Abstract

For this analysis, we developed a statistical model for the global prediction of new COVID deaths for the top 10 countries based on the highest amount of deaths. A variety of supervised and unsupervised learning methods were used.

1. Intro

The COVID-19 virus has caused a global pandemic which has detrimentally affected the world causing loss of population and extreme use of various resources. Medical facilities resources have been exacerbated, labor forces have dwindled, and businesses have needed to adapt to wildly changing markets. The purpose of this project was to develop a statistical model for the global prediction of new COVID deaths for the top ten leading countries for benefit of global preparations and accommodations of physical, medical, and populous resources. Model evaluation was based on MSE comparison between models for prediction accuracy. Work for this group was divided equally among colleagues. Work was divided into four parts, data discovery and visualization, tree based methods, linear methods, and unsupervised methods. A number of models were tested and compared with the mentioned methods before deciding on the final working model. Our initial presumption is that tree methods will likely be the most accurate for this analysis. We are testing multiple models to see if other models may be more accurate than our initial thought. This may also prove to be incorrect, as a more complex model does not always mean more accurate predictions. There also is potential for certain models to over-fit due to variables tha directly impact new deaths included in models.

2. Method

The methodology in this analysis consisted of diagnosing a world issue, exploring data based around the issue, building various models to compare accuracy, and finally analyze model results for insights.

2.1 Data

Data was collected from one source using the code below to extract a csv file at the link “https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv”. This resource can be found through a browser at with the link “https://github.com/owid/covid-19-data”. The input data was filtered to the top 10 leading countries in deaths. Variables that were not scaled to thousands were appropriately changed to this scaling and variables that were scaled in another fashion which had a thousand counterpart were removed to reduce duplicated variables and model noise. Some other variables with unneeded information, such as excess_mortality_rate, were also removed for noise reduction.

Reading the initial data set and filtering

require(dplyr)

dataset <- read.csv("https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv", stringsAsFactors = T) %>%   select(-c(continent, location, weekly_icu_admissions, weekly_icu_admissions_per_million, weekly_hosp_admissions,
            weekly_hosp_admissions_per_million, hosp_patients_per_million, total_boosters_per_hundred, continent,
            location, weekly_icu_admissions, weekly_icu_admissions_per_million, weekly_hosp_admissions,
            weekly_hosp_admissions_per_million, icu_patients_per_million, total_deaths_per_million,
            new_deaths_per_million, new_tests, excess_mortality_cumulative, total_vaccinations_per_hundred,
            people_fully_vaccinated_per_hundred, new_vaccinations_smoothed_per_million, total_cases_per_million,
            new_people_vaccinated_smoothed_per_hundred, excess_mortality_cumulative_absolute, new_cases_per_million,
            excess_mortality_cumulative_per_million, excess_mortality_cumulative, excess_mortality, total_tests,
            people_vaccinated_per_hundred, new_deaths_smoothed_per_million, new_cases_smoothed_per_million,
            new_tests_smoothed, new_deaths_smoothed, reproduction_rate,
            new_tests_smoothed_per_thousand, tests_per_case, new_vaccinations_smoothed, tests_units,
            new_people_vaccinated_smoothed, new_cases_smoothed)) %>%
  filter(iso_code %in% c("USA", "IND", "BRA", "RUS", "GBR", "FRA", "TUR", "ITA", "COL", "DEU")) 


## Creating "by thousands" variable
dataset$total_cases_thousand = dataset$total_cases / 1000
dataset$new_cases_thousand = dataset$new_cases / 1000
dataset$new_deaths_thousand = dataset$new_deaths / 1000
dataset$icu_patients_thousand = dataset$icu_patients / 1000
dataset$hosp_patients_thousand = dataset$hosp_patients / 1000
dataset$total_vaccinations_thousand = dataset$total_vaccinations / 1000
dataset$people_vaccinated_thousand = dataset$people_vaccinated / 1000
dataset$people_fully_vaccinated_thousand = dataset$people_fully_vaccinated / 1000
dataset$total_boosters_thousand = dataset$total_boosters / 1000
dataset$new_vaccinations_thousand = dataset$new_vaccinations / 1000
dataset$population_thousand = dataset$population / 1000
dataset$total_deaths_thousand = dataset$total_deaths / 1000

# Remove old scales
dataset = subset(dataset, select = -c(total_cases, new_cases, new_deaths, icu_patients, hosp_patients,
                                       total_vaccinations, people_vaccinated, people_fully_vaccinated,
                                       total_boosters, new_vaccinations, population, total_deaths))  

Dates

dataset$date <- as.Date(dataset$date)

## Creating day of week variable and 

## Creating season variable (using astronimical start dates)



dataset <- mutate(dataset, day_of_week = as.factor(weekdays(date)),
                  season = as.factor(case_when(months(date) %in% c("March", "April", "May") ~ "Spring",
                                     months(date) %in% c("June", "July", "August") ~ "Summer",
                                     months(date) %in% c("September", "October", "November") ~ "Fall",
                                     months(date) %in% c("December", "January", "February") ~ "Winter")))

dataset$year <- factor(lubridate::year(dataset$date))

dataset$month <- factor(lubridate::month(dataset$date))



dataset <- dataset %>% replace(is.na(.), 0)

dataset$iso_code <- factor(dataset$iso_code)



no_date <- select(dataset, -date)

require(caTools)
require(rsample)

## Splitting the data

set.seed(101)


split <- rsample::initial_split(dataset, prop = 0.8, strata = "new_deaths_thousand")

train.dat <- rsample::training(split)
test.dat <- rsample::testing(split)

2.2 Data Visualization

We created an interactive geographical shiny app for exploratory information related to average daily cases, average new vaccinations, average daily deaths, population density, and HDI. Additional time series charts are available here as well for our late used methods. This shiny app is available to view via internet browser at “https://choskins.shinyapps.io/shiny/”.

The figure below depicts the training and testing split of the response variable (new daily deaths by thousands) for the time series.

require(ggplot2)
require(ggpubr)

ggplot(data = train.dat, aes(x = date, y = new_deaths_thousand)) + geom_point(color = "blue") +
  geom_point(data = test.dat, aes(x = date, y = new_deaths_thousand), color = "orange") + theme_classic()

There is no clear trend, other than the potential of month in the number of COVID-19 deaths. The blue points in the figure above indicate the observations in the training set, and the orange points compose the observations in the testing set. The distribution with time is fairly consistent.

A <- ggplot(dataset) + geom_boxplot(aes(x = iso_code, y = new_deaths_thousand, fill = iso_code)) + theme_classic()

B <- ggplot(dataset) + geom_boxplot(aes(x = season, y = new_deaths_thousand, fill = season)) + theme_classic()

C <- ggplot(dataset) + geom_point(aes(x = new_vaccinations_thousand, y = new_deaths_thousand)) + theme_classic() + 
  facet_wrap(~season)
D <- ggplot(dataset) + geom_histogram(aes(x = new_deaths_thousand, fill = month)) + facet_wrap(~month) 

A

The new daily deaths vary significantly depending on the country. Notice that the United States (USA) has the highest median new daily deaths, but India (IND) has the highest single value of new daily deaths.

B

As expected the Winter and Spring seasons have the highest median values for new daily deaths. However, the Summer season has the highest single value of new daily deaths, which occurred, which occurred in late June.

C

The relationship between new daily vaccinations and new daily deaths is interesting to observe. There are bundles of observations near 0 vaccinations in which there were many deaths, which is due to the lag between vaccine availability and the pandemic. The Spring season has a very unique behavior, as all observations are bundled closely together.

D

Each month has a similar distribution of new daily deaths. Each month has the highest counts of new daily deaths near 0, which is likely due to our data preparation, in which we scaled the new daily deaths.

2.3 Models

Multiple models were used for this analysis. They included forward and backward subset selection, multinomial linear models, random forest, ridge and lasso regression, bagging, and generalized boosted regression models.

2.3.1 Decision Tree

To demonstrate a comparative analysis with regression tree, bagging, random forests, and boosting we constructed a regression tree for new_deaths_thousand on the rest of the predictors and calculated the test prediction error.

require(tree)

tree.deaths = tree(new_deaths_thousand ~.-date, data = train.dat)
cv.deaths = cv.tree(tree.deaths)
plot(cv.deaths$size, cv.deaths$dev, type = 'b')

prune.deaths = prune.tree(tree.deaths, best = 11)

## prediction error
yhat = predict(prune.deaths, newdata = test.dat)
tree_mse <- mean((yhat - test.dat$new_deaths_thousand)^2)

tree_mse
## [1] 0.1040313

2.3.2 Bagged Tree

The main difference between random forest (RF) a and boostrapped aggregated decision tree (Bagged Tree) is that in Bagged Trees, the number of variables selected at each node is not restricted. In RF, the number of variables selected is usually decided using the length of the predictors divided by 3 (for numeric responses). We assume that this model will predict accurately, but has possibility to be inaccurate comparatively due to complexity and over-fitting.

require(randomForest)

# bag.deaths

bag.deaths = randomForest(new_deaths_thousand ~.-date, data = train.dat, mtry = 34, importance = TRUE)


## prediction error

yhat.bag = predict(bag.deaths, newdata = test.dat)
bag_mse <- mean((yhat.bag - test.dat$new_deaths_thousand)^2)

bag_mse
## [1] 0.03119207

2.3.3 Bagged Tree

We assume that this model will predict accurately as well, but has possibility to be inaccurate comparatively for similar reasons.

library(gbm)

boost.deaths = gbm(new_deaths_thousand ~.-date, data = train.dat, distribution = "gaussian", n.trees = 500,
                   interaction.depth = 3)

summary(boost.deaths)

##                                                               var     rel.inf
## new_cases_thousand                             new_cases_thousand 55.02597430
## total_deaths_thousand                       total_deaths_thousand  8.88267446
## month                                                       month  8.48560545
## stringency_index                                 stringency_index  4.26941788
## iso_code                                                 iso_code  4.21446789
## total_cases_thousand                         total_cases_thousand  2.83350436
## people_fully_vaccinated_thousand people_fully_vaccinated_thousand  2.36773427
## population_density                             population_density  2.22477511
## new_vaccinations_thousand               new_vaccinations_thousand  2.13787079
## day_of_week                                           day_of_week  2.04988095
## icu_patients_thousand                       icu_patients_thousand  1.62896489
## total_tests_per_thousand                 total_tests_per_thousand  1.26361074
## positive_rate                                       positive_rate  0.85478346
## new_tests_per_thousand                     new_tests_per_thousand  0.82848913
## total_vaccinations_thousand           total_vaccinations_thousand  0.80571454
## hosp_patients_thousand                     hosp_patients_thousand  0.79957341
## people_vaccinated_thousand             people_vaccinated_thousand  0.61423046
## population_thousand                           population_thousand  0.25941600
## season                                                     season  0.09215162
## diabetes_prevalence                           diabetes_prevalence  0.07611676
## total_boosters_thousand                   total_boosters_thousand  0.07323791
## median_age                                             median_age  0.05707419
## gdp_per_capita                                     gdp_per_capita  0.04791565
## cardiovasc_death_rate                       cardiovasc_death_rate  0.03618752
## extreme_poverty                                   extreme_poverty  0.02686811
## hospital_beds_per_thousand             hospital_beds_per_thousand  0.02580326
## male_smokers                                         male_smokers  0.01795690
## aged_65_older                                       aged_65_older  0.00000000
## aged_70_older                                       aged_70_older  0.00000000
## female_smokers                                     female_smokers  0.00000000
## handwashing_facilities                     handwashing_facilities  0.00000000
## life_expectancy                                   life_expectancy  0.00000000
## human_development_index                   human_development_index  0.00000000
## year                                                         year  0.00000000
## prediction error

yhat.boost = predict(boost.deaths, newdata = test.dat, n.trees = 500)
boost_mse <- mean((yhat.boost - test.dat$new_deaths_thousand)^2)

boost_mse
## [1] 0.03035849

2.3.4 Random Forest

We assume that this model will predict accurately, but has possibility to be inaccurate comparatively for similar reasons. Our hopes is for this to be more accurate than bagging or boosting due to its composition consisting of aspects of both bagging and boosting. Once again this may actually decrease accuracy due to complexity.

rf <- randomForest(new_deaths_thousand ~.-date, data = train.dat, mtry = (35/3), importance = T)



rf_predictions <- predict(rf, test.dat[-23])


## prediction error

rf_mse <- mean((rf_predictions - test.dat$new_deaths_thousand)^2)

rf_mse
## [1] 0.0270787

2.3.5 Multiple Linear Regression (MLR)

Multiple linear regression was used in attempt to find meaningful results from a less complex model. As a simple and easy to use model it was favorable for quick and easy to interpreted results. A minimum error of 0.164 was achieved through this model type. We continued after to test other models to see if we could produce more accurate results with a lower error. We anticipate this method may possibly have the highest error rate, since the data we are analyzing are composed from time-series data in which the trends with time have been removed. We do not assume this will be as accurate as the more complex models due to the large amount of variables in each model.

model1 = glm(new_deaths_thousand ~ ., data=train.dat)
results <- summary(model1)

## Extracting variables with low p-values from the generalized multiple linear regression

pvals <- data.frame(results$coefficients)
pvals <- filter(pvals, pvals$Pr...t.. < 0.05)
print(rownames(pvals))
##  [1] "iso_codeCOL"                      "iso_codeDEU"                     
##  [3] "iso_codeFRA"                      "iso_codeGBR"                     
##  [5] "iso_codeIND"                      "iso_codeITA"                     
##  [7] "iso_codeRUS"                      "iso_codeTUR"                     
##  [9] "iso_codeUSA"                      "total_tests_per_thousand"        
## [11] "new_tests_per_thousand"           "positive_rate"                   
## [13] "stringency_index"                 "total_cases_thousand"            
## [15] "new_cases_thousand"               "icu_patients_thousand"           
## [17] "hosp_patients_thousand"           "total_vaccinations_thousand"     
## [19] "people_vaccinated_thousand"       "people_fully_vaccinated_thousand"
## [21] "total_boosters_thousand"          "total_deaths_thousand"           
## [23] "day_of_weekMonday"                "day_of_weekSaturday"             
## [25] "day_of_weekSunday"                "day_of_weekTuesday"              
## [27] "day_of_weekWednesday"             "month3"                          
## [29] "month6"

A MLR model is built based on the coefficients from the model that have low p-values.

model2 <- glm(new_deaths_thousand ~ iso_code + total_tests_per_thousand + stringency_index +
                icu_patients_thousand + total_deaths_thousand + day_of_week +
                month + new_tests_per_thousand + total_cases_thousand + hosp_patients_thousand +
                people_fully_vaccinated_thousand + positive_rate + total_vaccinations_thousand +
                total_boosters_thousand, data = train.dat)

mlr_predictions <- predict(model2, test.dat[-23])

## Prediction Error

mlr_mse <- mean((mlr_predictions - test.dat$new_deaths_thousand)^2)

mlr_mse
## [1] 0.162063

2.3.6 Forward Selection

require(leaps)

set.seed(101)
regfit.fwd <- regsubsets(new_deaths_thousand~.-date, data = train.dat, nvmax = 60,
                         method = "forward", really.big = T)
## Reordering variables and trying again:
fwd.sum <- summary(regfit.fwd)
forward_select=which.min(fwd.sum$bic)
forward_select
## [1] 26

The forward selection method chooses the following variables (shown below).

coef(regfit.fwd, forward_select)
##                (Intercept)                iso_codeRUS 
##              -1.274865e+00              -1.264948e+00 
##   total_tests_per_thousand     new_tests_per_thousand 
##              -1.085664e-04               1.516359e-02 
##              positive_rate           stringency_index 
##               2.680906e+00               5.670270e-03 
##    total_boosters_thousand  new_vaccinations_thousand 
##              -1.713454e-05              -5.083220e-05 
##      total_deaths_thousand          day_of_weekMonday 
##               2.291455e-03              -4.388191e-02 
##        day_of_weekThursday         day_of_weekTuesday 
##               1.227930e-01               1.293616e-01 
##       day_of_weekWednesday               seasonWinter 
##               1.330975e-01               2.167823e-01 
##                   year2021                     month2 
##              -7.177666e-02              -9.431512e-02 
##                     month3                     month7 
##              -3.208461e-02              -1.406207e-01 
##                     month9                    month10 
##              -1.134665e-01              -1.496193e-01 
##                    month12              aged_70_older 
##              -1.073922e-01              -2.914047e-03 
##            extreme_poverty      cardiovasc_death_rate 
##              -2.042810e-02               5.654257e-03 
##             female_smokers hospital_beds_per_thousand 
##               2.643003e-02              -7.330337e-02 
##                    month11 
##              -6.685557e-02

2.3.7 Backward Selection

set.seed(101)
regfit.bwd <- regsubsets(new_deaths_thousand ~.-date, data = train.dat, nvmax = 60, really.big = T,
                         method = "backward")
## Reordering variables and trying again:
bwd.sum <- summary(regfit.bwd)

backward_select <- which.min(bwd.sum$bic)
backward_select
## [1] 28

Backward selection chooses 26 variables (shown below). Recall that forward selection selected 28 variables.

coef(regfit.bwd, backward_select)
##                (Intercept)                iso_codeCOL 
##               4.094570e-01              -1.258029e+00 
##                iso_codeDEU                iso_codeFRA 
##              -7.865215e-01              -8.891055e-01 
##                iso_codeGBR                iso_codeIND 
##              -7.712876e-01              -4.114450e-01 
##                iso_codeITA                iso_codeRUS 
##              -8.897437e-01              -5.280417e-01 
##                iso_codeTUR                iso_codeUSA 
##              -9.933587e-01               7.344222e-02 
##   total_tests_per_thousand     new_tests_per_thousand 
##              -7.832633e-05               7.091211e-03 
##              positive_rate           stringency_index 
##               3.134842e+00               5.831975e-03 
##         day_of_weekTuesday       day_of_weekWednesday 
##               1.161828e-01               1.157296e-01 
##               seasonWinter                   year2021 
##               5.202780e-02               2.693821e-01 
##                     month2                     month3 
##              -1.802960e-02              -1.195880e-01 
##                     month7                     month9 
##              -8.968866e-02              -3.405191e-02 
##                    month10                    month12 
##              -5.845813e-02               1.539332e-01 
##              aged_70_older            extreme_poverty 
##               0.000000e+00               0.000000e+00 
##      cardiovasc_death_rate             female_smokers 
##               0.000000e+00               0.000000e+00 
## hospital_beds_per_thousand 
##               0.000000e+00

Comparison of Forward and Backward Selection

par(mfrow = c(1, 2))

plot(fwd.sum$bic,xlab=" Number of Variables ", ylab=" BIC",
     type="l", main="Forward Selection: BIC plot")
points (forward_select, fwd.sum$bic[forward_select], col =" red", cex =2, pch =20)
plot(bwd.sum$bic,xlab=" Number of Variables ", ylab=" BIC",
     type="l", main="Backward Selection: BIC plot")
points (backward_select, bwd.sum$bic[backward_select], col =" red",cex =2, pch =20)

The above figure reiterates the optimal number of features selected in each method using BIC as a metric.

Forward and Backward Selection MLR Models

Recall that in the list of coefficients, dummy variables for the categorical variables are included, so the actual number of variables used in both models are not 26 (forward selection) nor 28 (backward selection).

forward_mlr <- glm(new_deaths_thousand ~ new_tests_per_thousand + total_boosters_thousand + season + month + aged_70_older + hospital_beds_per_thousand +
  iso_code + positive_rate + total_deaths_thousand + year + extreme_poverty + stringency_index + day_of_week + cardiovasc_death_rate +
  total_tests_per_thousand + people_vaccinated_thousand + female_smokers, data = train.dat)

backward_mlr <- glm(new_deaths_thousand ~ iso_code + positive_rate + year + month + extreme_poverty + stringency_index + cardiovasc_death_rate +
  total_tests_per_thousand + day_of_week + female_smokers + season + aged_70_older + hospital_beds_per_thousand,
  data = train.dat)

Forward and Backward Selection MLR Test Errors

forward_pred <- predict(forward_mlr, test.dat[-23])
backward_pred <- predict(backward_mlr, test.dat[-23])

sprintf("Forward-Selected Model MSE: %.4f", mean((forward_pred - test.dat$new_deaths_thousand)^2))
## [1] "Forward-Selected Model MSE: 0.1940"
sprintf("Backward-Selected Model MSE %.4f", mean((backward_pred - test.dat$new_deaths_thousand)^2))
## [1] "Backward-Selected Model MSE 0.2029"
f_mse <- mean((forward_pred - test.dat$new_deaths_thousand)^2)
b_mse <- mean((backward_pred - test.dat$new_deaths_thousand)^2)

2.3.7 Ridge Regression

Recall that ridge regression shrinks the coefficients in the model towards 0, but never to 0. This shrinkage leads to a substantial reduction in the variance of the predictions, with a penalty of slightly increased bias. This can result in a lower MSE when an optimal “λ” is selected. The figure below represents how noise is removed from the model. The number of variables that minimize noise while retaining the predictive power of the model will be chosen based on log lambda on the graph. We believe that this and LASSO may be highly accurate as it shrinks coefficients and may be able to reduce noise better than other models.

require(glmnet)

set.seed(101)



x_train = model.matrix(new_deaths_thousand~.-date, train.dat)[,-1]

y_train <- train.dat$new_deaths_thousand

x_test <- model.matrix(new_deaths_thousand ~.-date, test.dat)[, -1]
y_test <- test.dat$new_deaths_thousand

# train = sample(6720, 5377) # 80% training
# test = (-train)


ridge.model1 <- glmnet(x = x_train,
                       y = y_train,
                       alpha = 0, standardize = F)

cv.out <- cv.glmnet(x = x_train,
                       y = y_train,
                       alpha = 0, standardize = F)


plot(ridge.model1, xvar = "lambda")

Finding the best Lambda Using Cross-Validation

set.seed(101)

cv.out <- cv.glmnet(x = x_train,
                       y = y_train,
                       alpha = 0, standardize = F)

plot(cv.out)

bestlam_ridge <- cv.out$lambda.min

Above we chart the impact of different “λ” parameters and select the best one for our ridge regression model. The Lowest MSE occurs at 8.7548363. Now, the training and testing errors are compared.

ridge_train_preds <- predict(cv.out, x_train, s = "lambda.min")

ridge_test_preds <- predict(ridge.model1, x_test, s = bestlam_ridge)

sprintf("Test MSE: %.4f", mean((ridge_test_preds - y_test)^2))
## [1] "Test MSE: 0.2119"
sprintf("Train MSE: %.4f", mean((ridge_train_preds - y_train)^2))
## [1] "Train MSE: 0.2252"
ridge_mse <- mean((ridge_test_preds - y_test)^2)

2.3.8 LASSO Regression

Recall that in LASSO, as opposed to ridge, the coefficients are indeed shrunk to 0. As previously mentioned, we believe that this and ridge regression may be highly accurate as it shrinks coefficients and may be able to reduce noise better than other models.

require(glmnet)


set.seed(101)

lasso.model1 <- glmnet(x = x_train,
                       y = y_train,
                       alpha = 1, standardize = F)



plot(lasso.model1, xvar = "lambda")

Based on the figure above, it is clear that many of the coefficients shrink to 0, which indicates they are not important to the model. This is explored further below.

set.seed(101)

lasso.cv <- cv.glmnet(x = x_train,
                       y = y_train,
                       alpha = 1, standardize = F)

plot(lasso.cv)

best_lasso <- lasso.cv$lambda.min

The ideal lambda value occurs at 1.847081 , as indicated above.

Comparing LASSO training and testing MSE

lasso_train_preds <- predict(lasso.cv, x_train, s = "lambda.min")

lasso_test_preds <- predict(lasso.model1, x_test, s = best_lasso)

sprintf("Test MSE: %.4f", mean((lasso_test_preds - y_test)^2))
## [1] "Test MSE: 0.1677"
sprintf("Train MSE: %.4f", mean((lasso_train_preds - y_train)^2))
## [1] "Train MSE: 0.1832"
lasso_mse <- mean((lasso_test_preds - y_test)^2)

This is an improvement in both the training and testing errors compared to the results from Ridge regression.

LASSO Regression Most Influential Features

require(broom)

coef(lasso.cv, s = "lambda.min") %>%
  tidy() %>%
  filter(row != "(Intercept)") %>%
  ggplot(aes(value, reorder(row, value))) +
  geom_point() +
  xlab("Coefficient") +
  ylab(NULL)

Notice the top 10 variables that contributed to new deaths.

2.3.8 PCR

Our motivation behind using principal component regression (PCR), is this method helps to avoid multicollinearity. In this data set, it is clear that many of the variables are correlated with each other. We assume this will perform better than that of LASSO or ridge regression using the principal component of the variables with assumptions for the best bias variance trade-off model.

require(pls)


set.seed(101)

pcr_model <- pls::pcr(new_deaths_thousand~., data = no_date, scale = F, validation = "CV")

validationplot(pcr_model, val.type = "MSEP")

validationplot(pcr_model, val.type = "R2")

The first figure above represents MSE for each component derived using principal component analysis (PCA). The second figure displays the \(R^2\) score for the number of components. Observe that dimensionality reduction has occured, the number of components (15) that explain about 80% of the variability is less than the number of predictors in the data set.

Below displays the predicted vs actual deaths based on a trained PCR model using the same training and testing split data sets that were used in all the other models.

PCR with 15 Compoonents

set.seed(101)

pcr_trained <- pcr(new_deaths_thousand~.-date, data = train.dat, scale = F, validation = "CV")

pcr_preds <- predict(pcr_trained, test.dat[-23], ncomp = 15)

pcr_mse <- mean((pcr_preds - test.dat$new_deaths_thousand)^2)

3. Results

results_tab <- data.frame(Method = c("Decision Tree", "Bagged Tree", 
                                     "Boosted Tree", "Random Forest",
                                     "MLR", "MLR - Forward", "MLR-Backward",
                                     "LASSO", "Ridge", "PCR"),
                          MSE = c(tree_mse, bag_mse, boost_mse,
                                  rf_mse, mlr_mse, f_mse, b_mse,
                                  lasso_mse, ridge_mse, pcr_mse)) 


knitr::kable(results_tab)
Method MSE
Decision Tree 0.1040313
Bagged Tree 0.0311921
Boosted Tree 0.0303585
Random Forest 0.0270787
MLR 0.1620630
MLR - Forward 0.1940056
MLR-Backward 0.2029158
LASSO 0.1676736
Ridge 0.2119213
PCR 0.1245515

After each model was tested final results shown above were compared. As previously predicted, MLR models had the highest error rate and were not considered for use. Ridge regression and LASSO showed similar results with a higher MSE. PCR was on the lower end of the models compared, but did not compare to the tree based models. The general decision tree, although not faring well, did prove to have a lower MSE than all other non-tree based models. Boosting and bagging methods were applied to try and reduce error rate further, but Random Forest proved to yield the lower MSE. Bagged tree lagged close behind by a difference in MSE of 0.0006745. Boosting however performed even worse than bagging.

4. Discussion

There were other potential problems we could have analyzed, but this one was selected due to the relevancy for current issues as well as ease of understanding aspects of the data. There was little interpretation needed to understand initial data and additionally little cleaning and manipulation of data due to succinct data maintenance from our source. We were able to utilize most all of the skills we learned this semester in this project. Additional methods such as historical clustering and PCA were attempted, but this lead to computational issues and visualizations so large that they were unable to be interpreted. These would have been supplementary to our analysis, and therefore were unused. Each group member contributed equally to this work. Tasks such as data extraction, coding of methods, and compilation of this document were divided equally among members, and assigned based on each members specialized skills. It was an immensely helpful learning experience to get to show what we have learned this semester in one project.

5. Future Work

The models created in this project are applicable to other results as well from the same dataset. We chose new_deaths as the response variable for our models, but others can be easily interchanged and compared for different results. Note that doing so may yield different results for which model is most accurate. Other alternative responses possible could be new cases, new vaccinations, or other COVID related responses. On the other hand, our methodologies would likely not produce accurate results for something such as population, since the data is geared towards COVID information. Other models, such as (SVM) support vector machines which not been covered, could be applied for different results as well and compared to see if error rate is higher or lower than the current results. Further time and information could also yield usable results with PCA and clustering methods attempted.

