Introduction

This code summarizes information about the gene FADS1.

This gene encodes a protein that is part of the fatty acid desaturase gene family, and these genes regulate the unsaturation of fatty acids. Diseases associated with FADS1 include Lipid Metabolism Disorder and Fetal Akinesia Deformation Sequence 4.

This code also generates alignments and a phylogeneitc tree to indicating the evolutionary relationship betweeen the human version of the gene and its homologs in other species.

Resources / References

Key information use to make this script can be found here: * Refseq Gene: https://www.ncbi.nlm.nih.gov/gene/3992 * Refseq Homologene: https://www.ncbi.nlm.nih.gov/homologene/?term=Homo+sapiens+FADS1

Other interesting resources and online tools include: * REPPER: https://toolkit.tuebingen.mpg.de/jobs/7803820 * Sub-cellular locations prediction: https://wolfpsort.hgc.jp/

Preparation

Download and load necessary packages from Bioconductor

library(BiocManager)
## Bioconductor version '3.13' is out-of-date; the current release version '3.14'
##   is available with R version '4.1'; see https://bioconductor.org/install
library(drawProteins)

# github packages
library(compbio4all)
library(ggmsa)
## Registered S3 methods overwritten by 'ggalt':
##   method                  from   
##   grid.draw.absoluteGrob  ggplot2
##   grobHeight.absoluteGrob ggplot2
##   grobWidth.absoluteGrob  ggplot2
##   grobX.absoluteGrob      ggplot2
##   grobY.absoluteGrob      ggplot2
# CRAN packages
library(rentrez)
library(seqinr)
library(ape)
## 
## Attaching package: 'ape'
## The following objects are masked from 'package:seqinr':
## 
##     as.alignment, consensus
library(pander)

library(ggplot2)

# Bioconductor packages
library(drawProteins)
library(msa)
## Loading required package: Biostrings
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
## 
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: XVector
## Loading required package: GenomeInfoDb
## 
## Attaching package: 'Biostrings'
## The following object is masked from 'package:ape':
## 
##     complement
## The following object is masked from 'package:seqinr':
## 
##     translate
## The following object is masked from 'package:base':
## 
##     strsplit
## 
## Attaching package: 'msa'
## The following object is masked from 'package:BiocManager':
## 
##     version
## Biostrings
library(Biostrings)


library(HGNChelper)

Accession Number Table

#                RefSeq           Uniprot PDB  sci name         common name gene name

fads1_table<-c("NP_037534"   , "A0A0A0MR51","NA","Homo sapiens" , "Human", "FADS1",
               "XP_001150290", "H2R2R9","NA","Pan troglodytes" , "Chimpansee", "FADS1",
               "XP_002699331", "UPI0001D56C35","NA","Bos taurus" , "Hybrid Cattle", "FADS1",
               "NP_666206", "UPI00000211B7","NA","Mus musculus" , "Mouse", "Fads1",
               "NP_445897", "UPI00000E8549","NA","Rattus norvegicus" , "Rat", "Fads1",
               "XP_421052", "UPI0000E805B3","NA","Gallus gallus" , "Chicken", "Fads1",
               "XP_002943012", "UPI00034F8DFC","NA","Xenopus tropicalis" , "Western clawed frog", "fads1",
               "XP_010709579", "UPI000938BD5F","NA","Meleagris gallopavo" , "Turkey", "FADS1",
               "XP_009287621", "UPI0004F4B077","NA","Aptenodytes forsteri" , "Emperor penguin", "FADS1",
               "XP_004714995", "UPI000333EC69","NA","Echinops telfairi" , "Hedgehog", "FADS1" )
# convert the table above into a matrix
fads1_matrix <- matrix(fads1_table, nrow = 10, byrow = TRUE)
# convert matrix into a dataframe
fads1_df <- as.data.frame(fads1_matrix)
# add column names to the dataframe
colnames(fads1_df) <- c("ncbi.protein.accession", "UniProt.id", "PDB",  "species", "common.name")

The Finished Table

pander::pander(fads1_df)
Table continues below
ncbi.protein.accession UniProt.id PDB species
NP_037534 A0A0A0MR51 NA Homo sapiens
XP_001150290 H2R2R9 NA Pan troglodytes
XP_002699331 UPI0001D56C35 NA Bos taurus
NP_666206 UPI00000211B7 NA Mus musculus
NP_445897 UPI00000E8549 NA Rattus norvegicus
XP_421052 UPI0000E805B3 NA Gallus gallus
XP_002943012 UPI00034F8DFC NA Xenopus tropicalis
XP_010709579 UPI000938BD5F NA Meleagris gallopavo
XP_009287621 UPI0004F4B077 NA Aptenodytes forsteri
XP_004714995 UPI000333EC69 NA Echinops telfairi
common.name NA
Human FADS1
Chimpansee FADS1
Hybrid Cattle FADS1
Mouse Fads1
Rat Fads1
Chicken Fads1
Western clawed frog fads1
Turkey FADS1
Emperor penguin FADS1
Hedgehog FADS1

Data Preparation

Downloading Sequences

All sequences were downloaded using a wrapper compbio4all::entrez_fetch_list() which uses rentrez::entrez_fetch() to access NCBI databases.

