library(htmltab)
url= "https://en.wikipedia.org/wiki/List_of_freedom_indices"
path="/html/body/div[3]/div[3]/div[5]/div[1]/table[2]"
demo = htmltab(url, path, encoding = "UTF-8")
head(demo)
##                 Country Freedom in the World 2021
## 2          Afghanistan                  not free
## 3              Albania               partly free
## 4              Algeria                  not free
## 5              Andorra                      free
## 6               Angola                  not free
## 7  Antigua and Barbuda                      free
##   2021 Index of Economic Freedom 2021 Press Freedom Index 2020 Democracy Index
## 2                  mostly unfree      difficult situation authoritarian regime
## 3                moderately free      noticeable problems     flawed democracy
## 4                      repressed      difficult situation authoritarian regime
## 5                            n/a   satisfactory situation                  n/a
## 6                  mostly unfree      noticeable problems authoritarian regime
## 7                            n/a   satisfactory situation                  n/a

#pregunta 1 y 2

#Los avances que habia hecho en esta pregunta lo elimine para poder generar mi archivo html

#pregunta 3

mortality="https://github.com/Fiorella2021/examen_2_unemployement/raw/main/mortality.csv"
datosmortality=read.csv(mortality)
unemployment="https://github.com/Fiorella2021/examen_2_unemployement/raw/main/unemployment.csv"
datosunemployment=read.csv(unemployment)
migracion="https://github.com/Fiorella2021/examen_2_unemployement/raw/main/migration.csv"
datosmigracionr=read.csv(migracion)

#juntemos la base de datos

colnames(datosmortality)[3] <- "valuemortality"
colnames(datosunemployment)[3] <- "valueunemployment"
colnames(datosmigracionr)[3] <- "valuemigracionr"
#Realizamos el merge
fusion = merge(datosmortality, datosunemployment, by= "name",  all.x = T)
fusion2 = merge(fusion, datosmigracionr, by= "name",  all.x = T)

#limpiamos la base de datos

#Eliminamos las columnas que no necesitamos
fusion2 = fusion2[,-c(4,5,6,7,9,10,11,12,14,15,16)]
head(demo)
##                 Country Freedom in the World 2021
## 2          Afghanistan                  not free
## 3              Albania               partly free
## 4              Algeria                  not free
## 5              Andorra                      free
## 6               Angola                  not free
## 7  Antigua and Barbuda                      free
##   2021 Index of Economic Freedom 2021 Press Freedom Index 2020 Democracy Index
## 2                  mostly unfree      difficult situation authoritarian regime
## 3                moderately free      noticeable problems     flawed democracy
## 4                      repressed      difficult situation authoritarian regime
## 5                            n/a   satisfactory situation                  n/a
## 6                  mostly unfree      noticeable problems authoritarian regime
## 7                            n/a   satisfactory situation                  n/a
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
str(fusion2)
## 'data.frame':    226 obs. of  5 variables:
##  $ name             : chr  "Afghanistan" "Albania" "Algeria" "American Samoa" ...
##  $ slug.x           : chr  "afghanistan" "albania" "algeria" "american-samoa" ...
##  $ valuemortality   : num  106.8 11.1 20.2 10.2 3.5 ...
##  $ valueunemployment: num  23.9 5.83 11.7 29.8 3.7 6.6 8 11 9.84 18.9 ...
##  $ valuemigracionr  : num  -0.1 -3.24 -0.84 -32.18 0 ...
modelo1=formula(valuemortality~valueunemployment+valuemigracionr)
reg1=lm(modelo1, data=fusion2)
stargazer(reg1, type="text")
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                           valuemortality       
## -----------------------------------------------
## valueunemployment            0.475***          
##                               (0.114)          
##                                                
## valuemigracionr               -0.345*          
##                               (0.199)          
##                                                
## Constant                     14.337***         
##                               (1.680)          
##                                                
## -----------------------------------------------
## Observations                    214            
## R2                             0.091           
## Adjusted R2                    0.082           
## Residual Std. Error      17.408 (df = 211)     
## F Statistic           10.576*** (df = 2; 211)  
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Encontramos que mortalidad tiene relación con ambas, si consideramos un pvalor del 0.1.