6. Appendix

  1. A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2(3), 18–22.
  2. Achim Zeileis and Gabor Grothendieck (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software, 14(6), 1-27. doi:10.18637/jss.v014.i06
  3. Alboukadel Kassambara (2020). ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr
  4. Aravind Hebbali (2020). olsrr: Tools for Building OLS Regression Models. R package version 0.5.3. https://CRAN.R-project.org/package=olsrr
  5. Brandon Greenwell, Bradley Boehmke, Jay Cunningham and GBM Developers (2020). gbm: Generalized Boosted Regression Models. R package version 2.1.8. https://CRAN.R-project.org/package=gbm
  6. Brian Ripley (2021). tree: Classification and Regression Trees. R package version 1.0-41. https://CRAN.R-project.org/package=tree
  7. David Robinson, Alex Hayes and Simon Couch (2021). broom: Convert Statistical Objects into Tidy Tibbles. R package version 0.7.9. https://CRAN.R-project.org/package=broom
  8. Douglas Bates and Martin Maechler (2019). Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.2-18. https://CRAN.R-project.org/package=Matrix
  9. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
  10. Hadley Wickham (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr
  11. Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2021). dplyr: A Grammar of Data Manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr
  12. Jarek Tuszynski (2021). caTools: Tools: Moving Window Statistics, GIF, Base64, ROC AUC, etc. R package version 1.18.2. https://CRAN.R-project.org/package=caTools
  13. Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL https://www.jstatsoft.org/v33/i01/.
  14. Julia Silge, Fanny Chow, Max Kuhn and Hadley Wickham (2021). rsample: General Resampling Infrastructure. R package version 0.1.1. https://CRAN.R-project.org/package=rsample
  15. Kristian Hovde Liland, Bjørn-Helge Mevik and Ron Wehrens (2021). pls: Partial Least Squares and Principal Component Regression. R package version 2.8-0. https://CRAN.R-project.org/package=pls
  16. Max Kuhn (2021). caret: Classification and Regression Training. R package version 6.0-88. https://CRAN.R-project.org/package=caret
  17. Ponce et al. (2021). covid19.analytics: An R Package to Obtain, Analyze and Visualize Data from the Coronavirus Disease Pandemic. Journal of Open Source Software, 6(59), 2995. https://doi.org/10.21105/joss.02995
  18. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  19. Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R. Springer, New York. ISBN 978-0-387-75968-5
  20. Thomas Lumley based on Fortran code by Alan Miller (2020). leaps: Regression Subset Selection. R package version 3.1. https://CRAN.R-project.org/package=leaps

6.1 Web App Code

require(ggplot2)
require(ggpubr)


res_dataset <- data.frame(date = test.dat$date, actual_deaths = test.dat$new_deaths_thousand, 
                          decision_tree_pred = yhat,
                          bagged_tree_pred = yhat.bag,
                          boosted_tree_pred = yhat.boost,
                          rf_predicted_cases = rf_predictions,
                          MLR = mlr_predictions,
                          Ridge = ridge_test_preds,
                          LASSO = lasso_test_preds,
                          ForwardMLR = forward_pred,
                          BackwardMLR = backward_pred,
                          country = test.dat$iso_code)