fads1_list <- compbio4all::entrez_fetch_list(db = "protein",
                                             id = fads1_df$ncbi.protein.accession,
                                             rettype = "fasta")

Number of FASTA files obtained:

length(fads1_list)
## [1] 10

The first entry:

fads1_list[[1]]
## [1] ">NP_037534.5 acyl-CoA (8-3)-desaturase [Homo sapiens]\nMGTRAARPAGLPCGAENPARRRLALGARQQIHSWSPRTPSTRLTAPAGPARGVARPAMAPDPVAAETAAQ\nGPTPRYFTWDEVAQRSGCEERWLVIDRKVYNISEFTRRHPGGSRVISHYAGQDATDPFVAFHINKGLVKK\nYMNSLLIGELSPEQPSFEPTKNKELTDEFRELRATVERMGLMKANHVFFLLYLLHILLLDGAAWLTLWVF\nGTSFLPFLLCAVLLSAVQAQAGWLQHDFGHLSVFSTSKWNHLLHHFVIGHLKGAPASWWNHMHFQHHAKP\nNCFRKDPDINMHPFFFALGKILSVELGKQKKKYMPYNHQHKYFFLIGPPALLPLYFQWYIFYFVIQRKKW\nVDLAWMITFYVRFFLTYVPLLGLKAFLGLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNMDWVSTQLQAT\nCNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSLCAKHGIEYQSKPLLSAFADIIHSLKES\nGQLWLDAYLHQ\n\n"

Initial data cleaning

Remove FASTA Header

for(i in 1:length(fads1_list)){
  fads1_list[[i]] <- compbio4all::fasta_cleaner(fads1_list[[i]], parse = F)
}

General Protein Information

Protein Diagram

fads1_json  <- drawProteins::get_features("A0A0A0MR51")
## [1] "Download has worked"
is(fads1_json)
## [1] "list"             "vector"           "list_OR_List"     "vector_OR_Vector"
## [5] "vector_OR_factor"

Raw data is converted into a dataframe

fads1_draw_df <- drawProteins::feature_to_dataframe(fads1_json)
is(fads1_draw_df)
## [1] "data.frame"       "list"             "oldClass"         "vector"          
## [5] "list_OR_List"     "vector_OR_Vector" "vector_OR_factor"

Making the drawing

my_canvas <- draw_canvas(fads1_draw_df)
my_canvas <- draw_chains(my_canvas, fads1_draw_df, label_size = 2.5)
my_canvas <- draw_recept_dom(my_canvas, fads1_draw_df)
my_canvas

Drawing Dotplot

Prepare data

fads1_vector   <- compbio4all::fasta_cleaner(fads1_list[1], parse = T)

dotPlot(fads1_vector, fads1_vector)

Investigating Different Dotplot Settings

# set up 2 x 2 grid, and make margins
par(mfrow = c(2,2), 
    mar = c(0,0,2,1))

# plot 1: Defaults
dotPlot(fads1_vector, fads1_vector, 
        wsize = 1, 
        nmatch = 1, 
        main = "Default Settings")

# plot 2 size = 10, nmatch = 1
dotPlot(fads1_vector, fads1_vector, 
        wsize = 10, 
        nmatch = 1, 
        main = "size = 10, nmatch = 1")

# plot 3: size = 10, nmatch = 5
dotPlot(fads1_vector, fads1_vector, 
        wsize = 10, 
        nmatch = 5, 
        main = "size = 10, nmatch = 5")

# plot 4: size = 20, nmatch = 5
dotPlot(fads1_vector, fads1_vector, 
        wsize = 20,
        nmatch = 5,
        main = "size = 20, nmatch = 5")

# reset par() - run this or other plots will be small!
par(mfrow = c(1,1), 
    mar = c(4,4,4,4))

Best Settings Found

dotPlot(fads1_vector, fads1_vector, 
        wsize = 20,
        nmatch = 5,
        main = "Best Settings: size = 20, nmatch = 5")

Protein Properties Compiled from Databases

Note: There was no information available on the presence of disorganized regions or tandem repeats.

Source Protein Property Link
PFAM There are two interesting domains. The first is a Cyt-b5 domain from AA 21-94. The second is a FA desaturase domain from AA 155-418. http://pfam.xfam.org/protein/FADS1_HUMAN
Uniprot FADS1 is a transmembrane protein found in the Endoplasmic reticulum and Mitochondrion https://www.uniprot.org/uniprot/O60427
Alphafold There was no direct entry in alphafold for FADS1, but through analyzing the sequence, Alphafold predicts with high confidence that the protein coded for by FADS1 is made almost entirely of alpha helices https://alphafold.ebi.ac.uk/entry/O60427

Subcellular Location - FADS1 is found in the endoplasmic reticulum and the mitochondrion.

First, we need the data from Chou and Zhang (1994) Table 5.

