGltZSBoYXZlIGJlZW4gcmVtb3ZlZC4gV2UgZG8gbm90IGFzc3VtZSB0aGlzIHdpbGwgYmUgYXMgYWNjdXJhdGUgYXMgdGhlIG1vcmUgY29tcGxleCBtb2RlbHMgZHVlIHRvIHRoZSBsYXJnZSBhbW91bnQgb2YgdmFyaWFibGVzIGluIGVhY2ggbW9kZWwuCgpgYGB7ciBtbHIxLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQoKbW9kZWwxID0gZ2xtKG5ld19kZWF0aHNfdGhvdXNhbmQgfiAuLCBkYXRhPXRyYWluLmRhdCkKcmVzdWx0cyA8LSBzdW1tYXJ5KG1vZGVsMSkKCiMjIEV4dHJhY3RpbmcgdmFyaWFibGVzIHdpdGggbG93IHAtdmFsdWVzIGZyb20gdGhlIGdlbmVyYWxpemVkIG11bHRpcGxlIGxpbmVhciByZWdyZXNzaW9uCgpwdmFscyA8LSBkYXRhLmZyYW1lKHJlc3VsdHMkY29lZmZpY2llbnRzKQpwdmFscyA8LSBmaWx0ZXIocHZhbHMsIHB2YWxzJFByLi4udC4uIDwgMC4wNSkKcHJpbnQocm93bmFtZXMocHZhbHMpKQoKCmBgYAoKIyMjIyBBIE1MUiBtb2RlbCBpcyBidWlsdCBiYXNlZCBvbiB0aGUgY29lZmZpY2llbnRzIGZyb20gdGhlIG1vZGVsIHRoYXQgaGF2ZSBsb3cgcC12YWx1ZXMuIAoKYGBge3IgbWxyMiwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KCm1vZGVsMiA8LSBnbG0obmV3X2RlYXRoc190aG91c2FuZCB+IGlzb19jb2RlICsgdG90YWxfdGVzdHNfcGVyX3Rob3VzYW5kICsgc3RyaW5nZW5jeV9pbmRleCArCiAgICAgICAgICAgICAgICBpY3VfcGF0aWVudHNfdGhvdXNhbmQgKyB0b3RhbF9kZWF0aHNfdGhvdXNhbmQgKyBkYXlfb2Zfd2VlayArCiAgICAgICAgICAgICAgICBtb250aCArIG5ld190ZXN0c19wZXJfdGhvdXNhbmQgKyB0b3RhbF9jYXNlc190aG91c2FuZCArIGhvc3BfcGF0aWVudHNfdGhvdXNhbmQgKwogICAgICAgICAgICAgICAgcGVvcGxlX2Z1bGx5X3ZhY2NpbmF0ZWRfdGhvdXNhbmQgKyBwb3NpdGl2ZV9yYXRlICsgdG90YWxfdmFjY2luYXRpb25zX3Rob3VzYW5kICsKICAgICAgICAgICAgICAgIHRvdGFsX2Jvb3N0ZXJzX3Rob3VzYW5kLCBkYXRhID0gdHJhaW4uZGF0KQoKbWxyX3ByZWRpY3Rpb25zIDwtIHByZWRpY3QobW9kZWwyLCB0ZXN0LmRhdFstMjNdKQoKIyMgUHJlZGljdGlvbiBFcnJvcgoKbWxyX21zZSA8LSBtZWFuKChtbHJfcHJlZGljdGlvbnMgLSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kKV4yKQoKbWxyX21zZQoKYGBgCgojIyMgMi4zLjYgRm9yd2FyZCBTZWxlY3Rpb24KCmBgYHtyIGZvcndhcmQsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9CnJlcXVpcmUobGVhcHMpCgpzZXQuc2VlZCgxMDEpCnJlZ2ZpdC5md2QgPC0gcmVnc3Vic2V0cyhuZXdfZGVhdGhzX3Rob3VzYW5kfi4tZGF0ZSwgZGF0YSA9IHRyYWluLmRhdCwgbnZtYXggPSA2MCwKICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJmb3J3YXJkIiwgcmVhbGx5LmJpZyA9IFQpCgpmd2Quc3VtIDwtIHN1bW1hcnkocmVnZml0LmZ3ZCkKZm9yd2FyZF9zZWxlY3Q9d2hpY2gubWluKGZ3ZC5zdW0kYmljKQpmb3J3YXJkX3NlbGVjdAoKYGBgCgpUaGUgZm9yd2FyZCBzZWxlY3Rpb24gbWV0aG9kIGNob29zZXMgMjYgdmFyaWFibGVzIChzaG93biBiZWxvdykuCgpgYGB7ciBmb3J3YXJkMiwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KCmNvZWYocmVnZml0LmZ3ZCwgZm9yd2FyZF9zZWxlY3QpCgoKYGBgCgojIyMgMi4zLjcgQmFja3dhcmQgU2VsZWN0aW9uCgoKYGBge3IgYmFja3dhcmQsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9CgpzZXQuc2VlZCgxMDEpCnJlZ2ZpdC5id2QgPC0gcmVnc3Vic2V0cyhuZXdfZGVhdGhzX3Rob3VzYW5kIH4uLWRhdGUsIGRhdGEgPSB0cmFpbi5kYXQsIG52bWF4ID0gNjAsIHJlYWxseS5iaWcgPSBULAogICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kID0gImJhY2t3YXJkIikKCmJ3ZC5zdW0gPC0gc3VtbWFyeShyZWdmaXQuYndkKQoKYmFja3dhcmRfc2VsZWN0IDwtIHdoaWNoLm1pbihid2Quc3VtJGJpYykKYmFja3dhcmRfc2VsZWN0CgpgYGAKCkJhY2t3YXJkIHNlbGVjdGlvbiBjaG9vc2VzIDI4IHZhcmlhYmxlcyAoc2hvd24gYmVsb3cpLiBSZWNhbGwgdGhhdCBmb3J3YXJkIHNlbGVjdGlvbiBzZWxlY3RlZCAyNiB2YXJpYWJsZXMuIAoKYGBge3IgYmFja3dhcmQyLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQoKY29lZihyZWdmaXQuYndkLCBiYWNrd2FyZF9zZWxlY3QpCgoKYGBgCgojIyMjIENvbXBhcmlzb24gb2YgRm9yd2FyZCBhbmQgQmFja3dhcmQgU2VsZWN0aW9uCgpgYGB7ciBsaW5lYXJfY29tcCwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KCnBhcihtZnJvdyA9IGMoMSwgMikpCgpwbG90KGZ3ZC5zdW0kYmljLHhsYWI9IiBOdW1iZXIgb2YgVmFyaWFibGVzICIsIHlsYWI9IiBCSUMiLAogICAgIHR5cGU9ImwiLCBtYWluPSJGb3J3YXJkIFNlbGVjdGlvbjogQklDIHBsb3QiKQpwb2ludHMgKGZvcndhcmRfc2VsZWN0LCBmd2Quc3VtJGJpY1tmb3J3YXJkX3NlbGVjdF0sIGNvbCA9IiByZWQiLCBjZXggPTIsIHBjaCA9MjApCnBsb3QoYndkLnN1bSRiaWMseGxhYj0iIE51bWJlciBvZiBWYXJpYWJsZXMgIiwgeWxhYj0iIEJJQyIsCiAgICAgdHlwZT0ibCIsIG1haW49IkJhY2t3YXJkIFNlbGVjdGlvbjogQklDIHBsb3QiKQpwb2ludHMgKGJhY2t3YXJkX3NlbGVjdCwgYndkLnN1bSRiaWNbYmFja3dhcmRfc2VsZWN0XSwgY29sID0iIHJlZCIsY2V4ID0yLCBwY2ggPTIwKQoKYGBgCgpUaGUgYWJvdmUgZmlndXJlIHJlaXRlcmF0ZXMgdGhlIG9wdGltYWwgbnVtYmVyIG9mIGZlYXR1cmVzIHNlbGVjdGVkIGluIGVhY2ggbWV0aG9kIHVzaW5nIEJJQyBhcyBhIG1ldHJpYy4gCgojIyMjIEZvcndhcmQgYW5