# save(res_dataset, file = "shiny/rf_results.RData")
# res_dataset
res_dataset
##            date actual_deaths decision_tree_pred bagged_tree_pred
## 1    2020-02-26         0.000          0.1075004    -1.143530e-17
## 21   2020-03-17         0.001          0.1075004     1.019267e-03
## 27   2020-03-23         0.009          0.1075004     1.285657e-02
## 29   2020-03-25         0.013          0.1075004     1.508700e-02
## 43   2020-04-08         0.133          0.1075004     1.494007e-01
## 45   2020-04-10         0.107          0.1075004     1.052728e-01
## 60   2020-04-25         0.353          0.1075004     3.317895e-01
## 65   2020-04-30         0.493          0.1075004     3.280617e-01
## 66   2020-05-01         0.406          0.1075004     3.439939e-01
## 71   2020-05-06         0.650          0.1075004     7.166098e-01
## 80   2020-05-15         0.963          1.4568194     9.405024e-01
## 87   2020-05-22         1.001          1.4568194     1.024589e+00
## 88   2020-05-23         0.965          1.4568194     8.774607e-01
## 103  2020-06-07         0.525          1.4568194     6.456220e-01
## 107  2020-06-11         1.239          1.4568194     1.233912e+00
## 108  2020-06-12         0.909          1.4568194     9.896673e-01
## 110  2020-06-14         0.612          1.4568194     6.461896e-01
## 122  2020-06-26         0.990          1.4568194     1.141935e+00
## 134  2020-07-08         1.223          0.8035981     1.149791e+00
## 135  2020-07-09         1.220          0.8035981     1.241797e+00
## 141  2020-07-15         1.233          0.8035981     1.147353e+00
## 142  2020-07-16         1.322          0.8035981     1.139333e+00
## 151  2020-07-25         1.211          0.8035981     1.089331e+00
## 154  2020-07-28         0.921          0.8035981     1.200933e+00
## 155  2020-07-29         1.595          0.9053733     1.356927e+00
## 157  2020-07-31         1.212          0.8035981     1.160550e+00
## 163  2020-08-06         1.237          0.8035981     1.159327e+00
## 172  2020-08-15         0.709          0.8035981     9.501968e-01
## 174  2020-08-17         0.684          0.8035981     5.723898e-01
## 177  2020-08-20         1.204          0.8035981     1.071275e+00
## 190  2020-09-02         1.184          0.8035981     9.987108e-01
## 192  2020-09-04         0.888          0.8035981     8.978090e-01
## 194  2020-09-06         0.447          0.1075004     3.746623e-01
## 195  2020-09-07         0.310          0.1075004     3.085752e-01
## 196  2020-09-08         0.504          0.1075004     4.205177e-01
## 205  2020-09-17         0.829          0.8035981     9.079322e-01
## 206  2020-09-18         0.858          0.8035981     8.772469e-01
## 211  2020-09-23         0.000          0.1075004     2.759227e-02
## 231  2020-10-13         0.309          0.1075004     2.853351e-01
## 233  2020-10-15         0.713          0.8035981     7.170140e-01
## 236  2020-10-18         0.000          0.1075004     1.483350e-02
## 239  2020-10-21         0.566          0.8035981     5.713683e-01
## 241  2020-10-23         0.571          0.8035981     7.386647e-01
## 245  2020-10-27         0.549          0.8035981     7.329810e-01
## 253  2020-11-04         0.610          0.8035981     3.766181e-01
## 255  2020-11-06         0.909          0.8035981     6.850152e-01
## 267  2020-11-18         0.756          0.8035981     6.969716e-01
## 270  2020-11-21         0.376          0.8035981     7.461439e-01
## 272  2020-11-23         0.302          0.8035981     2.594202e-01
## 273  2020-11-24         0.630          0.8035981     6.056001e-01
## 274  2020-11-25         0.654          0.8035981     6.881910e-01
## 276  2020-11-27         0.514          0.8035981     7.029637e-01
## 277  2020-11-28         0.587          0.8035981     8.739747e-01
## 284  2020-12-05         0.664          0.8035981     7.270517e-01
## 300  2020-12-21         0.527          0.8035981     4.114004e-01
## 301  2020-12-22         0.968          0.8035981     9.600528e-01
## 305  2020-12-26         0.307          0.8035981     4.409463e-01
## 319  2021-01-09         1.171          0.8035981     1.099778e+00
## 320  2021-01-10         0.469          0.8035981     6.006907e-01
## 321  2021-01-11         0.480          0.8035981     4.808391e-01
## 324  2021-01-14         1.131          2.3296739     1.525737e+00
## 343  2021-02-02         1.210          0.8035981     1.239181e+00
## 349  2021-02-08         0.000          0.1075004     1.329723e-02
## 350  2021-02-09         1.986          2.3296739     1.565155e+00
## 356  2021-02-15         0.528          0.8035981     8.580516e-01
## 375  2021-03-06         1.555          2.4070561     1.827249e+00
## 376  2021-03-07         1.086          2.4070561     1.678921e+00
## 378  2021-03-09         1.972          2.4070561     2.038162e+00
## 379  2021-03-10         2.286          2.4070561     2.087018e+00
## 381  2021-03-12         2.216          2.4070561     2.114480e+00
## 395  2021-03-26         3.650          2.4070561     3.083084e+00
## 405  2021-04-05         1.319          0.8035981     1.228952e+00
## 406  2021-04-06         4.195          2.4070561     3.717434e+00
## 409  2021-04-09         3.693          2.4070561     3.611454e+00
## 414  2021-04-14         3.459          2.4070561     3.492130e+00
## 425  2021-04-25         1.305          0.8035981     1.292530e+00
## 433  2021-05-03         0.983          0.8035981     7.937491e-01
## 435  2021-05-05         2.811          2.3296739     2.645239e+00
## 439  2021-05-09         1.024          0.8035981     9.447275e-01
## 445  2021-05-15         2.087          2.3296739     2.092445e+00
## 447  2021-05-17         0.786          0.8035981     9.034015e-01
## 458  2021-05-28         2.371          0.8035981     1.297818e+00
## 463  2021-06-02         2.507          3.6000806     2.762674e+00
## 468  2021-06-07         1.010          0.8035981     9.629899e-01
## 469  2021-06-08         2.378          0.8035981     1.535741e+00
## 484  2021-06-23         2.392          3.6000806     2.652773e+00
## 486  2021-06-25         2.001          2.3296739     2.086825e+00
## 495  2021-07-04         0.830          0.8035981     7.474744e-01
## 499  2021-07-08         1.639          0.8035981     1.537107e+00
## 502  2021-07-11         0.595          0.8035981     6.167046e-01
## 504  2021-07-13         1.605          0.8035981     1.397327e+00
## 505  2021-07-14         1.556          0.8035981     1.457750e+00
## 513  2021-07-22         1.412          0.8035981     1.339016e+00
## 514  2021-07-23         1.324          1.3909884     1.961286e+00
## 517  2021-07-26         0.578          0.8035981     6.426231e-01
## 519  2021-07-28         1.344          0.8035981     1.298936e+00
## 520  2021-07-29         1.318          0.8035981     1.196549e+00
## 521  2021-07-30         0.963          0.8035981     1.156420e+00
## 524  2021-08-02         0.389          0.1075004     4.432611e-01
## 534  2021-08-12         1.148          0.8035981     1.065460e+00
## 543  2021-08-21         0.698          0.8035981     8.821170e-01
## 552  2021-08-30         0.266          0.1075004     3.097336e-01
## 575  2021-09-22         0.876          0.8035981     7.806122e-01
## 582  2021-09-29         0.676          0.8035981     6.372190e-01
## 596  2021-10-13         0.176          0.1075004     2.656678e-01
## 597  2021-10-14         0.525          0.1075004     4.666528e-01
## 599  2021-10-16         0.483          0.1075004     3.539170e-01
## 604  2021-10-21         0.451          0.8035981     4.529890e-01
## 606  2021-10-23         0.318          0.1075004     3.666513e-01
## 608  2021-10-25         0.160          0.1075004     1.649481e-01
## 619  2021-11-05         0.389          0.1075004     3.756171e-01
## 624  2021-11-10         0.280          0.1075004     3.236998e-01
## 628  2021-11-14         0.061          0.1075004     9.131047e-02
## 635  2021-11-21         0.072          0.1075004     9.746640e-02
## 636  2021-11-22         0.123          0.1075004     2.776155e-01
## 637  2021-11-23         0.284          0.1075004     2.639607e-01
## 645  2021-12-01         0.283          0.1075004     2.825900e-01
## 647  2021-12-03         0.221          0.1075004     2.903081e-01
## 651  2021-12-07         0.274          0.1075004     2.584654e-01
## 654  2021-12-10         0.000          0.1075004     1.290711e-01
## 659  2020-03-08         0.000          0.1075004     3.220000e-04
## 670  2020-03-19         0.000          0.1075004    -1.600000e-06
## 672  2020-03-21         0.000          0.1075004     2.863333e-05
## 674  2020-03-23         0.001          0.1075004     1.356600e-03
## 678  2020-03-27         0.000          0.1075004     2.664100e-03
## 679  2020-03-28         0.000          0.1075004     3.201733e-03
## 689  2020-04-07         0.004          0.1075004     9.651567e-03
## 697  2020-04-15         0.004          0.1075004     1.094717e-02
## 705  2020-04-23         0.009          0.1075004     1.214927e-02
## 707  2020-04-25         0.008          0.1075004     1.263613e-02
## 708  2020-04-26         0.011          0.1075004     1.150210e-02
## 721  2020-05-09         0.017          0.1075004     1.581780e-02
## 723  2020-05-11         0.016          0.1075004     1.790467e-02
## 727  2020-05-15         0.021          0.1075004     2.008627e-02
## 729  2020-05-17         0.012          0.1075004     1.893063e-02
## 740  2020-05-28         0.019          0.1075004     3.345960e-02
## 742  2020-05-30         0.037          0.1075004     4.054403e-02
## 746  2020-06-03         0.036          0.1075004     5.074943e-02
## 751  2020-06-08         0.049          0.1075004     5.254847e-02
## 768  2020-06-25         0.163          0.1075004     1.253376e-01
## 774  2020-07-01         0.136          0.1075004     1.637666e-01
## 776  2020-07-03         0.136          0.1075004     1.541165e-01
## 777  2020-07-04         0.165          0.1075004     1.567269e-01
## 789  2020-07-16         0.215          0.1075004     2.689389e-01
## 795  2020-07-22         0.207          0.1075004     2.722396e-01
## 799  2020-07-26         0.256          0.1075004     2.947862e-01
## 802  2020-07-29         0.380          0.1075004     3.122654e-01
## 809  2020-08-05         0.309          0.1075004     3.336206e-01
## 812  2020-08-08         0.290          0.1075004     3.120647e-01
## 814  2020-08-10         0.312          0.1075004     3.195226e-01
## 819  2020-08-15         0.318          0.1075004     3.108111e-01
## 826  2020-08-22         0.400          0.1075004     3.203328e-01
## 831  2020-08-27         0.283          0.1075004     2.927406e-01
## 834  2020-08-30         0.300          0.1075004     2.981201e-01
## 838  2020-09-03         0.273          0.1075004     2.707961e-01
## 846  2020-09-11         0.243          0.1075004     2.303488e-01
## 847  2020-09-12         0.216          0.1075004     2.023215e-01
## 848  2020-09-13         0.190          0.1075004     2.177710e-01
## 851  2020-09-16         0.190          0.1075004     2.611305e-01
## 858  2020-09-23         0.349          0.1075004     1.549166e-01
## 859  2020-09-24         0.000          0.1075004     1.331951e-01
## 862  2020-09-27         0.192          0.1075004     1.583395e-01
## 864  2020-09-29         0.187          0.1075004     1.603368e-01
## 866  2020-10-01         0.198          0.1075004     1.767738e-01
## 868  2020-10-03         0.159          0.1075004     1.692243e-01
## 870  2020-10-05         0.132          0.1075004     1.480973e-01
## 876  2020-10-11         0.174          0.1075004     1.577459e-01
## 891  2020-10-26         0.194          0.1075004     1.694415e-01
## 892  2020-10-27         0.217          0.1075004     1.762970e-01
## 897  2020-11-01         0.201          0.1075004     1.787461e-01
## 911  2020-11-15         0.202          0.1075004     1.745441e-01
## 916  2020-11-20         0.168          0.1075004     1.840082e-01
## 917  2020-11-21         0.175          0.1075004     1.828145e-01
## 918  2020-11-22         0.183          0.1075004     1.818912e-01
## 919  2020-11-23         0.192          0.1075004     1.762781e-01
## 935  2020-12-09         0.150          0.1075004     1.888991e-01
## 936  2020-12-10         0.176          0.1075004     1.791708e-01
## 938  2020-12-12         0.197          0.1075004     1.736397e-01
## 946  2020-12-20         0.207          0.1075004     2.202041e-01
## 947  2020-12-21         0.205          0.1075004     2.175483e-01
## 949  2020-12-23         0.243          0.1075004     2.581864e-01
## 950  2020-12-24         0.280          0.1075004     2.575597e-01
## 961  2021-01-04         0.222          0.1075004     2.667969e-01
## 969  2021-01-12         0.331          0.1075004     3.817396e-01
## 972  2021-01-15         0.377          0.7794346     4.008797e-01
## 975  2021-01-18         0.373          0.1075004     3.625332e-01
## 984  2021-01-27         0.395          0.1075004     3.727989e-01
## 989  2021-02-01         0.289          0.1075004     3.050404e-01
## 992  2021-02-04         0.254          0.1075004     3.083418e-01
## 999  2021-02-11         0.250          0.1075004     2.358912e-01
## 1004 2021-02-16         0.163          0.1075004     1.980114e-01
## 1011 2021-02-23         0.144          0.1075004     1.471249e-01
## 1014 2021-02-26         0.122          0.1075004     1.417631e-01
## 1020 2021-03-04         0.107          0.1075004     1.067149e-01
## 1025 2021-03-09         0.078          0.1075004     1.048418e-01
## 1028 2021-03-12         0.092          0.1075004     1.040723e-01
## 1031 2021-03-15         0.100          0.1075004     9.471083e-02
## 1033 2021-03-17         0.130          0.1075004     1.196421e-01
## 1038 2021-03-22         0.120          0.1075004     1.275122e-01
## 1041 2021-03-25         0.125          0.1075004     1.433908e-01
## 1055 2021-04-08         0.247          0.1075004     2.966141e-01
## 1061 2021-04-14         0.337          0.2831279     3.656677e-01
## 1069 2021-04-22         0.430          0.2831279     4.309404e-01
## 1072 2021-04-25         0.465          0.2831279     4.115833e-01
## 1077 2021-04-30         0.490          0.2831279     4.349528e-01
## 1078 2021-05-01         0.272          0.2831279     4.644064e-01
## 1086 2021-05-09         0.495          0.2831279     4.629048e-01
## 1091 2021-05-14         0.490          0.2831279     4.708786e-01
## 1092 2021-05-15         0.530          0.2831279     4.981503e-01
## 1094 2021-05-17         0.509          0.1075004     4.827246e-01
## 1100 2021-05-23         0.496          0.2831279     5.105458e-01
## 1102 2021-05-25         0.459          0.2831279     5.042518e-01
## 1103 2021-05-26         0.514          0.2831279     5.134704e-01
## 1110 2021-06-02         0.511          0.2831279     5.447739e-01
## 1113 2021-06-05         0.532          0.2831279     5.436618e-01
## 1114 2021-06-06         0.539          0.2831279     5.336816e-01
## 1121 2021-06-13         0.586          0.2831279     5.787325e-01
## 1123 2021-06-15         0.599          0.2831279     5.684595e-01
## 1128 2021-06-20         0.599          0.2831279     5.870690e-01
## 1129 2021-06-21         0.648          0.2831279     6.132949e-01
## 1131 2021-06-23         0.645          0.2831279     6.461671e-01
## 1132 2021-06-24         0.689          0.2831279     6.673816e-01
## 1141 2021-07-03         0.591          0.2831279     5.761695e-01
## 1147 2021-07-09         0.576          0.2831279     5.525581e-01
## 1164 2021-07-26         0.314          0.1075004     3.080973e-01
## 1181 2021-08-12         0.144          0.1075004     1.464301e-01
## 1186 2021-08-17         0.108          0.1075004     1.209776e-01
## 1188 2021-08-19         0.120          0.1075004     1.184989e-01
## 1201 2021-09-01         0.071          0.1075004     6.702683e-02
## 1203 2021-09-03         0.061          0.1075004     6.406310e-02
## 1206 2021-09-06         0.053          0.1075004     4.058560e-02
## 1209 2021-09-09         0.053          0.1075004     5.656873e-02
## 1221 2021-09-21         0.038          0.1075004     3.210697e-02
## 1222 2021-09-22         0.044          0.1075004     3.453903e-02
## 1228 2021-09-28         0.041          0.1075004     3.593383e-02
## 1230 2021-09-30         0.038          0.1075004     3.237953e-02
## 1236 2021-10-06         0.032          0.1075004     3.084003e-02
## 1239 2021-10-09         0.033          0.1075004     3.596790e-02
## 1243 2021-10-13         0.034          0.1075004     3.120880e-02
## 1257 2021-10-27         0.026          0.1075004     3.228880e-02
## 1260 2021-10-30         0.033          0.1075004     3.571503e-02
## 1261 2021-10-31         0.023          0.1075004     3.650503e-02
## 1268 2021-11-07         0.045          0.1075004     3.746970e-02
## 1272 2021-11-11         0.040          0.1075004     4.233687e-02
## 1278 2021-11-17         0.047          0.1075004     3.987097e-02
## 1284 2021-11-23         0.050          0.1075004     4.743817e-02
## 1292 2021-12-01         0.058          0.1075004     4.203527e-02
## 1307 2020-01-27         0.000          0.1075004    -2.775558e-17
## 1311 2020-01-31         0.000          0.1075004    -3.352874e-17
## 1313 2020-02-02         0.000          0.1075004    -3.275158e-17
## 1314 2020-02-03         0.000          0.1075004    -3.397282e-17
## 1320 2020-02-09         0.000          0.1075004    -3.264056e-17
## 1327 2020-02-16         0.000          0.1075004     3.733333e-05
## 1332 2020-02-21         0.000          0.1075004     1.794333e-04
## 1336 2020-02-25         0.000          0.1075004     1.876000e-04
## 1337 2020-02-26         0.001          0.1075004     8.447333e-04
## 1340 2020-02-29         0.000          0.1075004     3.852333e-04
## 1348 2020-03-08         0.003          0.1075004     4.392667e-03
## 1353 2020-03-13         0.031          0.1075004     1.429613e-02
## 1356 2020-03-16         0.058          0.1075004     2.514177e-02
## 1368 2020-03-28         0.318          0.3836605     4.711112e-01
## 1373 2020-04-02         0.609          0.3836605     8.726719e-01
## 1383 2020-04-12         0.561          0.7794346     5.067348e-01
## 1385 2020-04-14         0.743          0.7794346     5.828823e-01
## 1386 2020-04-15         1.438          0.3836605     6.851814e-01
## 1400 2020-04-29         0.426          0.3836605     3.197367e-01
## 1410 2020-05-09         0.080          0.3836605     2.121807e-01
## 1412 2020-05-11         0.263          0.3836605     2.052425e-01
## 1415 2020-05-14         0.351          0.3836605     1.601466e-01
## 1424 2020-05-23         0.086          0.1075004     1.009292e-01
## 1435 2020-06-03         0.081          0.1075004     3.849803e-02
## 1437 2020-06-05         0.045          0.1075004     4.768070e-02
## 1438 2020-06-06         0.031          0.1075004     3.348127e-02
## 1444 2020-06-12         0.028          0.1075004     4.574630e-02
## 1446 2020-06-14         0.010          0.1075004     3.014643e-02
## 1452 2020-06-20         0.018          0.1075004     2.620987e-02
## 1456 2020-06-24         0.013          0.1075004     2.995770e-02
## 1457 2020-06-25         0.019          0.1075004     3.120180e-02
## 1459 2020-06-27         0.001          0.1075004     3.456363e-02
## 1463 2020-07-01         0.019          0.1075004     4.596150e-02
## 1469 2020-07-07         0.011          0.1075004     1.647360e-02
## 1470 2020-07-08         0.031          0.1075004     1.913157e-02
## 1473 2020-07-11         0.003          0.1075004     4.118667e-03
## 1477 2020-07-15         0.088          0.1075004     1.521370e-02
## 1492 2020-07-30         0.016          0.1075004     1.189490e-02
## 1494 2020-08-01         0.000          0.1075004     3.582567e-03
## 1513 2020-08-20         0.011          0.1075004     1.921320e-02
## 1514 2020-08-21         0.024          0.1075004     1.834687e-02
## 1520 2020-08-27         0.035          0.1075004     1.978567e-02
## 1532 2020-09-08         0.038          0.1075004     3.295793e-02
## 1533 2020-09-09         0.032          0.1075004     3.058937e-02
## 1535 2020-09-11         0.082          0.1075004     2.629157e-02
## 1540 2020-09-16         0.048          0.1075004     6.118870e-02
## 1541 2020-09-17         0.047          0.1075004     6.649590e-02
## 1553 2020-09-29         0.073          0.1075004     7.423967e-02
## 1555 2020-10-01         0.057          0.1075004     8.323047e-02
## 1559 2020-10-05         0.071          0.1075004     9.428340e-02
## 1561 2020-10-07         0.080          0.2831279     9.947917e-02
## 1567 2020-10-13         0.128          0.1075004     1.003734e-01
## 1570 2020-10-16         0.179          0.2831279     1.428967e-01
## 1579 2020-10-25        -0.021          0.3836605     2.134536e-01
## 1581 2020-10-27         0.528          0.2831279     3.554559e-01
## 1583 2020-10-29         0.233          0.2831279     2.771181e-01
## 1587 2020-11-02         0.428          0.9053733     8.435181e-01
## 1593 2020-11-08         0.270          0.2831279     3.601582e-01
## 1595 2020-11-10         1.231          0.2831279     6.745993e-01
## 1598 2020-11-13         0.933          0.2831279     6.499101e-01
## 1607 2020-11-22         0.214          0.3836605     3.619335e-01
## 1610 2020-11-25         0.388          0.2831279     4.671368e-01
## 1619 2020-12-04         0.630          0.3836605     5.826760e-01
## 1621 2020-12-06         0.174          0.3836605     1.929876e-01
## 1622 2020-12-07         0.366          0.3836605     3.702991e-01
## 1629 2020-12-14         0.376          0.3836605     3.793095e-01
## 1634 2020-12-19         0.189          0.2831279     2.883299e-01
## 1639 2020-12-24         0.291          0.2831279     3.692896e-01
## 1647 2021-01-01         0.133          0.2831279     4.100030e-01
## 1652 2021-01-06         0.282          0.2831279     2.883595e-01
## 1668 2021-01-22         0.649          0.2831279     6.017869e-01
## 1676 2021-01-30         0.241          0.2831279     2.146078e-01
## 1689 2021-02-12         0.645          0.2831279     5.672022e-01
## 1691 2021-02-14         0.167          0.2831279     1.662540e-01
## 1694 2021-02-17         0.310          0.2831279     3.200135e-01
## 1700 2021-02-23         0.431          0.2831279     5.478428e-01
## 1704 2021-02-27         0.185          0.2831279     1.769355e-01
## 1707 2021-03-02         0.418          0.2831279     4.111476e-01
## 1712 2021-03-07         0.130          0.2831279     1.535037e-01
## 1716 2021-03-11         0.265          0.2831279     3.003620e-01
## 1719 2021-03-14         0.141          0.2831279     1.544636e-01
## 1745 2021-04-09         0.331          0.3836605     3.503965e-01
## 1749 2021-04-13         0.345          0.2831279     3.954019e-01
## 1754 2021-04-18         0.140          0.2831279     1.775911e-01
## 1760 2021-04-24         0.217          0.2831279     1.999315e-01
## 1764 2021-04-28         0.315          0.2831279     2.961765e-01
## 1765 2021-04-29         0.306          0.2831279     2.875741e-01
## 1774 2021-05-08         0.176          0.2831279     1.687529e-01
## 1787 2021-05-21         0.123          0.3836605     1.637136e-01
## 1789 2021-05-23         0.071          0.3836605     9.823547e-02
## 1790 2021-05-24         0.062          0.3836605     1.617899e-01
## 1796 2021-05-30         0.044          0.3836605     9.249287e-02
## 1797 2021-05-31         0.126          0.3836605     9.554700e-02
## 1805 2021-06-08         0.075          0.3836605     9.371877e-02
## 1808 2021-06-11         0.074          0.3836605     8.297953e-02
## 1814 2021-06-17         0.056          0.1075004     6.227043e-02
## 1818 2021-06-21         0.040          0.1075004     5.421477e-02
## 1822 2021-06-25         0.033          0.1075004     4.227603e-02
## 1829 2021-07-02         0.024          0.1075004     3.677123e-02
## 1830 2021-07-03         0.017          0.1075004     2.853007e-02
## 1831 2021-07-04         0.011          0.1075004     2.354410e-02
## 1840 2021-07-13         0.054          0.1075004     3.427917e-02
## 1847 2021-07-20         0.033          0.2831279     3.407403e-02
## 1851 2021-07-24         0.022          0.2831279     3.951410e-02
## 1854 2021-07-27         0.029          0.2831279     4.286750e-02
## 1865 2021-08-07         0.032          0.2831279     5.346550e-02
## 1867 2021-08-09         0.084          0.1075004     9.660930e-02
## 1868 2021-08-10         0.080          0.2831279     7.170497e-02
## 1875 2021-08-17         0.124          0.2831279     1.220783e-01
## 1888 2021-08-30         0.151          0.3836605     1.396664e-01
## 1894 2021-09-05         0.049          0.3836605     6.434543e-02
## 1898 2021-09-09         0.095          0.2831279     1.116123e-01
## 1903 2021-09-14         0.209          0.1075004     1.011055e-01
## 1904 2021-09-15         0.016          0.1075004     9.275480e-02
## 1911 2021-09-22         0.080          0.1075004     8.610793e-02
## 1916 2021-09-27         0.099          0.1075004     7.314377e-02
## 1920 2021-10-01         0.061          0.1075004     5.429057e-02
## 1924 2021-10-05         0.071          0.1075004     5.595757e-02
## 1932 2021-10-13         0.053          0.1075004     4.639697e-02
## 1950 2021-10-31         0.013          0.1075004     1.391670e-02
## 1966 2021-11-16         0.048          0.2831279     6.345133e-02
## 1983 2021-12-03         0.129          0.2831279     1.117933e-01
## 1995 2020-01-29         0.000          0.1075004    -2.409184e-17
## 2000 2020-02-03         0.000          0.1075004    -2.864375e-17
## 2002 2020-02-05         0.000          0.1075004    -3.075318e-17
## 2006 2020-02-09         0.000          0.1075004    -2.897682e-17
## 2010 2020-02-13         0.000          0.1075004    -3.608225e-17
## 2014 2020-02-17         0.000          0.1075004    -3.719247e-17
## 2020 2020-02-23         0.000          0.1075004    -3.563816e-17
## 2024 2020-02-27         0.000          0.1075004     1.450000e-05
## 2027 2020-03-01         0.000          0.1075004     1.460000e-05
## 2037 2020-03-11         0.001          0.1075004     2.796767e-03
## 2044 2020-03-18         0.004          0.1075004     3.565630e-02
## 2051 2020-03-25         0.049          0.1075004     6.289020e-02
## 2063 2020-04-06         0.226          0.3836605     2.303950e-01
## 2068 2020-04-11        -0.031          0.3836605     1.917992e-01
## 2077 2020-04-20         0.276          0.3836605     1.707440e-01
## 2088 2020-05-01         0.113          0.3836605     1.511970e-01
## 2100 2020-05-13         0.123          0.1075004     7.435207e-02
## 2107 2020-05-20         0.063          0.1075004     5.579840e-02
## 2115 2020-05-28         0.042          0.1075004     4.616867e-02
## 2116 2020-05-29         0.034          0.1075004     3.028107e-02
## 2118 2020-05-31         0.010          0.1075004     2.291733e-02
## 2122 2020-06-04         0.033          0.1075004     2.774523e-02
## 2130 2020-06-12         0.011          0.1075004     1.822787e-02
## 2142 2020-06-24         0.014          0.1075004     1.540427e-02
## 2144 2020-06-26         0.025          0.1075004     1.273743e-02
## 2149 2020-07-01         0.005          0.1075004     9.586233e-03
## 2152 2020-07-04         0.010          0.1075004     7.474833e-03
## 2153 2020-07-05         0.003          0.1075004     5.821333e-03
## 2155 2020-07-07         0.010          0.1075004     8.337033e-03
## 2158 2020-07-10         0.006          0.1075004     8.990667e-03
## 2160 2020-07-12         0.001          0.1075004     4.848933e-03
## 2162 2020-07-14         0.004          0.1075004     5.964033e-03
## 2172 2020-07-24         0.010          0.1075004     4.266233e-03
## 2193 2020-08-14         0.013          0.1075004     5.643267e-03
## 2195 2020-08-16         0.000          0.1075004     2.381933e-03
## 2196 2020-08-17         0.001          0.1075004     2.738000e-03
## 2199 2020-08-20         0.014          0.1075004     5.300800e-03
## 2205 2020-08-26         0.004          0.1075004     7.631800e-03
## 2207 2020-08-28         0.000          0.1075004     5.887767e-03
## 2208 2020-08-29         0.009          0.1075004     5.479233e-03
## 2212 2020-09-02         0.015          0.1075004     5.780667e-03
## 2233 2020-09-23         0.018          0.1075004     9.574767e-03
## 2236 2020-09-26         0.008          0.1075004     6.095833e-03
## 2243 2020-10-03         0.013          0.1075004     1.010423e-02
## 2248 2020-10-08         0.012          0.1075004     2.660127e-02
## 2249 2020-10-09         0.005          0.1075004     2.519710e-02
## 2252 2020-10-12         0.014          0.1075004     3.928710e-02
## 2258 2020-10-18         0.013          0.1075004     1.983830e-02
## 2276 2020-11-05         0.161          0.2831279     1.927268e-01
## 2295 2020-11-24         0.372          0.2831279     3.759579e-01
## 2304 2020-12-03         0.438          0.2831279     4.649219e-01
## 2310 2020-12-09         0.458          0.2831279     4.477472e-01
## 2318 2020-12-17         0.754          0.7794346     6.589154e-01
## 2321 2020-12-20         0.229          0.3836605     3.373414e-01
## 2328 2020-12-27         0.351          0.3836605     4.062439e-01
## 2334 2021-01-02         0.330          0.3836605     5.511824e-01
## 2336 2021-01-04         0.957          0.3836605     7.250673e-01
## 2337 2021-01-05         1.009          0.7794346     9.617226e-01
## 2347 2021-01-15         0.498          0.3836605     5.826377e-01
## 2353 2021-01-21         0.866          0.3836605     7.429972e-01
## 2355 2021-01-23         0.160          0.3836605     6.980092e-01
## 2361 2021-01-29         0.403          0.3836605     8.031984e-01
## 2366 2021-02-03         0.784          0.3836605     8.278475e-01
## 2372 2021-02-09         0.815          0.3836605     5.064951e-01
## 2373 2021-02-10         0.666          0.3836605     6.605352e-01
## 2376 2021-02-13         0.219          0.3836605     3.145398e-01
## 2378 2021-02-15         0.181          0.3836605     4.395974e-01
## 2379 2021-02-16         0.541          0.3836605     4.858741e-01
## 2386 2021-02-23         0.422          0.3836605     4.309732e-01
## 2388 2021-02-25         0.173          0.3836605     5.417594e-01
## 2400 2021-03-09         0.298          0.3836605     2.559227e-01
## 2404 2021-03-13         0.021          0.3836605     1.333736e-01
## 2405 2021-03-14         0.094          0.3836605     1.051010e-01
## 2412 2021-03-21         0.049          0.3836605     9.658773e-02
## 2420 2021-03-29         