# get string of sequence
aa.1.1 <- c("A","R","N","D","C","Q","E","G","H","I",
            "L","K","M","F","P","S","T","W","Y","V")
# alpha proteins
alpha <- c(285, 53, 97, 163, 22, 67, 134, 197, 111, 91, 
           221, 249, 48, 123, 82, 122, 119, 33, 63, 167)
# beta proteins
beta <- c(203, 67, 139, 121, 75, 122, 86, 297, 49, 120, 
          177, 115, 16, 85, 127, 341, 253, 44, 110, 229)
# alpha + beta
a.plus.b <- c(175, 78, 120, 111, 74, 74, 86, 171, 33, 93,
              110, 112, 25, 52, 71, 126, 117, 30, 108, 123)
# alpha/beta
a.div.b <- c(361, 146, 183, 244, 63, 114, 257, 377, 107, 239, 
             339, 321, 91, 158, 188, 327, 238, 72, 130, 378)
pander(data.frame(aa.1.1, alpha, beta, a.plus.b, a.div.b))
aa.1.1 alpha beta a.plus.b a.div.b
A 285 203 175 361
R 53 67 78 146
N 97 139 120 183
D 163 121 111 244
C 22 75 74 63
Q 67 122 74 114
E 134 86 86 257
G 197 297 171 377
H 111 49 33 107
I 91 120 93 239
L 221 177 110 339
K 249 115 112 321
M 48 16 25 91
F 123 85 52 158
P 82 127 71 188
S 122 341 126 327
T 119 253 117 238
W 33 44 30 72
Y 63 110 108 130
V 167 229 123 378

Then, we need to convert the data to frequencies.

# calculate proportions 
alpha.prop <- alpha/sum(alpha)
beta.prop <- beta/sum(beta)
a.plus.b.prop <- a.plus.b/sum(a.plus.b)
a.div.b <- a.div.b/sum(a.div.b)

aa.prop <- data.frame(alpha.prop,
                      beta.prop,
                      a.plus.b.prop,
                      a.div.b)
#row labels
row.names(aa.prop) <- aa.1.1

pander::pander(aa.prop)
  alpha.prop beta.prop a.plus.b.prop a.div.b
A 0.1165 0.07313 0.09264 0.08331
R 0.02166 0.02414 0.04129 0.03369
N 0.03964 0.05007 0.06353 0.04223
D 0.06661 0.04359 0.05876 0.05631
C 0.008991 0.02702 0.03917 0.01454
Q 0.02738 0.04395 0.03917 0.02631
E 0.05476 0.03098 0.04553 0.05931
G 0.08051 0.107 0.09052 0.08701
H 0.04536 0.01765 0.01747 0.02469
I 0.03719 0.04323 0.04923 0.05516
L 0.09031 0.06376 0.05823 0.07824
K 0.1018 0.04143 0.05929 0.07408
M 0.01962 0.005764 0.01323 0.021
F 0.05027 0.03062 0.02753 0.03646
P 0.03351 0.04575 0.03759 0.04339
S 0.04986 0.1228 0.0667 0.07547
T 0.04863 0.09114 0.06194 0.05493
W 0.01349 0.01585 0.01588 0.01662
Y 0.02575 0.03963 0.05717 0.03
V 0.06825 0.08249 0.06511 0.08724

First, we need to get the sequence for FADS1, clean it, and find out how many of each amino acid there are.

# download
NP_037534 <- rentrez::entrez_fetch(id = "NP_037534.3",
                                     db = "protein",
                                     rettype = "fasta")

# clean and turn into vector
NP_037534 <- compbio4all::fasta_cleaner(NP_037534, parse = TRUE)

# get frequency table
NP_037534.freq.table <- table(NP_037534)/length(NP_037534)

Function to convert a table into a vector.

table_to_vector <- function(table_x){
  table_names <- attr(table_x, "dimnames")[[1]]
  table_vect <- as.vector(table_x)
  names(table_vect) <- table_names
  return(table_vect)
}
FADS1.human.aa.freq <- table_to_vector(NP_037534.freq.table)

Check for presence of U, an unknown amino acid.

aa.names <- names(FADS1.human.aa.freq)
i.U <- which(aa.names == "U")
aa.names[i.U]
## character(0)

There are no U in data, but lets just make sure.

FADS1.human.aa.freq[i.U]
## named numeric(0)

Add data on my focal protein to the amino acid frequency table.

aa.prop$FADS1.human.aa.freq <- FADS1.human.aa.freq
pander::pander(aa.prop)
  alpha.prop beta.prop a.plus.b.prop a.div.b FADS1.human.aa.freq
A 0.1165 0.07313 0.09264 0.08331 0.08583
R 0.02166 0.02414 0.04129 0.03369 0.01198
N 0.03964 0.05007 0.06353 0.04223 0.03393
D 0.06661 0.04359 0.05876 0.05631 0.03593
C 0.008991 0.02702 0.03917 0.01454 0.07385
Q 0.02738 0.04395 0.03917 0.02631 0.05589
E 0.05476 0.03098 0.04553 0.05931 0.06188
G 0.08051 0.107 0.09052 0.08701 0.04192
H 0.04536 0.01765 0.01747 0.02469 0.0499
I 0.03719 0.04323 0.04923 0.05516 0.1138
L 0.09031 0.06376 0.05823 0.07824 0.02595
K 0.1018 0.04143 0.05929 0.07408 0.03593
M 0.01962 0.005764 0.01323 0.021 0.06387
F 0.05027 0.03062 0.02753 0.03646 0.04391
P 0.03351 0.04575 0.03759 0.04339 0.0519
S 0.04986 0.1228 0.0667 0.07547 0.0519
T 0.04863 0.09114 0.06194 0.05493 0.04192
W 0.01349 0.01585 0.01588 0.01662 0.05389
Y 0.02575 0.03963 0.05717 0.03 0.03393
V 0.06825 0.08249 0.06511 0.08724 0.03194

Functions to Calculate Similarities

Two custom functions are needed: one to calculate correlates between two columns of our table, and one to calculate correlation similarities.

