It were selected 20 meat quality and carcass traits recorded in 960 individuals, which were genotyping for 42428 SNP. For the statistical analysis was fitted a linear mixed model, including fixed effects of \(sex\), \(slaughter group\) and \(carcass\ weight\) and the additive and dominance random effects.
\(\mathbf{Y= X \beta + Zu + Zd +e}\)
The additive genomic relationship matrix was (\(\mathbf{G_{a}}\)) computed as in \(VanRaden\ (2008)\) and dominance genomic relationship matrix was \(\mathbf{G_{d}}\) computed with the method proposed by \(Vitezica\ et\ al.\ (2013)\).
load("~/Documents/Tesis_Maestria/validation/MSU_PRP/Data_Master/geno_matrix_msuprp.Rdata")
dim(genomatrix)
## [1] 1015 42081
genomatrix[1:5,1:5]
## MARC0044150 ASGA0000014 H3GA0000026 ASGA0000021 ALGA0000009
## 1001 1 1 1 1 1
## 1002 1 1 1 1 1
## 1003 1 1 1 1 1
## 1004 1 1 1 1 1
## 1006 0 1 2 2 2
#head(colnames(genomatrix))
#head(rownames(genomatrix))
Gvitezica<-Gmatrix(genomatrix, method="Vitezica")
## Initial data:
## Number of Individuals: 1015
## Number of Markers: 42081
##
## Missing data check:
## Total SNPs: 42081
## 0 SNPs dropped due to missing data threshold of 1
## Total of: 42081 SNPs
## MAF check:
## No SNPs with MAF below 0
## Monomorphic check:
## No monomorphic SNPs
## Summary check:
## Initial: 42081 SNPs
## Final: 42081 SNPs ( 0 SNPs removed)
##
## Completed! Time = 155.005 seconds
dim(Gvitezica)
## [1] 1015 1015
Gvitezica[1:5,1:5]
## 1001 1002 1003 1004 1006
## 1001 0.874904537 0.10410675 0.152648805 0.13359638 0.007286798
## 1002 0.104106747 0.84330218 0.082749995 0.03922358 0.043686681
## 1003 0.152648805 0.08275000 0.858641254 0.17930445 -0.007187304
## 1004 0.133596383 0.03922358 0.179304448 0.90453765 -0.098926850
## 1006 0.007286798 0.04368668 -0.007187304 -0.09892685 1.110226699
load("~/Documents/Tesis_Maestria/validation/MSU_PRP/Data_Master/G_msuprp.Rdata")
load("~/Documents/Tesis_Maestria/validation/MSU_PRP/Data_Master/msuprphenofile.Rdata")
cont_struc2<-rbind(
c("last_lum.1",y~sex + car_wt + slgdt_cd),c("dress_ptg.1",y~ + car_wt + slgdt_cd),
c("car_length.1",y~sex + car_wt + slgdt_cd),c("belly.1",y~sex + car_wt + slgdt_cd),
c("juiciness.1",y~sex + car_wt + slgdt_cd),c("WBS.1",y~sex + car_wt + slgdt_cd),
c("ph_24h.1",y~sex + car_wt + slgdt_cd),c("driploss.1",y~sex + car_wt + slgdt_cd),
c("protein.1",y~sex + car_wt + slgdt_cd),c("cook_yield.1",y~sex + car_wt + slgdt_cd),
c("bf10_22wk.1",y~sex + car_wt + slgdt_cd),c("lma_22wk.1",y~ sex + car_wt + slgdt_cd), ##======== new traits
c("ham.1",y ~ sex + car_wt + slgdt_cd),c("loin.1",y ~ sex + car_wt + slgdt_cd),
c("fat.1",y~ sex + car_wt + slgdt_cd),c("moisture.1",y ~ sex + car_wt + slgdt_cd),
c( "tenderness.1", ~ sex + car_wt + slgdt_cd),c("boston.1", ~ sex + car_wt + slgdt_cd),
c( "spareribs.1", ~ sex + car_wt + slgdt_cd),c("picnic.1", ~ sex + car_wt + slgdt_cd)
)
gb.meatraits<-list()
for (i in 1:nrow(cont_struc2)) {
gb.meatraits[[i]]<-gblup(cont_struc2[i,][[1]],pheno.msuprp,
c(cont_struc2[i,][[2]],~Gvitezica),G, vdata=list(Gvitezica=Gvitezica),
pos=c(T,T,T))
names(gb.meatraits)[i]<-cont_struc2[i]
#print(i)
}