0.180          0.3836605     2.533696e-01
## 2424 2021-04-02         0.117          0.3836605     2.593795e-01
## 2425 2021-04-03         0.070          0.3836605     1.617267e-01
## 2432 2021-04-10         0.107          0.2831279     1.760723e-01
## 2435 2021-04-13         0.341          0.2831279     3.411782e-01
## 2436 2021-04-14         0.290          0.2831279     3.329547e-01
## 2437 2021-04-15         0.245          0.2831279     2.792793e-01
## 2447 2021-04-25         0.061          0.3836605     1.445056e-01
## 2459 2021-05-07         0.234          0.3836605     2.536054e-01
## 2469 2021-05-17         0.220          0.3836605     2.048985e-01
## 2471 2021-05-19         0.237          0.3836605     2.489752e-01
## 2475 2021-05-23         0.044          0.3836605     6.992360e-02
## 2477 2021-05-25         0.272          0.3836605     1.445571e-01
## 2484 2021-06-01         0.180          0.3836605     1.474504e-01
## 2489 2021-06-06         0.021          0.1075004     5.633550e-02
## 2492 2021-06-09         0.095          0.1075004     1.044479e-01
## 2517 2021-07-04        -0.001          0.1075004     7.599600e-03
## 2521 2021-07-08         0.049          0.1075004     3.211460e-02
## 2526 2021-07-13         0.027          0.1075004     3.456617e-02
## 2531 2021-07-18         0.001          0.1075004     4.805767e-03
## 2532 2021-07-19         0.034          0.1075004     2.165170e-02
## 2533 2021-07-20         0.019          0.1075004     2.645313e-02
## 2538 2021-07-25         0.003          0.1075004     6.166100e-03
## 2540 2021-07-27         0.019          0.1075004     2.194453e-02
## 2543 2021-07-30         0.041          0.1075004     9.307867e-03
## 2547 2021-08-03         0.025          0.1075004     1.818830e-02
## 2550 2021-08-06         0.024          0.1075004     1.953957e-02
## 2555 2021-08-11         0.017          0.1075004     2.168030e-02
## 2556 2021-08-12         0.019          0.1075004     2.315590e-02
## 2561 2021-08-17         0.022          0.1075004     2.857117e-02
## 2565 2021-08-21         0.003          0.1075004     2.015577e-02
## 2573 2021-08-29         0.010          0.1075004     3.594600e-02
## 2577 2021-09-02         0.045          0.1075004     3.830093e-02
## 2578 2021-09-03         0.024          0.1075004     4.358973e-02
## 2581 2021-09-06         0.059          0.1075004     5.357743e-02
## 2584 2021-09-09         0.096          0.2831279     1.227643e-01
## 2590 2021-09-15         0.067          0.1075004     6.512460e-02
## 2595 2021-09-20         0.081          0.1075004     7.533200e-02
## 2614 2021-10-09         0.024          0.1075004     3.200167e-02
## 2616 2021-10-11         0.095          0.1075004     7.331123e-02
## 2626 2021-10-21         0.109          0.2831279     8.995930e-02
## 2642 2021-11-06         0.037          0.2831279     1.146104e-01
## 2645 2021-11-09         0.237          0.2831279     1.935641e-01
## 2648 2021-11-12         0.229          0.2831279     1.799088e-01
## 2660 2021-11-24         0.350          0.9053733     4.770642e-01
## 2661 2021-11-25         0.357          0.9053733     5.000040e-01
## 2662 2021-11-26         0.303          0.2831279     3.657203e-01
## 2664 2021-11-28         0.073          0.2831279     1.545201e-01
## 2666 2021-11-30         0.444          0.9053733     5.331574e-01
## 2670 2021-12-04         0.092          0.7794346     7.696072e-01
## 2682 2020-02-02         0.000          0.1075004     3.138000e-03
## 2686 2020-02-06         0.000          0.1075004    -3.574918e-17
## 2695 2020-02-15         0.000          0.1075004    -3.841372e-17
## 2697 2020-02-17         0.000          0.1075004    -3.652634e-17
## 2700 2020-02-20         0.000          0.1075004    -3.574918e-17
## 2712 2020-03-03         0.000          0.1075004    -3.752554e-17
## 2718 2020-03-09         0.000          0.1075004    -2.686740e-17
## 2724 2020-03-15         0.000          0.1075004     3.030333e-04
## 2729 2020-03-20         0.001          0.1075004     1.388100e-03
## 2730 2020-03-21        -0.001          0.1075004     1.310233e-03
## 2732 2020-03-23         0.003          0.1075004     2.713267e-03
## 2733 2020-03-24         0.000          0.1075004     2.744733e-03
## 2735 2020-03-26         0.008          0.1075004     2.395033e-03
## 2741 2020-04-01         0.023          0.1075004     2.081000e-02
## 2743 2020-04-03         0.000          0.1075004     1.647980e-02
## 2749 2020-04-09         0.048          0.1075004     2.751257e-02
## 2765 2020-04-25         0.045          0.1075004     5.791597e-02
## 2766 2020-04-26         0.056          0.1075004     5.369720e-02
## 2770 2020-04-30         0.075          0.1075004     6.554263e-02
## 2775 2020-05-05         0.127          0.1075004     1.112540e-01
## 2776 2020-05-06         0.092          0.1075004     1.216963e-01
## 2777 2020-05-07         0.104          0.1075004     1.051696e-01
## 2786 2020-05-16         0.118          0.1075004     1.336680e-01
## 2797 2020-05-27         0.190          0.1075004     1.870084e-01
## 2800 2020-05-30         0.205          0.1075004     2.534714e-01
## 2803 2020-06-02         0.221          0.1075004     4.906991e-01
## 2806 2020-06-05         0.286          0.1075004     2.893202e-01
## 2808 2020-06-07         0.261          0.1075004     3.562408e-01
## 2815 2020-06-14         0.325          0.1075004     4.216213e-01
## 2819 2020-06-18         0.336          0.1075004     4.807245e-01
## 2821 2020-06-20         0.306          0.1075004     4.451001e-01
## 2825 2020-06-24         0.418          0.7794346     4.879239e-01
## 2826 2020-06-25         0.407          0.7794346     4.967266e-01
## 2827 2020-06-26         0.384          0.7794346     4.838627e-01
## 2843 2020-07-12         0.501          0.7794346     5.234780e-01
## 2852 2020-07-21         0.650          0.7794346     6.519474e-01
## 2856 2020-07-25         0.702          0.7794346     7.393691e-01
## 2859 2020-07-28         0.785          0.7794346     7.979754e-01
## 2870 2020-08-08         0.861          0.7794346     9.162731e-01
## 2874 2020-08-12         0.942          0.9053733     9.168061e-01
## 2876 2020-08-14         0.996          0.7794346     9.452132e-01
## 2880 2020-08-18         1.091          0.7794346     9.622910e-01
## 2882 2020-08-20         0.983          0.9053733     9.864560e-01
## 2895 2020-09-02         1.043          0.9053733     1.088590e+00
## 2896 2020-09-03         1.096          0.9053733     1.106720e+00
## 2899 2020-09-06         1.016          0.9053733     1.071045e+00
## 2902 2020-09-09         1.172          0.9053733     1.153640e+00
## 2913 2020-09-20         1.130          0.9053733     1.073057e+00
## 2916 2020-09-23         1.129          0.9053733     1.132168e+00
## 2918 2020-09-25         1.089          0.9053733     1.148998e+00
## 2921 2020-09-28         0.776          0.9053733     1.060681e+00
## 2931 2020-10-08         0.964          0.9053733     9.629609e-01
## 2932 2020-10-09         0.926          0.9053733     9.470137e-01
## 2935 2020-10-12         0.706          0.2831279     7.716035e-01
## 2942 2020-10-19         0.587          0.2831279     5.821300e-01
## 2948 2020-10-25         0.480          0.2831279     5.125298e-01
## 2954 2020-10-31         0.470          0.2831279     5.478075e-01
## 2959 2020-11-05         0.670          0.2831279     5.647721e-01
## 2966 2020-11-12         0.547          0.2831279     5.283691e-01
## 2968 2020-11-14         0.447          0.2831279     5.044685e-01
## 2969 2020-11-15         0.435          0.2831279     4.572431e-01
## 2972 2020-11-18         0.585          0.2831279     5.360158e-01
## 2980 2020-11-26         0.492          0.2831279     5.175132e-01
## 2982 2020-11-28         0.496          0.2831279     5.004991e-01
## 2989 2020-12-05         0.482          0.2831279     4.641739e-01
## 2990 2020-12-06         0.391          0.2831279     4.147716e-01
## 3000 2020-12-16         0.355          0.2831279     3.468242e-01
## 3003 2020-12-19         0.341          0.2831279     3.491986e-01
## 3018 2021-01-03         0.214          0.2831279     2.158558e-01
## 3023 2021-01-08         0.000          0.1075004     2.071673e-02
## 3027 2021-01-12         0.202          0.1075004     2.094753e-01
## 3047 2021-02-01         0.094          0.1075004     9.681230e-02
## 3056 2021-02-10         0.108          0.1075004     9.712073e-02
## 3070 2021-02-24         0.138          0.2831279     1.350296e-01
## 3071 2021-02-25         0.120          0.2831279     1.346390e-01
## 3075 2021-03-01         0.091          0.1075004     1.449468e-01
## 3076 2021-03-02         0.098          0.1075004     1.558566e-01
## 3083 2021-03-09         0.133          0.2831279     1.630767e-01
## 3084 2021-03-10         0.126          0.2831279     1.285534e-01
## 3090 2021-03-16         0.188          0.2831279     1.724726e-01
## 3097 2021-03-23         0.275          0.2831279     2.229339e-01
## 3098 2021-03-24         0.251          0.2831279     2.803351e-01
## 3107 2021-04-02         0.714          0.9053733     6.237336e-01
## 3110 2021-04-05         0.446          0.9053733     6.539509e-01
## 3112 2021-04-07         0.685          0.9053733     7.807093e-01
## 3123 2021-04-18         1.619          2.4070561     1.414763e+00
## 3124 2021-04-19         1.761          2.4070561     1.824239e+00
## 3128 2021-04-23         2.624          2.4070561     2.497957e+00
## 3130 2021-04-25         2.812          2.4070561     2.668765e+00
## 3137 2021-05-02         3.417          3.6000806     3.350146e+00
## 3138 2021-05-03         3.449          3.6000806     3.547405e+00
## 3140 2021-05-05         3.980          3.6000806     3.900702e+00
## 3146 2021-05-11         4.205          3.6000806     4.033232e+00
## 3164 2021-05-29         3.460          3.6000806     4.087364e+00
## 3172 2021-06-06         2.427          3.6000806     2.966842e+00
## 3174 2021-06-08         2.219          3.6000806     4.580507e+00
## 3175 2021-06-09         2.177          3.6000806     4.580871e+00
## 3186 2021-06-20         1.427          0.7794346     1.169153e+00
## 3187 2021-06-21         1.167          0.7794346     1.401571e+00
## 3191 2021-06-25         1.183          0.7794346     1.323154e+00
## 3193 2021-06-27         0.979          0.7794346     9.598142e-01
## 3196 2021-06-30         1.005          0.7794346     1.072704e+00
## 3202 2021-07-06         0.930          0.7794346     8.638549e-01
## 3211 2021-07-15         0.542          0.7794346     6.694720e-01
## 3215 2021-07-19         0.374          0.7794346     1.722717e+00
## 3223 2021-07-27         0.640          0.2831279     5.534033e-01
## 3227 2021-07-31         0.541          0.2831279     5.326621e-01
## 3228 2021-08-01         0.422          0.2831279     4.567811e-01
## 3243 2021-08-16         0.437          0.2831279     3.820483e-01
## 3245 2021-08-18         0.530          0.2831279     4.993461e-01
## 3246 2021-08-19         0.540          0.2831279     4.841822e-01
## 3247 2021-08-20         0.375          0.2831279     4.997431e-01
## 3252 2021-08-25         0.607          0.2831279     5.003659e-01
## 3255 2021-08-28         0.460          0.2831279     4.633446e-01
## 3268 2021-09-10         0.308          0.2831279     2.835779e-01
## 3275 2021-09-17         0.281          0.2831279     3.058574e-01
## 3286 2021-09-28         0.378          0.2831279     2.680501e-01
## 3288 2021-09-30         0.277          0.2831279     2.963132e-01
## 3292 2021-10-04         0.263          0.2831279     2.312946e-01
## 3299 2021-10-11         0.181          0.1075004     1.757495e-01
## 3311 2021-10-23         0.561          0.1075004     4.785737e-01
## 3313 2021-10-25         0.356          0.1075004     2.976399e-01
## 3314 2021-10-26         0.585          0.1075004     4.061853e-01
## 3324 2021-11-05         0.392          0.1075004     3.996265e-01
## 3327 2021-11-08         0.332          0.1075004     2.970752e-01
## 3328 2021-11-09         0.460          0.1075004     3.291996e-01
## 3338 2021-11-19         0.267          0.1075004     4.429341e-01
## 3340 2021-11-21         0.249          0.1075004     2.424100e-01
## 3345 2021-11-26         0.465          0.1075004     4.513637e-01
## 3348 2021-11-29         0.190          0.1075004     2.137181e-01
## 3350 2021-12-01         0.477          0.1075004     3.591614e-01
## 3364 2020-02-02         0.000          0.1075004    -3.230749e-17
## 3365 2020-02-03         0.000          0.1075004    -3.186340e-17
## 3366 2020-02-04         0.000          0.1075004    -3.175238e-17
## 3369 2020-02-07         0.000          0.1075004    -2.764455e-17
## 3370 2020-02-08         0.000          0.1075004    -3.896883e-17
## 3376 2020-02-14         0.000          0.1075004    -3.508305e-17
## 3386 2020-02-24         0.004          0.1075004     3.566033e-03
## 3387 2020-02-25         0.003          0.1075004     3.551200e-03
## 3388 2020-02-26         0.002          0.1075004     3.971167e-03
## 3390 2020-02-28         0.004          0.1075004     5.503533e-03
## 3391 2020-02-29         0.008          0.1075004     9.459700e-03
## 3392 2020-03-01         0.005          0.1075004     1.060737e-02
## 3393 2020-03-02         0.018          0.1075004     2.216157e-02
## 3396 2020-03-05         0.041          0.1075004     3.476517e-02
## 3408 2020-03-17         0.345          0.1075004     4.686965e-01
## 3415 2020-03-24         0.743          0.3836605     7.831372e-01
## 3431 2020-04-09         0.610          0.3836605     6.277979e-01
## 3432 2020-04-10         0.570          0.3836605     6.436754e-01
## 3447 2020-04-25         0.415          0.1075004     3.650212e-01
## 3451 2020-04-29         0.323          0.1075004     3.838430e-01
## 3467 2020-05-15         0.242          0.1075004     1.849616e-01
## 3469 2020-05-17         0.145          0.1075004     1.430301e-01
## 3478 2020-05-26         0.078          0.1075004     8.858900e-02
## 3480 2020-05-28         0.070          0.1075004     9.940257e-02
## 3481 2020-05-29         0.087          0.1075004     1.035177e-01
## 3489 2020-06-06         0.072          0.1075004     8.244540e-02
## 3496 2020-06-13         0.078          0.1075004     5.633417e-02
## 3497 2020-06-14         0.044          0.1075004     4.013377e-02
## 3506 2020-06-23         0.018          0.1075004     2.033897e-02
## 3511 2020-06-28         0.022          0.1075004     1.563670e-02
## 3512 2020-06-29         0.006          0.1075004     1.730313e-02
## 3519 2020-07-06         0.008          0.1075004     1.515910e-02
## 3538 2020-07-25         0.005          0.1075004     7.622600e-03
## 3548 2020-08-04         0.005          0.1075004     9.425767e-03
## 3552 2020-08-08         0.013          0.1075004     5.762900e-03
## 3553 2020-08-09         0.002          0.1075004     5.061833e-03
## 3554 2020-08-10         0.004          0.1075004     6.143167e-03
## 3559 2020-08-15         0.158          0.1075004     4.890067e-03
## 3560 2020-08-16         0.004          0.1075004     4.866933e-03
## 3564 2020-08-20         0.006          0.1075004     5.914400e-03
## 3570 2020-08-26         0.013          0.1075004     7.642367e-03
## 3575 2020-08-31         0.006          0.1075004     7.449767e-03
## 3578 2020-09-03         0.010          0.1075004     1.115540e-02
## 3590 2020-09-15         0.009          0.1075004     1.248807e-02
## 3605 2020-09-30         0.019          0.1075004     2.277273e-02
## 3611 2020-10-06         0.028          0.1075004     3.464563e-02
## 3615 2020-10-10         0.029          0.1075004     2.743530e-02
## 3619 2020-10-14         0.043          0.1075004     5.408163e-02
## 3624 2020-10-19         0.073          0.1075004     7.828457e-02
## 3628 2020-10-23         0.091          0.2831279     1.753950e-01
## 3629 2020-10-24         0.151          0.2831279     1.607790e-01
## 3631 2020-10-26         0.141          0.2831279     1.816321e-01
## 3632 2020-10-27         0.221          0.2831279     2.156756e-01
## 3633 2020-10-28         0.205          0.2831279     2.259584e-01
## 3635 2020-10-30         0.199          0.2831279     2.538516e-01
## 3636 2020-10-31         0.297          0.2831279     2.216608e-01
## 3639 2020-11-03         0.353          0.2831279     2.898099e-01
## 3640 2020-11-04         0.352          0.2831279     2.647594e-01
## 3641 2020-11-05         0.428          0.2831279     2.706286e-01
## 3644 2020-11-08         0.331          0.7794346     4.965473e-01
## 3669 2020-12-03         0.993          0.7794346     6.818615e-01
## 3672 2020-12-06         0.564          0.7794346     6.170816e-01
## 3680 2020-12-14         0.491          0.3836605     4.594429e-01
## 3681 2020-12-15         0.846          0.3836605     6.187777e-01
## 3682 2020-12-16         0.680          0.7794346     6.146942e-01
## 3685 2020-12-19         0.553          0.7794346     5.483218e-01
## 3692 2020-12-26         0.261          0.3836605     4.234248e-01
## 3699 2021-01-02         0.364          0.3836605     4.455949e-01
## 3701 2021-01-04         0.348          0.3836605     4.181978e-01
## 3705 2021-01-08         0.620          0.2831279     4.806967e-01
## 3706 2021-01-09         0.483          0.2831279     4.010568e-01
## 3707 2021-01-10         0.361          0.2831279     3.749708e-01
## 3708 2021-01-11         0.448          0.3836605     3.760880e-01
## 3710 2021-01-13         0.507          0.3836605     4.670891e-01
## 3713 2021-01-16         0.475          0.2831279     3.936953e-01
## 3714 2021-01-17         0.377          0.3836605     3.148559e-01
## 3717 2021-01-20         0.524          0.3836605     4.891892e-01
## 3721 2021-01-24         0.299          0.3836605     3.161786e-01
## 3727 2021-01-30         0.421          0.3836605     3.700071e-01
## 3729 2021-02-01         0.329          0.3836605     3.495340e-01
## 3737 2021-02-09         0.422          0.3836605     4.185492e-01
## 3738 2021-02-10         0.336          0.3836605     3.816329e-01
## 3742 2021-02-14         0.221          0.1075004     2.611962e-01
## 3745 2021-02-17         0.369          0.1075004     3.480381e-01
## 3747 2021-02-19         0.348          0.1075004     3.339621e-01
## 3765 2021-03-09         0.376          0.2831279     3.825481e-01
## 3768 2021-03-12         0.380          0.2831279     3.767920e-01
## 3771 2021-03-15         0.354          0.3836605     3.674291e-01
## 3772 2021-03-16         0.502          0.2831279     4.083305e-01
## 3773 2021-03-17         0.431          0.2831279     3.832004e-01
## 3774 2021-03-18         0.423          0.2831279     3.885726e-01
## 3779 2021-03-23         0.551          0.2831279     4.709131e-01
## 3780 2021-03-24         0.460          0.2831279     4.324149e-01
## 3782 2021-03-26         0.457          0.2831279     4.782295e-01
## 3787 2021-03-31         0.467          0.2831279     4.354175e-01
## 3788 2021-04-01         0.501          0.2831279     4.616995e-01
## 3792 2021-04-05         0.296          0.3836605     4.187313e-01
## 3804 2021-04-17         0.310          0.3836605     3.637922e-01
## 3805 2021-04-18         0.251          0.3836605     2.907249e-01
## 3807 2021-04-20         0.390          0.3836605     4.438280e-01
## 3814 2021-04-27         0.373          0.3836605     3.783362e-01
## 3816 2021-04-29         0.288          0.3836605     3.647230e-01
## 3822 2021-05-05         0.267          0.3836605     2.753486e-01
## 3825 2021-05-08         0.224          0.3836605     2.140196e-01
## 3836 2021-05-19         0.149          0.1075004     1.891481e-01
## 3838 2021-05-21         0.218          0.1075004     1.589248e-01
## 3839 2021-05-22         0.125          0.1075004     1.389388e-01
## 3841 2021-05-24         0.110          0.1075004     1.199700e-01
## 3842 2021-05-25         0.166          0.1075004     1.329994e-01
## 3848 2021-05-31         0.082          0.1075004     1.053778e-01
## 3856 2021-06-08         0.102          0.1075004     8.084730e-02
## 3860 2021-06-12         0.052          0.1075004     6.419687e-02
## 3862 2021-06-14         0.036          0.1075004     3.974003e-02
## 3863 2021-06-15         0.063          0.1075004     5.409530e-02
## 3865 2021-06-17         0.037          0.1075004     4.108387e-02
## 3877 2021-06-29         0.042          0.1075004     2.759490e-02
## 3878 2021-06-30         0.024          0.1075004     2.009163e-02
## 3879 2021-07-01         0.021          0.1075004     1.985907e-02
## 3880 2021-07-02         0.028          0.1075004     2.169900e-02
## 3881 2021-07-03         0.022          0.1075004     1.809980e-02
## 3894 2021-07-16         0.011          0.1075004     1.272127e-02
## 3897 2021-07-19         0.007          0.1075004     1.986750e-02
## 3898 2021-07-20         0.010          0.1075004     2.521860e-02
## 3902 2021-07-24         0.005          0.1075004     1.611790e-02
## 3904 2021-07-26         0.022          0.1075004     2.064240e-02
## 3906 2021-07-28         0.015          0.1075004     2.426100e-02
## 3907 2021-07-29         0.019          0.1075004     2.257890e-02
## 3911 2021-08-02         0.020          0.1075004     2.217547e-02
## 3915 2021-08-06         0.024          0.1075004     2.738957e-02
## 3916 2021-08-07         0.022          0.1075004     2.768917e-02
## 3920 2021-08-11         0.031          0.1075004     3.708053e-02
## 3927 2021-08-18         0.069          0.1075004     5.138117e-02
## 3929 2021-08-20         0.049          0.1075004     4.885060e-02
## 3933 2021-08-24         0.060          0.1075004     5.389213e-02
## 3936 2021-08-27         0.045          0.1075004     5.267927e-02
## 3937 2021-08-28         0.054          0.1075004     4.398467e-02
## 3938 2021-08-29         0.037          0.1075004     3.689050e-02
## 3942 2021-09-02         0.062          0.1075004     6.019920e-02
## 3944 2021-09-04         0.056          0.1075004     5.575700e-02
## 3949 2021-09-09         0.059          0.1075004     6.572477e-02
## 3952 2021-09-12         0.034          0.1075004     4.168913e-02
## 3967 2021-09-27         0.045          0.1075004     4.372783e-02
## 3980 2021-10-10         0.027          0.1075004     3.410040e-02
## 3989 2021-10-19         0.070          0.1075004     3.995413e-02
## 3990 2021-10-20         0.033          0.1075004     4.024480e-02
## 3995 2021-10-25         0.030          0.1075004     3.484120e-02
## 3996 2021-10-26         0.048          0.1075004     4.425223e-02
## 4004 2021-11-03         0.063          0.1075004     5.230387e-02
## 4009 2021-11-08         0.032          0.1075004     4.911857e-02
## 4014 2021-11-13         0.053          0.1075004     5.173493e-02
## 4016 2021-11-15         0.044          0.1075004     5.357017e-02
## 4020 2021-11-19         0.048          0.1075004     6.234827e-02
## 4024 2021-11-23         0.083          0.1075004     7.805807e-02
## 4036 2021-12-05         0.043          0.1075004     1.043499e-01
## 4037 2021-12-06         0.092          0.1075004     1.267999e-01
## 4038 2021-12-07         0.099          0.1075004     1.132311e-01
## 4045 2020-02-01         0.000          0.1075004    -3.597123e-17
## 4055 2020-02-11         0.000          0.1075004    -3.608225e-17
## 4060 2020-02-16         0.000          0.1075004    -3.497203e-17
## 4070 2020-02-26         0.000          0.1075004    -3.463896e-17
## 4074 2020-03-01         0.000          0.1075004    -3.441691e-17
## 4080 2020-03-07         0.000          0.1075004     1.280200e-02
## 4083 2020-03-10         0.000          0.1075004     1.027200e-02
## 4086 2020-03-13         0.000          0.1075004     9.343400e-03
## 4095 2020-03-22         0.000          0.1075004     1.593333e-04
## 4098 2020-03-25         0.002          0.1075004     5.287000e-04
## 4106 2020-04-02         0.006          0.1075004     1.076320e-02
## 4109 2020-04-05         0.002          0.1075004     1.039413e-02
## 4110 2020-04-06         0.002          0.1075004     1.292463e-02
## 4112 2020-04-08         0.005          0.1075004     1.530817e-02
## 4115 2020-04-11         0.012          0.1075004     1.953737e-02
## 4118 2020-04-14         0.022          0.1075004     3.040527e-02
## 4122 2020-04-18         0.040          0.1075004     5.047347e-02
## 4123 2020-04-19         0.048          0.1075004     5.998933e-02
## 4131 2020-04-27         0.047          0.1075004     7.340270e-02
## 4147 2020-05-13         0.096          0.1075004     1.058270e-01
## 4150 2020-05-16         0.119          0.1075004     1.264059e-01
## 4154 2020-05-20         0.135          0.1075004     1.412254e-01
## 4160 2020-05-26         0.174          0.1075004     1.460566e-01
## 4168 2020-06-03         0.177          0.1075004     1.815036e-01
## 4169 2020-06-04         0.168          0.1075004     1.831999e-01
## 4170 2020-06-05         0.144          0.1075004     1.920447e-01
## 4174 2020-06-09         0.171          0.1075004     1.716754e-01
## 4184 2020-06-19         0.181          0.1075004     1.849733e-01
## 4189 2020-06-24         0.154          0.1075004     1.709401e-01
## 4193 2020-06-28         0.102          0.1075004     1.228250e-01
## 4197 2020-07-02         0.147          0.1075004     1.596813e-01
## 4204 2020-07-09         0.176          0.1075004     1.722652e-01
## 4209 2020-07-14         0.175          0.1075004     1.577173e-01
## 4216 2020-07-21         0.153          0.1075004     1.497621e-01
## 4224 2020-07-29         0.167          0.1075004     1.469700e-01
## 4225 2020-07-30         0.128          0.1075004     1.425631e-01
## 4230 2020-08-04         0.144          0.1075004     1.207296e-01
## 4231 2020-08-05         0.138          0.1075004     1.208844e-01
## 4234 2020-08-08         0.129          0.1075004     1.136697e-01
## 4235 2020-08-09         0.076          0.1075004     7.529550e-02
## 4236 2020-08-10         0.070          0.1075004     7.179563e-02
## 4239 2020-08-13         0.122          0.1075004     1.162536e-01
## 4241 2020-08-15         0.118          0.1075004     1.130655e-01
## 4247 2020-08-21         0.090          0.1075004     1.195446e-01
## 4249 2020-08-23         0.073          0.1075004     6.918727e-02
## 4252 2020-08-26         0.114          0.1075004     1.170273e-01
## 4255 2020-08-29         0.111          0.1075004     1.118923e-01
## 4258 2020-09-01         0.122          0.1075004     1.180169e-01
## 4263 2020-09-06         0.061          0.1075004     7.374470e-02
## 4266 2020-09-09         0.141          0.1075004     1.195714e-01
## 4269 2020-09-12         0.117          0.1075004     1.099663e-01
## 4272 2020-09-15         0.150          0.1075004     1.229489e-01
## 4275 2020-09-18         0.132          0.1075004     1.375539e-01
## 4278 2020-09-21         0.071          0.1075004     8.287520e-02
## 4283 2020-09-26         0.167          0.1075004     1.459671e-01
## 4288 2020-10-01         0.166          0.1075004     1.803193e-01
## 4289 2020-10-02         0.185          0.1075004     2.203394e-01
## 4299 2020-10-12         0.123          0.1075004     1.620583e-01
## 4303 2020-10-16         0.230          0.1075004     2.855673e-01
## 4307 2020-10-20         0.268          0.1075004     3.383482e-01
## 4317 2020-10-30         0.351          0.8035981     3.565329e-01
## 4320 2020-11-02         0.238          0.8035981     2.580298e-01
## 4325 2020-11-07         0.356          0.8035981     3.654234e-01
## 4332 2020-11-14         0.380          0.8035981     4.167162e-01
## 4336 2020-11-18         0.449          0.8035981     4.358083e-01
## 4337 2020-11-19         0.457          0.8035981     4.508493e-01
## 4349 2020-12-01         0.559          0.8035981     5.258866e-01
## 4352 2020-12-04         0.557          0.8035981     5.289225e-01
## 4356 2020-12-08         0.552          0.8035981     5.414559e-01
## 4360 2020-12-12         0.553          0.8035981     5.629571e-01
## 4363 2020-12-15         0.564          0.8035981     5.427457e-01
## 4365 2020-12-17         0.574          0.8035981     5.764235e-01
## 4369 2020-12-21         0.481          0.8035981     4.909960e-01
## 4370 2020-12-22         0.551          0.8035981     5.509094e-01
## 4378 2020-12-30         0.585          0.8035981     5.535709e-01
## 4401 2021-01-22         0.566          0.8035981     5.531245e-01
## 4404 2021-01-25         0.444          0.8035981     4.630421e-01
## 4409 2021-01-30         0.502          0.8035981     5.296614e-01
## 4411 2021-02-01         0.427          0.8035981     4.758389e-01
## 4423 2021-02-13         0.492          0.1075004     5.087867e-01
## 4424 2021-02-14         0.422          0.1075004     4.086814e-01
## 4428 2021-02-18         0.469          0.1075004     4.535042e-01
## 4429 2021-02-19         0.461          0.1075004     4.518979e-01
## 4435 2021-02-25         0.437          0.1075004     4.163724e-01
## 4437 2021-02-27         0.430          0.1075004     4.316139e-01
## 4442 2021-03-04         0.467          0.1075004     4.183503e-01
## 4443 2021-03-05         0.453          0.1075004     4.176588e-01
## 4444 2021-03-06         0.432          0.1075004     4.128944e-01
## 4454 2021-03-16         0.437          0.1075004     3.978043e-01
## 4461 2021-03-23         0.419          0.1075004     3.837293e-01
## 4466 2021-03-28         0.331          0.1075004     3.391719e-01
## 4471 2021-04-02         0.392          0.1075004     3.833330e-01
## 4472 2021-04-03         0.377          0.1075004     3.829798e-01
## 4473 2021-04-04         0.350          0.1075004     3.258332e-01
## 4474 2021-04-05         0.336          0.1075004     3.143173e-01
## 4475 2021-04-06         0.382          0.1075004     3.432920e-01
## 4483 2021-04-14         0.393          0.1075004     3.814048e-01
## 4486 2021-04-17         0.392          0.1075004     3.842798e-01
## 4489 2021-04-20         0.372          0.1075004     3.502797e-01
## 4495 2021-04-26         0.349          0.1075004     3.296192e-01
## 4499 2021-04-30         0.388          0.1075004     3.838333e-01
## 4522 2021-05-23         0.353          0.1075004     3.634990e-01
## 4529 2021-05-30         0.349          0.1075004     3.711071e-01
## 4531 2021-06-01         0.366          0.1075004     3.730903e-01
## 4542 2021-06-12         0.393          0.1075004     3.816965e-01
## 4545 2021-06-15         0.374          0.1075004     3.621529e-01
## 4552 2021-06-22         0.539          0.8035981     5.144127e-01
## 4557 2021-06-27         0.591          0.8035981     5.455758e-01
## 4558 2021-06-28         0.601          0.8035981     5.213838e-01