# Corrleation used in Chou adn Zhange 1992.
chou_cor <- function(x,y){
  numerator <- sum(x*y)
denominator <- sqrt((sum(x^2))*(sum(y^2)))
result <- numerator/denominator
return(result)
}

# Cosine similarity used in Higgs and Attwood (2005). 
chou_cosine <- function(z.1, z.2){
  z.1.abs <- sqrt(sum(z.1^2))
  z.2.abs <- sqrt(sum(z.2^2))
  my.cosine <- sum(z.1*z.2)/(z.1.abs*z.2.abs)
  return(my.cosine)
}

Calculate correlation between each column

corr.alpha <- chou_cor(aa.prop[,5], aa.prop[,1])
corr.beta  <- chou_cor(aa.prop[,5], aa.prop[,2])
corr.apb   <- chou_cor(aa.prop[,5], aa.prop[,3])
corr.adb   <- chou_cor(aa.prop[,5], aa.prop[,4])

Calculate cosine similarity

cos.alpha <- chou_cosine(aa.prop[,5], aa.prop[,1])
cos.beta  <- chou_cosine(aa.prop[,5], aa.prop[,2])
cos.apb   <- chou_cosine(aa.prop[,5], aa.prop[,3])
cos.adb   <- chou_cosine(aa.prop[,5], aa.prop[,4])

Calculate distance. Note: we need to flip the dataframe on its side using a command called t()

aa.prop.flipped <- t(aa.prop)
round(aa.prop.flipped,2)
##                        A    R    N    D    C    Q    E    G    H    I    L    K
## alpha.prop          0.12 0.02 0.04 0.07 0.01 0.03 0.05 0.08 0.05 0.04 0.09 0.10
## beta.prop           0.07 0.02 0.05 0.04 0.03 0.04 0.03 0.11 0.02 0.04 0.06 0.04
## a.plus.b.prop       0.09 0.04 0.06 0.06 0.04 0.04 0.05 0.09 0.02 0.05 0.06 0.06
## a.div.b             0.08 0.03 0.04 0.06 0.01 0.03 0.06 0.09 0.02 0.06 0.08 0.07
## FADS1.human.aa.freq 0.09 0.01 0.03 0.04 0.07 0.06 0.06 0.04 0.05 0.11 0.03 0.04
##                        M    F    P    S    T    W    Y    V
## alpha.prop          0.02 0.05 0.03 0.05 0.05 0.01 0.03 0.07
## beta.prop           0.01 0.03 0.05 0.12 0.09 0.02 0.04 0.08
## a.plus.b.prop       0.01 0.03 0.04 0.07 0.06 0.02 0.06 0.07
## a.div.b             0.02 0.04 0.04 0.08 0.05 0.02 0.03 0.09
## FADS1.human.aa.freq 0.06 0.04 0.05 0.05 0.04 0.05 0.03 0.03

Get the distance matrix

dist(aa.prop.flipped, method = "euclidean")
##                     alpha.prop  beta.prop a.plus.b.prop    a.div.b
## beta.prop           0.13342098                                    
## a.plus.b.prop       0.09281824 0.08289406                         
## a.div.b             0.06699039 0.08659174    0.06175113           
## FADS1.human.aa.freq 0.16832404 0.17524935    0.14129167 0.15102886

Individual Distances using dist()

dist.alpha <- dist((aa.prop.flipped[c(1,5),]),  method = "euclidean")
dist.beta  <- dist((aa.prop.flipped[c(2,5),]),  method = "euclidean")
dist.apb   <- dist((aa.prop.flipped[c(3,5),]),  method = "euclidean")
dist.adb  <- dist((aa.prop.flipped[c(4,5),]), method = "euclidean")

Compile the information. Rounding makes it easier to read

# fold types
fold.type <- c("alpha","beta","alpha plus beta", "alpha/beta")

# data
corr.sim <- round(c(corr.alpha,corr.beta,corr.apb,corr.adb),5)
cosine.sim <- round(c(cos.alpha,cos.beta,cos.apb,cos.adb),5)
Euclidean.dist <- round(c(dist.alpha,dist.beta,dist.apb,dist.adb),5)

# summary
sim.sum <- c("","","most.sim","")
dist.sum <- c("","","min.dist","")

df <- data.frame(fold.type,
           corr.sim ,
           cosine.sim ,
           Euclidean.dist ,
           sim.sum ,
           dist.sum )

Display output

pander::pander(df)
fold.type corr.sim cosine.sim Euclidean.dist sim.sum dist.sum
alpha 0.7771 0.7771 0.1683
beta 0.7622 0.7622 0.1752
alpha plus beta 0.8321 0.8321 0.1413 most.sim min.dist
alpha/beta 0.8118 0.8118 0.151

Percent Identity Comparisons

Data preparation

Convert all FASTA records intro entries in a single vector. FASTA entries are contained in a list produced at the beginning of the script. They were cleaned to remove the header and newline characters.