kIEJhY2t3YXJkIFNlbGVjdGlvbiBNTFIgTW9kZWxzCgoKUmVjYWxsIHRoYXQgaW4gdGhlIGxpc3Qgb2YgY29lZmZpY2llbnRzLCBkdW1teSB2YXJpYWJsZXMgZm9yIHRoZSBjYXRlZ29yaWNhbCB2YXJpYWJsZXMgYXJlIGluY2x1ZGVkLCBzbyB0aGUgYWN0dWFsIG51bWJlciBvZiB2YXJpYWJsZXMgdXNlZCBpbiBib3RoIG1vZGVscyBhcmUgbm90IDI2IChmb3J3YXJkIHNlbGVjdGlvbikgbm9yIDI4IChiYWNrd2FyZCBzZWxlY3Rpb24pLgoKYGBge3IgZmIsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9Cgpmb3J3YXJkX21sciA8LSBnbG0obmV3X2RlYXRoc190aG91c2FuZCB+IG5ld190ZXN0c19wZXJfdGhvdXNhbmQgKyB0b3RhbF9ib29zdGVyc190aG91c2FuZCArIHNlYXNvbiArIG1vbnRoICsgYWdlZF83MF9vbGRlciArIGhvc3BpdGFsX2JlZHNfcGVyX3Rob3VzYW5kICtuZXdfdmFjY2luYXRpb25zX3Rob3VzYW5kKwogIGlzb19jb2RlICsgcG9zaXRpdmVfcmF0ZSArIHRvdGFsX2RlYXRoc190aG91c2FuZCArIHllYXIgKyBleHRyZW1lX3BvdmVydHkgKyBzdHJpbmdlbmN5X2luZGV4ICsgZGF5X29mX3dlZWsgKyBjYXJkaW92YXNjX2RlYXRoX3JhdGUgKwogIHRvdGFsX3Rlc3RzX3Blcl90aG91c2FuZCAgKyBmZW1hbGVfc21va2VycywgZGF0YSA9IHRyYWluLmRhdCkKCmJhY2t3YXJkX21sciA8LSBnbG0obmV3X2RlYXRoc190aG91c2FuZCB+IGlzb19jb2RlICsgcG9zaXRpdmVfcmF0ZSArIHllYXIgKyBtb250aCArIGV4dHJlbWVfcG92ZXJ0eSArIHN0cmluZ2VuY3lfaW5kZXggKyBjYXJkaW92YXNjX2RlYXRoX3JhdGUgKyBuZXdfdGVzdHNfcGVyX3Rob3VzYW5kKwogIHRvdGFsX3Rlc3RzX3Blcl90aG91c2FuZCArIGRheV9vZl93ZWVrICsgZmVtYWxlX3Ntb2tlcnMgKyBzZWFzb24gKyBhZ2VkXzcwX29sZGVyICsgaG9zcGl0YWxfYmVkc19wZXJfdGhvdXNhbmQsCiAgZGF0YSA9IHRyYWluLmRhdCkKCmBgYAoKIyMjIyBGb3J3YXJkIGFuZCBCYWNrd2FyZCBTZWxlY3Rpb24gTUxSIFRlc3QgRXJyb3JzCgpgYGB7ciBmYm1zZSwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KCmZvcndhcmRfcHJlZCA8LSBwcmVkaWN0KGZvcndhcmRfbWxyLCB0ZXN0LmRhdFstMjNdKQpiYWNrd2FyZF9wcmVkIDwtIHByZWRpY3QoYmFja3dhcmRfbWxyLCB0ZXN0LmRhdFstMjNdKQoKc3ByaW50ZigiRm9yd2FyZC1TZWxlY3RlZCBNb2RlbCBNU0U6ICUuNGYiLCBtZWFuKChmb3J3YXJkX3ByZWQgLSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kKV4yKSkKc3ByaW50ZigiQmFja3dhcmQtU2VsZWN0ZWQgTW9kZWwgTVNFICUuNGYiLCBtZWFuKChiYWNrd2FyZF9wcmVkIC0gdGVzdC5kYXQkbmV3X2RlYXRoc190aG91c2FuZCleMikpCgpmX21zZSA8LSBtZWFuKChmb3J3YXJkX3ByZWQgLSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kKV4yKQpiX21zZSA8LSBtZWFuKChiYWNrd2FyZF9wcmVkIC0gdGVzdC5kYXQkbmV3X2RlYXRoc190aG91c2FuZCleMikKCgpgYGAKCgojIyMgMi4zLjcgUmlkZ2UgUmVncmVzc2lvbgpSZWNhbGwgdGhhdCByaWRnZSByZWdyZXNzaW9uIHNocmlua3MgdGhlIGNvZWZmaWNpZW50cyBpbiB0aGUgbW9kZWwgdG93YXJkcyAwLCBidXQgbmV2ZXIgdG8gMC4gVGhpcyBzaHJpbmthZ2UgbGVhZHMgdG8gYSBzdWJzdGFudGlhbCByZWR1Y3Rpb24gaW4gdGhlIHZhcmlhbmNlIG9mIHRoZSBwcmVkaWN0aW9ucywgd2l0aCBhIHBlbmFsdHkgb2Ygc2xpZ2h0bHkgaW5jcmVhc2VkIGJpYXMuIFRoaXMgY2FuIHJlc3VsdCBpbiBhIGxvd2VyIE1TRSB3aGVuIGFuIG9wdGltYWwgIs67IiBpcyBzZWxlY3RlZC4gVGhlIGZpZ3VyZSBiZWxvdyByZXByZXNlbnRzIGhvdyBub2lzZSBpcyByZW1vdmVkIGZyb20gdGhlIG1vZGVsLiBUaGUgbnVtYmVyIG9mIHZhcmlhYmxlcyB0aGF0IG1pbmltaXplIG5vaXNlIHdoaWxlIHJldGFpbmluZyB0aGUgcHJlZGljdGl2ZSBwb3dlciBvZiB0aGUgbW9kZWwgd2lsbCBiZSBjaG9zZW4gYmFzZWQgb24gKmxvZyBsYW1iZGEqIG9uIHRoZSBncmFwaC4gV2UgYmVsaWV2ZSB0aGF0IHRoaXMgYW5kIExBU1NPIG1heSBiZSBoaWdobHkgYWNjdXJhdGUgYXMgaXQgc2hyaW5rcyBjb2VmZmljaWVudHMgYW5kIG1heSBiZSBhYmxlIHRvIHJlZHVjZSBub2lzZSBiZXR0ZXIgdGhhbiBvdGhlciBtb2RlbHMuCgpgYGB7ciByaWRnZSwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KCnJlcXVpcmUoZ2xtbmV0KQoKc2V0LnNlZWQoMTAxKQoKCgp4X3RyYWluID0gbW9kZWwubWF0cml4KG5ld19kZWF0aHNfdGhvdXNhbmR+Li1kYXRlLCB0cmFpbi5kYXQpWywtMV0KCnlfdHJhaW4gPC0gdHJhaW4uZGF0JG5ld19kZWF0aHNfdGhvdXNhbmQKCnhfdGVzdCA8LSBtb2RlbC5tYXRyaXgobmV3X2RlYXRoc190aG91c2FuZCB+Li1kYXRlLCB0ZXN0LmRhdClbLCAtMV0KeV90ZXN0IDwtIHRlc3QuZGF0JG5ld19kZWF0aHNfdGhvdXNhbmQKCiMgdHJhaW4gPSBzYW1wbGUoNjcyMCwgNTM3NykgIyA4MCUgdHJhaW5pbmcKIyB0ZXN0ID0gKC10cmFpbikKCgpyaWRnZS5tb2RlbDEgPC0gZ2xtbmV0KHggPSB4X3RyYWluLAogICAgICAgICAgICAgICAgICAgICAgIHkgPSB5X3RyYWluLAogICAgICAgICAgICAgICAgICAgICAgIGFscGhhID0gMCwgc3RhbmRhcmRpemUgPSBGKQoKY3Yub3V0IDwtIGN2LmdsbW5ldCh4ID0geF90cmFpbiwKICAgICAgICAgICAgICAgICAgICAgICB5ID0geV90cmFpbiwKICAgICAgICAgICAgICAgICAgICAgICBhbHBoYSA9IDAsIHN0YW5kYXJkaXplID0gRikKCgpwbG90KHJpZGdlLm1vZGVsMSwgeHZhciA9ICJsYW1iZGEiKQoKCmBgYAoKIyMjIyBGaW5kaW5nIHRoZSBiZXN0IExhbWJkYSBVc2luZyBDcm9zcy1WYWxpZGF0aW9uCgoKYGBge3IgcmlkZ2UxLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQoKc2V0LnNlZWQoMTAxKQoKY3Yub3V0IDwtIGN2LmdsbW5ldCh4ID0geF90cmFpbiwKICAgICAgICAgICAgICAgICAgICAgICB5ID0geV90cmFpbiwKICAgICAgICAgICAgICAgICAgICAgICBhbHBoYSA9IDAsIHN0YW5kYXJkaXplID0gRikKCnBsb3QoY3Yub3V0KQoKCgpiZXN0bGFtX3JpZGdlIDwtIGN2Lm91dCRsYW1iZGEubWluCgoKYGBgCgpBYm92ZSB3ZSBjaGFydCB0aGUgaW1wYWN0IG9mIGRpZmZlcmVudCAizrsiIHBhcmFtZXRlcnMgYW5kIHNlbGVjdCB0aGUgYmVzdCBvbmUgZm9yIG91ciByaWRnZSByZWdyZXNzaW9uIG1vZGVsLiBUaGUgTG93ZXN0IE1TRSBvY2N1cnMgYXQgYHIgbG9nKGJlc3RsYW1fcmlkZ2UpYC4gTm93LCB0aGUgdHJhaW5pbmcgYW5kIHRlc3RpbmcgZXJyb3JzIGFyZSBjb21wYXJlZC4KCmBgYHtyIHJpZGdlX3JlcywgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KcmlkZ2VfdHJhaW5fcHJlZHMgPC0gcHJlZGljdChjdi5vdXQsIHhfdHJhaW4sIHMgPSAibGFtYmRhLm1pbiIpCgpyaWRnZV90ZXN0X3ByZWRzIDwtIHByZWRpY3QocmlkZ2UubW9kZWwxLCB4X3Rlc3QsIHMgPSBiZXN0bGFtX3JpZGdlKQoKc3ByaW50ZigiVGVzdCBNU0U6ICUuNGYiLCBtZWFuKChyaWRnZV90ZXN0X3ByZWRzIC0geV90ZXN0KV4yKSkKc3ByaW50ZigiVHJhaW4gTVNFOiAlLjRmIiwgbWVhbigocmlkZ2VfdHJhaW5fcHJlZHMgLSB5X3RyYWluKV4yKSkKCnJpZGdlX21zZSA8LSBtZWFuKChyaWRnZV90ZXN0X3ByZWRzIC0geV90ZXN0KV4yKQoKYGBgCgojIyMgMi4zLjggTEFTU08gUmVncmVzc2lvbgoKUmVjYWxsIHRoYXQgaW4gTEFTU08sIGFzIG9wcG9zZWQgdG8gcmlkZ2UsIHRoZSBjb2VmZmljaWVudHMgYXJlIGluZGVlZCBzaHJ1bmsgdG8gMC4gQXMgcHJldmlvdXNseSBtZW50aW9uZWQsIHdlIGJlbGlldmUgdGhhdCB0aGlzIGFuZCByaWRnZSByZWdyZXNzaW9uIG1heSBiZSBoaWdobHkgYWNjdXJhdGUgYXMgaXQgc2hyaW5rcyBjb2VmZmljaWVudHMgYW5kIG1heSBiZSBhYmxlIHRvIHJlZHVjZSBub2lzZSBiZXR0ZXIgdGhhbiBvdGhlciBtb2RlbHMuCgpgYGB7ciBMQVNTTywgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KCnJlcXVpcmUoZ2xtbmV0KQoKCnNldC5zZWVkKDEwMSkKCmxhc3NvLm1vZGVsMSA8LSBnbG1uZXQoeCA9IHhfdHJhaW4sCiAgICAgICAgICAgICAgICAgICAgICAgeSA9IHlfdHJhaW4sCiAgICAgICAgICAgICAgICAgICAgICAgYWxwaGEgPSAxLCBzdGFuZGFyZGl6ZSA9IEYpCgoKCnBsb3QobGFzc28ubW9kZWwxLCB4dmFyID0gImxhbWJkYSIpCgoKCmBgYApCYXNlZCBvbiB0aGUgZmlndXJlIGFib3ZlLCBpdCBpcyBjbGVhciB0aGF0IG1hbnkgb2YgdGhlIGNvZWZmaWNpZW50cyBzaHJpbmsgdG8gMCwgd2hpY2ggaW5kaWNhdGVzIHRoZXkgYXJlIG5vdCBpbXBvcnRhbnQgdG8gdGhlIG1vZGVsLiBUaGlzIGlzIGV4cGxvcmVkIGZ1cnRoZXIgYmVsb3cuICAKCgpgYGB7ciBsYXNzbzIsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9CgpzZXQuc2VlZCgxMDEpCgpsYXNzby5jdiA8LSBjdi5nbG1uZXQoeCA9IHhfdHJhaW4sCiAgICAgICAgICAgICAgICAgICAgICAgeSA9IHlfdHJhaW4sCiAgICAgICAgICAgICAgICAgICAgICAgYWxwaGEgPSAxLCBzdGFuZGFyZGl6ZSA9IEYpCgpwbG90KGxhc3NvLmN2KQoKCmJlc3RfbGFzc28gPC0gbGFzc28uY3YkbGFtYmRhLm1pbgoKYGBgCgpUaGUgaWRlYWwgbGFtYmRhIHZhbHVlIG9jY3VycyBhdCBgciBsb2cobGFzc28uY3YkbGFtYmRhLm1pbilgICwgYXMgaW5kaWNhdGVkIGFib3ZlLiAKCiMjIyMgQ29tcGFyaW5nIExBU1NPIHRyYWluaW5nIGFuZCB0ZXN0aW5nIE1TRQoKYGBge3IgbGFzc29NU0UsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9CgpsYXNzb190cmFpbl9wcmVkcyA8LSBwcmVkaWN0KGxhc3NvLmN2LCB4X3RyYWluLCBzID0gImxhbWJkYS5taW4iKQoKbGFzc29fdGVzdF9wcmVkcyA8LSBwcmVkaWN0KGxhc3NvLm1vZGVsMSwgeF90ZXN0LCBzID0gYmVzdF9sYXNzbykKCnNwcmludGYoIlRlc3QgTVNFOiAlLjRmIiwgbWVhbigobGFzc29fdGVzdF9wcmVkcyAtIHlfdGVzdCleMikpCnNwcmludGYoIlRyYWluIE1TRTogJS40ZiIsIG1lYW4oKGxhc3NvX3RyYWluX3ByZWRzIC0geV90cmFpbileMikpCgpsYXNzb19tc2UgPC0gbWVhbigobGFzc29fdGVzdF9wcmVkcyAtIHlfdGVzdCleMikKCmBgYAoKVGhpcyBpcyBhbiBpbXByb3ZlbWVudCBpbiBib3RoIHRoZSB0cmFpbmluZyBhbmQgdGVzdGluZyBlcnJvcnMgY29tcGFyZWQgdG8gdGhlIHJlc3VsdHMgZnJvbSBSaWRnZSByZWdyZXNzaW9uLiAKCiMjIyMgTEFTU08gUmVncmVzc2lvbiBNb3N0IEluZmx1ZW50aWFsIEZlYXR1cmVzCgpgYGB7ciBsYXNzb19mZWF0dXJlcywgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KcmVxdWlyZShicm9vbSkKCmNvZWYobGFzc28uY3YsIHMgPSAibGFtYmRhLm1pbiIpICU+JQogIHRpZHkoKSAlPiUKICBmaWx0ZXIocm93ICE9ICIoSW50ZXJjZXB0KSIpICU+JQogIGdncGxvdChhZXModmFsdWUsIHJlb3JkZXIocm93LCB2YWx1ZSkpKSArCiAgZ2VvbV9wb2ludCgpICsKICB4bGFiKCJDb2VmZmljaWVudCIpICsKICB5bGFiKE5VTEwpCgoKCgpgYGAKCk5vdGljZSB0aGUgdG9wIDEwIHZhcmlhYmxlcyB0aGF0IGNvbnRyaWJ1dGVkIHRvIG5ldyBkZWF0aHMuIAoKIyMjIDIuMy44IFBDUgoKT3VyIG1vdGl2YXRpb24gYmVoaW5kIHVzaW5nIHByaW5jaXBhbCBjb21wb25lbnQgcmVncmVzc2lvbiAoUENSKSwgaXMgdGhpcyBtZXRob2QgaGVscHMgdG8gYXZvaWQgbXVsdGljb2xsaW5lYXJpdHkuIEluIHRoaXMgZGF0YSBzZXQsIGl0IGlzIGNsZWFyIHRoYXQgbWFueSBvZiB0aGUgdmFyaWFibGVzIGFyZSBjb3JyZWxhdGVkIHdpdGggZWFjaCBvdGhlci4gV2UgYXNzdW1lIHRoaXMgd2lsbCBwZXJmb3JtIGJldHRlciB0aGFuIHRoYXQgb2YgTEFTU08gb3IgcmlkZ2UgcmVncmVzc2lvbiB1c2luZyB0aGUgcHJpbmNpcGFsIGNvbXBvbmVudCBvZiB0aGUgdmFyaWFibGVzIHdpdGggYXNzdW1wdGlvbnMgZm9yIHRoZSBiZXN0IGJpYXMgdmFyaWFuY2UgdHJhZGUtb2ZmIG1vZGVsLiAKCmBgYHtyIHBjciwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KcmVxdWlyZShwbHMpCgoKc2V0LnNlZWQoMTAxKQoKcGNyX21vZGVsIDwtIHBsczo6cGNyKG5ld19kZWF0aHNfdGhvdXNhbmR+LiwgZGF0YSA9IG5vX2RhdGUsIHNjYWxlID0gRiwgdmFsaWRhdGlvbiA9ICJDViIpCgp2YWxpZGF0aW9ucGxvdChwY3JfbW9kZWwsIHZhbC50eXBlID0gIk1TRVAiKQp2YWxpZGF0aW9ucGxvdChwY3JfbW9kZWwsIHZhbC50eXBlID0gIlIyIikKCmBgYAoKVGhlIGZpcnN0IGZpZ3VyZSBhYm92ZSByZXByZXNlbnRzIE1TRSBmb3IgZWFjaCBjb21wb25lbnQgZGVyaXZlZCB1c2luZyBwcmluY2lwYWwgY29tcG9uZW50IGFuYWx5c2lzIChQQ0EpLiBUaGUgc2Vjb25kIGZpZ3VyZSBkaXNwbGF5cyB0aGUgJFJeMiQgc2NvcmUgZm9yIHRoZSBudW1iZXIgb2YgY29tcG9uZW50cy4gT2JzZXJ2ZSB0aGF0IGRpbWVuc2lvbmFsaXR5IHJlZHVjdGlvbiBoYXMgb2NjdXJlZCwgdGhlIG51bWJlciBvZiBjb21wb25lbnRzICgxNSkgdGhhdCBleHBsYWluIGFib3V0IDgwJSBvZiB0aGUgdmFyaWFiaWxpdHkgaXMgbGVzcyB0aGFuIHRoZSBudW1iZXIgb2YgcHJlZGljdG9ycyBpbiB0aGUgZGF0YSBzZXQuCgpCZWxvdyBkaXNwbGF5cyB0aGUgcHJlZGljdGVkIHZzIGFjdHVhbCBkZWF0aHMgYmFzZWQgb24gYSB0cmFpbmVkIFBDUiBtb2RlbCB1c2luZyB0aGUgc2FtZSB0cmFpbmluZyBhbmQgdGVzdGluZyBzcGxpdCBkYXRhIHNldHMgdGhhdCB3ZXJlIHVzZWQgaW4gYWxsIHRoZSBvdGhlciBtb2RlbHMuCgojIyMjIFBDUiB3aXRoIDE1IENvbXBvb25lbnRzCgpgYGB7ciBwY3IxLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQoKc2V0LnNlZWQoMTAxKQoKcGNyX3RyYWluZWQgPC0gcGNyKG5ld19kZWF0aHNfdGhvdXNhbmR+Li1kYXRlLCBkYXRhID0gdHJhaW4uZGF0LCBzY2FsZSA9IEYsIHZhbGlkYXRpb24gPSAiQ1YiKQoKcGNyX3ByZWRzIDwtIHByZWRpY3QocGNyX3RyYWluZWQsIHRlc3QuZGF0Wy0yM10sIG5jb21wID0gMTUpCgpwY3JfbXNlIDwtIG1lYW4oKHBjcl9wcmVkcyAtIHRlc3QuZGF0JG5ld19kZWF0aHNfdGhvdXNhbmQpXjIpCgpgYGAKIyAzLiBSZXN1bHRzCgpgYGB7ciByZXN1bHRzX3RhYiwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0KCnJlc3VsdHNfdGFiIDwtIGRhdGEuZnJhbWUoTWV0aG9kID0gYygiRGVjaXNpb24gVHJlZSIsICJCYWdnZWQgVHJlZSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkJvb3N0ZWQgVHJlZSIsICJSYW5kb20gRm9yZXN0IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJNTFIiLCAiTUxSIC0gRm9yd2FyZCIsICJNTFItQmFja3dhcmQiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkxBU1NPIiwgIlJpZGdlIiwgIlBDUiIpLAogICAgICAgICAgICAgICAgICAgICAgICAgIE1TRSA9IGModHJlZV9tc2UsIGJhZ19tc2UsIGJvb3N0X21zZSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJmX21zZSwgbWxyX21zZSwgZl9tc2UsIGJfbXNlLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFzc29fbXNlLCByaWRnZV9tc2UsIHBjcl9tc2UpKSAKCgprbml0cjo6a2FibGUocmVzdWx0c190YWIpCgpgYGAKCkFmdGVyIGVhY2ggbW9kZWwgd2FzIHRlc3RlZCBmaW5hbCByZXN1bHRzIHNob3duIGFib3ZlIHdlcmUgY29tcGFyZWQuIEFzIHByZXZpb3VzbHkgcHJlZGljdGVkLCBNTFIgbW9kZWxzIGhhZCB0aGUgaGlnaGVzdCBlcnJvciByYXRlIGFuZCB3ZXJlIG5vdCBjb25zaWRlcmVkIGZvciB1c2UuIFJpZGdlIHJlZ3Jlc3Npb24gYW5kIExBU1NPIHNob3dlZCBzaW1pbGFyIHJlc3VsdHMgd2l0aCBhIGhpZ2hlciBNU0UuIFBDUiB3YXMgb24gdGhlIGxvd2VyIGVuZCBvZiB0aGUgbW9kZWxzIGNvbXBhcmVkLCBidXQgZGlkIG5vdCBjb21wYXJlIHRvIHRoZSB0cmVlIGJhc2VkIG1vZGVscy4gVGhlIGdlbmVyYWwgZGVjaXNpb24gdHJlZSwgYWx0aG91Z2ggbm90IGZhcmluZyB3ZWxsLCBkaWQgcHJvdmUgdG8gaGF2ZSBhIGxvd2VyIE1TRSB0aGFuIGFsbCBvdGhlciBub24tdHJlZSBiYXNlZCBtb2RlbHMuIEJvb3N0aW5nIGFuZCBiYWdnaW5nIG1ldGhvZHMgd2VyZSBhcHBsaWVkIHRvIHRyeSBhbmQgcmVkdWNlIGVycm9yIHJhdGUgZnVydGhlciwgYnV0IFJhbmRvbSBGb3Jlc3QgcHJvdmVkIHRvIHlpZWxkIHRoZSBsb3dlciBNU0UuIEJhZ2dlZCB0cmVlIGxhZ2dlZCBjbG9zZSBiZWhpbmQgYnkgYSBkaWZmZXJlbmNlIGluIE1TRSBvZiAwLjAwMDY3NDUuIEJvb3N0aW5nIGhvd2V2ZXIgcGVyZm9ybWVkIGV2ZW4gd29yc2UgdGhhbiBiYWdnaW5nLiAKCiMgNC4gRGlzY3Vzc2lvbgpUaGVyZSB3ZXJlIG90aGVyIHBvdGVudGlhbCBwcm9ibGVtcyB3ZSBjb3VsZCBoYXZlIGFuYWx5emVkLCBidXQgdGhpcyBvbmUgd2FzIHNlbGVjdGVkIGR1ZSB0byB0aGUgcmVsZXZhbmN5IGZvciBjdXJyZW50IGlzc3VlcyBhcyB3ZWxsIGFzIGVhc2Ugb2YgdW5kZXJzdGFuZGluZyBhc3BlY3RzIG9mIHRoZSBkYXRhLiBUaGVyZSB3YXMgbGl0dGxlIGludGVycHJldGF0aW9uIG5lZWRlZCB0byB1bmRlcnN0YW5kIGluaXRpYWwgZGF0YSBhbmQgYWRkaXRpb25hbGx5IGxpdHRsZSBjbGVhbmluZyBhbmQgbWFuaXB1bGF0aW9uIG9mIGRhdGEgZHVlIHRvIHN1Y2NpbmN0