## 4559 2021-06-29         0.643          0.8035981     6.168075e-01
## 4564 2021-07-04         0.650          0.8035981     6.474378e-01
## 4569 2021-07-09         0.715          0.8035981     7.689863e-01
## 4577 2021-07-17         0.776          0.8035981     7.433441e-01
## 4586 2021-07-26         0.717          0.8035981     7.549351e-01
## 4590 2021-07-30         0.776          0.8035981     7.732087e-01
## 4592 2021-08-01         0.774          0.8035981     7.717688e-01
## 4607 2021-08-16         0.789          0.8035981     7.611133e-01
## 4608 2021-08-17         0.785          0.8035981     7.718069e-01
## 4612 2021-08-21         0.777          0.8035981     7.738187e-01
## 4628 2021-09-06         0.776          0.8035981     7.457133e-01
## 4631 2021-09-09         0.775          0.8035981     7.729683e-01
## 4634 2021-09-12         0.773          0.8035981     7.369796e-01
## 4645 2021-09-23         0.802          0.8035981     6.723889e-01
## 4646 2021-09-24         0.810          0.8035981     7.970494e-01
## 4648 2021-09-26         0.795          0.8035981     7.896168e-01
## 4651 2021-09-29         0.846          0.8035981     8.176412e-01
## 4653 2021-10-01         0.875          0.8035981     8.401455e-01
## 4656 2021-10-04         0.877          0.8035981     8.039440e-01
## 4657 2021-10-05         0.876          0.8035981     8.740622e-01
## 4666 2021-10-14         0.965          0.8035981     9.352567e-01
## 4674 2021-10-22         1.038          0.8035981     1.024421e+00
## 4675 2021-10-23         1.048          0.8035981     1.022614e+00
## 4678 2021-10-26         1.075          0.8035981     1.065184e+00
## 4681 2021-10-29         1.145          0.8035981     1.090142e+00
## 4682 2021-10-30         1.132          0.8035981     1.085031e+00
## 4690 2021-11-07         1.146          0.8035981     1.081225e+00
## 4696 2021-11-13         1.212          0.8035981     1.185867e+00
## 4698 2021-11-15         1.187          0.8035981     1.177730e+00
## 4709 2021-11-26         1.200          0.8035981     1.207352e+00
## 4714 2021-12-01         1.191          0.8035981     1.156310e+00
## 4725 2021-12-12         1.102          0.8035981     1.093770e+00
## 4726 2020-03-11         0.000          0.1075004    -7.771561e-18
## 4727 2020-03-12         0.000          0.1075004     1.358000e-03
## 4729 2020-03-14         0.000          0.1075004     2.460000e-03
## 4732 2020-03-17         0.001          0.1075004     4.675333e-04
## 4735 2020-03-20         0.001          0.1075004     1.671800e-03
## 4743 2020-03-28         0.016          0.1075004     3.129070e-02
## 4749 2020-04-03         0.069          0.1075004     8.411877e-02
## 4753 2020-04-07         0.076          0.1075004     8.784720e-02
## 4755 2020-04-09         0.096          0.1075004     9.437770e-02
## 4757 2020-04-11         0.095          0.1075004     1.132626e-01
## 4759 2020-04-13         0.098          0.1075004     1.065990e-01
## 4760 2020-04-14         0.107          0.1075004     1.143443e-01
## 4765 2020-04-19         0.127          0.1075004     1.156531e-01
## 4771 2020-04-25         0.106          0.1075004     1.024826e-01
## 4788 2020-05-12         0.053          0.1075004     5.576840e-02
## 4789 2020-05-13         0.058          0.1075004     5.388280e-02
## 4790 2020-05-14         0.055          0.1075004     5.195323e-02
## 4791 2020-05-15         0.048          0.1075004     5.249810e-02
## 4792 2020-05-16         0.041          0.1075004     5.086247e-02
## 4794 2020-05-18         0.031          0.1075004     3.605773e-02
## 4807 2020-05-31         0.025          0.1075004     2.751480e-02
## 4819 2020-06-12         0.015          0.1075004     2.032367e-02
## 4825 2020-06-18         0.021          0.1075004     2.099083e-02
## 4827 2020-06-20         0.022          0.1075004     2.314230e-02
## 4843 2020-07-06         0.016          0.1075004     1.958723e-02
## 4846 2020-07-09         0.018          0.1075004     1.918307e-02
## 4852 2020-07-15         0.017          0.1075004     1.896307e-02
## 4853 2020-07-16         0.021          0.1075004     1.774893e-02
## 4854 2020-07-17         0.018          0.1075004     1.746763e-02
## 4859 2020-07-22         0.019          0.1075004     1.744623e-02
## 4872 2020-08-04         0.018          0.1075004     1.791043e-02
## 4880 2020-08-12         0.018          0.1075004     2.245717e-02
## 4881 2020-08-13         0.021          0.1075004     2.035457e-02
## 4887 2020-08-19         0.023          0.1075004     2.106857e-02
## 4890 2020-08-22         0.022          0.1075004     2.180927e-02
## 4893 2020-08-25         0.024          0.1075004     2.667820e-02
## 4897 2020-08-29         0.039          0.1075004     3.460780e-02
## 4898 2020-08-30         0.042          0.1075004     2.833137e-02
## 4902 2020-09-03         0.049          0.1075004     5.097477e-02
## 4903 2020-09-04         0.053          0.1075004     5.195117e-02
## 4904 2020-09-05         0.056          0.1075004     5.498933e-02
## 4911 2020-09-12         0.048          0.1075004     6.080030e-02
## 4916 2020-09-17         0.066          0.1075004     6.414923e-02
## 4917 2020-09-18         0.062          0.1075004     6.675343e-02
## 4925 2020-09-26         0.071          0.1075004     6.484623e-02
## 4926 2020-09-27         0.068          0.1075004     6.011493e-02
## 4927 2020-09-28         0.065          0.1075004     6.131920e-02
## 4929 2020-09-30         0.065          0.1075004     5.794313e-02
## 4941 2020-10-12         0.058          0.1075004     5.870483e-02
## 4946 2020-10-17         0.071          0.1075004     6.780913e-02
## 4954 2020-10-25         0.072          0.1075004     7.201280e-02
## 4971 2020-11-11         0.086          0.1075004     8.677620e-02
## 4980 2020-11-20         0.141          0.1075004     1.202992e-01
## 4982 2020-11-22         0.139          0.1075004     1.176569e-01
## 4983 2020-11-23         0.153          0.1075004     1.417678e-01
## 4986 2020-11-26         0.174          0.2831279     1.874717e-01
## 4990 2020-11-30         0.188          0.2831279     1.887605e-01
## 4992 2020-12-02         0.193          0.2831279     2.099707e-01
## 5002 2020-12-12         0.222          0.2831279     2.272367e-01
## 5003 2020-12-13         0.218          0.2831279     2.356068e-01
## 5013 2020-12-23         0.259          0.2831279     2.502018e-01
## 5024 2021-01-03         0.193          0.1075004     1.909121e-01
## 5031 2021-01-10         0.176          0.1075004     1.826376e-01
## 5032 2021-01-11         0.174          0.1075004     1.839760e-01
## 5034 2021-01-13         0.173          0.1075004     1.779686e-01
## 5036 2021-01-15         0.169          0.1075004     1.780436e-01
## 5042 2021-01-21         0.153          0.1075004     1.511312e-01
## 5045 2021-01-24         0.140          0.1075004     1.336000e-01
## 5057 2021-02-05         0.110          0.1075004     1.121160e-01
## 5061 2021-02-09         0.098          0.1075004     1.006594e-01
## 5066 2021-02-14         0.094          0.1075004     1.213180e-01
## 5067 2021-02-15         0.091          0.1075004     9.140043e-02
## 5072 2021-02-20         0.080          0.1075004     7.896650e-02
## 5074 2021-02-22         0.078          0.1075004     7.853353e-02
## 5075 2021-02-23         0.075          0.1075004     7.935260e-02
## 5079 2021-02-27         0.071          0.1075004     7.285153e-02
## 5082 2021-03-02         0.068          0.1075004     7.686840e-02
## 5083 2021-03-03         0.065          0.1075004     7.210553e-02
## 5084 2021-03-04         0.068          0.1075004     6.976300e-02
## 5088 2021-03-08         0.064          0.1075004     6.824833e-02
## 5089 2021-03-09         0.066          0.1075004     7.405033e-02
## 5091 2021-03-11         0.063          0.1075004     7.241103e-02
## 5101 2021-03-21         0.102          0.2831279     9.372530e-02
## 5104 2021-03-24         0.146          0.2831279     1.449638e-01
## 5105 2021-03-25         0.157          0.2831279     1.477594e-01
## 5108 2021-03-28         0.153          0.2831279     1.463373e-01
## 5113 2021-04-02         0.179          0.2831279     2.056353e-01
## 5123 2021-04-12         0.243          0.2831279     2.453656e-01
## 5128 2021-04-17         0.288          0.7794346     3.133426e-01
## 5130 2021-04-19         0.341          0.7794346     3.326568e-01
## 5135 2021-04-24         0.339          0.7794346     3.409097e-01
## 5137 2021-04-26         0.353          0.7794346     3.476081e-01
## 5140 2021-04-29         0.339          0.7794346     3.471964e-01
## 5141 2021-04-30         0.394          0.7794346     3.386818e-01
## 5142 2021-05-01         0.373          0.7794346     3.438886e-01
## 5154 2021-05-13         0.238          0.1075004     2.443986e-01
## 5155 2021-05-14         0.242          0.1075004     2.458440e-01
## 5162 2021-05-21         0.214          0.1075004     2.130174e-01
## 5171 2021-05-30         0.134          0.1075004     1.362438e-01
## 5178 2021-06-06         0.096          0.1075004     8.956367e-02
## 5185 2021-06-13         0.053          0.1075004     7.349567e-02
## 5194 2021-06-22         0.057          0.1075004     5.911710e-02
## 5203 2021-07-01         0.042          0.1075004     4.862057e-02
## 5204 2021-07-02         0.055          0.1075004     4.685930e-02
## 5206 2021-07-04         0.050          0.1075004     4.198060e-02
## 5208 2021-07-06         0.037          0.1075004     4.945543e-02
## 5214 2021-07-12         0.049          0.1075004     4.456243e-02
## 5216 2021-07-14         0.043          0.1075004     5.302397e-02
## 5219 2021-07-17         0.038          0.1075004     5.622740e-02
## 5223 2021-07-21         0.059          0.1075004     6.086953e-02
## 5226 2021-07-24         0.058          0.1075004     5.978313e-02
## 5230 2021-07-28         0.076          0.2831279     7.903353e-02
## 5232 2021-07-30         0.069          0.2831279     8.562753e-02
## 5239 2021-08-06         0.101          0.2831279     1.316955e-01
## 5240 2021-08-07         0.112          0.2831279     1.407340e-01
## 5253 2021-08-20         0.204          0.2831279     2.136210e-01
## 5256 2021-08-23         0.232          0.2831279     2.148497e-01
## 5261 2021-08-28         0.245          0.2831279     2.323413e-01
## 5264 2021-08-31         0.252          0.2831279     2.370049e-01
## 5265 2021-09-01         0.290          0.2831279     2.679742e-01
## 5274 2021-09-10         0.214          0.2831279     2.597906e-01
## 5290 2021-09-26         0.228          0.2831279     2.088462e-01
## 5291 2021-09-27         0.206          0.2831279     2.293707e-01
## 5292 2021-09-28         0.239          0.2831279     2.411123e-01
## 5294 2021-09-30         0.216          0.2831279     2.153616e-01
## 5296 2021-10-02         0.203          0.2831279     2.159465e-01
## 5300 2021-10-06         0.236          0.2831279     2.178316e-01
## 5301 2021-10-07         0.217          0.2831279     2.065023e-01
## 5306 2021-10-12         0.237          0.2831279     2.176620e-01
## 5318 2021-10-24         0.195          0.2831279     1.987646e-01
## 5324 2021-10-30         0.203          0.2831279     2.100707e-01
## 5325 2021-10-31         0.201          0.2831279     2.047874e-01
## 5326 2021-11-01         0.217          0.2831279     2.155128e-01
## 5329 2021-11-04         0.228          0.2831279     2.181140e-01
## 5331 2021-11-06         0.203          0.2831279     2.032087e-01
## 5348 2021-11-23         0.208          0.2831279     2.047137e-01
## 5357 2021-12-02         0.192          0.2831279     2.052317e-01
## 5360 2021-12-05         0.185          0.2831279     2.000695e-01
## 5367 2021-12-12         0.182          0.2831279     1.892026e-01
## 5371 2020-02-03         0.000          0.1075004     4.000000e-07
## 5379 2020-02-11         0.000          0.1075004    -3.241851e-17
## 5382 2020-02-14         0.000          0.1075004    -3.508305e-17
## 5383 2020-02-15         0.000          0.1075004     1.110000e-03
## 5395 2020-02-27         0.000          0.1075004    -3.608225e-17
## 5399 2020-03-02         0.000          0.1075004     2.133333e-05
## 5408 2020-03-11         0.000          0.1075004     6.232833e-03
## 5410 2020-03-13         0.001          0.1075004     7.813433e-03
## 5416 2020-03-19         0.046          0.1075004     3.080220e-02
## 5420 2020-03-23         0.076          0.1075004     9.855287e-02
## 5422 2020-03-25         0.191          0.1075004     1.303568e-01
## 5426 2020-03-29         0.213          0.1075004     2.219519e-01
## 5436 2020-04-08         1.032          0.3836605     9.580366e-01
## 5441 2020-04-13         0.725          0.3836605     7.350190e-01
## 5445 2020-04-17         0.914          0.3836605     9.758250e-01
## 5449 2020-04-21         1.224          0.3836605     7.876147e-01
## 5452 2020-04-24         1.018          0.3836605     7.417711e-01
## 5470 2020-05-12         0.615          0.1075004     3.906971e-01
## 5472 2020-05-14         0.353          0.1075004     3.101053e-01
## 5474 2020-05-16         0.411          0.1075004     2.397427e-01
## 5475 2020-05-17         0.067          0.1075004     2.622202e-01
## 5479 2020-05-21         0.273          0.1075004     2.799220e-01
## 5480 2020-05-22         0.291          0.1075004     3.045240e-01
## 5484 2020-05-26         0.131          0.1075004     2.608364e-01
## 5486 2020-05-28         0.343          0.1075004     2.409515e-01
## 5489 2020-05-31         0.060          0.1075004     2.044142e-01
## 5492 2020-06-03         0.254          0.1075004     2.080789e-01
## 5498 2020-06-09         0.197          0.1075004     1.133209e-01
## 5500 2020-06-11         0.076          0.1075004     1.038995e-01
## 5504 2020-06-15         0.029          0.1075004     6.067340e-02
## 5505 2020-06-16         0.120          0.1075004     8.575833e-02
## 5508 2020-06-19         0.084          0.1075004     7.115430e-02
## 5513 2020-06-24         0.087          0.1075004     7.303663e-02
## 5516 2020-06-27         0.040          0.1075004     5.039243e-02
## 5520 2020-07-01         0.097          0.1075004     3.757647e-02
## 5529 2020-07-10         0.034          0.1075004     3.258347e-02
## 5539 2020-07-20         0.010          0.1075004     1.488523e-02
## 5540 2020-07-21         0.025          0.1075004     1.853573e-02
## 5542 2020-07-23         0.009          0.1075004     2.009707e-02
## 5546 2020-07-27         0.003          0.1075004     1.540837e-02
## 5551 2020-08-01         0.013          0.1075004     1.129933e-02
## 5555 2020-08-05         0.014          0.1075004     1.604843e-02
## 5565 2020-08-15         0.003          0.1075004     1.049103e-02
## 5573 2020-08-23         0.006          0.1075004     4.728267e-03
## 5577 2020-08-27         0.012          0.1075004     1.199443e-02
## 5578 2020-08-28         0.009          0.1075004     8.953100e-03
## 5579 2020-08-29         0.012          0.1075004     9.840967e-03
## 5588 2020-09-07         0.003          0.1075004     1.363837e-02
## 5592 2020-09-11         0.006          0.1075004     2.179240e-02
## 5593 2020-09-12         0.009          0.1075004     1.974990e-02
## 5594 2020-09-13         0.005          0.1075004     1.490797e-02
## 5597 2020-09-16         0.020          0.1075004     2.458590e-02
## 5602 2020-09-21         0.011          0.1075004     2.398393e-02
## 5631 2020-10-20         0.241          0.2831279     1.527655e-01
## 5638 2020-10-27         0.367          0.2831279     2.193590e-01
## 5642 2020-10-31         0.326          0.2831279     2.833083e-01
## 5643 2020-11-01         0.162          0.2831279     2.639387e-01
## 5649 2020-11-07         0.413          0.2831279     3.698600e-01
## 5650 2020-11-08         0.156          0.2831279     3.241618e-01
## 5653 2020-11-11         0.596          0.2831279     4.537390e-01
## 5654 2020-11-12         0.563          0.2831279     4.153652e-01
## 5656 2020-11-14         0.462          0.2831279     3.841037e-01
## 5657 2020-11-15         0.168          0.2831279     3.407630e-01
## 5660 2020-11-18         0.529          0.2831279     4.904070e-01
## 5661 2020-11-19         0.502          0.2831279     4.510198e-01
## 5668 2020-11-26         0.498          0.2831279     4.916214e-01
## 5673 2020-12-01         0.603          0.1075004     5.401160e-01
## 5681 2020-12-09         0.533          0.2831279     5.331994e-01
## 5692 2020-12-20         0.326          0.2831279     3.844080e-01
## 5701 2020-12-29         0.458          0.2831279     6.926823e-01
## 5709 2021-01-06         1.042          0.7794346     1.038679e+00
## 5711 2021-01-08         1.333          2.3296739     1.395438e+00
## 5725 2021-01-22         1.401          0.7794346     1.335203e+00
## 5726 2021-01-23         1.352          0.7794346     1.169466e+00
## 5733 2021-01-30         1.205          0.7794346     1.089538e+00
## 5754 2021-02-20         0.446          0.3836605     3.643974e-01
## 5756 2021-02-22         0.178          0.3836605     3.460860e-01
## 5766 2021-03-04         0.242          0.1075004     3.061434e-01
## 5786 2021-03-24         0.098          0.1075004     8.913170e-02
## 5787 2021-03-25         0.063          0.1075004     8.296700e-02
## 5794 2021-04-01         0.051          0.1075004     5.055057e-02
## 5803 2021-04-10         0.040          0.1075004     2.999853e-02
## 5812 2021-04-19         0.006          0.1075004     3.103107e-02
## 5814 2021-04-21         0.020          0.1075004     2.831433e-02
## 5816 2021-04-23         0.041          0.1075004     2.215343e-02
## 5817 2021-04-24         0.032          0.1075004     2.437290e-02
## 5822 2021-04-29         0.025          0.1075004     2.020990e-02
## 5830 2021-05-07         0.015          0.1075004     1.431883e-02
## 5833 2021-05-10         0.005          0.1075004     7.367633e-03
## 5834 2021-05-11         0.020          0.1075004     1.454767e-02
## 5835 2021-05-12         0.011          0.1075004     1.426970e-02
## 5840 2021-05-17         0.005          0.1075004     5.192167e-03
## 5853 2021-05-30         0.006          0.1075004     7.623333e-03
## 5857 2021-06-03         0.018          0.1075004     1.168853e-02
## 5863 2021-06-09         0.006          0.1075004     1.218597e-02
## 5866 2021-06-12         0.012          0.1075004     1.590730e-02
## 5871 2021-06-17         0.019          0.1075004     1.285583e-02
## 5874 2021-06-20         0.006          0.1075004     9.414500e-03
## 5876 2021-06-22         0.027          0.1075004     2.084913e-02
## 5878 2021-06-24         0.021          0.2831279     2.584183e-02
## 5880 2021-06-26         0.023          0.2831279     3.216233e-02
## 5883 2021-06-29         0.023          0.2831279     3.510667e-02
## 5888 2021-07-04         0.015          0.2831279     1.880717e-02
## 5893 2021-07-09         0.030          0.2831279     3.882620e-02
## 5895 2021-07-11         0.026          0.2831279     2.615183e-02
## 5902 2021-07-18         0.028          0.2831279     3.540590e-02
## 5904 2021-07-20         0.102          0.2831279     7.519913e-02
## 5906 2021-07-22         0.084          0.2831279     7.004627e-02
## 5910 2021-07-26         0.014          0.2831279     3.971653e-02
## 5914 2021-07-30         0.068          0.2831279     9.850127e-02
## 5915 2021-07-31         0.072          0.2831279     9.088920e-02
## 5919 2021-08-04         0.121          0.2831279     1.074785e-01
## 5926 2021-08-11         0.108          0.2831279     1.198424e-01
## 5927 2021-08-12         0.095          0.2831279     1.053193e-01
## 5929 2021-08-14         0.094          0.2831279     9.896053e-02
## 5933 2021-08-18         0.111          0.2831279     1.322574e-01
## 5937 2021-08-22         0.049          0.2831279     5.566890e-02
## 5939 2021-08-24         0.174          0.2831279     1.540472e-01
## 5946 2021-08-31         0.051          0.2831279     1.756254e-01
## 5955 2021-09-09         0.167          0.2831279     1.709355e-01
## 5958 2021-09-12         0.056          0.2831279     6.551817e-02
## 5966 2021-09-20         0.050          0.2831279     5.795267e-02
## 5969 2021-09-23         0.195          0.2831279     1.612882e-01
## 5985 2021-10-09         0.156          0.2831279     1.254472e-01
## 5993 2021-10-17         0.057          0.2831279     4.698270e-02
## 5997 2021-10-21         0.118          0.2831279     1.861601e-01
## 5999 2021-10-23         0.135          0.2831279     1.649148e-01
## 6003 2021-10-27         0.209          0.2831279     2.181066e-01
## 6004 2021-10-28         0.166          0.2831279     2.030701e-01
## 6007 2021-10-31         0.074          0.2831279     5.451153e-02
## 6011 2021-11-04         0.219          0.2831279     2.060034e-01
## 6014 2021-11-07         0.062          0.2831279     5.754823e-02
## 6021 2021-11-14         0.063          0.2831279     5.503080e-02
## 6027 2021-11-20         0.150          0.2831279     1.558183e-01
## 6028 2021-11-21         0.061          0.2831279     5.108220e-02
## 6031 2021-11-24         0.149          0.2831279     1.684233e-01
## 6033 2021-11-26         0.160          0.2831279     1.555274e-01
## 6040 2021-12-03         0.146          0.2831279     1.494673e-01
## 6045 2021-12-08         0.163          0.2831279     1.656386e-01
## 6046 2021-12-09         0.148          0.2831279     1.514282e-01
## 6047 2021-12-10         0.120          0.2831279     1.449374e-01
## 6064 2020-02-05         0.000          0.1075004    -3.230749e-17
## 6069 2020-02-10         0.000          0.1075004    -3.474998e-17
## 6074 2020-02-15         0.000          0.1075004    -3.508305e-17
## 6075 2020-02-16         0.000          0.1075004    -3.574918e-17
## 6078 2020-02-19         0.000          0.1075004    -3.519407e-17
## 6079 2020-02-20         0.000          0.1075004    -3.375078e-17
## 6080 2020-02-21         0.000          0.1075004    -2.675637e-17
## 6087 2020-02-28         0.000          0.1075004    -3.619327e-17
## 6097 2020-03-09         0.001          0.1075004     4.123833e-03
## 6098 2020-03-10         0.006          0.1075004     5.760500e-03
## 6102 2020-03-14         0.007          0.1075004     1.492743e-02
## 6105 2020-03-17         0.037          0.1075004     3.386720e-02
## 6109 2020-03-21         0.103          0.1075004     1.305665e-01
## 6117 2020-03-29         0.555          0.1075004     6.466045e-01
## 6118 2020-03-30         0.707          1.4568194     9.431008e-01
## 6125 2020-04-06         1.733          1.4568194     1.641138e+00
## 6130 2020-04-11         2.141          1.4568194     1.885405e+00
## 6131 2020-04-12         1.889          1.4568194     1.838448e+00
## 6134 2020-04-15         2.587          1.4568194     2.191732e+00
## 6139 2020-04-20         2.245          1.4568194     1.768874e+00
## 6140 2020-04-21         2.483          1.4568194     2.317890e+00
## 6148 2020-04-29         2.391          1.4568194     2.001202e+00
## 6159 2020-05-10         1.001          1.4568194     1.215316e+00
## 6160 2020-05-11         1.034          1.4568194     1.248454e+00
## 6176 2020-05-27         1.478          0.8035981     8.769998e-01
## 6177 2020-05-28         1.089          0.8035981     1.014889e+00
## 6179 2020-05-30         0.950          0.8035981     9.524260e-01
## 6181 2020-06-01         0.771          0.8035981     5.877778e-01
## 6187 2020-06-07         0.457          0.8035981     5.519483e-01
## 6188 2020-06-08         0.511          0.8035981     4.880339e-01
## 6199 2020-06-19         0.626          0.8035981     6.788471e-01
## 6209 2020-06-29         0.369          0.8035981     3.970777e-01
## 6211 2020-07-01         0.698          0.8035981     8.429192e-01
## 6212 2020-07-02         0.739          0.8035981     8.418413e-01
## 6215 2020-07-05         0.322          0.8035981     4.319294e-01
## 6220 2020-07-10         0.816          0.9053733     9.537813e-01
## 6223 2020-07-13         0.435          0.8035981     6.379073e-01
## 6226 2020-07-16         0.961          0.9053733     9.963843e-01
## 6230 2020-07-20         0.529          0.8035981     7.274729e-01
## 6232 2020-07-22         1.225          0.9053733     1.064369e+00
## 6234 2020-07-24         1.094          0.9053733     1.055964e+00
## 6236 2020-07-26         0.534          0.8035981     6.535334e-01
## 6248 2020-08-07         1.291          0.8035981     1.136491e+00
## 6250 2020-08-09         0.572          0.8035981     5.363851e-01
## 6255 2020-08-14         1.309          0.8035981     1.036967e+00
## 6258 2020-08-17         0.469          0.8035981     5.362178e-01
## 6263 2020-08-22         0.979          0.8035981     9.568802e-01
## 6270 2020-08-29         0.983          0.8035981     8.968638e-01
## 6271 2020-08-30         0.449          0.8035981     4.947046e-01
## 6283 2020-09-11         1.156          0.8035981     9.003650e-01
## 6285 2020-09-13         0.400          0.8035981     3.843201e-01
## 6288 2020-09-16         0.955          0.8035981     9.946768e-01
## 6297 2020-09-25         0.915          0.8035981     8.861424e-01
## 6300 2020-09-28         0.341          0.8035981     4.088597e-01
## 6304 2020-10-02         0.841          0.8035981     8.549034e-01
## 6306 2020-10-04         0.369          0.8035981     4.439470e-01
## 6310 2020-10-08         0.982          0.8035981     9.290467e-01
## 6318 2020-10-16         0.943          1.3909884     9.264559e-01
## 6329 2020-10-27         1.011          1.3909884     9.680924e-01
## 6342 2020-11-09         0.759          1.3909884     8.382849e-01
## 6344 2020-11-11         1.443          1.3909884     1.241410e+00
## 6366 2020-12-03         2.969          2.4070561     2.756750e+00
## 6368 2020-12-05         2.390          2.4070561     2.283174e+00
## 6369 2020-12-06         1.403          2.4070561     1.650188e+00
## 6375 2020-12-12         2.533          2.4070561     2.550413e+00
## 6382 2020-12-19         2.754          2.4070561     2.524603e+00
## 6393 2020-12-30         3.933          2.4070561     3.358346e+00
## 6395 2021-01-01         2.194          3.6000806     2.608210e+00
## 6397 2021-01-03         1.437          3.6000806     2.492703e+00
## 6399 2021-01-05         3.604          3.6000806     3.826297e+00
## 6403 2021-01-09         3.256          3.6000806     3.371334e+00
## 6411 2021-01-17         1.991          3.6000806     2.712348e+00
## 6412 2021-01-18         1.565          3.6000806     2.793244e+00
## 6413 2021-01-19         2.401          3.6000806     3.911049e+00
## 6418 2021-01-24         1.858          3.6000806     2.659198e+00
## 6419 2021-01-25         1.770          3.6000806     2.874924e+00
## 6421 2021-01-27         4.128          3.6000806     3.817899e+00
## 6422 2021-01-28         3.850          3.6000806     3.693605e+00
## 6427 2021-02-02         3.533          3.6000806     3.080864e+00
## 6436 2021-02-11         3.191          3.6000806     2.806475e+00
## 6440 2021-02-15         0.949          0.8035981     1.177726e+00
## 6443 2021-02-18         2.607          2.3296739     2.346740e+00
## 6452 2021-02-27         1.521          0.8035981     1.616320e+00
## 6454 2021-03-01         1.319          0.8035981     1.058313e+00
## 6455 2021-03-02         1.933          0.8035981     1.401090e+00
## 6456 2021-03-03         2.581          2.4070561     1.868657e+00
## 6458 2021-03-05         1.723          0.8035981     1.547759e+00
## 6461 2021-03-08         0.705          0.8035981     8.615139e-01
## 6462 2021-03-09         1.784          0.8035981     1.356759e+00
## 6473 2021-03-20         0.773          0.8035981     1.018258e+00
## 6479 2021-03-26         1.168          2.4070561     1.515043e+00
## 6480 2021-03-27         0.814          0.8035981     9.401268e-01
## 6484 2021-03-31         1.101          2.4070561     1.366514e+00
## 6494 2021-04-10         0.724          2.4070561     7.349564e-01
## 6499 2021-04-15         0.905          2.4070561     9.961885e-01
## 6504 2021-04-20         0.847          0.8035981     8.240071e-01
## 6512 2021-04-28         0.994          0.8035981     8.016706e-01
## 6519 2021-05-05         0.813          0.8035981     8.182445e-01
## 6521 2021-05-07         0.824          0.8035981     7.026016e-01
## 6525 2021-05-11         0.700          0.8035981     7.633724e-01
## 6527 2021-05-13         0.790          0.8035981     7.088294e-01
## 6529 2021-05-15         0.529          0.8035981     5.617291e-01
## 6532 2021-05-18         0.780          0.8035981     6.842800e-01
## 6534 2021-05-20         0.684          0.8035981     7.314389e-01
## 6536 2021-05-22         0.484          0.8035981     6.100155e-01
## 6538 2021-05-24         0.438          0.8035981     5.304383e-01
## 6547 2021-06-02         0.564          0.8035981     6.118820e-01
## 6549 2021-06-04         0.527          0.8035981     5.983315e-01
## 6553 2021-06-08         0.331          0.3836605     3.493270e-01
## 6560 2021-06-15         0.334          0.3836605     3.025145e-01
## 6561 2021-06-16         0.383          0.3836605     3.282677e-01
## 6569 2021-06-24         0.340          0.3836605     3.131747e-01
## 6575 2021-06-30         0.295          0.8035981     4.649034e-01
## 6582 2021-07-07         0.321          0.8035981     3.873233e-01
## 6585 2021-07-10         0.083          0.3836605     1.501283e-01
## 6591 2021-07-16         0.358          1.3909884     4.936368e-01
## 6596 2021-07-21         0.352          0.8035981     3.826164e-01
## 6608 2021-08-02         0.361          1.3909884     5.809516e-01
## 6615 2021-08-09         0.506          1.3909884     8.416411e-01
## 6616 2021-08-10         0.865          1.3909884     9.749820e-01
## 6617 2021-08-11         0.779          1.3909884     9.628324e-01
## 6620 2021-08-14         0.254          0.8035981     4.753206e-01
## 6623 2021-08-17         1.028          1.3909884     1.228617e+00
## 6625 2021-08-19         1.781          1.3909884     1.308806e+00
## 6628 2021-08-22         0.170          0.8035981     3.265273e-01
## 6636 2021-08-30         1.764          1.3909884     1.427079e+00
## 6644 2021-09-07         2.134          2.4070561     1.762512e+00
## 6646 2021-09-09         3.284          2.4070561     2.669145e+00
## 6647 2021-09-10         2.430          2.4070561     2.230108e+00
## 6649 2021-09-12         0.313          0.8035981     3.606927e-01
## 6655 2021-09-18         0.915          0.8035981     6.746952e-01
## 6657 2021-09-20         2.356          2.4070561     1.936376e+00
## 6658 2021-09-21         2.355          2.4070561     2.610628e+00
## 6661 2021-09-24         