names(fads1_list)
##  [1] "NP_037534"    "XP_001150290" "XP_002699331" "NP_666206"    "NP_445897"   
##  [6] "XP_421052"    "XP_002943012" "XP_010709579" "XP_009287621" "XP_004714995"
length(fads1_list)
## [1] 10

Each entry is a full entry with no spaces or parsing, and no header.

fads1_list[1]
## $NP_037534
## [1] "MGTRAARPAGLPCGAENPARRRLALGARQQIHSWSPRTPSTRLTAPAGPARGVARPAMAPDPVAAETAAQGPTPRYFTWDEVAQRSGCEERWLVIDRKVYNISEFTRRHPGGSRVISHYAGQDATDPFVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKNKELTDEFRELRATVERMGLMKANHVFFLLYLLHILLLDGAAWLTLWVFGTSFLPFLLCAVLLSAVQAQAGWLQHDFGHLSVFSTSKWNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINMHPFFFALGKILSVELGKQKKKYMPYNHQHKYFFLIGPPALLPLYFQWYIFYFVIQRKKWVDLAWMITFYVRFFLTYVPLLGLKAFLGLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNMDWVSTQLQATCNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSLCAKHGIEYQSKPLLSAFADIIHSLKESGQLWLDAYLHQ"

To convert each entry into a vector, we can just use the fasta cleaner function.

fads1_vector <- fads1_list
for(i in 1:length(fads1_vector)){
  fads1_vector[[i]] <- fasta_cleaner(fads1_vector[[i]], parse = T)
}

PID Table

Pairwise Alignments for human(1), chimpanzee(2), mouse(4), and chicken(6).

align01.02 <- pairwiseAlignment( fads1_list[[1]], fads1_list[[2]] )
align01.04 <- pairwiseAlignment( fads1_list[[1]], fads1_list[[4]] )
align01.06 <- pairwiseAlignment( fads1_list[[1]], fads1_list[[6]] )
align02.04 <- pairwiseAlignment( fads1_list[[2]], fads1_list[[4]] )
align02.06 <- pairwiseAlignment( fads1_list[[2]], fads1_list[[6]] )
align04.06 <- pairwiseAlignment( fads1_list[[4]], fads1_list[[6]] )
Biostrings::pid(align01.02)
## [1] 99.8004
Biostrings::pid(align01.04)
## [1] 79.28287
Biostrings::pid(align01.06)
## [1] 71.81996
Biostrings::pid(align02.04)
## [1] 79.28287
Biostrings::pid(align02.06)
## [1] 71.56673
Biostrings::pid(align04.06)
## [1] 70.27559

Build Matrix

pids <- c(1,                  NA,     NA,     NA,
          pid(align01.02),          1,     NA,     NA,
          pid(align01.04), pid(align02.04),      1,     NA,
          pid(align01.06), pid(align02.06), pid(align04.06), 1)

mat <- matrix(pids, nrow = 4, byrow = T)
row.names(mat) <- c("Human","Chimpanzee","Mouse","Chicken")   
colnames(mat) <- c("Human","Chimpanzee","Mouse","Chicken")  
pander::pander(mat)  
  Human Chimpanzee Mouse Chicken
Human 1 NA NA NA
Chimpanzee 99.8 1 NA NA
Mouse 79.28 79.28 1 NA
Chicken 71.82 71.57 70.28 1

PID Methods Comparison

A comparison of PID calculation methods for the human vs chimpanzee alignment.

method <- c("PID1", "PID2","PID3","PID4")
denominator <- c("(aligned positions + internal gap positions)", 
                 "(aligned positions)",
                 "(length shorter sequence)",
                 "(average length of the two sequences)")
PID <- c(pid(align01.02, type = "PID1"), 
         pid(align01.02, type = "PID2"),
         pid(align01.02, type = "PID3"),
         pid(align01.02, type = "PID4")
         )
# make the dataframe
pid_comparison <- data.frame(method, PID, denominator)

# display the dataframe
pander::pander(pid_comparison)
method PID denominator
PID1 99.8 (aligned positions + internal gap positions)
PID2 99.8 (aligned positions)
PID3 99.8 (length shorter sequence)
PID4 99.8 (average length of the two sequences)

Multiple Sequence Alignment

MSA Data Preparation

For use with R bioinformatics tools we need to convert our named vector to a string set using Biostrings::AAStringSet(). Note the _ss tag at the end of the object we’re assigning the output to, which designates this as a string set.

fads1_vector_ss <- Biostrings::AAStringSet(unlist(fads1_list))

Building Multiple Sequence Alignment (MSA)

fads1_align <- msa(fads1_vector_ss,
                     method = "ClustalW")
## use default substitution matrix

Cleaning / setting up an MSA

msa produces a species MSA objects

class(fads1_align)
## [1] "MsaAAMultipleAlignment"
## attr(,"package")
## [1] "msa"
is(fads1_align)
## [1] "MsaAAMultipleAlignment" "AAMultipleAlignment"    "MsaMetaData"           
## [4] "MultipleAlignment"