fusion3=fusion2
str(fusion3)
## 'data.frame':    226 obs. of  5 variables:
##  $ name             : chr  "Afghanistan" "Albania" "Algeria" "American Samoa" ...
##  $ slug.x           : chr  "afghanistan" "albania" "algeria" "american-samoa" ...
##  $ valuemortality   : num  106.8 11.1 20.2 10.2 3.5 ...
##  $ valueunemployment: num  23.9 5.83 11.7 29.8 3.7 6.6 8 11 9.84 18.9 ...
##  $ valuemigracionr  : num  -0.1 -3.24 -0.84 -32.18 0 ...
modelo3=formula(valueunemployment~valuemortality+valuemigracionr)
reg2=lm(modelo3, data=fusion3)
summary(reg2)
## 
## Call:
## lm(formula = modelo3, data = fusion3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -17.933  -5.445  -2.554   1.694  61.569 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      7.26159    1.01795   7.134 1.54e-11 ***
## valuemortality   0.16088    0.03851   4.178 4.31e-05 ***
## valuemigracionr -0.01898    0.11692  -0.162    0.871    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.13 on 211 degrees of freedom
##   (12 observations deleted due to missingness)
## Multiple R-squared:  0.07834,    Adjusted R-squared:  0.06961 
## F-statistic: 8.968 on 2 and 211 DF,  p-value: 0.0001829
stargazer(reg2, type="text")
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                          valueunemployment     
## -----------------------------------------------
## valuemortality               0.161***          
##                               (0.039)          
##                                                
## valuemigracionr               -0.019           
##                               (0.117)          
##                                                
## Constant                     7.262***          
##                               (1.018)          
##                                                
## -----------------------------------------------
## Observations                    214            
## R2                             0.078           
## Adjusted R2                    0.070           
## Residual Std. Error      10.132 (df = 211)     
## F Statistic           8.968*** (df = 2; 211)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

#Encontramos que por cada punto que aumente la migración, el desempleo disminuye en 0.019 pues #el desempleo esta afectado de manera directa por la mortalidad y de manera inversa por la #migracion

fusion4=fusion2
str(fusion4)
## 'data.frame':    226 obs. of  5 variables:
##  $ name             : chr  "Afghanistan" "Albania" "Algeria" "American Samoa" ...
##  $ slug.x           : chr  "afghanistan" "albania" "algeria" "american-samoa" ...
##  $ valuemortality   : num  106.8 11.1 20.2 10.2 3.5 ...
##  $ valueunemployment: num  23.9 5.83 11.7 29.8 3.7 6.6 8 11 9.84 18.9 ...
##  $ valuemigracionr  : num  -0.1 -3.24 -0.84 -32.18 0 ...
modelo4=formula(valuemigracionr~valuemortality+valueunemployment)
reg3=lm(modelo4, data=fusion4)
summary(reg3)
## 
## Call:
## lm(formula = modelo4, data = fusion4)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -31.730  -1.120   0.378   1.884  35.167 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)        0.16120    0.66759   0.241   0.8094  
## valuemortality    -0.04052    0.02343  -1.730   0.0851 .
## valueunemployment -0.00658    0.04053  -0.162   0.8712  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.965 on 211 degrees of freedom
##   (12 observations deleted due to missingness)
## Multiple R-squared:  0.01606,    Adjusted R-squared:  0.006738 
## F-statistic: 1.722 on 2 and 211 DF,  p-value: 0.1811
stargazer(reg3, type="text")
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                           valuemigracionr      
## -----------------------------------------------
## valuemortality                -0.041*          
##                               (0.023)          
##                                                
## valueunemployment             -0.007           
##                               (0.041)          
##                                                
## Constant                       0.161           
##                               (0.668)          
##                                                
## -----------------------------------------------
## Observations                    214            
## R2                             0.016           
## Adjusted R2                    0.007           
## Residual Std. Error      5.965 (df = 211)      
## F Statistic             1.722 (df = 2; 211)    
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

#Encontramos que migración tiene relación inversa débil con ambas