2.484          2.4070561     2.460796e+00
## 6670 2021-10-03         0.477          0.8035981     3.638645e-01
## 6674 2021-10-07         2.477          1.3909884     2.315945e+00
## 6687 2021-10-20         3.200          1.3909884     2.368086e+00
## 6689 2021-10-22         1.893          1.3909884     1.857884e+00
## 6695 2021-10-28         1.840          1.3909884     1.709340e+00
## 6706 2021-11-08         1.263          1.3909884     1.444001e+00
## 6714 2021-11-16         1.318          1.3909884     1.466804e+00
## 6715 2021-11-17         1.657          1.3909884     1.850411e+00
## 6721 2021-11-23         1.316          1.3909884     1.443133e+00
## 6722 2021-11-24         1.682          1.3909884     1.625036e+00
## 6727 2021-11-29         1.969          1.3909884     1.471064e+00
## 6730 2021-12-02         3.801          2.4070561     2.109720e+00
## 6734 2021-12-06         1.384          2.4070561     1.567196e+00
## 6735 2021-12-07         1.609          2.4070561     1.607512e+00
## 6740 2021-12-12         0.167          0.8035981     5.340603e-01
##      boosted_tree_pred rf_predicted_cases          MLR           s1
## 1         0.0775436830       6.025698e-05  0.707908506  0.211395440
## 21        0.0731960916       3.071552e-03  0.713823868  0.219319919
## 27        0.0498493784       1.149607e-02  0.558315541  0.221735228
## 29        0.1212133882       1.384257e-02  0.738001930  0.221716233
## 43        0.1872469795       1.253206e-01  0.882844835  0.224856440
## 45        0.1825257611       1.084392e-01  0.846698400  0.224569643
## 60        0.3280217977       3.361964e-01  0.772568954  0.231162511
## 65        0.5244170067       4.091075e-01  0.874619923  0.235705024
## 66        0.5088933288       3.732970e-01  0.950501107  0.233869469
## 71        0.5917408871       6.704970e-01  0.993357177  0.242654841
## 80        0.7481402098       8.566679e-01  0.958959719  0.255353749
## 87        0.8240470679       1.002575e+00  0.960221037  0.266905419
## 88        0.6784500360       8.481040e-01  0.886047316  0.264122724
## 103       0.6080148069       6.660656e-01  0.656330593  0.290808721
## 107       0.9008684411       1.208249e+00  0.892109695  0.309503748
## 108       0.8144489367       9.748984e-01  0.871019903  0.307188810
## 110       0.6129206342       6.641214e-01  0.660626884  0.300910161
## 122       1.2932196912       1.116383e+00  0.883721706  0.356598933
## 134       1.1925534595       1.146997e+00  0.830112080  0.384797053
## 135       1.1753262923       1.230036e+00  0.817823099  0.387654027
## 141       1.1562663696       1.146711e+00  0.837817568  0.397719806
## 142       1.1449531552       1.137800e+00  0.827990272  0.405931709
## 151       1.0398939106       1.081906e+00  0.741986062  0.439671886
## 154       1.1312675965       1.180538e+00  0.853735212  0.433496580
## 155       1.3522806331       1.231986e+00  0.843957678  0.465971892
## 157       1.1151994835       1.158704e+00  0.811611210  0.457835616
## 163       1.1537354997       1.157511e+00  0.844372596  0.472200854
## 172       0.8474898926       9.698277e-01  0.758947792  0.491894224
## 174       0.5489263588       5.624779e-01  0.691196858  0.474079885
## 177       0.8978076988       1.063726e+00  0.859179052  0.503727283
## 190       0.9365595684       9.974233e-01  0.917423400  0.538680612
## 192       0.9078789066       9.267290e-01  0.886194014  0.552843497
## 194       0.3056794889       3.846297e-01  0.676573890  0.522633488
## 195       0.3199108320       3.551624e-01  0.742212813  0.514014139
## 196       0.4804767841       4.955447e-01  0.923831587  0.524131574
## 205       0.7982409055       9.320606e-01  0.917724081  0.559151152
## 206       0.8972280319       8.739458e-01  0.899399458  0.570844081
## 211       0.2462293274       2.704960e-01  0.934133016  0.539777788
## 231       0.3343223896       3.172850e-01  0.940214235  0.584567654
## 233       0.6079061294       6.950525e-01  0.928419039  0.605526286
## 236       0.0922201412       1.226725e-01  0.697365884  0.582579009
## 239       0.5650106661       5.549870e-01  0.947197938  0.610877250
## 241       0.6415534925       6.289460e-01  0.903629207  0.618626254
## 245       0.6841041708       6.006643e-01  0.938948129  0.616604537
## 253       0.5179149696       3.493172e-01  1.005367261  0.620245372
## 255       0.7208391023       5.810790e-01  0.970240812  0.639049507
## 267       0.6272607316       6.592905e-01  1.012399477  0.652737255
## 270       0.5543482505       6.475636e-01  0.904670137  0.658409458
## 272       0.3505173324       2.642227e-01  0.837855062  0.645326977
## 273       0.6120298083       5.976501e-01  1.017963626  0.661336135
## 274       0.7628315991       6.824305e-01  1.026637280  0.680755914
## 276       0.6381002359       6.635155e-01  0.994074662  0.672595497
## 277       0.7333992664       7.450738e-01  0.923314056  0.701954656
## 284       0.7419100265       7.284893e-01  1.002479570  0.703236468
## 300       0.5647263308       4.193856e-01  0.961716169  0.731708081
## 301       1.0066243800       9.466442e-01  1.141995228  0.763632319
## 305       0.4978873272       4.383909e-01  1.036393611  0.737892702
## 319       1.0509119766       1.063037e+00  1.027475460  0.819914488
## 320       0.6245509845       6.086370e-01  0.891508392  0.791487851
## 321       0.6222064729       5.200174e-01  0.961319983  0.789476352
## 324       1.6585040898       1.322321e+00  1.151749163  0.843250505
## 343       1.2442974372       1.219995e+00  1.122725163  0.893866517
## 349       0.2995309315       2.707985e-01  0.952905649  0.856996200
## 350       1.9786366313       1.513729e+00  1.138876134  0.933319226
## 356       0.9503970238       7.984948e-01  0.971388589  0.909156923
## 375       1.7173493968       1.755063e+00  0.970629736  0.999197820
## 376       1.7583806684       1.682024e+00  0.838886576  1.011672468
## 378       2.1409873230       1.993370e+00  1.086775179  1.013265477
## 379       2.0675109014       2.043895e+00  1.088949503  1.026682097
## 381       2.3613663621       2.096191e+00  1.059449708  1.040536687
## 395       3.1969137664       3.109370e+00  1.148901607  1.106928841
## 405       1.7257856277       1.373039e+00  1.103400855  1.082074330
## 406       3.5290963944       3.728564e+00  1.283449969  1.147071103
## 409       3.5152286321       3.620257e+00  1.250079753  1.161655869
## 414       3.2845562270       3.467106e+00  1.286370653  1.156275511
## 425       1.5733946350       1.297392e+00  1.011426047  1.123429801
## 433       1.1344438123       9.800689e-01  1.161590382  1.140202298
## 435       2.6899052291       2.663815e+00  1.341163456  1.192510865
## 439       1.0787255306       1.046884e+00  1.098712061  1.154890182
## 445       1.9272345753       2.107550e+00  1.248093495  1.203842296
## 447       0.8750015599       9.163199e-01  1.179341410  1.180163593
## 458       1.2592275815       1.409396e+00  1.343920187  1.232863216
## 463       2.7313016974       2.609852e+00  1.293932635  1.294957624
## 468       0.9206684030       9.624977e-01  1.114674482  1.243255775
## 469       1.4103331061       1.599761e+00  1.294087106  1.269228863
## 484       2.6925464434       2.464011e+00  1.342166733  1.370927767
## 486       2.2265327839       2.137106e+00  1.312736304  1.342261268
## 495       0.8590242514       8.506783e-01  0.999737838  1.216253739
## 499       1.3304901184       1.534217e+00  1.222023506  1.188175906
## 502       0.7545753314       7.319804e-01  0.988196135  1.095610470
## 504       1.3268939529       1.412452e+00  1.232377234  1.112612257
## 505       1.5113212864       1.443960e+00  1.240106892  1.134013339
## 513       1.2290621372       1.315806e+00  1.205392573  1.031483923
## 514       1.9895244163       1.984594e+00  1.193729736  1.104747933
## 517       0.7867922096       6.170364e-01  1.038598510  0.984737927
## 519       1.2802911108       1.273114e+00  1.222594070  1.031417382
## 520       1.2567800791       1.176076e+00  1.195568392  0.993976613
## 521       1.1875781065       1.132299e+00  1.180830057  1.016273529
## 524       0.6601456186       4.864867e-01  1.038462887  0.973802104
## 534       1.0574251711       1.033255e+00  1.165108913  0.962433490
## 543       0.7973053719       8.451538e-01  1.044288702  0.897031051
## 552       0.3701619789       3.451131e-01  0.956376519  0.880930760
## 575       0.8910587637       6.881509e-01  1.041659622  0.821962753
## 582       0.6286905720       5.956841e-01  0.988066741  0.750325815
## 596       0.3878670770       2.867715e-01  0.909895134  0.678929016
## 597       0.4085626080       4.557144e-01  0.874070122  0.679921995
## 599       0.3516907062       3.507065e-01  0.771867837  0.667637854
## 604       0.5032482717       3.929322e-01  0.817194587  0.632504657
## 606       0.2761762272       3.413212e-01  0.709891874  0.611396932
## 608       0.2240471849       2.247490e-01  0.621866379  0.624548874
## 619       0.3107542010       3.525055e-01  0.747198091  0.560874558
## 624       0.3345504509       2.832185e-01  0.752395265  0.520315855
## 628       0.0841539787       9.796905e-02  0.482452775  0.472288278
## 635       0.0768024782       1.213901e-01  0.467130194  0.442981468
## 636       0.1457958092       1.556384e-01  0.516273136  0.418020213
## 637       0.3217767957       2.550288e-01  0.699520786  0.445929636
## 645       0.3117408488       2.626875e-01  0.719176017  0.383252590
## 647       0.2196337211       2.749540e-01  0.676662257  0.401678462
## 651       0.3118967112       2.320492e-01  0.692950670  0.370219224
## 654       0.1639832282       1.522636e-01  0.638117501  0.332062496
## 659      -0.0521763923       1.992060e-03 -0.660489016  0.172898036
## 670      -0.0139948716       1.311907e-04 -0.362191998  0.178706129
## 672      -0.0346725265       1.789266e-03 -0.458458066  0.178740283
## 674      -0.0357505791       9.722807e-04 -0.522834391  0.179165154
## 678       0.0289286861       2.881707e-03 -0.321773040  0.184288663
## 679       0.0079701149       3.286716e-03 -0.396220712  0.184312279
## 689       0.0411534086       8.575673e-03 -0.146389207  0.184523009
## 697       0.0429519532       1.140026e-02 -0.151820125  0.184001495
## 705       0.0338253332       1.156965e-02 -0.166162657  0.184184048
## 707       0.0131476784       1.260067e-02 -0.257744010  0.184689603
## 708      -0.0058376168       1.214664e-02 -0.394413795  0.184682709
## 721       0.0083533370       1.628964e-02 -0.159109328  0.185242395
## 723       0.0072752844       1.771172e-02 -0.228108381  0.185418421
## 727       0.0293119082       1.927792e-02 -0.084539704  0.185651031
## 729      -0.0106319582       1.903226e-02 -0.295617882  0.185768073
## 740       0.0311651735       3.406318e-02 -0.062351271  0.187029720
## 742       0.0104875186       4.235415e-02 -0.158524803  0.187491963
## 746       0.0574754763       5.256309e-02 -0.142343093  0.187220361
## 751       0.0265931489       5.734184e-02 -0.322002004  0.187600772
## 768       0.1782938662       1.290727e-01  0.509711291  0.191854873
## 774       0.2293628464       1.588397e-01  0.508121437  0.193825967
## 776       0.1807174882       1.544956e-01  0.469474318  0.193576201
## 777       0.1797078756       1.531112e-01  0.366842037  0.194277255
## 789       0.2746570254       2.400244e-01  0.470609941  0.201883401
## 795       0.2697418358       2.734196e-01  0.579893861  0.204152377
## 799       0.2393092749       2.919682e-01  0.381510267  0.206860850
## 802       0.2924445665       3.079771e-01  0.657985192  0.209068444
## 809       0.3226912610       3.295152e-01  0.636364498  0.215412088
## 812       0.3136257801       3.131355e-01  0.591343356  0.216365371
## 814       0.2934232729       3.216973e-01  0.480358709  0.218132767
## 819       0.3232159800       3.087158e-01  0.543224351  0.223185364
## 826       0.3155643679       3.003259e-01  0.533926501  0.227451353
## 831       0.3354616133       2.913234e-01  0.605790371  0.229437919
## 834       0.2393241420       3.010701e-01  0.333329826  0.229476048
## 838       0.2425662690       2.726770e-01  0.508244920  0.229535725
## 846       0.2103194596       2.329310e-01  0.445924320  0.232540910
## 847       0.1777936516       2.040302e-01  0.357041115  0.232453154
## 848       0.1588083564       2.219676e-01  0.209177162  0.233352652
## 851       0.2268368345       2.353862e-01  0.454470152  0.235005539
## 858       0.2115713376       1.544107e-01  0.416595873  0.236891808
## 859       0.2104108536       1.554082e-01  0.402256938  0.237085823
## 862       0.1588083564       1.742066e-01  0.144110788  0.238903397
## 864       0.2167624462       1.518523e-01  0.374186635  0.238458998
## 866       0.2012699449       1.615651e-01  0.342792033  0.238958449
## 868       0.1686527430       1.749037e-01  0.241571470  0.240593555
## 870       0.1566471312       1.544377e-01  0.178068939  0.241885774
## 876       0.1519353572       1.586040e-01  0.111691006  0.246170227
## 891       0.1521063846       1.694332e-01  0.148468903  0.252604609
## 892       0.1658110148       1.782279e-01  0.331299258  0.252152266
## 897       0.1262827763       1.770770e-01  0.120314548  0.256005129
## 911       0.0854186494       1.721878e-01  0.110925552  0.260879983
## 916       0.1614718549       1.895374e-01  0.339254332  0.263685502
## 917       0.1026670583       1.875446e-01  0.245491237  0.263228894
## 918       0.0989472599       1.855719e-01  0.107249732  0.264528992
## 919       0.1015890056       1.847467e-01  0.172684777  0.263645861
## 935       0.1941994708       1.846927e-01  0.449732607  0.271717668
## 936       0.2075598630       1.818695e-01  0.431607928  0.272385424
## 938       0.1758353586       1.779589e-01  0.349994329  0.273721118
## 946       0.2124398659       2.298595e-01  0.274274300  0.281803669
## 947       0.2012601437       2.301759e-01  0.342604606  0.282161228
## 949       0.2580376652       2.544635e-01  0.542808131  0.286898511
## 950       0.3037055286       2.564418e-01  0.522798933  0.288441283
## 961       0.2160176783       2.685057e-01  0.505188902  0.291797684
## 969       0.3809841365       3.375218e-01  0.728614550  0.306499473
## 972       0.4735506736       3.864140e-01  0.701366308  0.316212916
## 975       0.3164889305       3.707770e-01  0.517575875  0.313552912
## 984       0.3577544528       3.807031e-01  0.526964481  0.320863301
## 989       0.2657669464       3.018619e-01  0.168251186  0.319738134
## 992       0.2858005834       3.078868e-01  0.287512626  0.321703273
## 999       0.2331028145       2.264031e-01  0.199691659  0.320981578
## 1004      0.2470482327       1.936355e-01  0.184514505  0.320155755
## 1011      0.2445794988       1.465491e-01  0.153330774  0.325195716
## 1014      0.1994525594       1.386179e-01  0.101229162  0.328049111
## 1020      0.1438683766       1.091734e-01  0.037071522  0.338080776
## 1025      0.1563757205       9.999983e-02  0.058963264  0.354343393
## 1028      0.1749179371       1.025380e-01  0.047946897  0.376546141
## 1031      0.0929543052       1.060362e-01 -0.091083590  0.324041964
## 1033      0.1841359511       1.246020e-01  0.108920082  0.325525269
## 1038      0.1518104932       1.277928e-01  0.008997843  0.326643055
## 1041      0.1851334375       1.364875e-01  0.213437932  0.330025746
## 1055      0.3651693942       2.870342e-01  0.634021734  0.340063562
## 1061      0.4220016703       3.518847e-01  0.613769498  0.347080716
## 1069      0.4882739723       4.324587e-01  0.590455844  0.355724030
## 1072      0.3870559987       4.344667e-01  0.350085225  0.355519456
## 1077      0.4429502408       4.526920e-01  0.548306121  0.361569278
## 1078      0.4182474973       4.763771e-01  0.575219275  0.361730693
## 1086      0.4042372838       4.719820e-01  0.476847883  0.378028025
## 1091      0.4183931495       4.793197e-01  0.707691903  0.381549352
## 1092      0.4424836976       5.006828e-01  0.623440713  0.365623559
## 1094      0.3083451772       4.835044e-01  0.548023686  0.363087995
## 1100      0.4499492451       5.058960e-01  0.550139867  0.375429710
## 1102      0.4978046902       4.983031e-01  0.808254756  0.379117964
## 1103      0.4989198581       5.061970e-01  0.824696700  0.383090568
## 1110      0.4956832973       5.443766e-01  0.787630996  0.394755254
## 1113      0.5022977823       5.459967e-01  0.704879868  0.398933906
## 1114      0.4353581800       5.285421e-01  0.572439943  0.393326281
## 1121      0.4838030941       5.849505e-01  0.592308456  0.404470143
## 1123      0.5480385094       5.691912e-01  0.857623487  0.433032025
## 1128      0.5401834782       5.992461e-01  0.628560422  0.412664237
## 1129      0.4705329051       6.107870e-01  0.690303435  0.411196896
## 1131      0.5704449277       6.519347e-01  0.847914741  0.419148023
## 1132      0.6499469398       6.692569e-01  0.835621775  0.422413148
## 1141      0.4632156861       5.801466e-01  0.528281005  0.406293552
## 1147      0.4637216206       5.538088e-01  0.597424325  0.471655167
## 1164      0.1871984345       3.086202e-01  0.127651335  0.242774512
## 1181      0.1365579106       1.466644e-01  0.028206530  0.203322597
## 1186      0.1347436980       1.152245e-01  0.010391570  0.193717013
## 1188      0.1204259695       1.111728e-01 -0.019007195  0.196961371
## 1201      0.0832580836       6.690770e-02  0.005610181  0.476301705
## 1203      0.0744123800       6.813620e-02 -0.112544570  0.182841516
## 1206      0.0524242696       4.636287e-02 -0.183775725  0.475719148
## 1209      0.0678636549       5.283030e-02 -0.112422215  0.172133395
## 1221      0.0810183916       3.357322e-02 -0.025718613  0.476428325
## 1222      0.0761995934       3.536752e-02 -0.113348687  0.165935703
## 1228      0.0810183916       3.671792e-02 -0.037346009  0.476927174
## 1230      0.0670729734       3.327626e-02 -0.047529321  0.476725046
## 1236      0.0675916158       3.333037e-02 -0.126306532  0.124736099
## 1239      0.0377873410       3.568158e-02 -0.249774223  0.113520150
## 1243      0.0675916158       3.368987e-02 -0.146025041  0.097978395
## 1257      0.0746501061       3.413443e-02 -0.132283651  0.055573834
## 1260      0.0385780225       3.468752e-02 -0.248155909  0.043228071
## 1261      0.0262328464       3.511241e-02 -0.382767115  0.044727069
## 1268      0.0360398345       3.659425e-02 -0.309491955  0.030856856
## 1272      0.0753304742       4.065260e-02 -0.068108168  0.023060995
## 1278      0.0874282671       4.078040e-02 -0.038418500  0.011703162
## 1284      0.0962391276       4.633520e-02 -0.030638683 -0.003749393
## 1292      0.0858644993       5.450907e-02 -0.072762487 -0.029574180
## 1307     -0.0586505696       1.740769e-04 -0.240641702  0.181826605
## 1311     -0.0370791732       1.664769e-04 -0.097157857  0.181828107
## 1313     -0.0944675630       1.876923e-06 -0.382451109  0.181825241
## 1314     -0.0510495077       7.435897e-07 -0.314808961  0.181825951
## 1320     -0.0944675630       1.876923e-06 -0.382450883  0.181825561
## 1327     -0.0944675630       4.835366e-05 -0.382451330  0.181825813
## 1332     -0.0294781113       1.201203e-04 -0.171325426  0.181827897
## 1336     -0.0116318390       1.891719e-04 -0.121908053  0.183071855
## 1337     -0.0299135373       1.675560e-04 -0.121142314  0.183074063
## 1340     -0.0546189421       5.009182e-04 -0.196775073  0.186216827
## 1348     -0.1053153972       4.700483e-03 -0.399081787  0.187788461
## 1353     -0.0381917639       1.221100e-02 -0.187869646  0.189097988
## 1356     -0.0612445897       1.836610e-02 -0.309475148  0.191945677
## 1368      0.3561311480       4.079748e-01 -0.023528808  0.203853599
## 1373      0.7181384814       8.314822e-01  0.292299223  0.204676221
## 1383      0.8161010224       6.410167e-01  0.089954233  0.255821562
## 1385      0.9959461062       7.607985e-01  0.336478160  0.226296691
## 1386      0.7807751861       6.878734e-01  0.328940656  0.213370909
## 1400      0.5163266469       3.216980e-01  0.260359522  0.211805830
## 1410      0.2644977955       1.928094e-01  0.201119546  0.214133401
## 1412      0.1835031776       2.183671e-01  0.109822457  0.212328699
## 1415      0.1860275178       1.479426e-01  0.261119082  0.212644556
## 1424      0.1533279803       7.215745e-02  0.189420694  0.212531005
## 1435      0.0612657457       7.224170e-02  0.161686882  0.208078419
## 1437      0.0617011717       5.263075e-02  0.119858242  0.211855047
## 1438      0.0365603410       3.773225e-02  0.042038654  0.211856278
## 1444      0.0617011717       4.724908e-02  0.105605705  0.212111608
## 1446     -0.0032882800       2.326375e-02 -0.109163551  0.211752470
## 1452      0.0365603410       2.382046e-02  0.023564703  0.212071920
## 1456      0.0380045424       2.924816e-02  0.097959145  0.208746720
## 1457      0.0288779224       2.632376e-02  0.079562844  0.208731919
## 1459      0.0132991377       1.992546e-02 -0.022709702  0.208971102
## 1463      0.0192321766       2.872863e-02 -0.025271128  0.209542961
## 1469      0.0375138749       1.866469e-02 -0.032350871  0.209137886
## 1470      0.0192321766       2.075409e-02 -0.033099832  0.209499077
## 1473     -0.0036194884       6.106748e-03 -0.159722989  0.208196921
## 1477      0.0207136060       1.486846e-02 -0.044007614  0.208792090
## 1492      0.0076408024       1.208827e-02 -0.056582869  0.210076395
## 1494     -0.0022467072       3.475433e-03 -0.153343042  0.208893744
## 1513      0.0428792794       1.691160e-02  0.006775503  0.216270834
## 1514      0.0524413254       1.671843e-02 -0.014174649  0.216734858
## 1520      0.1132016478       5.212546e-02  0.021246046  0.224206846
## 1532      0.0895801801       2.919508e-02  0.105552543  0.225057195
## 1533      0.0861916683       3.020606e-02  0.109977022  0.227359811
## 1535      0.1129693114       3.024939e-02  0.074631175  0.229502689
## 1540      0.1125338854       6.320644e-02  0.123837908  0.233008164
## 1541      0.1034072654       6.962212e-02  0.115426356  0.233647807
## 1553      0.1080765228       7.646979e-02  0.175624063  0.240590645
## 1555      0.1172694423       8.391419e-02  0.171925674  0.247084210
## 1559      0.0216660513       9.657284e-02  0.051236481  0.243324637
## 1561      0.1839392322       9.384425e-02  0.259866791  0.257778568
## 1567      0.1588098861       1.064836e-01  0.311346296  0.258902417
## 1570      0.2062295918       1.314704e-01  0.301499401  0.275366735
## 1579      0.0397910826       2.106382e-01  0.245820066  0.276132167
## 1581      0.2749762876       3.950760e-01  0.566606565  0.309588816
## 1583      0.2524401427       3.149450e-01  0.576889901  0.326763018
## 1587      0.5425847012       6.418776e-01  0.557541972  0.402689307
## 1593      0.3585094608       3.372542e-01  0.471939895  0.358065380
## 1595      0.5750700832       7.467646e-01  0.704082085  0.346491910
## 1598      0.5298066890       7.174930e-01  0.635419466  0.354344494
## 1607      0.3873843542       3.807639e-01  0.315749752  0.358729514
## 1610      0.5183131976       4.811290e-01  0.526112171  0.364287453
## 1619      0.4933013516       5.764481e-01  0.499766286  0.365420975
## 1621      0.2919182697       2.252675e-01  0.275802615  0.366474346
## 1622      0.2823264999       3.889719e-01  0.360678390  0.359728935
## 1629      0.2823264999       3.697548e-01  0.349339414  0.365331343
## 1634      0.2241345984       2.879431e-01  0.348195458  0.382488764
## 1639      0.3375286516       3.281312e-01  0.409577496  0.391131652
## 1647      0.3909087552       3.610003e-01  0.397955597  0.396526344
## 1652      0.4368741934       3.124786e-01  0.484128233  0.406802685
## 1668      0.4353885372       5.946856e-01  0.495619381  0.426286201
## 1676      0.3390322057       2.375366e-01  0.416018611  0.435463094
## 1689      0.4297454253       5.549908e-01  0.402251487  0.447553371
## 1691      0.1874160453       1.845692e-01  0.166879341  0.443261242
## 1694      0.4466457169       3.438000e-01  0.434199140  0.455891788
## 1700      0.4986429711       4.809876e-01  0.461832263  0.456743411
## 1704      0.3308123729       1.955278e-01  0.366201704  0.465942626
## 1707      0.3538563098       3.774665e-01  0.388171184  0.467607435
## 1712      0.1679158787       1.731175e-01  0.145949618  0.472940384
## 1716      0.2667661338       3.006956e-01  0.401407413  0.484816463
## 1719      0.2092753485       1.637255e-01  0.169895734  0.483702397
## 1745      0.2108069270       3.203732e-01  0.684391122  0.511719521
## 1749      0.5512060774       3.735825e-01  0.748393605  0.554793523
## 1754      0.2349876068       1.854502e-01  0.488323536  0.545806784
## 1760      0.3101902290       2.056162e-01  0.639424263  0.558375222
## 1764      0.3691628125       2.968856e-01  0.722812786  0.561596912
## 1765      0.3200562740       2.948606e-01  0.695411897  0.557408134
## 1774      0.2420803949       1.602674e-01  0.550365511  0.540219868
## 1787      0.2155368915       1.620787e-01  0.525696989  0.503785027
## 1789      0.0802596520       1.028736e-01  0.282771283  0.490826897
## 1790      0.0685168892       1.562415e-01  0.347257249  0.485669686
## 1796      0.0598259609       9.279870e-02  0.245069264  0.479150114
## 1797      0.0849095640       1.246238e-01  0.331836150  0.477508668
## 1805      0.0880029377       7.842717e-02  0.345980853  0.467497829
## 1808      0.0701566654       7.374667e-02  0.287439960  0.458341213
## 1814      0.0186540524       5.810570e-02  0.269277626  0.443173861
## 1818      0.0078023345       5.119017e-02  0.071955133  0.431133873
## 1822      0.0296975278       4.515383e-02  0.192559396  0.424481768
## 1829      0.0188114322       3.443810e-02  0.056308700  0.408649058
## 1830     -0.0068262511       2.636750e-02 -0.029674422  0.402282890
## 1831     -0.0483560449       2.053757e-02 -0.179768674  0.395072540
## 1840      0.0869972726       2.942978e-02  0.074280157  0.390699964
## 1847      0.2451950523       3.907133e-02  0.122793080  0.386318369
## 1851      0.1629292755       3.548757e-02  0.028011250  0.380059410
## 1854      0.2318387468       4.287793e-02  0.140102617  0.382533714
## 1865      0.1643020567       5.429560e-02  0.057835529  0.366098016
## 1867     -0.0077258640       8.775693e-02  0.033745327  0.353177227
## 1868      0.2548858965       7.402713e-02  0.203247573  0.374348289
## 1875      0.2347646513       1.207692e-01  0.199989136  0.370378024
## 1888      0.0145051951       1.388847e-01 -0.001738991  0.347224354
## 1894      0.0131525085       6.877270e-02 -0.102134299  0.338994546
## 1898      0.1259259336       1.064973e-01  0.146123084  0.347590705
## 1903      0.1438441874       8.668513e-02  0.134139528  0.341461732
## 1904      0.0114437246       8.818563e-02  0.125614311  0.327586230
## 1911      0.0463702159       8.070617e-02  0.098016631  0.328740465
## 1916     -0.0203587381       6.660983e-02 -0.083861091  0.319128600
## 1920      0.0105791023       6.089653e-02  0.051107928  0.320901876
## 1924      0.0625655885       5.795103e-02  0.063189261  0.318735091
## 1932     -0.0070604226       4.702917e-02  0.053151842  0.309715839
## 1950     -0.0511293263       1.571437e-02 -0.194823383  0.299330593
## 1966      0.2206550028       5.769677e-02  0.192310690  0.304303747
## 1983      0.1940035210       1.159458e-01  0.321974169  0.315139584
## 1995     -0.0231174250       6.980000e-04  0.152529376  0.164257327
## 2000     -0.0463986905      -4.074519e-17 -0.101307814  0.164256376
## 2002     -0.0155163631      -4.241052e-17  0.078362344  0.164256993
## 2006     -0.0731213542      -4.141132e-17 -0.168949872  0.164254858
## 2010     -0.0246429830      -4.285461e-17  0.073321065  0.165083763
## 2014     -0.0463986905      -4.285461e-17 -0.091981947  0.165081423
## 2020     -0.0731213542      -4.274359e-17 -0.159624095  0.165080713
## 2024     -0.0246429830       2.560000e-05  0.082664912  0.165931606
## 2027     -0.0839691884       4.426667e-05 -0.217508791  0.167204598
## 2037     -0.0263641973       3.652371e-03  0.043106552  0.168868340
## 2044     -0.0028511486       2.615607e-02  0.076231216  0.174884117
## 2051      0.1041116335       6.949282e-02  0.134709597  0.181377994
## 2063      0.0570804039       2.154788e-01  0.133346882  0.184934723
## 2068      0.0784256327       2.021579e-01  0.204973169  0.186007339
## 2077      0.1929609064       1.881544e-01  0.140989488  0.187028176
## 2088      0.1821055289       1.451107e-01  0.366762704  0.187684619
## 2100      0.0969311338       6.652142e-02  0.366775611  0.186521776
## 2107      0.0969311338       5.870669e-02  0.351560748  0.185936874
## 2115      0.0878045138       4.527318e-02  0.331124529  0.186205493
## 2116      0.0880854301       3.316432e-02  0.309300892  0.186307780
## 2118      0.0382344956       2.648758e-02  0.126873795  0.181444461
## 2122      0.0448444100       2.481378e-02  0.233101687  0.186073956
## 2130      0.0451253264       1.775420e-02  0.208357287  0.186444533
## 2142      0.0539710300       1.357112e-02  0.248970384  0.187248432
## 2144      0.0451253264       1.167923e-02  0.212941728  0.187585195
## 2149      0.0355709745       1.002311e-02  0.138706835  0.187531100
## 2152      0.0057666997       6.739906e-03  0.028034311  0.187564153
## 2153     -0.0288068261       3.749038e-03 -0.094904865  0.180967624
## 2155      0.0403897727       9.427054e-03  0.123362799  0.186268090
## 2158      0.0267252709       8.057681e-03  0.087643483  0.186384034
## 2160     -0.0305355006       5.047802e-03 -0.109986206  0.179249437
## 2162      0.0403897727       6.115923e-03  0.122696732  0.186407809
## 2172      0.0267252709       4.537743e-03  0.087058561  0.187179800
## 2193      0.0302322337       4.868501e-03  0.094905807  0.189354911
## 2195     -0.0388683334       1.883857e-03 -0.092509374  0.178066557
## 2196      0.0081956098       2.719376e-03 -0.048531282  0.189711525
## 2199      0.0299513173       4.897550e-03  0.117028004  0.189912194
## 2205      0.0390779373       6.860639e-03  0.136322980  0.190674587
## 2207      0.0302322337       5.189323e-03  0.100460018  0.190993427
## 2208      0.0071394809       5.057655e-03  0.026139560  0.190248662
## 2212      0.0435262198       5.860075e-03  0.163404736  0.191190791
## 2233      0.0435262198       1.116430e-02  0.148974775  0.191917362
## 2236      0.0137219450       7.967417e-03  0.039002267  0.192026706
## 2243     -0.0051059990       1.128713e-02  0.037290240  0.193317897
## 2248      0.0501743503       2.328995e-02  0.136015717  0.197297866
## 2249      0.0504552666       2.399828e-02  0.114872465  0.197355480
## 2252      0.0164790957       3.255622e-02 -0.026449944  0.200012089
## 2258     -0.0280176643       2.489560e-02  0.019367826  