Default output of MSA

fads1_align
## CLUSTAL 2.1  
## 
## Call:
##    msa(fads1_vector_ss, method = "ClustalW")
## 
## MsaAAMultipleAlignment with 10 rows and 508 columns
##      aln                                                   names
##  [1] MLNARRPHAAPEGAGARQRGPMGVE...LTAFADIVYSLKDSGELWLDAYLHK XP_421052
##  [2] -------------------------...LTAFADIVYSLKDSGELWLDAYLHK XP_010709579
##  [3] -------------------------...LTAFADIVHSLKDSGDLWLDAYLHK XP_009287621
##  [4] -MGTRAARPAGLPCGAENPARRRLA...LSAFADIIHSLKESGQLWLDAYLHQ NP_037534
##  [5] -MGTRAARPAGLPCGAENPALRRLA...LSAFADIIHSLKESGQLWLDAYLHQ XP_001150290
##  [6] -------------------------...FSAFADIVHSLKESGQLWLDAYLHQ XP_002699331
##  [7] -------------------------...LTAFADIVYSLKESGQLWLDAYLHQ NP_666206
##  [8] -------------------------...LTAFADIVYSLKESGQLWLDAYLHQ NP_445897
##  [9] -------------------------...LSAFADIVYSLKESGQLWLDAYLHQ XP_004714995
## [10] -------------------------...FTAFADIVHSLRESGELWLDAYLHK XP_002943012
##  Con -------------------------...LTAFADIV?SLKESGQLWLDAYLHQ Consensus

We need to change the class of the alignment

class(fads1_align)
## [1] "MsaAAMultipleAlignment"
## attr(,"package")
## [1] "msa"
class(fads1_align) <- "AAMultipleAlignment"
class(fads1_align)
## [1] "AAMultipleAlignment"

Convert to seqinr format

fads1_align_seqinr <- msaConvert(fads1_align, 
                                   type = "seqinr::alignment")
class(fads1_align_seqinr)
## [1] "alignment"

MSA output

compbio4all::print_msa(fads1_align_seqinr)
## [1] "MLNARRPHAAPEGAGARQRGPMGVELRREGRVLASRRANERRASGAARNRRLRPSAAGGL 0"
## [1] "------------------------------------------------------------ 0"
## [1] "------------------------------------------------------------ 0"
## [1] "-MGTRAARPAGLPCGAENPARRRLALGARQQIHSWSPRTPSTRLTAPAGPARGVARPAMA 0"
## [1] "-MGTRAARPAGLPCGAENPALRRLALGARQQIHSWSPRTPSTRLTAPAGPARGVARPAMA 0"
## [1] "----------------------------------------------------------MA 0"
## [1] "----------------------------------------------------------MA 0"
## [1] "----------------------------------------------------------MA 0"
## [1] "----------------------------------------------------------MA 0"
## [1] "------------------------------------------------------------ 0"
## [1] " "
## [1] "GPAVGRAMEERGAEPEQRRFTWEEIAQRTGRGPAADERWLVIDRKVYDISRFHRRHPGGS 0"
## [1] "------------------------------------------------------------ 0"
## [1] "------------------------MIQR-----------IQLQMIVYGVKK--------- 0"
## [1] "PDPVAA--ETAAQGPTPRYFTWDEVAQRSGCE----ERWLVIDRKVYNISEFTRRHPGGS 0"
## [1] "PDPVAA--ETAAQGPTPRYFTWDEVAQRSGCE----ERWLVIDRKVYNISEFTRRHPGGS 0"
## [1] "P-------ETPAQGPTPRYFTWDEVAQRSGREK---ERWLVIDRKVYNISEFVRRHPGGS 0"
## [1] "PDPVPTPGPASAQLRQTRYFTWEEVAQRSGREK---ERWLVIDRKVYNISDFSRRHPGGS 0"
## [1] "PDPVQTPDPASAQLRQMRYFTWEEVAQRSGREK---ERWLVIDRKVYNISDFSRRHPGGS 0"
## [1] "PDPKAA--EPPVVGSGQRYFTWDEVAQRSGREK---ERWLVIDRKVYNISEFVRRHPGGS 0"
## [1] "----------MGSTKELTCYTWEEVKKRCTRE----ERWLVINRKVYDITRFVNIHPGGP 0"
## [1] " "
## [1] "RVISHYAGQDATDPFIAFHLDKTLVKKYMSPLLIGELAPDQPSFEPSKNKKLVEDFRELR 0"
## [1] "----------------------------MSPLLIGELAPDQPSFEPSKNKKLVEDFRELR 0"
## [1] "-----------ADPFIAFHLDKALVRKYMSPLLIGELAPDQPSFEPSKNKKLVEDFRELR 0"
## [1] "RVISHYAGQDATDPFVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKNKELTDEFRELR 0"
## [1] "RVISHYAGQDATDPFVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKNKELTDEFRELR 0"
## [1] "RVISHYAGQDATDPFVAFHINKGLVRKYMNSLLIGELSPEQPSFEPTKNKELIHEFRELR 0"
## [1] "RVISHYAGQDATDPFVAFHINKGLVRKYMNSLLIGELAPEQPSFEPTKNKALTDEFRELR 0"
## [1] "RVISHYAGQDATDPFVAFHINKGLVRKYMNSLLIGELAPEQPSFEPTKNKALTDEFRELR 0"
## [1] "RVISHYAGQDATDPFTAFHIDKALVRKYMNSLLIGELSPEQPSFEPTKNKELVDEFRELR 0"
## [1] "RVISHYAGQDATDPFVAFHIDQELVKKRMCCLLIGELAPGEPSIEPFKDAAMVEDFRALR 0"
## [1] " "
## [1] "ATVEKMGLLKPNRTFFLLHLCHILALDVAAWLTIWYFGSSTVPFLFSALLLGTVQAQAGW 0"
## [1] "ATVEKMGLLKPNRTFFLLHLCHILVLDVAAWLTIWYFGSSTMPFLFSALLLGTVQAQAGW 0"
## [1] "ATVEKMGLLNPNRTFFILYLCHILVLDVAAWLTIWYFGASTVPFLFSAVLLGTVQAQAGW 0"
## [1] "ATVERMGLMKANHVFFLLYLLHILLLDGAAWLTLWVFGTSFLPFLLCAVLLSAVQAQAGW 0"
## [1] "ATVERMGLMKANHVFFLLYLLHILLLDGAAWLTLWVFGTSFLPFLLCAVLLSAVQAQAGW 0"
## [1] "ATVERMGLMKANPVFFLLYLLHILLLDVAAWLTLWLFGTSLVPFLLCSVLLSIVQAQAGW 0"
## [1] "ATVERMGLMKANHLFFLVYLLHILLLDVAAWLTLWIFGTSLVPFILCAVLLSTVQAQAGW 0"
## [1] "ATVERMGLMKANHLFFLFYLLHILLLDVAAWLTLWIFGTSLVPFTLCAVLLSTVQAQAGW 0"
## [1] "ASVEQMGLMKPNLGFFLLYLLHILLMDVMAWLVLWSFGMSLVPFLLSAVLLSAVQAQAGW 0"
## [1] "TTVEQMGLFHPSKLFFFVTLLHVLLLDVLAYVTMYYGGTSLISLLVTALLLATVQAQAGW 0"
## [1] " "
## [1] "LQHDFGHLSVFSESKWNHWVHKFVIGHLKGAPASWWNHLHFQHHAKPNCFRKDPDVNMHP 0"
## [1] "LQHDFGHLSVFSKSKWNHWVHKFVIGHLKGAPASWWNHLHFQHHAKPNCFRKDPDVNMHP 0"
## [1] "LQHDFGHLSVFSKSRWNHWVHKFVIGHLKGAPASWWNHLHFQHHAKPNCFRKDPDVNMHP 0"
## [1] "LQHDFGHLSVFSTSKWNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINMHP 0"
## [1] "LQHDFGHLSVFSTSKWNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINMHP 0"
## [1] "LQHDFGHLSVFGTSKWNHLLHHFVIGHLKGAPASWWNHLHFQHHAKPNCFRKDPDINMHP 0"
## [1] "LQHDFGHLSVFGTSTWNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINMHP 0"
## [1] "LQHDFGHLSVFSTSTWNHLVHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINMHP 0"
## [1] "LQHDFGHLSVFSTSKWNHLIHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDLNMHP 0"
## [1] "LQHDFGHLSVFSRSSWNHVVHQFVIGHLKGAPASWWNHLHFQHHAKPNCFRKDPDINMHP 0"
## [1] " "
## [1] "LFFALGKKLSVELGEQKKKFMPYNHQHKYFFIIGPPALVPLYFQWYIFYFVVQRKQWVDL 0"
## [1] "LFFALGKKLSVELGEQKKKFMPYNHQHKYFFIIGPPALVPLYFQWYIFYFVVQRKKWVDL 0"
## [1] "LFFALGKTLSVELGVQKKKFMPYNHQHKYFFIIGPPALVPLYFQWYIFYFVVQRKQWVDL 0"
## [1] "FFFALGKILSVELGKQKKKYMPYNHQHKYFFLIGPPALLPLYFQWYIFYFVIQRKKWVDL 0"
## [1] "FFFALGKILSVELGKQKKKYMPYNHQHKYFFLIGPPALLPLYFQWYIFYFVIQRKKWVDL 0"
## [1] "FFFALGKVLSVELGKQKKKYMPYNHQHKYFFLIGPPALLPVYFQWYIFYFVIHRKKWVDL 0"
## [1] "LFFALGKVLPVELGREKKKHMPYNHQHKYFFLIGPPALLPLYFQWYIFYFVVQRKKWVDL 0"
## [1] "LFFALGKVLSVELGKEKKKHMPYNHQHKYFFLIGPPALLPLYFQWYIFYFVVQRKKWVDL 0"
## [1] "FFFTLGKILSVELGKQKKKYMPYNHQHKYFCLIGPPALVIFYFQWYIFYFAVQRKKWVDL 0"
## [1] "LLFALGKKLSVELGMKKKKYMPYNHQHKYFFFIGPPALIPVYFQWYIFYFAIRRKKWADL 0"
## [1] " "
## [1] "AWMLTFYIRFFLTYLPLLGVKGILGLHLLVRFIESNWFVWITQMNHIPMHIDYDKNVDWF 0"
## [1] "AWMLTFYIRFFLTYLPLLGVKGILGLHLLVRFIESNWFVWITQMNHIPMHIDYDKNVDWF 0"
## [1] "AWMLTFYIRFFLTYLPLLGVKGILGLHLLVRFIESNWFVWITQMNHIPMHIDYDKNVDWF 0"
## [1] "AWMITFYVRFFLTYVPLLGLKAFLGLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNMDWV 0"
## [1] "AWMITFYVRFFLTYVPLLGLKAFLGLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNMDWV 0"
## [1] "AWMITFYVRIFLTYVPLLGLKGFLGLVFMVRFLESNWFVWVTQMNHIPMHIDHDRNMDWV 0"
## [1] "AWMLSFYARIFFTYMPLLGLKGFLGLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNVDWV 0"
## [1] "AWMLSFYVRVFFTYMPLLGLKGLLCLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNVDWV 0"
## [1] "VWMLSFYARMALAYVPLVGLKGFLGLFLLVRFLESHWFVWVTQMNHIPMHIEYDQNKDWL 0"
## [1] "AWMISFYVRFGLCYIPFLGVSGTIALFMVVRFIESNWFVWVTQMNHIPMNIDYDQNKEWL 0"
## [1] " "
## [1] "STQLQATCNVRQSLFNDWFSGHLNFQIEHHLFPTMPRHNYWKVAPLVKSLCAKHGIEYHC 0"
## [1] "STQLQATCNVRQSFFNDWFSGHLNFQIEHHLFPTMPRHNYWKVAPLVKSLCAKHGIEYHC 0"
## [1] "STQLQATCNVHQSLFNDWFSGHLNFQIEHHLFPTMPRHNYWKVAPLVKSLCAKHGIEYQC 0"
## [1] "STQLQATCNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSLCAKHGIEYQS 0"
## [1] "STQLQATCNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSLCAKHGIEYQS 0"
## [1] "STQLQATCNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSLCAKHGIKYQS 0"
## [1] "STQLQATCNVHQSAFNNWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSLCAKYGIKYES 0"
## [1] "STQLQATCNVHQSAFNNWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSLCAKYGIKYES 0"
## [1] "STQLQATCNVHKSFFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVRSLCTKHGIKYQS 0"
## [1] "STQLQATCNVDQSLFNDWFSGHLNFQIEHHLFPTMPRHNYWKAAPLVRSLCKKYGIEYQS 0"
## [1] " "
## [1] "KPLLTAFADIVYSLKDSGELWLDAYLHK 32"
## [1] "KPLLTAFADIVYSLKDSGELWLDAYLHK 32"
## [1] "KPLLTAFADIVHSLKDSGDLWLDAYLHK 32"
## [1] "KPLLSAFADIIHSLKESGQLWLDAYLHQ 32"
## [1] "KPLLSAFADIIHSLKESGQLWLDAYLHQ 32"
## [1] "KPLFSAFADIVHSLKESGQLWLDAYLHQ 32"
## [1] "KPLLTAFADIVYSLKESGQLWLDAYLHQ 32"
## [1] "KPLLTAFADIVYSLKESGQLWLDAYLHQ 32"
## [1] "KPLLSAFADIVYSLKESGQLWLDAYLHQ 32"
## [1] "KPLFTAFADIVHSLRESGELWLDAYLHK 32"
## [1] " "