## Warning: solution lies close to zero for some positive variance components, their standard errors may not be valid
## Warning: solution lies close to zero for some positive variance components, their standard errors may not be valid
## Warning: solution lies close to zero for some positive variance components, their standard errors may not be valid
## Warning: solution lies close to zero for some positive variance components, their standard errors may not be valid
## Warning: solution lies close to zero for some positive variance components, their standard errors may not be valid
## Warning: solution lies close to zero for some positive variance components, their standard errors may not be valid
## Warning: solution lies close to zero for some positive variance components, their standard errors may not be valid
## Warning: solution lies close to zero for some positive variance components, their standard errors may not be valid
## Warning: solution lies close to zero for some positive variance components, their standard errors may not be valid
gbdomeff.meatraits<-gb.meatraits
rm(gb.meatraits)
# additive variance
hG<-lapply(gbdomeff.meatraits, function(x)varcomp(x)[1,])%>%
map_df(as_tibble)%>%mutate(trait=names(gbdomeff.meatraits))%>%
select(trait,Estimate, StdError, prop.var, se)
# Dominance variance
hd<-lapply(gbdomeff.meatraits, function(x)varcomp(x)[2,])%>%
map_df(as_tibble)%>%mutate(trait=names(gbdomeff.meatraits))%>%
select(trait,Estimate, StdError, prop.var, se)
# Error variance
he<-lapply(gbdomeff.meatraits, function(x)varcomp(x)[3,])%>%
map_df(as_tibble)%>%mutate(trait=names(gbdomeff.meatraits))%>%
select(trait,Estimate, StdError, prop.var, se)
# table
res<-hG%>%left_join(hd, by = c("trait"))%>%left_join(he, by = c("trait"))
colnames(res)<-c("trait","variance","se","h","se","variance","se","h","se",
"variance","se","h","se")
kable(res)%>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),full_width = F,
position = "center",font_size = 14) %>%
add_header_above(c(" ","Additive" = 4, "Dominance" = 4, "Error"=4), italic = T,
bold = T)
| trait | variance | se | h | se | variance | se | h | se | variance | se | h | se |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| last_lum.1 | 11.5757165 | 2.0952584 | 0.3952326 | 0.0619165 | 1.1256536 | 1.3545514 | 0.0384335 | 0.0462073 | 16.5869961 | 1.5685600 | 0.5663339 | 0.0782534 |
| dress_ptg.1 | 0.7819981 | 0.1780865 | 0.2712238 | 0.0562611 | 0.0000056 | 0.1303447 | 0.0000019 | 0.0452080 | 2.1012166 | 0.1692199 | 0.7287742 | 0.0863552 |
| car_length.1 | 1.8290545 | 0.2967271 | 0.4659999 | 0.0624384 | 0.0661043 | 0.1575841 | 0.0168418 | 0.0401385 | 2.0298519 | 0.1939803 | 0.5171583 | 0.0720551 |
| belly.1 | 0.0224656 | 0.0066551 | 0.1788988 | 0.0507988 | 0.0141215 | 0.0076877 | 0.1124530 | 0.0609548 | 0.0889901 | 0.0080084 | 0.7086482 | 0.0929250 |
| juiciness.1 | 0.0181911 | 0.0116438 | 0.0556336 | 0.0353135 | 0.0372191 | 0.0210125 | 0.1138266 | 0.0638070 | 0.2715705 | 0.0221838 | 0.8305398 | 0.0978724 |
| WBS.1 | 0.1055807 | 0.0249016 | 0.2619154 | 0.0573434 | 0.0354425 | 0.0229176 | 0.0879226 | 0.0567173 | 0.2620869 | 0.0245121 | 0.6501620 | 0.0886759 |