0.180221524
## 2276      0.2371480006       1.931212e-01  0.274531738  0.236254260
## 2295      0.2595942960       3.286568e-01  0.324148660  0.252400242
## 2304      0.4124770958       4.579665e-01  0.393434460  0.271994301
## 2310      0.4706974082       4.756557e-01  0.417661236  0.281053871
## 2318      0.7580967541       6.345687e-01  0.446899353  0.301650180
## 2321      0.3613880070       3.316776e-01  0.524232509  0.248490637
## 2328      0.4221224888       3.774538e-01  0.587304681  0.262820559
## 2334      0.5989381283       5.577369e-01  0.351842699  0.306422686
## 2336      0.5978600757       6.748413e-01  0.283715390  0.309150238
## 2337      0.8465085208       1.008736e+00  0.466197034  0.316605189
## 2347      0.6812500437       6.917197e-01  0.421354987  0.321763297
## 2353      0.7222435167       8.027422e-01  0.438021537  0.326815462
## 2355      0.6607609646       7.698728e-01  0.339516323  0.331839033
## 2361      0.7706903278       8.693829e-01  0.407820966  0.336339738
## 2366      0.6614207414       8.431849e-01  0.364999593  0.338978497
## 2372      0.5652129339       5.429140e-01  0.355262400  0.333868424
## 2373      0.5568706511       6.517148e-01  0.353455690  0.337846072
## 2376      0.3590269166       3.268214e-01  0.237076029  0.335034086
## 2378      0.3579488639       4.643129e-01  0.166829745  0.334302729
## 2379      0.4826207816       5.288248e-01  0.343715020  0.335307667
## 2386      0.4453852662       4.154189e-01  0.333499602  0.337029364
## 2388      0.4763246827       4.561296e-01  0.317250580  0.342937472
## 2400      0.2229111236       2.730793e-01  0.241809901  0.340517185
## 2404      0.1781619165       1.532024e-01  0.131899773  0.344508556
## 2405      0.0579596902       1.074371e-01  0.164981042  0.292763039
## 2412      0.0721098354       9.949070e-02  0.200906069  0.294456516
## 2420      0.1259231115       2.135965e-01  0.080368746  0.350484355
## 2424      0.2960303328       2.223580e-01  0.371754234  0.357045539
## 2425      0.1511059857       1.301982e-01  0.298558315  0.345306104
## 2432      0.2997768606       1.406473e-01  0.315657769  0.363544764
## 2435      0.4318007237       3.145479e-01  0.430296073  0.377996700
## 2436      0.4020493521       3.015132e-01  0.432366299  0.384078905
## 2437      0.3631698994       2.721541e-01  0.419446422  0.376855435
## 2447      0.2341030643       1.334160e-01  0.529619568  0.305747849
## 2459      0.3510175107       2.386673e-01  0.511452948  0.367437061
## 2469      0.1666659265       2.021939e-01  0.349263188  0.338931834
## 2471      0.2545246781       2.289111e-01  0.518361270  0.350341017
## 2475      0.0959268180       7.486589e-02  0.393035038  0.255958310
## 2477      0.1193918275       1.556455e-01  0.496424101  0.318742949
## 2484      0.1076691266       1.447170e-01  0.353819648  0.280346925
## 2489     -0.0031708154       5.683423e-02  0.141498867  0.170220836
## 2492      0.0977414371       1.064081e-01  0.310131130  0.232847094
## 2517     -0.0226359860       9.667533e-03 -0.153021645  0.010045655
## 2521      0.0507222245       3.106548e-02  0.071267185  0.074280707
## 2526      0.0489307690       3.345958e-02  0.071463135  0.058873927
## 2531     -0.0226359860       7.443233e-03 -0.174809587 -0.037894923
## 2532      0.0132296433       2.440846e-02 -0.124843886  0.032070382
## 2533      0.0492545659       2.892997e-02  0.050738377  0.034139579
## 2538     -0.0226359860       9.095000e-03 -0.172375155 -0.057532794
## 2540      0.0492545659       2.923233e-02  0.034209787  0.016459509
## 2543      0.0274649890       7.475067e-03 -0.011089553  0.006724989
## 2547      0.0411125886       1.825065e-02  0.009462693 -0.001765115
## 2550      0.0503083832       1.778228e-02 -0.033874490 -0.009397429
## 2555      0.0682196992       2.099248e-02 -0.004421729 -0.013871735
## 2556      0.0590930792       1.875902e-02 -0.020696047 -0.017949446
## 2561      0.0730384974       2.637188e-02 -0.010763889 -0.028787663
## 2565      0.0264758772       1.797473e-02 -0.127289818 -0.039532364
## 2573     -0.0022393080       2.012550e-02 -0.054317206 -0.122236066
## 2577      0.1279552043       3.876590e-02  0.006450570 -0.043361154
## 2578      0.0292195836       3.451457e-02 -0.015274036 -0.055723746
## 2581      0.0298461072       4.723890e-02 -0.156872154 -0.055371574
## 2584      0.2216900166       8.308815e-02  0.008982126 -0.040054376
## 2590      0.1370818243       6.526910e-02  0.013768326 -0.056948056
## 2595      0.0298461072       7.095424e-02 -0.167927023 -0.071952377
## 2614      0.0135776451       2.816686e-02 -0.129954128 -0.089667056
## 2616      0.0124995925       7.595864e-02 -0.214397089 -0.092063668
## 2626      0.1480579243       8.704103e-02 -0.038754206 -0.080951805
## 2642      0.1742786092       9.922927e-02 -0.054536187 -0.077961712
## 2645      0.2630281511       1.942139e-01  0.060151258 -0.056442788
## 2648      0.2338445837       1.816074e-01  0.030454615 -0.054315063
## 2660      0.5262876720       4.151969e-01  0.132196348 -0.020166510
## 2661      0.5258972384       4.073428e-01  0.117970054 -0.029164390
## 2662      0.4195241467       3.485171e-01  0.100658179 -0.042910147
## 2664      0.3825647425       1.343052e-01  0.446552461 -0.187769907
## 2666      0.5119316938       4.302705e-01  0.135595879 -0.051374055
## 2670      0.4545659329       3.413678e-01  0.088045232 -0.103283431
## 2682     -0.0584174468      -3.830269e-17 -0.045270587  0.241047220
## 2686     -0.0187544967      -4.329870e-17  0.187674619  0.241049398
## 2695     -0.0394321515       5.000000e-07  0.091404565  0.241047996
## 2697     -0.0405102042      -4.329870e-17  0.022371607  0.241047059
## 2700     -0.0187544967      -4.329870e-17  0.187674619  0.241049398
## 2712     -0.0146327462       3.675144e-03  0.120046528  0.241049783
## 2718     -0.0557354620       1.291053e-05 -0.030861998  0.243534835
## 2724     -0.0736427046       3.380439e-04 -0.078271104  0.245338858
## 2729     -0.0160243236       6.714849e-03  0.244811241  0.250142916
## 2730      0.0023063156       8.398381e-03  0.203471615  0.251009533
## 2732      0.0460868186       4.707400e-03  0.174472830  0.252552379
## 2733      0.0887588478       4.774100e-03  0.371471987  0.252495587
## 2735      0.0669288659       3.328462e-03  0.372520217  0.254541955
## 2741      0.1020728022       2.225344e-02  0.606918321  0.255129659
## 2743      0.0787980797       1.244505e-02  0.489900957  0.254623428
## 2749      0.0785171633       2.775224e-02  0.519456492  0.255648631
## 2765      0.0692302394       5.746380e-02  0.439396599  0.257314110
## 2766      0.0502449442       5.995780e-02  0.288928527  0.257286206
## 2770      0.0806513449       7.353375e-02  0.493518512  0.257954765
## 2775      0.1120328198       1.188567e-01  0.588171196  0.257910523
## 2776      0.1176556205       1.220566e-01  0.593012876  0.258735303
## 2777      0.1085290006       1.058429e-01  0.582692686  0.258755923
## 2786      0.1432153334       1.357612e-01  0.501094145  0.262484746
## 2797      0.2627390709       1.926122e-01  0.663510576  0.269309820
## 2800      0.2937802919       2.416214e-01  0.558749093  0.271899844
## 2803      0.3273151792       3.614540e-01  0.589592369  0.274898642
## 2806      0.3163985472       2.831270e-01  0.561907034  0.277485363
## 2808      0.2645151336       3.423809e-01  0.358532284  0.280234522
## 2815      0.3249194323       4.520711e-01  0.370693176  0.285990989
## 2819      0.4177522018       4.702874e-01  0.617355608  0.291554012
## 2821      0.4091380525       4.303384e-01  0.523865562  0.295268664
## 2825      0.5171191761       4.349605e-01  0.645077602  0.300955558
## 2826      0.5221600595       4.361471e-01  0.631549563  0.302473582
## 2827      0.5493488297       4.340022e-01  0.612098802  0.304891314
## 2843      0.5540889579       5.443936e-01  0.350166468  0.339170186
## 2852      0.7576334154       6.845870e-01  0.641140558  0.368579221
## 2856      0.7239086102       7.620388e-01  0.581866816  0.391580456
## 2859      0.8048306475       7.832477e-01  0.661095224  0.404010279
## 2870      0.9009986777       9.213259e-01  0.534275799  0.456745261
## 2874      0.9909346434       9.515469e-01  0.641756474  0.475262940
## 2876      0.9096193403       9.525692e-01  0.592925144  0.481670621
## 2880      0.9736469497       9.440127e-01  0.604067250  0.497458018
## 2882      0.9337148681       9.680913e-01  0.593523061  0.510618714
## 2895      1.1982339811       1.083495e+00  0.684613920  0.586786650
## 2896      1.1067912221       1.098987e+00  0.668278119  0.591735785
## 2899      1.0232001573       1.088964e+00  0.445572634  0.616209818
## 2902      1.2273050737       1.154958e+00  0.711067411  0.637971547
## 2913      0.9014720906       1.104277e+00  0.516573338  0.696687649
## 2916      1.1410239334       1.118846e+00  0.778187050  0.712085962
## 2918      1.1060669897       1.137125e+00  0.725631580  0.722216294
## 2921      0.9823848721       1.035052e+00  0.577557133  0.724171422
## 2931      0.9236894771       9.406503e-01  0.719303803  0.772361767
## 2932      0.9067798784       9.261613e-01  0.696278611  0.779738984
## 2935      0.6219266022       7.858505e-01  0.555062726  0.775768083
## 2942      0.4443735842       6.062248e-01  0.544592942  0.793843968
## 2948      0.4105908764       5.270816e-01  0.447185555  0.812547151
## 2954      0.4498633480       5.515451e-01  0.589120507  0.831532644
## 2959      0.4837818249       5.711840e-01  0.751663499  0.846910014
## 2966      0.4813060772       5.296067e-01  0.760274340  0.864790189
## 2968      0.4384103109       5.024680e-01  0.666835638  0.866784984
## 2969      0.3239614199       4.633036e-01  0.531212063  0.858894269
## 2972      0.4948302613       5.364595e-01  0.782684301  0.880315869
## 2980      0.4769482158       5.112407e-01  0.795446597  0.901776325
## 2982      0.4355964249       4.938839e-01  0.697513892  0.905936772
## 2989      0.4516610363       4.790277e-01  0.751302507  0.916742561
## 2990      0.3993909772       4.213574e-01  0.615724476  0.916017743
## 3000      0.3431438035       3.484976e-01  0.859329136  0.925599486
## 3003      0.2913574957       3.500449e-01  0.739858361  0.932791404
## 3018      0.1816304589       2.241982e-01  0.575769894  0.942936446
## 3023      0.0379969564       1.179801e-01  0.783331029  0.932055467
## 3027      0.2773631300       2.011858e-01  0.828283945  0.952189311
## 3047      0.0545017494       1.045274e-01  0.575070803  0.958124007
## 3056      0.1527528058       9.559870e-02  0.757816885  0.967561828
## 3070      0.2191092115       1.132510e-01  0.769686686  0.970664336
## 3071      0.2081976182       1.165445e-01  0.754827811  0.974319053
## 3075      0.0542794023       1.154731e-01  0.509000279  0.966343426
## 3076      0.1635002961       1.235631e-01  0.688691319  0.972498726
## 3083      0.2469652610       1.289141e-01  0.691037276  0.974997139
## 3084      0.2742148211       1.294655e-01  0.697560192  0.977253907
## 3090      0.3380561818       1.766750e-01  0.720909410  0.988740478
## 3097      0.3737140522       2.564927e-01  0.766632367  0.997309186
## 3098      0.4032544203       3.043794e-01  0.777300285  1.001209979
## 3107      0.6572563165       6.349711e-01  0.983470932  1.074051177
## 3110      0.4604168613       6.811396e-01  0.924776528  1.077270963
## 3112      0.9428743209       7.551292e-01  1.144222705  1.089195014
## 3123      1.8791383370       1.525972e+00  1.171718300  1.255988357
## 3124      2.0480574438       1.938599e+00  1.271362915  1.292845973
## 3128      2.5491231804       2.490719e+00  1.525620010  1.654372924
## 3130      2.7044438542       2.717915e+00  1.372919417  1.414185147
## 3137      3.5392536893       3.553739e+00  1.591552432  1.570585566
## 3138      3.7234052953       3.617405e+00  1.670663887  1.604514212
## 3140      3.9221595691       3.854796e+00  1.893897867  1.703505896
## 3146      4.2100307701       4.011872e+00  1.944281221  1.764684135
## 3164      4.1246171976       3.832545e+00  1.650258370  1.848233078
## 3172      2.8489062580       2.959292e+00  1.318960667  1.785224963
## 3174      3.9728161479       4.029231e+00  1.559255086  1.793115283
## 3175      3.6908224560       4.310664e+00  1.565932702  1.793613994
## 3186      1.3687024759       1.427915e+00  1.340773443  1.738366753
## 3187      1.3044161121       1.338834e+00  1.410291337  1.827050589
## 3191      1.0984926061       1.283458e+00  1.561939938  1.750688800
## 3193      1.1650099743       1.035206e+00  1.347706971  1.661860759
## 3196      0.8565440868       9.768031e-01  1.583156087  1.618285861
## 3202      0.8505166076       8.432104e-01  1.446753286  1.595395194
## 3211      1.3080377215       6.356909e-01  1.382586969  1.530676500
## 3215      1.0468841857       1.750212e+00  1.187931737  1.408358933
## 3223      1.0429249788       5.744516e-01  1.321925331  1.440085675
## 3227      0.6643353676       7.139344e-01  1.436949597  2.362342493
## 3228      0.4761648994       4.757351e-01  1.063791238  1.302668096
## 3243      0.4076370408       3.749861e-01  1.088508079  1.146675558
## 3245      0.4413922816       4.898736e-01  1.263252415  1.248725371
## 3246      0.6003054014       4.893896e-01  1.248642707  1.217251680
## 3247      0.3847211363       4.963285e-01  1.222980656  1.245728677
## 3252      0.4391266768       5.352153e-01  1.235324138  1.259030183
## 3255      0.4174307298       4.818190e-01  1.112455369  1.223081171
## 3268      0.6458726662       3.034243e-01  1.112989433  0.863804385
## 3275      0.3318638783       3.157948e-01  1.016579311  0.797776441
## 3286      0.3860689199       2.761894e-01  0.846812629  0.511284089
## 3288      0.2450943017       2.901169e-01  0.799042556  0.530542549
## 3292      0.3006384152       2.169603e-01  0.567666562  0.423113783
## 3299      0.0254886481       2.014371e-01  0.438097954  0.279790318
## 3311      0.5234870729       5.077547e-01  0.325126132  0.120540221
## 3313      0.3747986189       3.843096e-01  0.207798313  0.049581411
## 3314      0.4787744495       5.031626e-01  0.362425568  0.127637603
## 3324      0.3055623608       3.961598e-01  0.210389839 -0.133315927
## 3327      0.2227065833       3.347847e-01  0.021886396 -0.077962678
## 3328      0.3304018019       3.499451e-01  0.173427855 -0.113401590
## 3338      0.4258646970       4.319265e-01 -0.151871458 -0.294291429
## 3340      0.4221261433       2.650713e-01 -0.424291434 -0.350527268
## 3345      0.3389646037       4.222494e-01 -0.388331116 -0.328620416
## 3348      0.2549987849       2.662521e-01 -0.610222683 -0.525517718
## 3350      0.5131755399       4.045721e-01 -0.433022110 -0.513404395
## 3364     -0.0486429698       4.443838e-06 -0.273655185  0.155627683
## 3365     -0.0307357272       1.277171e-06 -0.206013037  0.155628392
## 3366      0.0103669886       7.771709e-07 -0.027108929  0.155630987
## 3369     -0.0086991033       1.267717e-05 -0.062529236  0.155630766
## 3370     -0.0296576745       6.777171e-06 -0.136980033  0.155629394
## 3376     -0.0086991033       6.677171e-06 -0.062529236  0.155629831
## 3386     -0.0322171566       3.412886e-03 -0.129452906  0.162414854
## 3387      0.0073162459       4.151052e-03  0.050035571  0.162439114
## 3388     -0.0029041425       4.776698e-03  0.050658249  0.162483865
## 3390     -0.0117498461       7.480379e-03  0.016329764  0.162633838
## 3391     -0.0327084173       1.002778e-02 -0.056897769  0.162667179
## 3392     -0.0625415467       1.593759e-02 -0.272892812  0.163042911
## 3393     -0.0110306720       3.798100e-02  0.073945670  0.163702946
## 3396      0.1094816406       4.332004e-02  0.432847048  0.165092377
## 3408      0.3561685681       4.365610e-01  0.793997525  0.172713568
## 3415      0.7890259849       7.273686e-01  0.903215045  0.179224275
## 3431      0.6442244474       6.133377e-01  0.643511947  0.185708010
## 3432      0.6490306079       6.125703e-01  0.597183058  0.185713780
## 3447      0.3207075380       3.772973e-01  0.329589446  0.187208606
## 3451      0.3166504688       3.630189e-01  0.400895291  0.187062775
## 3467      0.1700764886       1.895966e-01  0.297491721  0.182410747
## 3469      0.1403587678       1.554054e-01  0.085480718  0.182748260
## 3478      0.1250396351       1.016708e-01  0.280165748  0.180222243
## 3480      0.1056926268       1.086014e-01  0.263423450  0.180231616
## 3481      0.1059735431       1.036162e-01  0.238821995  0.180062619
## 3489      0.0420548682       7.210552e-02  0.048259230  0.179168653
## 3496      0.0363737057       5.010745e-02  0.036098614  0.178716174
## 3497      0.0173574539       4.531765e-02 -0.100240452  0.178633275
## 3506      0.0816764524       2.060382e-02  0.130568847  0.177727909
## 3511      0.0201907463       1.746515e-02 -0.114710275  0.177415398
## 3512      0.0380979889       1.981972e-02 -0.048872985  0.177335029
## 3519      0.0158216222       1.502780e-02 -0.163110506  0.177038324
## 3538      0.0065393617       7.641070e-03 -0.091631528  0.176138817
## 3548      0.0535538806       9.188873e-03  0.017858165  0.175162876
## 3552      0.0065224594       6.279992e-03 -0.087931172  0.175097893
## 3553     -0.0054560778       5.928373e-03 -0.223439573  0.175179335
## 3554      0.0124511648       6.344640e-03 -0.155931061  0.174970481
## 3559      0.0065224594       5.728726e-03 -0.076209030  0.175169706
## 3560     -0.0054560778       5.807640e-03 -0.213628543  0.175007007
## 3564      0.0248037381       6.221106e-03  0.027953715  0.175730452
## 3570      0.0299841744       7.248540e-03  0.054993751  0.176051159
## 3575      0.0030480306       6.832403e-03 -0.123207497  0.175559066
## 3578      0.0253058370       9.795133e-03  0.071672408  0.175818717
## 3590      0.0509954052       1.263592e-02  0.093065889  0.175149228
## 3605      0.0372618349       2.157451e-02  0.100203003  0.174953577
## 3611      0.0286542792       2.614732e-02  0.115108796  0.176087611
## 3615      0.0120371941       3.042262e-02  0.043267160  0.179558664
## 3619      0.0636492144       6.111523e-02  0.199459694  0.182388328
## 3624      0.0649214689       8.113543e-02  0.086778119  0.186875205
## 3628      0.2838823472       1.745234e-01  0.334315338  0.201043746
## 3629      0.2556627274       1.692377e-01  0.285289348  0.202651944
## 3631      0.2283932207       2.043210e-01  0.263120764  0.202946067
## 3632      0.3942524289       2.665504e-01  0.473225387  0.208962137
## 3633      0.3904316434       2.797137e-01  0.501812998  0.213281578
## 3635      0.4838640544       3.061705e-01  0.517265479  0.222473901
## 3636      0.4463433155       2.696036e-01  0.466574410  0.225032729
## 3639      0.5253173946       4.084565e-01  0.690888375  0.226812019
## 3640      0.5255098726       3.674676e-01  0.708825813  0.230835557
## 3641      0.4936019123       3.843758e-01  0.713919308  0.236678659
## 3644      0.4365614870       4.334803e-01  0.534201527  0.242286787
## 3669      0.7274336591       7.171210e-01  0.765240531  0.276703744
## 3672      0.4940151433       5.850606e-01  0.506055811  0.275810579
## 3680      0.4585789873       4.987440e-01  0.537374500  0.276285466
## 3681      0.7011546449       6.320451e-01  0.712325704  0.279720956
## 3682      0.8020167848       5.667571e-01  0.737823324  0.318498166
## 3685      0.4812609659       5.191704e-01  0.640932817  0.284851681
## 3692      0.3897636725       4.365531e-01  0.569878728  0.284887030
## 3699      0.4602455391       4.397743e-01  0.602833771  0.292763597
## 3701      0.4027438227       4.185009e-01  0.540656760  0.293754719
## 3705      0.4508739189       5.140607e-01  0.707928141  0.303638468
## 3706      0.4505584177       4.473780e-01  0.619061364  0.306713960
## 3707      0.3643930224       4.108769e-01  0.481199912  0.305874838
## 3708      0.3447535479       4.194389e-01  0.544187646  0.300960367
## 3710      0.4785180889       4.977687e-01  0.711169313  0.305607516
## 3713      0.3647056326       4.436097e-01  0.513470965  0.307012652
## 3714      0.3017389896       3.838738e-01  0.346387537  0.303402928
## 3717      0.3866433115       4.955428e-01  0.539452823  0.305371723
## 3721      0.3061846105       3.677117e-01  0.252957717  0.305186129
## 3727      0.3133621121       4.072769e-01  0.384394638  0.308339657
## 3729      0.2378864154       3.538147e-01  0.228616896  0.304040847
## 3737      0.3604292436       3.940482e-01  0.408746732  0.307516787
## 3738      0.3592482148       3.663673e-01  0.407972290  0.310043195
## 3742      0.2756760179       2.609040e-01  0.147032639  0.308885962
## 3745      0.3382733561       3.373088e-01  0.401582093  0.311960541
## 3747      0.3452817897       3.138967e-01  0.364776391  0.316147208
## 3765      0.4833452808       3.720725e-01  0.426531944  0.331641744
## 3768      0.4695891759       3.662018e-01  0.410645147  0.340651807
## 3771      0.3878425068       3.543716e-01  0.272335381  0.331211220
## 3772      0.5550504087       3.970266e-01  0.469389921  0.335894313
## 3773      0.5058348117       3.833747e-01  0.473926530  0.339515379
## 3774      0.4781043082       3.876232e-01  0.460471510  0.341937028
## 3779      0.5631441855       4.517008e-01  0.497012016  0.340838937
## 3780      0.5370769833       4.333699e-01  0.499322748  0.344098616
## 3782      0.5385003056       4.611717e-01  0.462034066  0.347940681
## 3787      0.5116179477       4.767694e-01  0.493855106  0.350140682
## 3788      0.5550725610       4.832552e-01  0.615659205  0.348428868
## 3792      0.4157342506       4.289851e-01  0.437790751  0.337389139
## 3804      0.3312968127       3.698072e-01  0.442084866  0.342719490
## 3805      0.2882497408       3.118016e-01  0.293153380  0.337745944
## 3807      0.4188345189       4.053562e-01  0.538688709  0.338235384
## 3814      0.3440820744       3.396832e-01  0.496122870  0.331333149
## 3816      0.2792644637       3.166130e-01  0.476225512  0.335138355
## 3822      0.3190111804       2.643787e-01  0.549355748  0.319024283
## 3825      0.2544242788       2.098741e-01  0.416606574  0.312489699
## 3836      0.1625892099       1.750844e-01  0.440304706  0.283215280
## 3838      0.1537435063       1.561411e-01  0.385424528  0.278508024
## 3839      0.1208453880       1.386862e-01  0.304821394  0.272635131
## 3841      0.0730595095       1.133251e-01  0.209226910  0.261451497
## 3842      0.1377669525       1.296711e-01  0.392013857  0.258731461
## 3848      0.0764547853       8.503723e-02  0.174593135  0.236314057
## 3856      0.0820134486       7.303873e-02  0.237070516  0.199261910
## 3860      0.0419887854       4.946983e-02  0.111527069  0.184312154
## 3862      0.0459228704       4.339073e-02  0.027795309  0.179436664
## 3863      0.0820134486       4.988257e-02  0.212397516  0.177637508
## 3865      0.0505651431       3.999380e-02  0.187648228  0.174208173
## 3877      0.0627134692       3.264003e-02  0.156775698  0.146751281
## 3878      0.0524930808       2.864160e-02  0.153238778  0.144720533
## 3879      0.0288442109       2.014803e-02 -0.010098859  0.138971203
## 3880      0.0291251273       2.207173e-02 -0.034216586  0.136292050
## 3881      0.0081665561       1.816633e-02 -0.109647846  0.133631825
## 3894      0.0261922508       1.810423e-02 -0.013456892  0.110834926
## 3897      0.0269562087       1.763652e-02 -0.164812667  0.103358866
## 3898      0.0754473663       2.271273e-02  0.023720387  0.102268326
## 3902      0.0567583784       1.611847e-02 -0.092766217  0.091730518
## 3904      0.0318719139       1.855220e-02 -0.172559761  0.087588672
## 3906      0.0985022003       2.217743e-02  0.017086513  0.084752730
## 3907      0.0893755803       2.239017e-02  0.001302808  0.083104475
## 3911      0.0245262846       2.114960e-02 -0.195987494  0.070082863
## 3915      0.0611199265       2.585630e-02 -0.027286442  0.066807833
## 3916      0.0282218082       2.367923e-02 -0.099496170  0.063964801
## 3920      0.0699656301       3.183097e-02  0.005174109  0.059596472
## 3927      0.0699656301       4.837167e-02  0.015333851  0.053126910
## 3929      0.0611199265       4.853753e-02 -0.020772697  0.051196011
## 3933      0.0801860185       5.304623e-02  0.017866589  0.048371006
## 3936      0.0760131130       5.363467e-02 -0.022500426  0.047384099
## 3937      0.0282218082       4.686610e-02 -0.098811360  0.044429862
## 3938      0.0092365130       4.100220e-02 -0.242732674  0.041764424
## 3942      0.0652872927       6.398227e-02  0.015953148  0.041565451
## 3944      0.0326700907       5.666603e-02 -0.084367965  0.037599199
## 3949      0.0652872927       6.568203e-02 -0.004364583  0.033377737
## 3952      0.0136847955       4.378820e-02 -0.245999883  0.027201942
## 3967     -0.0013797012       4.430690e-02 -0.224525896  0.011965777
## 3980     -0.0367252045       3.409177e-02 -0.297212509 -0.001693378
## 3989      0.0110104348       4.177260e-02 -0.043761072 -0.012021446
## 3990      0.0418010473       3.988823e-02 -0.056755522 -0.012797616
## 3995     -0.0238542113       3.681913e-02 -0.249015864 -0.020759195
## 3996      0.0676631873       4.546963e-02 -0.040640850 -0.021296009
## 4004      0.0705251975       5.065527e-02  0.026885407 -0.031853155
## 4009      0.0375879587       5.020203e-02 -0.184408767 -0.040864109
## 4014      0.0500828686       5.250260e-02 -0.092205622 -0.048735144
## 4016      0.0375879587       5.881980e-02 -0.180460562 -0.053831229
## 4020      0.0990251350       6.473833e-02 -0.016172881 -0.058205806
## 4024      0.1120970618       7.654083e-02  0.033167179 -0.066806472
## 4036      0.0639171470       7.563867e-02 -0.163426251 -0.109279785
## 4037      0.0305823714       9.617731e-02 -0.148096891 -0.115321408
## 4038      0.1701614375       1.047403e-01  0.057626080 -0.114843431
## 4045      0.0256717498      -4.274359e-17  0.151189998  0.245168380
## 4055      0.0602948228      -4.318768e-17  0.261061147  0.245170037
## 4060     -0.0065167982      -4.352074e-17  0.014514891  0.245166733
## 4070      0.0554760246      -4.363176e-17  0.261827197  0.245169931
## 4074     -0.0071446659      -4.085621e-17 -0.066714386  0.245166735
## 4080      0.0158308954       1.287900e-02  0.084083177  0.246375872
## 4083      0.0596669551       8.058000e-03  0.210160896  0.247822165
## 4086      0.0460024533       2.222233e-03  0.176998746  0.247821291
## 4095     -0.0178390820       1.101152e-03  0.039622270  0.253217681
## 4098      0.0441537408       6.691738e-04  0.294358248  0.253316637
## 4106      0.0832536272       1.000645e-02  0.461341024  0.257509483
## 4109      0.0303874244       1.090334e-02  0.233603414  0.257412908
## 4110      0.0482946670       1.271798e-02  0.301418844  0.257453841
## 4112      0.0923802471       1.600151e-02  0.488187216  0.257692022
## 4115      0.0701005158       2.241455e-02  0.385028287  0.258310203
## 4118      0.1047235888       2.609746e-02  0.515448467  0.259697938
## 4122      0.1114535291       5.135744e-02  0.441380390  0.262351274
## 4123      0.0862717392       5.562045e-02  0.317238675  0.263876891
## 4131      0.0971722238       6.867858e-02  0.389985078  0.266273928
## 4147      0.2633881788       1.029241e-01  0.706679976  0.277193302
## 4150      0.2139385628       1.153419e-01  0.584197434  0.277949483
## 4154      0.2130507532       1.337247e-01  0.668408715  0.279418587
## 4160      0.2213359893       1.568184e-01  0.651500184  0.282209306
## 4168      0.2755700882       1.827979e-01  0.542683961  0.284615635
## 4169      0.2846362253       1.839354e-01  0.528665072  0.285295983
## 4170      0.2642486369       1.914215e-01  0.506948533  0.285582311
## 4174      0.2302834565       1.699736e-01  0.530746109  0.286321584
## 4184      0.1844541917       1.800568e-01  0.494944763  0.289561514
## 4189      0.1784067088       1.642723e-01  0.524542767  0.290483737
## 4193      0.1153065470       1.275592e-01  0.274692716  0.291264091
## 4197      0.1992597579       1.593568e-01  0.394597786  0.292392440
## 4204      0.2000041887       1.664883e-01  0.398659039  0.294157587
## 4209      0.1899049284       1.564360e-01  0.403628920  0.294785110
## 4216      0.1899049284       1.450668e-01  0.397007633  0.295774271
## 4224      0.1862635625       1.466756e-01  0.397162790  0.297253298
## 4225      0.1771369426       1.421562e-01  0.382789181  0.297480642
## 4230      0.1917107113       1.104394e-01  0.396441066  0.298199204
## 4231      0.1868919130       1.184548e-01  0.398510172  0.298450490
## 4234      0.1458925218       1.145245e-01  0.288055893  0.298966786
## 4235      0.1129595431       8.298625e-02  0.149131113  0.299133727
## 4236      0.1369471510       7.437922e-02  0.214338026  0.299296649
## 4239      0.1785097238       1.164719e-01  0.382800822  0.299771234
## 4241      0.1458925218       1.125307e-01  0.285512925  0.300093710
## 4247      0.2237081662       1.401751e-01  0.343941612  0.319889560
## 4249      0.1129595431       7.725765e-02  0.130951963  0.299953891
## 4252      0.1876363438       1.167156e-01  0.379379152  0.300329535
## 4255      0.1458925218       1.103900e-01  0.268314115  0.300898279
## 4258      0.1874204567       1.131111e-01  0.373398880  0.298720059
## 4263      0.1086692886       7.616226e-02  0.128867829  0.299883347
## 4266      0.1833460892       1.162928e-01  0.380370521  0.300784238
## 4269      0.1416022673       1.124921e-01  0.272323911  0.301477347
## 4272      0.1881648874       1.257713e-01  0.382433297  0.302122347
## 4275      0.1745003856       1.356473e-01  0.349361370  0.303021673
## 4278      0.1265765312       8.012621e-02  0.204398213  0.303972864
## 4283      0.1416022673       1.324294e-01  0.285331819  0.306707738
## 4288      0.2082036148       1.630586e-01  0.387337684  0.309781152
## 4289      0.2782628448       2.060241e-01  0.379185714  0.339603164
## 4299      0.2205887944       1.671337e-01  0.246500814  0.320746672
## 4303      0.3026109299       2.652752e-01  0.407593272  0.324399241
## 4307      0.3944205704       2.823829e-01  0.441258376  0.328483037
## 4317      0.4010366025       3.454588e-01  0.416491327  0.338261312
## 4320      0.3761562006       2.734633e-01  0.330983511  0.341004114
## 4325      0.4336355797       3.542346e-01  0.419381621  0.347905403
## 4332      0.4502199509       3.968464e-01  0.428319555  0.357686416
## 4336      0.4945075972       4.313941e-01  0.547673612  0.361153374
## 4337      0.4813557235       4.434929e-01  0.537098693  0.364827538
## 4349      0.5451745644       5.070696e-01  0.655223463  0.384307017
## 4352      0.5215524951       5.184231e-01  0.631236728  0.389685861
## 4356      0.5604578979       5.239938e-01  0.673739695  0.394846381
## 4360      0.5120247363       5.565066e-01  0.571465199  