Finished MSA

Only displaying a small portion of the MSA so that it is readable.

ggmsa::ggmsa(fads1_align, start=100, end=150)

Distance Matrix

Make a distance matrix

fads1_dist <- seqinr::dist.alignment(fads1_align_seqinr, 
                                       matrix = "identity")

This produces a “dist” class object.

is(fads1_dist)
## [1] "dist"     "oldClass"
class(fads1_dist)
## [1] "dist"

Round for display

fads1_align_seqinr_rnd <- round(fads1_dist, 3)
fads1_align_seqinr_rnd
##              XP_421052 XP_010709579 XP_009287621 NP_037534 XP_001150290
## XP_010709579     0.118                                                 
## XP_009287621     0.272        0.204                                    
## NP_037534        0.544        0.438        0.468                       
## XP_001150290     0.544        0.438        0.468     0.045             
## XP_002699331     0.467        0.447        0.471     0.239        0.239
## NP_666206        0.473        0.438        0.468     0.332        0.332
## NP_445897        0.468        0.431        0.462     0.329        0.329
## XP_004714995     0.481        0.453        0.479     0.371        0.371
## XP_002943012     0.506        0.489        0.522     0.532        0.532
##              XP_002699331 NP_666206 NP_445897 XP_004714995
## XP_010709579                                              
## XP_009287621                                              
## NP_037534                                                 
## XP_001150290                                              
## XP_002699331                                              
## NP_666206           0.323                                 
## NP_445897           0.330     0.171                       
## XP_004714995        0.366     0.408     0.408             
## XP_002943012        0.526     0.528     0.521        0.539

Phylogenetic Tree of sequences

Building a phylogenetic tree from the distance matrix

# Note - not using rounded values
tree_subset <- nj(fads1_dist)

Plotting the phylogenetic tree

# plot tree
plot.phylo(tree_subset, main="Phylogenetic Tree", 
            #type = "unrooted", 
            use.edge.length = F)

# add label
mtext(text = "FADS1 family gene tree")