| ph_24h.1 | 0.0027057 | 0.0008239 | 0.1741834 | 0.0509571 | 0.0016162 | 0.0009590 | 0.1040499 | 0.0614804 | 0.0112115 | 0.0010115 | 0.7217668 | 0.0949740 |
| driploss.1 | 0.2909966 | 0.0678184 | 0.2644305 | 0.0571409 | 0.1006135 | 0.0623351 | 0.0914281 | 0.0565045 | 0.7088554 | 0.0662484 | 0.6441414 | 0.0877328 |
| protein.1 | 0.4498552 | 0.0838309 | 0.3805322 | 0.0586275 | 0.0002244 | 0.0201112 | 0.0001898 | 0.0170165 | 0.7320942 | 0.0640745 | 0.6192780 | 0.0691395 |
| cook_yield.1 | 2.3992393 | 0.5038151 | 0.3132153 | 0.0587863 | 0.0005317 | 0.3397988 | 0.0000694 | 0.0443598 | 5.2602622 | 0.4392184 | 0.6867153 | 0.0847026 |
| bf10_22wk.1 | 7.3850016 | 1.3931006 | 0.3693591 | 0.0619021 | 2.1038506 | 1.0782630 | 0.1052236 | 0.0539078 | 10.5052466 | 1.0967949 | 0.5254174 | 0.0785525 |
| lma_22wk.1 | 5.0305502 | 0.9249311 | 0.3850263 | 0.0613363 | 0.3542076 | 0.5851594 | 0.0271102 | 0.0447608 | 7.6807148 | 0.7038796 | 0.5878635 | 0.0789288 |
| ham.1 | 0.0966666 | 0.0153221 | 0.4849492 | 0.0622453 | 0.0000000 | 0.0074521 | 0.0000000 | 0.0373849 | 0.1026669 | 0.0095391 | 0.5150508 | 0.0706655 |
| loin.1 | 0.0715079 | 0.0159297 | 0.2836316 | 0.0584854 | 0.0356542 | 0.0151831 | 0.1414203 | 0.0601222 | 0.1449533 | 0.0148648 | 0.5749482 | 0.0846908 |
| fat.1 | 0.8915997 | 0.1353985 | 0.5136022 | 0.0644857 | 0.1716871 | 0.0826080 | 0.0988996 | 0.0477261 | 0.6726866 | 0.0820397 | 0.3874982 | 0.0651345 |
| moisture.1 | 0.7012585 | 0.1327946 | 0.3717722 | 0.0618945 | 0.0935176 | 0.0921570 | 0.0495784 | 0.0488070 | 1.0914823 | 0.1044396 | 0.5786494 | 0.0807249 |
| tenderness.1 | 0.1010140 | 0.0223137 | 0.2873905 | 0.0574184 | 0.0000000 | 0.0158215 | 0.0000000 | 0.0450130 | 0.2504731 | 0.0204982 | 0.7126095 | 0.0859851 |
| boston.1 | 0.0173932 | 0.0043108 | 0.2377872 | 0.0547841 | 0.0023812 | 0.0037131 | 0.0325539 | 0.0506982 | 0.0533716 | 0.0044584 | 0.7296589 | 0.0892447 |
| spareribs.1 | 0.0056260 | 0.0010561 | 0.3730575 | 0.0606631 | 0.0000000 | 0.0006326 | 0.0000001 | 0.0419500 | 0.0094548 | 0.0008160 | 0.6269423 | 0.0801249 |
| picnic.1 | 0.0118596 | 0.0038481 | 0.1512639 | 0.0463930 | 0.0000271 | 0.0024236 | 0.0003453 | 0.0309173 | 0.0665167 | 0.0049817 | 0.8483908 | 0.0778800 |
gb1<-gb.meatraits$last_lum.1
varcomp(gb1)
## Estimate StdError prop.var se
## G 11.69689 2.090714 0.4002318 0.05708301
## In 17.52840 1.179894 0.5997682 0.06192753
# likelihood additive animal model
gb1$llik
## [1] -1866.318
# likelihood dominance animal model
gbdomeff.meatraits$last_lum.1$llik
## [1] -1865.9
# LRT
-2*((-1866.318)-(-1865.9))
## [1] 0.836
# p-value
pchisq(0.836,df = 1,lower.tail = F)
## [1] 0.3605433
gb2<-gb.meatraits$bf10_22wk.1
varcomp(gb2)
## Estimate StdError prop.var se
## G 7.445604 1.3822399 0.3764104 0.05670196
## In 12.334942 0.8161379 0.6235896 0.06261859
# likelihood additive animal model
gb2$llik
## [1] -1703.51
# likelihood dominance animal model
gbdomeff.meatraits$bf10_22wk.1$llik
## [1] -1700.825
# LRT
-2*((-1703.51)-(-1700.825))
## [1] 5.37
# p-value
pchisq(5.37,df = 1,lower.tail = F)
## [1] 0.02048598