IGRhdGEgbWFpbnRlbmFuY2UgZnJvbSBvdXIgc291cmNlLiBXZSB3ZXJlIGFibGUgdG8gdXRpbGl6ZSBtb3N0IGFsbCBvZiB0aGUgc2tpbGxzIHdlIGxlYXJuZWQgdGhpcyBzZW1lc3RlciBpbiB0aGlzIHByb2plY3QuIEFkZGl0aW9uYWwgbWV0aG9kcyBzdWNoIGFzIGhpc3RvcmljYWwgY2x1c3RlcmluZyBhbmQgUENBIHdlcmUgYXR0ZW1wdGVkLCBidXQgdGhpcyBsZWFkIHRvIGNvbXB1dGF0aW9uYWwgaXNzdWVzIGFuZCB2aXN1YWxpemF0aW9ucyBzbyBsYXJnZSB0aGF0IHRoZXkgd2VyZSB1bmFibGUgdG8gYmUgaW50ZXJwcmV0ZWQuIFRoZXNlIHdvdWxkIGhhdmUgYmVlbiBzdXBwbGVtZW50YXJ5IHRvIG91ciBhbmFseXNpcywgYW5kIHRoZXJlZm9yZSB3ZXJlIHVudXNlZC4gRWFjaCBncm91cCBtZW1iZXIgY29udHJpYnV0ZWQgZXF1YWxseSB0byB0aGlzIHdvcmsuIFRhc2tzIHN1Y2ggYXMgZGF0YSBleHRyYWN0aW9uLCBjb2Rpbmcgb2YgbWV0aG9kcywgYW5kIGNvbXBpbGF0aW9uIG9mIHRoaXMgZG9jdW1lbnQgd2VyZSBkaXZpZGVkIGVxdWFsbHkgYW1vbmcgbWVtYmVycywgYW5kIGFzc2lnbmVkIGJhc2VkIG9uIGVhY2ggbWVtYmVycyBzcGVjaWFsaXplZCBza2lsbHMuIEl0IHdhcyBhbiBpbW1lbnNlbHkgaGVscGZ1bCBsZWFybmluZyBleHBlcmllbmNlIHRvIGdldCB0byBzaG93IHdoYXQgd2UgaGF2ZSBsZWFybmVkIHRoaXMgc2VtZXN0ZXIgaW4gb25lIHByb2plY3QuCgojIDUuIEZ1dHVyZSBXb3JrClRoZSBtb2RlbHMgY3JlYXRlZCBpbiB0aGlzIHByb2plY3QgYXJlIGFwcGxpY2FibGUgdG8gb3RoZXIgcmVzdWx0cyBhcyB3ZWxsIGZyb20gdGhlIHNhbWUgZGF0YXNldC4gV2UgY2hvc2UgbmV3X2RlYXRocyBhcyB0aGUgcmVzcG9uc2UgdmFyaWFibGUgZm9yIG91ciBtb2RlbHMsIGJ1dCBvdGhlcnMgY2FuIGJlIGVhc2lseSBpbnRlcmNoYW5nZWQgYW5kIGNvbXBhcmVkIGZvciBkaWZmZXJlbnQgcmVzdWx0cy4gTm90ZSB0aGF0IGRvaW5nIHNvIG1heSB5aWVsZCBkaWZmZXJlbnQgcmVzdWx0cyBmb3Igd2hpY2ggbW9kZWwgaXMgbW9zdCBhY2N1cmF0ZS4gT3RoZXIgYWx0ZXJuYXRpdmUgcmVzcG9uc2VzIHBvc3NpYmxlIGNvdWxkIGJlIG5ldyBjYXNlcywgbmV3IHZhY2NpbmF0aW9ucywgb3Igb3RoZXIgQ09WSUQgcmVsYXRlZCByZXNwb25zZXMuIE9uIHRoZSBvdGhlciBoYW5kLCBvdXIgbWV0aG9kb2xvZ2llcyB3b3VsZCBsaWtlbHkgbm90IHByb2R1Y2UgYWNjdXJhdGUgcmVzdWx0cyBmb3Igc29tZXRoaW5nIHN1Y2ggYXMgcG9wdWxhdGlvbiwgc2luY2UgdGhlIGRhdGEgaXMgZ2VhcmVkIHRvd2FyZHMgQ09WSUQgaW5mb3JtYXRpb24uIE90aGVyIG1vZGVscywgc3VjaCBhcyAoU1ZNKSBzdXBwb3J0IHZlY3RvciBtYWNoaW5lcyB3aGljaCBub3QgYmVlbiBjb3ZlcmVkLCBjb3VsZCBiZSBhcHBsaWVkIGZvciBkaWZmZXJlbnQgcmVzdWx0cyBhcyB3ZWxsIGFuZCBjb21wYXJlZCB0byBzZWUgaWYgZXJyb3IgcmF0ZSBpcyBoaWdoZXIgb3IgbG93ZXIgdGhhbiB0aGUgY3VycmVudCByZXN1bHRzLiBGdXJ0aGVyIHRpbWUgYW5kIGluZm9ybWF0aW9uIGNvdWxkIGFsc28geWllbGQgdXNhYmxlIHJlc3VsdHMgd2l0aCBQQ0EgYW5kIGNsdXN0ZXJpbmcgbWV0aG9kcyBhdHRlbXB0ZWQuCgojIDYuIEFwcGVuZGl4CjEuIEEuIExpYXcgYW5kIE0uIFdpZW5lciAoMjAwMikuIENsYXNzaWZpY2F0aW9uIGFuZCBSZWdyZXNzaW9uIGJ5IHJhbmRvbUZvcmVzdC4gUiBOZXdzIDIoMyksIDE4LS0yMi4KMi4gQWNoaW0gWmVpbGVpcyBhbmQgR2Fib3IgR3JvdGhlbmRpZWNrICgyMDA1KS4gem9vOiBTMyBJbmZyYXN0cnVjdHVyZSBmb3IgUmVndWxhciBhbmQgSXJyZWd1bGFyIFRpbWUgU2VyaWVzLiBKb3VybmFsIG9mIFN0YXRpc3RpY2FsIFNvZnR3YXJlLCAxNCg2KSwgMS0yNy4gZG9pOjEwLjE4NjM3L2pzcy52MDE0LmkwNgozLiBBbGJvdWthZGVsIEthc3NhbWJhcmEgKDIwMjApLiBnZ3B1YnI6ICdnZ3Bsb3QyJyBCYXNlZCBQdWJsaWNhdGlvbiBSZWFkeSBQbG90cy4gUiBwYWNrYWdlIHZlcnNpb24gMC40LjAuIGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9Z2dwdWJyCjQuIEFyYXZpbmQgSGViYmFsaSAoMjAyMCkuIG9sc3JyOiBUb29scyBmb3IgQnVpbGRpbmcgT0xTIFJlZ3Jlc3Npb24gTW9kZWxzLiBSIHBhY2thZ2UgdmVyc2lvbiAwLjUuMy4gaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1vbHNycgo1LiBCcmFuZG9uIEdyZWVud2VsbCwgQnJhZGxleSBCb2VobWtlLCBKYXkgQ3VubmluZ2hhbSBhbmQgR0JNIERldmVsb3BlcnMgKDIwMjApLiBnYm06IEdlbmVyYWxpemVkIEJvb3N0ZWQgUmVncmVzc2lvbiBNb2RlbHMuIFIgcGFja2FnZSB2ZXJzaW9uIDIuMS44LiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWdibQo2LiBCcmlhbiBSaXBsZXkgKDIwMjEpLiB0cmVlOiBDbGFzc2lmaWNhdGlvbiBhbmQgUmVncmVzc2lvbiBUcmVlcy4gUiBwYWNrYWdlIHZlcnNpb24gMS4wLTQxLiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPXRyZWUKNy4gRGF2aWQgUm9iaW5zb24sIEFsZXggSGF5ZXMgYW5kIFNpbW9uIENvdWNoICgyMDIxKS4gYnJvb206IENvbnZlcnQgU3RhdGlzdGljYWwgT2JqZWN0cyBpbnRvIFRpZHkgVGliYmxlcy4gUiBwYWNrYWdlIHZlcnNpb24gMC43LjkuIGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9YnJvb20KOC4gRG91Z2xhcyBCYXRlcyBhbmQgTWFydGluIE1hZWNobGVyICgyMDE5KS4gTWF0cml4OiBTcGFyc2UgYW5kIERlbnNlIE1hdHJpeCBDbGFzc2VzIGFuZCBNZXRob2RzLiBSIHBhY2thZ2UgdmVyc2lvbiAxLjItMTguIGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9TWF0cml4CjkuIEguIFdpY2toYW0uIGdncGxvdDI6IEVsZWdhbnQgR3JhcGhpY3MgZm9yIERhdGEgQW5hbHlzaXMuIFNwcmluZ2VyLVZlcmxhZyBOZXcgWW9yaywgMjAxNi4KMTAuIEhhZGxleSBXaWNraGFtICgyMDE5KS4gc3RyaW5ncjogU2ltcGxlLCBDb25zaXN0ZW50IFdyYXBwZXJzIGZvciBDb21tb24gU3RyaW5nIE9wZXJhdGlvbnMuIFIgcGFja2FnZSB2ZXJzaW9uIDEuNC4wLiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPXN0cmluZ3IKMTEuIEhhZGxleSBXaWNraGFtLCBSb21haW4gRnJhbsOnb2lzLCBMaW9uZWwgSGVucnkgYW5kIEtpcmlsbCBNw7xsbGVyICgyMDIxKS4gZHBseXI6IEEgR3JhbW1hciBvZiBEYXRhIE1hbmlwdWxhdGlvbi4gUiBwYWNrYWdlIHZlcnNpb24gMS4wLjcuIGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9ZHBseXIKMTIuIEphcmVrIFR1c3p5bnNraSAoMjAyMSkuIGNhVG9vbHM6IFRvb2xzOiBNb3ZpbmcgV2luZG93IFN0YXRpc3RpY3MsIEdJRiwgQmFzZTY0LCBST0MgQVVDLCBldGMuIFIgcGFja2FnZSB2ZXJzaW9uIDEuMTguMi4gaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1jYVRvb2xzCjEzLiBKZXJvbWUgRnJpZWRtYW4sIFRyZXZvciBIYXN0aWUsIFJvYmVydCBUaWJzaGlyYW5pICgyMDEwKS4gUmVndWxhcml6YXRpb24gUGF0aHMgZm9yIEdlbmVyYWxpemVkIExpbmVhciBNb2RlbHMgdmlhIENvb3JkaW5hdGUgRGVzY2VudC4gSm91cm5hbCBvZiBTdGF0aXN0aWNhbCBTb2Z0d2FyZSwgMzMoMSksIDEtMjIuIFVSTCBodHRwczovL3d3dy5qc3RhdHNvZnQub3JnL3YzMy9pMDEvLgoxNC4gSnVsaWEgU2lsZ2UsIEZhbm55IENob3csIE1heCBLdWhuIGFuZCBIYWRsZXkgV2lja2hhbSAoMjAyMSkuIHJzYW1wbGU6IEdlbmVyYWwgUmVzYW1wbGluZyBJbmZyYXN0cnVjdHVyZS4gUiBwYWNrYWdlIHZlcnNpb24gMC4xLjEuIGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9cnNhbXBsZQoxNS4gS3Jpc3RpYW4gSG92ZGUgTGlsYW5kLCBCasO4cm4tSGVsZ2UgTWV2aWsgYW5kIFJvbiBXZWhyZW5zICgyMDIxKS4gcGxzOiBQYXJ0aWFsIExlYXN0IFNxdWFyZXMgYW5kIFByaW5jaXBhbCBDb21wb25lbnQgUmVncmVzc2lvbi4gUiBwYWNrYWdlIHZlcnNpb24gMi44LTAuIGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9cGxzCjE2LiBNYXggS3VobiAoMjAyMSkuIGNhcmV0OiBDbGFzc2lmaWNhdGlvbiBhbmQgUmVncmVzc2lvbiBUcmFpbmluZy4gUiBwYWNrYWdlIHZlcnNpb24gNi4wLTg4LiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWNhcmV0CjE3LiBQb25jZSBldCBhbC4gKDIwMjEpLiBjb3ZpZDE5LmFuYWx5dGljczogQW4gUiBQYWNrYWdlIHRvIE9idGFpbiwgQW5hbHl6ZSBhbmQgVmlzdWFsaXplIERhdGEgZnJvbSB0aGUgQ29yb25hdmlydXMgRGlzZWFzZSBQYW5kZW1pYy4gSm91cm5hbCBvZiBPcGVuIFNvdXJjZSBTb2Z0d2FyZSwgNig1OSksIDI5OTUuIGh0dHBzOi8vZG9pLm9yZy8xMC4yMTEwNS9qb3NzLjAyOTk1CjE4LiBSIENvcmUgVGVhbSAoMjAyMCkuIFI6IEEgbGFuZ3VhZ2UgYW5kIGVudmlyb25tZW50IGZvciBzdGF0aXN0aWNhbCBjb21wdXRpbmcuIFIgRm91bmRhdGlvbiBmb3IgU3RhdGlzdGljYWwgQ29tcHV0aW5nLCBWaWVubmEsIEF1c3RyaWEuIFVSTCBodHRwczovL3d3dy5SLXByb2plY3Qub3JnLy4KMTkuIFNhcmthciwgRGVlcGF5YW4gKDIwMDgpIExhdHRpY2U6IE11bHRpdmFyaWF0ZSBEYXRhIFZpc3VhbGl6YXRpb24gd2l0aCBSLiBTcHJpbmdlciwgTmV3IFlvcmsuIElTQk4gOTc4LTAtMzg3LTc1OTY4LTUKMjAuIFRob21hcyBMdW1sZXkgYmFzZWQgb24gRm9ydHJhbiBjb2RlIGJ5IEFsYW4gTWlsbGVyICgyMDIwKS4gbGVhcHM6IFJlZ3Jlc3Npb24gU3Vic2V0IFNlbGVjdGlvbi4gUiBwYWNrYWdlIHZlcnNpb24gMy4xLiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWxlYXBzCjIxLiAKCiMjIDYuMSBXZWIgQXBwIENvZGUKCmBgYHtyIHRzLXJlcywgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRiwgaW5jbHVkZSA9IFR9CgpyZXF1aXJlKGdncGxvdDIpCnJlcXVpcmUoZ2dwdWJyKQoKCnJlc19kYXRhc2V0IDwtIGRhdGEuZnJhbWUoZGF0ZSA9IHRlc3QuZGF0JGRhdGUsIGFjdHVhbF9kZWF0aHMgPSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kLCAKICAgICAgICAgICAgICAgICAgICAgICAgICBkZWNpc2lvbl90cmVlX3ByZWQgPSB5aGF0LAogICAgICAgICAgICAgICAgICAgICAgICAgIGJhZ2dlZF90cmVlX3ByZWQgPSB5aGF0LmJhZywKICAgICAgICAgICAgICAgICAgICAgICAgICBib29zdGVkX3RyZWVfcHJlZCA9IHloYXQuYm9vc3QsCiAgICAgICAgICAgICAgICAgICAgICAgICAgcmZfcHJlZGljdGVkX2Nhc2VzID0gcmZfcHJlZGljdGlvbnMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgTUxSID0gbWxyX3ByZWRpY3Rpb25zLAogICAgICAgICAgICAgICAgICAgICAgICAgIFJpZGdlID0gcmlkZ2VfdGVzdF9wcmVkcywKICAgICAgICAgICAgICAgICAgICAgICAgICBMQVNTTyA9IGxhc3NvX3Rlc3RfcHJlZHMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgRm9yd2FyZE1MUiA9IGZvcndhcmRfcHJlZCwKICAgICAgICAgICAgICAgICAgICAgICAgICBCYWNrd2FyZE1MUiA9IGJhY2t3YXJkX3ByZWQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgY291bnRyeSA9IHRlc3QuZGF0JGlzb19jb2RlKQoKCiMgc2F2ZShyZXNfZGF0YXNldCwgZmlsZSA9ICJzaGlueS9yZl9yZXN1bHRzLlJEYXRhIikKIyByZXNfZGF0YXNldApyZXNfZGF0YXNldAoKYGBgCgoKYGBge3IgdWksIGV2YWwgPSBGfQoKbGlicmFyeShzaGlueSkKbGlicmFyeShzaGlueWRhc2hib2FyZCkKbGlicmFyeShsZWFmbGV0KQpsaWJyYXJ5KHBsb3RseSkKCmxvYWQoImV4dGVybmFsMS5SRGF0YSIpCmxvYWQoInJmX3Jlc3VsdHMuUkRhdGEiKQoKdWkgPC0gZGFzaGJvYXJkUGFnZShza2luID0gImdyZWVuIiwKICAgICAgICAgICAgICAgICAgICBkYXNoYm9hcmRIZWFkZXIodGl0bGUgPSAiQ09WSUQtMTkgTWV0cmljcyBieSBDb3VudHJ5IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdGl0bGVXaWR0aCA9IDMwMCksCiAgICAgICAgICAgICAgICAgICAgZGFzaGJvYXJkU2lkZWJhcih3aWR0aCA9IDMwMCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNpZGViYXJNZW51KAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZW51SXRlbSgiTWFwIiwgdGFiTmFtZSA9ICJtYXAiLCBpY29uID0gaWNvbigibWFwIikKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNlbGVjdElucHV0KGlucHV0SWQgPSAidmFycyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsID0gIlNlbGVjdCB0aGUgTWV0cmljIChmb3IgTWFwKSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNob2ljZXMgPSBjKGNvbG5hbWVzKG1hcF9kczEpWzI6NV0sIGNvbG5hbWVzKG1hcF9kczEpWzhdKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2VsZWN0ZWQgPSAgY29sbmFtZXMobWFwX2RzMSlbMl0pLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWxlY3RJbnB1dChpbnB1dElkID0gInNlbGVjdGVkX2NvdW50cnkiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbCA9ICJTZWxlY3QgdGhlIENvdW50cnkgKGZvciBUaW1lIFNlcmllcykiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjaG9pY2VzID0gYyhsZXZlbHMocmVzX2RhdGFzZXQkY291bnRyeSkpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWxlY3RlZCA9ICJVU0EiKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWVudUl0ZW0oIlRpbWUtU2VyaWVzIChUcmVlcykiLCB0YWJOYW1lID0gInRzLXJmIiwgaWNvbiA9IGljb24oImNoYXJ0LWxpbmUiKSksCiAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWVudUl0ZW0oIlRpbWUtU2VyaWVzIChMaW5lYXIgTWV0aG9kcykiLCB0YWJOYW1lID0gInRzLWxpbiIsIGljb24gPSBpY29uKCJjaGFydC1saW5lIikpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZW51SXRlbSgiVGltZS1TZXJpZXMiLCB0YWJOYW1lID0gInRzLWZpbmFsIiwgaWNvbiA9IGljb24oImNoYXJ0LWxpbmUiKSkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApKSwKICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICBkYXNoYm9hcmRCb2R5KAogICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICB0YWJJdGVtcygKICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgIHRhYkl0ZW0odGFiTmFtZSA9ICJtYXAiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICBmbHVpZFJvdygKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbHVtbig4LCBsZWFmbGV0T3V0cHV0KCJtYXAxIiwgaGVpZ2h0ID0gODAwKSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb2x1bW4oNCwgZGF0YVRhYmxlT3V0cHV0KCJ0YWJsZTEiKSkKICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICB0YWJJdGVtKHRhYk5hbWUgPSAidHMtcmYiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZmx1aWRSb3coCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJveChwbG90bHlPdXRwdXQoInRpbWVfc2VyaWVzX3RyZWVzIikpCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApKSwKICAgICAgICAgICAgICAgICAgICB0YWJJdGVtKHRhYk5hbWUgPSAidHMtbGluIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZsdWlkUm93KAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBib3gocGxvdGx5T3V0cHV0KCJ0aW1lX3Nlcmllc19saW5lYXIiKSkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICkpLAogICAgICAgICAgICAgICAgICAgIHRhYkl0ZW0odGFiTmFtZSA9ICJ0cy1maW5hbCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBmbHVpZFJvdygKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYm94KHBsb3RseU91dHB1dCgidGltZV9zZXJpZXNfZmluYWwiKSkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICkpCiAgICAgICAgICAgICAgICAgICAgICApKSAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIAoKCgoKYGBgCgoKCmBgYHtyIHNlcnZlciwgZXZhbCA9IEZ9CgpsaWJyYXJ5KHNoaW55ZGFzaGJvYXJkKQpsaWJyYXJ5KHNoaW55KQpsaWJyYXJ5KGxlYWZsZXQpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoc3RhdHMpCmxpYnJhcnkoc2YpCmxpYnJhcnkobHVicmlkYXRlKQpsaWJyYXJ5KHBsb3RseSkKCmxvYWQoImV4dGVybmFsMS5SRGF0YSIpCmxvYWQoInJmX3Jlc3VsdHMuUkRhdGEiKQoKCgpzZXJ2ZXIgPC0gZnVuY3Rpb24oaW5wdXQsIG91dHB1dCkgewoKICB0aW1lX3NlcmllcyA8LSByZWFjdGl2ZSh7CiAgICBmaWx0ZXIocmVzX2RhdGFzZXQsIGNvdW50cnkgPT0gaW5wdXQkc2VsZWN0ZWRfY291bnRyeSkKICAgIAogIH0pCiAgCiAgcmVhY3RpdmVfZHMgPC0gcmVhY3RpdmUoewogICAgc2VsZWN0KG1hcF9kczEsIGdlb21ldHJ5LCAic2VsZWN0aW9uIiA9IGlucHV0JHZhcnMpCiAgfSkKICAKICBidyA8LSByZWFjdGl2ZSh7MiAqIElRUihyZWFjdGl2ZV9kcygpJHNlbGVjdGlvbikgLyBsZW5ndGgocmVhY3RpdmVfZHMoKSRzZWxlY3Rpb24pXigxLzMpfSkKICAKCiAgcGFsMSA8LSByZWFjdGl2ZSh7Y29sb3JCaW4oInZpcmlkaXMiLAogICAgICAgICAgICAgICAgICAgICAgZG9tYWluID0gc2VxKGZyb20gPSBtaW4ocmFuZ2UocmVhY3RpdmVfZHMoKSRzZWxlY3Rpb24pKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0byA9IG1heChyYW5nZShyZWFjdGl2ZV9kcygpJHNlbGVjdGlvbikpLCBieSA9IGJ3KCkpKX0pCgogIHBvcCA8LSByZWFjdGl2ZSh7cGFzdGUoIkNvdW50cnk6ICIsIG1hcF9kczEkbmFtZSwgIjxici8+IiwKICAgICAgICAgICAgICAgICAgICAgICAgICJWYWx1ZTogIiwgcm91bmQocmVhY3RpdmVfZHMoKSRzZWxlY3Rpb24sIDMpKX0pCiAgICAgICAgICAgICAgCiAgCiAgCiAgb3V0cHV0JG1hcDEgPC0gcmVuZGVyTGVhZmxldCh7CiAgICAKICAgIAogICAgbGVhZmxldChyZWFjdGl2ZV9kcygpKSAlPiUKICAgICAgYWRkUHJvdmlkZXJUaWxlcyhwcm92aWRlcnMkQ2FydG9EQikgJT4lCiAgICAgIGFkZFBvbHlnb25zKGRhdGEgPSByZWFjdGl2ZV9kcygpJGdlb21ldHJ5ICwgZmlsbENvbG9yID0gcGFsMSgpKHJlYWN0aXZlX2RzKCkkc2VsZWN0aW9uKSwKICAgICAgICAgICAgICAgICAgY29sb3IgPSAiYmxhY2siLCBwb3B1cCA9IHBvcCgpKSAlPiUKICAgICBhZGRMZWdlbmQocGFsID0gcGFsMSgpLCB2YWx1ZXMgPSByZWFjdGl2ZV9kcygpJHNlbGVjdGlvbikKICB9KQogIAogIAogIG91dHB1dCR0YWJsZTEgPC0gcmVuZGVyRGF0YVRhYmxlKHsKICAgIHJlYWN0aXZlX2RzKCkgJT4lIHNlbGVjdCgtZ2VvbWV0cnkpICU+JQogICAgICBjYmluZCgiQ291bnRyeSIgPSBtYXBfZHMxJG5hbWUpCiAgfSkKICAKICAKICBvdXRwdXQkdGltZV9zZXJpZXNfdHJlZXMgPC0gcmVuZGVyUGxvdGx5KHsKICAgCiAgIHAgPC0gdGltZV9zZXJpZXMoKSAlPiUgcGxvdF9seSh4ID0gfiBkYXRlLCB5ID0gfnJmX3ByZWRpY3RlZF9jYXNlcywgbmFtZSA9ICJSYW5kb20gRm9yZXN0IiwgdHlwZSA9ICJzY2F0dGVyIiwgbW9kZSA9ICJsaW5lcyIpICU+JQogICAgIGFkZF90cmFjZSh5ID0gfmFjdHVhbF9kZWF0aHMsIG5hbWUgPSAiQWN0dWFsIERlYXRocyIsIG1vZGUgPSAibGluZXMrbWFya2VycyIpICU+JQogICAgIGFkZF90cmFjZSh5ID0gfmRlY2lzaW9uX3RyZWVfcHJlZCwgbmFtZSA9ICJEZWNpc2lvbiBUcmVlIikgJT4lCiAgICAgYWRkX3RyYWNlKHkgPSB+YmFnZ2VkX3RyZWVfcHJlZCwgbmFtZSA9ICJCYWdnZWQgVHJlZSIpICU+JQogICAgIGFkZF90cmFjZSh5ID0gfmJvb3N0ZWRfdHJlZV9wcmVkLCBuYW1lID0gIkJvb3N0ZWQgVHJlZSIpICU+JQogICAgIGxheW91dCh0aXRsZSA9IHBhc3RlMCgiQWN0dWFsIHZzLiBQcmVkaWN0ZWQgRGFpbHkgRGVhdGhzICh0aG91c2FuZHMpIGZvciIsICIgIiwgaW5wdXQkc2VsZWN0ZWRfY291bnRyeSksCiAgICAgICAgICAgIHlheGlzID0gbGlzdCh0aXRsZSA9ICJEZWF0aHMiKSkKICAgCiAgIHJldHVybihwKQogICAKICAgCiAgICAgCiAgfSkKICAKICBvdXRwdXQkdGltZV9zZXJpZXNfbGluZWFyIDwtIHJlbmRlclBsb3RseSh7CiAgCiAgcC5hbGwgPC0gdGltZV9zZXJpZXMoKSAlPiUgcGxvdF9seSh4ID0gfiBkYXRlLCB5ID0gfk1MUiwgbmFtZSA9ICJNTFIgKFJlZHVjZWQgYnkgcC12YWx1ZXMpIiwgdHlwZSA9ICJzY2F0dGVyIiwgbW9kZSA9ICJsaW5lcyIpICU+JQogICAgYWRkX3RyYWNlKHkgPSB+YWN0dWFsX2RlYXRocywgbmFtZSA9ICJBY3R1YWwgRGVhdGhzIiwgbW9kZSA9ICJsaW5lcyttYXJrZXJzIikgJT4lCiAgICBhZGRfdHJhY2UoeSA9IH5Gb3J3YXJkTUxSLCAiTUxSIChGb3J3YXJkIFNlbGVjdGlvbikiKSAlPiUKICAgIGFkZF90cmFjZSh5ID0gfkJhY2t3YXJkTUxSLCAiTUxSIChCYWNrd2FyZCBTZWxlY3Rpb24pIikgJT4lCiAgICBhZGRfdHJhY2UoeSA9IH5zMSwgbmFtZSA9ICJSaWRnZSIpICU+JQogICAgYWRkX3RyYWNlKHkgPSB+czEuMSwgbmFtZSA9ICJMQVNTTyIpICU+JQogICAgbGF5b3V0KHRpdGxlID0gcGFzdGUwKCJBY3R1YWwgdnMuIFByZWRpY3RlZCBEYWlseSBEZWF0aHMgKHRob3VzYW5kcykgZm9yIiwgIiAiLCBpbnB1dCRzZWxlY3RlZF9jb3VudHJ5KSwKICAgICAgICAgICB5YXhpcyA9IGxpc3QodGl0bGUgPSAiRGVhdGhzIikpCiAgCiAgcmV0dXJuKHAuYWxsKQogIH0pCiAgCiAgCiAgb3V0cHV0JHRpbWVfc2VyaWVzX2ZpbmFsIDwtIHJlbmRlclBsb3RseSh7CiAgCiAgcC5maW5hbCA8LSB0aW1lX3NlcmllcygpICU+JSBwbG90X2x5KHggPSB+ZGF0ZSwgeSA9IH5uZXdfZGVhdGhzX3Rob3VzYW5kLjE1LmNvbXBzLCBuYW1lID0gIlBDUiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHR5cGUgPSAic2NhdHRlciIsIG1vZGUgPSAibGluZXMiKSAlPiUKICAgIGFkZF90cmFjZSh5ID0gfmFjdHVhbF9kZWF0aHMsIG5hbWUgPSAiQWN0dWFsIERlYXRocyIsIG1vZGUgPSAibGluZXMrbWFya2VycyIpICU+JQogICAgYWRkX3RyYWNlKHkgPSB+TUxSLCBuYW1lID0gIk1MUiAoUmVkdWNlZCBieSBwLXZhbHVlcyIpICU+JQogICAgYWRkX3RyYWNlKHkgPSB+czEuMSwgbmFtZSA9ICJMQVNTTyIpICAlPiUKICAgIGxheW91dCh0aXRsZSA9IHBhc3RlMCgiQWN0dWFsIHZzLiBQcmVkaWN0ZWQgRGFpbHkgRGVhdGhzICh0aG91c2FuZHMpIGZvciIsICIgIiwgaW5wdXQkc2VsZWN0ZWRfY291bnRyeSksCiAgICAgICAgICAgeWF4aXMgPSBsaXN0KHRpdGxlID0gIkRlYXRocyIpKQogIAogIHJldHVybihwLmZpbmFsKQogICAgCiAgfSkKICAKfQoKCgpgYGA=