0.402847979
## 4363      0.6108264564       5.301605e-01  0.665525890  0.406133358
## 4365      0.5558515397       5.750298e-01  0.670088386  0.410660989
## 4369      0.5109279055       4.910720e-01  0.510274387  0.418287000
## 4370      0.5896080285       5.458720e-01  0.693639971  0.419340795
## 4378      0.5646451044       5.494638e-01  0.711003670  0.430215016
## 4401      0.5702212318       5.505859e-01  0.649189236  0.457661359
## 4404      0.5090921436       4.752487e-01  0.496446022  0.459113775
## 4409      0.5302126278       5.252152e-01  0.554970655  0.463543613
## 4411      0.4689000386       4.620474e-01  0.405287726  0.464245101
## 4423      0.3520663078       4.641742e-01  0.453640973  0.472181782
## 4424      0.3005698891       4.248922e-01  0.327772447  0.472351187
## 4428      0.3645849575       4.529848e-01  0.557887816  0.474665006
## 4429      0.3648658739       4.454562e-01  0.534947823  0.475378842
## 4435      0.3667129342       4.229326e-01  0.562594910  0.477480935
## 4437      0.3340494814       4.213642e-01  0.463508527  0.478938593
## 4442      0.3282817028       4.163423e-01  0.453889442  0.478815132
## 4443      0.2994756543       4.133953e-01  0.422137349  0.472878312
## 4444      0.2665775360       4.096815e-01  0.347856911  0.472529279
## 4454      0.3473862631       4.046052e-01  0.475127019  0.554280884
## 4461      0.3210440461       3.854731e-01  0.475241104  0.558062161
## 4466      0.2073023403       3.535494e-01  0.198168555  0.490330267
## 4471      0.3516003420       3.798185e-01  0.524859763  0.464202685
## 4472      0.3187022237       3.808707e-01  0.450180678  0.466706697
## 4473      0.2857692450       3.344001e-01  0.310777352  0.463218035
## 4474      0.3097568528       3.158857e-01  0.385692921  0.464411767
## 4475      0.3645204131       3.462531e-01  0.567397171  0.467245378
## 4483      0.4319382519       3.831733e-01  0.588454861  0.540674217
## 4486      0.4165366470       3.896630e-01  0.481222715  0.538836168
## 4489      0.3707955509       3.576498e-01  0.553725167  0.463265530
## 4495      0.3160319906       3.354817e-01  0.372863235  0.458668082
## 4499      0.4230925483       3.826741e-01  0.540857836  0.535836806
## 4522      0.2899251638       3.604554e-01  0.379969923  0.444550777
## 4529      0.3284635117       3.683008e-01  0.375162417  0.443635292
## 4531      0.4022293758       3.751209e-01  0.519675642  0.456149502
## 4542      0.3690168467       3.823677e-01  0.423890352  0.448579350
## 4545      0.4273364280       3.852962e-01  0.562328427  0.444381668
## 4552      0.5289604906       4.838396e-01  0.572676239  0.458736187
## 4557      0.5202072450       5.651220e-01  0.343412138  0.453882773
## 4558      0.5419179631       5.645228e-01  0.400930141  0.454556240
## 4559      0.6119814015       6.272500e-01  0.575051514  0.456667486
## 4564      0.5555034509       6.632560e-01  0.228723347  0.455950071
## 4569      0.6646046740       7.403479e-01  0.420335778  0.465832124
## 4577      0.5844600551       7.481795e-01  0.341279523  0.443536636
## 4586      0.5892577529       7.602116e-01  0.250169054  0.441487140
## 4590      0.7342939664       7.746678e-01  0.426174077  0.548773236
## 4592      0.6305537275       7.691481e-01  0.215406191  0.535619058
## 4607      0.5764538651       7.606896e-01  0.224877415  0.420786372
## 4608      0.7101417679       7.658632e-01  0.446980873  0.526203751
## 4612      0.6495963265       7.713587e-01  0.326833604  0.530432498
## 4628      0.6841124678       7.572855e-01  0.278814127  0.516490655
## 4631      0.7324513600       7.748246e-01  0.443937948  0.523979494
## 4634      0.7127834219       7.623505e-01  0.221404820  0.520248844
## 4645      0.7551723912       7.434416e-01  0.620586405  0.660532861
## 4646      0.8016117804       7.990349e-01  0.411487104  0.469894961
## 4648      0.7357318041       7.949988e-01  0.202628909  0.474833042
## 4651      0.8233196256       8.337412e-01  0.396762196  0.362490614
## 4653      0.8468144930       8.645549e-01  0.406689155  0.478636995
## 4656      0.7315023358       8.657596e-01  0.215154355  0.356367032
## 4657      0.9205158045       8.889071e-01  0.445398536  0.473468655
## 4666      0.8764070570       9.729792e-01  0.385446453  0.345731720
## 4674      1.0002032020       1.035013e+00  0.819073295  4.028003509
## 4675      0.9201910083       1.036587e+00  0.747014629  4.056201848
## 4678      1.0427676480       1.045112e+00  0.740645384  0.851208764
## 4681      1.1362898907       1.102551e+00  0.447174043  0.550427892
## 4682      1.0720145707       1.102601e+00  0.376031595  0.552164894
## 4690      1.1400742577       1.158869e+00  0.319359961  0.507656723
## 4696      1.1706844644       1.199260e+00  0.381093845  0.395322446
## 4698      0.9960745162       1.202853e+00  0.300417616  0.388815827
## 4709      1.1830626325       1.208074e+00  0.473854946  0.496859750
## 4714      1.2846104790       1.179362e+00  0.568384273  0.483606584
## 4725      0.9107994939       1.124267e+00  0.128176443  0.311017899
## 4726     -0.0200174456       2.479651e-04 -0.171632269  0.183507656
## 4727     -0.0291440656       1.337267e-02 -0.185999415  0.183506572
## 4729     -0.0498217204       1.269900e-02 -0.282269288  0.183505425
## 4732     -0.0166800767       4.883095e-04 -0.122609329  0.187950419
## 4735     -0.0303445786       1.923000e-03 -0.148691341  0.188925454
## 4743      0.0016325128       2.953451e-02 -0.192924137  0.193438639
## 4749      0.0617555300       8.173315e-02  0.480895119  0.195289448
## 4753      0.1281255247       8.704198e-02  0.504473279  0.197141714
## 4755      0.1221802336       9.357070e-02  0.498348987  0.197797207
## 4757      0.0895630316       1.099067e-01  0.398952389  0.199686274
## 4759      0.0884849790       1.038586e-01  0.300839779  0.198964825
## 4760      0.1246969899       1.128846e-01  0.457159801  0.199184295
## 4765      0.0600813196       1.171800e-01  0.138874609  0.200652442
## 4771      0.0466096328       1.033317e-01  0.218514990  0.200597081
## 4788      0.0824168492       5.493136e-02  0.303895317  0.201310571
## 4789      0.0775980509       5.225201e-02  0.295439067  0.201331223
## 4790      0.0684714310       4.909401e-02  0.274952082  0.201406796
## 4791      0.0594957980       4.742632e-02  0.249113468  0.201553121
## 4792      0.0385372268       4.765578e-02  0.172338203  0.201528794
## 4794      0.0353249925       3.766499e-02  0.105045840  0.201218310
## 4807      0.0551798275       3.040747e-02  0.011586551  0.201446034
## 4819      0.0312241282       1.949922e-02  0.081195649  0.200238170
## 4825      0.0315794449       2.119801e-02  0.120584982  0.200638781
## 4827      0.0109017901       2.259930e-02  0.023435787  0.200666597
## 4843     -0.0077144375       1.947455e-02 -0.175603568  0.201081967
## 4846      0.0140412699       1.990294e-02 -0.014321465  0.201084072
## 4852      0.0231678899       1.893676e-02 -0.001665141  0.201136729
## 4853      0.0140412699       1.777642e-02 -0.015166012  0.201143891
## 4854      0.0143221863       1.755350e-02 -0.036181230  0.201156940
## 4859      0.0246493193       1.713453e-02 -0.036171991  0.198058012
## 4872      0.0308408987       1.775701e-02 -0.030531297  0.198489814
## 4880      0.0241683608       1.837249e-02 -0.028268432  0.199577584
## 4881      0.0171759224       1.955363e-02 -0.043767686  0.199621734
## 4887      0.0263025424       2.047815e-02 -0.034243872  0.199724769
## 4890     -0.0035017324       2.037413e-02 -0.149375902  0.199709441
## 4893      0.0311213406       2.463640e-02 -0.040621437  0.199890091
## 4897     -0.0052304069       3.494538e-02 -0.150872599  0.199907921
## 4898     -0.0242157021       3.264546e-02 -0.287482620  0.199852965
## 4902      0.0189012122       4.790972e-02 -0.032837025  0.199453991
## 4903      0.0191821286       5.150703e-02 -0.049644416  0.199833084
## 4904     -0.0017764426       5.317720e-02 -0.124406896  0.199905452
## 4911      0.0633295620       6.144739e-02 -0.078986874  0.203729601
## 4916      0.0867712569       6.566860e-02  0.017854205  0.203907019
## 4917      0.0870521733       6.721833e-02 -0.003338649  0.204033048
## 4925     -0.0101200745       6.612289e-02 -0.085647696  0.203307642
## 4926     -0.0291053697       6.266798e-02 -0.222946913  0.203268513
## 4927     -0.0111981272       6.280385e-02 -0.155735047  0.203203201
## 4929      0.0196842003       6.219082e-02  0.021180962  0.203160139
## 4941     -0.0282116963       5.824010e-02 -0.158985555  0.203580664
## 4946     -0.0289480186       6.860766e-02 -0.091279505  0.203429639
## 4954     -0.0479333138       7.164984e-02 -0.219132931  0.203915020
## 4971      0.0106876675       8.800382e-02  0.076335116  0.203887096
## 4980      0.0364446583       1.253395e-01  0.069971005  0.207595415
## 4982     -0.0154387552       1.290919e-01 -0.128226323  0.208924673
## 4983      0.0024684874       1.414807e-01 -0.052223517  0.209870412
## 4986      0.2516884438       1.833079e-01  0.208327377  0.240076646
## 4990      0.1992509164       1.859930e-01  0.305491456  0.243658986
## 4992      0.3492994286       2.001969e-01  0.648009829  0.247985348
## 5002      0.2409510854       2.317987e-01  0.426724753  0.314060578
## 5003      0.2050764887       2.348847e-01  0.281636858  0.313560663
## 5013      0.2462254116       2.517917e-01  0.489003474  0.320944620
## 5024      0.1838692881       1.992294e-01  0.146571363  0.323130799
## 5031      0.0729555516       1.789614e-01  0.089573653  0.324603018
## 5032      0.0916072249       1.802839e-01  0.150753134  0.326118742
## 5034      0.1344290995       1.757030e-01  0.311967413  0.326440641
## 5036      0.2152076242       1.745928e-01  0.280008836  0.378120111
## 5042      0.1721749231       1.520491e-01  0.267918152  0.408455691
## 5045      0.1205724260       1.366972e-01  0.022498230  0.416076261
## 5057      0.1095034235       1.122835e-01  0.196167604  0.516338440
## 5061      0.1238344680       1.010966e-01  0.245053869  0.531285057
## 5066      0.0486242852       9.649078e-02  0.008115945  0.329144469
## 5067      0.1021344473       9.204803e-02  0.085036774  0.335562218
## 5072      0.0841227713       8.231087e-02  0.161551022  0.328513513
## 5074      0.0830447187       8.163764e-02  0.094534607  0.330682930
## 5075      0.1770832857       7.983990e-02  0.276170750  0.334868239
## 5079      0.1104649884       7.616727e-02  0.182899069  0.328920169
## 5082      0.1112444025       7.134850e-02  0.212276551  0.331914037
## 5083      0.0924427830       6.931790e-02  0.215693165  0.330406777
## 5084      0.0833161631       6.898797e-02  0.203516562  0.330073774
## 5088      0.0496209085       6.853997e-02  0.058816824  0.329903026
## 5089      0.1351987061       7.018253e-02  0.254386082  0.334372249
## 5091      0.1072704667       7.000553e-02  0.254022357  0.333792979
## 5101      0.1226838424       1.008156e-01  0.061627353  0.337502866
## 5104      0.2335041283       1.429852e-01  0.328186218  0.354371048
## 5105      0.2203522546       1.488898e-01  0.321627791  0.351607171
## 5108      0.1528895259       1.639894e-01  0.150612925  0.390279449
## 5113      0.3519416072       1.898779e-01  0.545366558  0.373006731
## 5123      0.2936925532       2.531315e-01  0.497089892  0.409889458
## 5128      0.4000562641       3.115757e-01  0.630232464  0.432806406
## 5130      0.3727241913       3.274213e-01  0.566958415  0.431692475
## 5135      0.3564687508       3.392246e-01  0.600165079  0.433419848
## 5137      0.2999740576       3.438883e-01  0.512732242  0.436089002
## 5140      0.3699234127       3.421860e-01  0.622656486  0.443089079
## 5141      0.3803523702       3.400119e-01  0.582296118  0.434920069
## 5142      0.3782488416       3.353030e-01  0.596337141  0.430119171
## 5154      0.2258036079       2.393563e-01  0.494385016  0.418425292
## 5155      0.2260845243       2.377048e-01  0.462335957  0.420543867
## 5162      0.1535176787       2.132819e-01  0.399536496  0.424573242
## 5171      0.0985174569       1.380112e-01  0.144345922  0.411223655
## 5178      0.0109996786       9.051983e-02  0.009245767  0.407328019
## 5185      0.0109996786       7.534589e-02 -0.001421552  0.407684312
## 5194      0.0765475940       5.902153e-02  0.247697682  0.387070504
## 5203      0.0367322525       4.755789e-02  0.100820548  0.369122362
## 5204      0.0762462128       4.626626e-02  0.074328728  0.369136993
## 5206     -0.0148702447       4.288506e-02 -0.144056885  0.358770158
## 5208      0.0664145444       4.880089e-02  0.093919236  0.350351472
## 5214      0.0223308118       4.473762e-02 -0.098234881  0.331087342
## 5216      0.0672344122       4.662376e-02  0.076285679  0.324751654
## 5219      0.0210899629       4.959553e-02 -0.036567014  0.308820745
## 5223      0.0600107409       5.723167e-02  0.084392555  0.304516669
## 5226      0.0677875749       6.027083e-02 -0.006830210  0.303457487
## 5230      0.2388275831       8.097110e-02  0.145979860  0.308850147
## 5232      0.2345412822       8.667550e-02  0.128877345  0.297593103
## 5239      0.2166202495       1.257294e-01  0.173492256  0.286965529
## 5240      0.2064047572       1.469160e-01  0.103441705  0.286233938
## 5253      0.2558700072       2.153261e-01  0.028443743  0.241854800
## 5256      0.2220193013       2.189857e-01 -0.117451839  0.237174168
## 5261      0.1429061011       2.449236e-01 -0.064081319  0.215801179
## 5264      0.2505803058       2.486804e-01  0.043110823  0.226401703
## 5265      0.2245153490       2.679753e-01  0.073848021  0.223497421
## 5274      0.2128560909       2.591681e-01  0.093524267  0.214070079
## 5290      0.1787621721       2.044611e-01 -0.117777465  0.196963882
## 5291      0.1966694146       2.236798e-01 -0.052096988  0.202609719
## 5292      0.2751822101       2.269825e-01  0.115871938  0.202045779
## 5294      0.2472539707       2.137496e-01  0.102754920  0.192989246
## 5296      0.1549991904       2.134138e-01  0.013016191  0.197402024
## 5300      0.2315679672       2.181424e-01  0.126791313  0.201519594
## 5301      0.2184160935       2.063648e-01  0.112779703  0.200668919
## 5306      0.2401607148       2.173727e-01  0.134880340  0.206344752
## 5318      0.1305979704       2.033088e-01 -0.128953060  0.201868068
## 5324      0.1211248714       2.094980e-01 -0.049865024  0.199334102
## 5325      0.1053715200       2.072015e-01 -0.187614177  0.200671277
## 5326      0.1389177956       2.159047e-01 -0.059105928  0.208139493
## 5329      0.1693811064       2.153119e-01  0.113080332  0.209948390
## 5331      0.1588237857       2.021887e-01  0.023959098  0.207354243
## 5348      0.2100228962       1.980535e-01  0.112368048  0.216505486
## 5357      0.1709950419       2.016365e-01  0.177033516  0.215989198
## 5360      0.1289588641       2.016449e-01 -0.064343284  0.213458787
## 5367      0.0872405365       1.886508e-01 -0.080439480  0.213526272
## 5371     -0.0359364492       2.433333e-05 -0.158026706  0.141509094
## 5379      0.0166844722      -4.274359e-17  0.020877718  0.141507457
## 5382     -0.0006965726       1.200000e-06 -0.014542498  0.141506429
## 5383     -0.0216551438       1.600000e-06 -0.088993295  0.141505057
## 5395     -0.0009774890       7.266667e-06  0.007277936  0.141514668
## 5399     -0.0467842834       1.784155e-04 -0.239250277  0.141548950
## 5408     -0.0026987032       6.822831e-03 -0.059530712  0.141975297
## 5410     -0.0115444068       1.030121e-02 -0.092566144  0.142375801
## 5416     -0.0118253232       3.318556e-02 -0.039510319  0.145984802
## 5420      0.0202090625       1.180888e-01 -0.126059977  0.154581977
## 5422      0.1349638443       1.636538e-01  0.056009944  0.155525219
## 5426      0.0415681067       2.725397e-01 -0.149254151  0.157962674
## 5436      1.0099124248       9.759008e-01  1.309479226  0.165701237
## 5441      0.8361346055       7.403597e-01  1.055135175  0.166956987
## 5445      0.9014228606       9.114657e-01  1.148329308  0.169332997
## 5449      0.8497376747       8.199761e-01  1.049203112  0.170791696
## 5452      0.7676228609       7.296897e-01  0.947539432  0.172087912
## 5470      0.4026170240       3.664671e-01  0.662148618  0.174940818
## 5472      0.2332912278       3.370174e-01  0.611847775  0.173599239
## 5474      0.2126135730       2.729294e-01  0.492575958  0.173339507
## 5475      0.1490221102       2.801838e-01  0.350032296  0.173198740
## 5479      0.2332912278       3.087265e-01  0.536980967  0.174512427
## 5480      0.2335721442       3.089089e-01  0.508787280  0.174154609
## 5484      0.2631354047       2.850699e-01  0.496235813  0.174133377
## 5486      0.2251286690       2.685122e-01  0.457470780  0.174365421
## 5489      0.0804325141       1.813712e-01  0.200352702  0.173572016
## 5492      0.0951441094       1.794556e-01  0.328203124  0.173742489
## 5498      0.2369572089       1.222265e-01  0.298007866  0.174507268
## 5500      0.2010556808       1.111480e-01  0.273765524  0.174362492
## 5504      0.0705302805       6.952438e-02  0.101290218  0.174172541
## 5505      0.1712957350       9.442025e-02  0.279567476  0.174259241
## 5508      0.1371730718       6.842573e-02  0.237016771  0.174175390
## 5513      0.1460187754       8.109810e-02  0.260587608  0.173976842
## 5516      0.1162145006       5.297727e-02  0.135543844  0.173748877
## 5520      0.1206119620       4.288924e-02  0.118967585  0.173081159
## 5529      0.0330793732       3.164439e-02  0.066848655  0.172123424
## 5539     -0.0021605034       1.579161e-02 -0.092892471  0.171308441
## 5540      0.0611216712       2.027238e-02  0.085135544  0.171045987
## 5542      0.0274625224       2.011658e-02  0.072117024  0.171098407
## 5546     -0.0095703403       1.587351e-02 -0.097046210  0.170600017
## 5551      0.0179216628       1.013246e-02 -0.011413499  0.170863275
## 5555      0.0412405020       1.619420e-02  0.099675896  0.170510326
## 5565     -0.0089578023       1.095446e-02 -0.014133207  0.168747842
## 5573     -0.0411463502       6.088024e-03 -0.154568982  0.167622031
## 5577      0.0138540342       1.091379e-02  0.081135431  0.167561270
## 5578      0.0141349505       8.951810e-03  0.059467420  0.167198261
## 5579     -0.0089578023       1.008542e-02 -0.015289619  0.166882189
## 5588     -0.0096395361       1.327788e-02 -0.047017558  0.167498227
## 5592      0.0418765312       2.019913e-02  0.107837335  0.167707396
## 5593      0.0089784129       1.882100e-02  0.033255870  0.167618109
## 5594     -0.0232101351       1.482933e-02 -0.104196085  0.167409212
## 5597      0.0624646328       2.466390e-02  0.149233481  0.168066130
## 5602      0.0064395055       2.426910e-02 -0.023102249  0.168358130
## 5631      0.2748643614       1.525178e-01  0.347105403  0.199772310
## 5638      0.4611780954       2.219843e-01  0.418195814  0.210714988
## 5642      0.3651994868       2.489419e-01  0.328846525  0.214730381
## 5643      0.2522810958       2.536286e-01  0.260445225  0.217177643
## 5649      0.3793382373       3.732302e-01  0.404338722  0.225640256
## 5650      0.2786658719       3.170485e-01  0.260991872  0.222560616
## 5653      0.4138644545       4.544032e-01  0.495577059  0.227173148
## 5654      0.4440348733       4.162131e-01  0.492328913  0.238828391
## 5656      0.3272226701       3.917532e-01  0.402515757  0.235411779
## 5657      0.2846610993       3.235471e-01  0.271859600  0.235003879
## 5660      0.3732615977       5.087884e-01  0.528442934  0.233214894
## 5661      0.3537753485       4.453248e-01  0.502181087  0.237394200
## 5668      0.3614398151       4.875205e-01  0.456991680  0.238420551
## 5673      0.3553572412       5.274866e-01  0.512813226  0.237711045
## 5681      0.3159176519       5.073047e-01  0.507669072  0.246075391
## 5692      0.3573640839       3.697317e-01  0.384117284  0.279703166
## 5701      0.7183653290       6.999082e-01  0.756794637  0.315358828
## 5709      1.0664616636       9.344607e-01  0.879881833  0.351803687
## 5711      1.3014428610       1.127809e+00  0.840560765  0.363957936
## 5725      1.3034791607       1.332060e+00  0.765850002  0.369416690
## 5726      1.0800911883       1.093027e+00  0.674041752  0.364260327
## 5733      0.9025906880       9.013794e-01  0.584467802  0.359560357
## 5754      0.4169260318       4.178383e-01  0.363268017  0.331996676
## 5756      0.3743060724       3.719472e-01  0.297488007  0.328338980
## 5766      0.2133407762       2.908402e-01  0.328959475  0.317841122
## 5786      0.1242859265       9.133403e-02  0.309814303  0.274751420
## 5787      0.1151593065       8.317430e-02  0.259245248  0.272176821
## 5794      0.1220343985       5.729836e-02  0.344739967  0.252748181
## 5803      0.0584560208       3.334347e-02  0.185606956  0.232257079
## 5812      0.0209468295       2.257100e-02  0.109533323  0.203909312
## 5814      0.0541116603       2.765993e-02  0.301960353  0.200790221
## 5816      0.0512808779       2.265393e-02  0.216333870  0.196444912
## 5817      0.0417059811       2.142977e-02  0.123853369  0.194845419
## 5822     -0.0056064091       1.998367e-02  0.239021916  0.178638313
## 5830      0.0047956194       1.383610e-02  0.267708811  0.158093076
## 5833     -0.0236493109       6.604000e-03  0.132842844  0.145768455
## 5834      0.0217832789       1.188063e-02  0.293627857  0.146287207
## 5835      0.0072330165       1.328193e-02  0.319958006  0.145705119
## 5840     -0.0236493109       4.892881e-03  0.120752740  0.127607704
## 5853     -0.0270505417       6.054681e-03 -0.003306090  0.092007561
## 5857      0.0018651100       1.157359e-02  0.142870796  0.090076142
## 5863      0.0109917300       1.050832e-02  0.145027129  0.074985414
## 5866     -0.0060547370       1.337155e-02 -0.003679306  0.070588597
## 5871      0.0431005136       1.301439e-02  0.125560403  0.062071419
## 5874     -0.0085019836       1.012795e-02 -0.102840667  0.051918014
## 5876      0.1038322608       1.918175e-02  0.125776189  0.057162543
## 5878      0.1144390106       2.175343e-02  0.132087325  0.056141265
## 5880      0.1019414260       2.746853e-02  0.010604270  0.056029154
## 5883      0.1925919866       2.592297e-02  0.146767263  0.052654921
## 5888      0.0814527578       1.619050e-02 -0.167345878  0.051357152
## 5893      0.1456002035       3.678717e-02  0.036705910  0.063453998
## 5895      0.0822279789       2.580727e-02 -0.153591142  0.057109192
## 5902      0.0938588940       4.281133e-02 -0.109445943  0.078251472
## 5904      0.1980381427       7.603590e-02  0.124610647  0.078941469
## 5906      0.1527906907       7.788380e-02  0.128721788  0.074543544
## 5910      0.1217835318       5.488163e-02 -0.066210604  0.060293756
## 5914      0.1480980981       9.949833e-02  0.059367212  0.064793151
## 5915      0.1469416730       9.206527e-02 -0.027470933  0.062234590
## 5919      0.1583165829       1.086819e-01  0.098400268  0.064485993
## 5926      0.1583165829       1.158457e-01  0.104804518  0.066059419
## 5927      0.1416578768       1.033995e-01  0.091820079  0.069983139
## 5929      0.1262545730       9.880787e-02 -0.016423290  0.067229361
## 5933      0.1548097505       1.279462e-01  0.114382001  0.072150048
## 5937      0.0970895695       6.247007e-02 -0.129331175  0.071539543
## 5939      0.1866776901       1.461572e-01  0.125422574  0.071938638
## 5946      0.1651775841       1.570314e-01  0.130348997  0.076836029
## 5955      0.1498478001       1.707727e-01  0.151241388  0.086526166
## 5958      0.0984272706       8.186357e-02 -0.102753953  0.078043458
## 5966      0.1128276807       7.608117e-02 -0.042034428  0.088395279
## 5969      0.1568959582       1.614774e-01  0.134657637  0.090519414
## 5985      0.0883058133       1.235808e-01  0.013866791  0.085115322
## 5993      0.0728946571       6.210023e-02 -0.085369985  0.076964182
## 5997      0.1348701771       1.781763e-01  0.173174013  0.086694488
## 5999      0.1000652304       1.640835e-01  0.056508840  0.071254057
## 6003      0.1394259997       2.034188e-01  0.184213182  0.063010442
## 6004      0.1157868560       1.981965e-01  0.166366557  0.056640818
## 6007      0.0421714350       8.432317e-02 -0.069616721  0.046453077
## 6011      0.1342874448       1.992225e-01  0.205501829  0.039626443
## 6014      0.0659505588       8.228550e-02 -0.050076376  0.021379759
## 6021      0.0597669407       7.410457e-02 -0.057676101  0.004963644
## 6027      0.1096001212       1.511201e-01  0.060890473 -0.004271256
## 6028      0.0742268820       6.132123e-02 -0.056235816 -0.011433495
## 6031      0.1437471607       1.610182e-01  0.190306244 -0.013270259
## 6033      0.1372137132       1.557875e-01  0.137528323 -0.012680069
## 6040      0.0962939392       1.458084e-01  0.191015957 -0.032597127
## 6045      0.1167632088       1.597603e-01  0.155725548 -0.054237276
## 6046      0.1028206535       1.474660e-01  0.139917969 -0.057591038
## 6047      0.0868676055       1.471663e-01  0.056485746 -0.055246003
## 6064      0.0697735579       5.501702e-05  0.192211796  0.274305839
## 6069      0.0205313332       5.501702e-05  0.012541684  0.274303415
## 6074      0.0348126386       6.225035e-05  0.081574732  0.274304480
## 6075     -0.0131403650       5.501702e-05 -0.055100374  0.274302833
## 6078      0.0697735579       5.501702e-05  0.192211932  0.274306031
## 6079      0.0554902935       5.501702e-05  0.177844787  0.274305882
## 6080      0.0557712098       1.310170e-04  0.156025620  0.274306916
## 6087      0.0557712098       5.501702e-05  0.156025665  0.274305108
## 6097      0.0340811237       4.889171e-03  0.108163816  0.276618014
## 6098      0.0864570995       5.758162e-03  0.290763709  0.276738603
## 6102      0.0448997289       1.512985e-02  0.209883532  0.279683005
## 6105      0.0925002136       4.557487e-02  0.329397062  0.283804102
## 6109      0.2690058879       1.352667e-01  0.304281468  0.291559953
## 6117      0.4646248024       5.857234e-01  0.368367296  0.308899712
## 6118      0.8308146186       8.850647e-01  0.453796041  0.316054750
## 6125      1.6831781808       1.741279e+00  0.777159817  0.340645490
## 6130      1.7765601591       2.002520e+00  0.799216563  0.350436840
## 6131      1.6078246390       1.878928e+00  0.667209180  0.350226193
## 6134      1.7855788868       2.121048e+00  0.904997961  0.355715969
## 6139      1.5271402580       1.924446e+00  0.681595237  0.370368498
## 6140      1.8625454838       2.200603e+00  0.833205707  0.369169196
## 6148      1.6275653856       2.009814e+00  0.715854521  0.386256152
## 6159      1.2145769625       1.118829e+00  0.448606624  0.400696461
## 6160      1.2436892581       1.135557e+00  0.505591647  0.401918262
## 6176      1.1492466845       8.606701e-01  0.631410836  0.426673544
## 6177      1.0800446220       1.025893e+00  0.609855119  0.430215980
## 6179      1.1692649232       9.621309e-01  0.512760850  0.435741887
## 6181      0.7211400165       5.888245e-01  0.341358494  0.431453869
## 6187      0.7087726679       5.733488e-01  0.267772139  0.441062782
## 6188      0.6832164157       5.408166e-01  0.335573689  0.440311540
## 6199      0.7019146547       6.578306e-01  0.487022911  0.470377159
## 6209      0.7049123257       4.135668e-01  0.401657131  0.500901501
## 6211      0.7999763408       8.104775e-01  0.483739612  0.518223441
## 6212      0.8188985140       7.859481e-01  0.477068931  0.526211452
## 6215      0.5999880436       4.440835e-01  0.261747852  0.530122898
## 6220      0.8863613617       9.151848e-01  0.491378954  0.564460230
## 6223      0.7127809149       6.612609e-01  0.353894544  0.566056318
## 6226      0.9673227580       9.749785e-01  0.908230074  0.602154865
## 6230      0.7575463174       7.830791e-01  0.790021200  0.603529449
## 6232      1.1451818806       1.105602e+00  1.020961923  0.622336797
## 6234      0.9215767953       1.061028e+00  1.010749298  0.634923180
## 6236      0.7103978458       6.980343e-01  0.759777121  0.625305650
## 6248      1.0164332278       1.147158e+00  1.015726163  0.674630533
## 6250      0.6482089724       5.857838e-01  0.781875362  0.668809448
## 6255      0.9384554098       1.065523e+00  0.982126922  0.701319517
## 6258      0.6115827025       5.915663e-01  0.818958490  0.681539211
## 6263      0.7941999309       9.228057e-01  0.830904379  0.703336285
## 6270      0.8713433708       8.603979e-01  0.796120890  0.720883403
## 6271      0.6214952137       5.116354e-01  0.653761196  0.714304292
## 6283      0.9294540744       9.225184e-01  0.860446032  0.754196078
## 6285      0.5564088127       4.088013e-01  0.626359133  0.745427650
## 6288      0.9684169315       9.885610e-01  0.877548850  0.756377604
## 6297      0.9015798628       8.786850e-01  0.857234196  0.789999800
## 6300      0.6595987777       4.168805e-01  0.712408395  0.782116069
## 6304      0.8562840321       8.619674e-01  0.870080640  0.814616642
## 6306      0.4979788947       4.356384e-01  0.659865431  0.800726988
## 6310      0.9882483446       9.067463e-01  0.932678305  0.835580173
## 6318      1.0908839150       9.276863e-01  0.988822619  0.873478365
## 6329      1.1811411192       9.885223e-01  1.139597072  0.927683163
## 6342      0.6735827483       8.551527e-01  1.286459808  1.056235378
## 6344      1.4990107049       1.234503e+00  1.528820132  1.104526058
## 6366      2.9843231566       2.706687e+00  2.122497292  1.420216826
## 6368      2.2134709796       2.311138e+00  2.035940097  1.447178170
## 6369      1.3630432754       1.660481e+00  1.918134543  1.418811483
## 6375      2.4229272130       2.638220e+00  2.184526722  1.545549304
## 6382      2.3821109645       2.639083e+00  2.305844453  1.630087738
## 6393      3.2117131606       3.435828e+00  2.608436815  1.795375911
## 6395      2.7552317381       2.492026e+00  2.555707018  1.753726072
## 6397      2.3163745142       2.295801e+00  2.419033511  1.822505999
## 6399      4.1470497834       3.704500e+00  2.722324373  1.888209885
## 6403      3.1388951478       3.290213e+00  2.604779744  1.975832682
## 6411      2.2096519085       2.567049e+00  2.460483085  1.999455037
## 6412      2.4706208354       2.754363e+00  2.523296275  1.985977000
## 6413      3.8732239078       3.899998e+00  2.697321101  2.025872033
## 6418      2.3129150831       2.462021e+00  2.317829727  2.031559579
## 6419      2.6504616288       2.738082e+00  2.387382495  2.062604140
## 6421      4.0294832842       3.775482e+00  2.542497418  2.101083431
## 6422      3.9520700502       3.665784e+00  2.503741185  2.121982530
## 6427      3.1429269862       3.103596e+00  2.347690233  2.104379262
## 6436      2.9799480844       2.781635e+00  2.100861198  2.153821477
## 6440      1.0719613253       1.237288e+00  1.848770941  2.094465260
## 6443      2.5142360149       2.311881e+00  1.951115065  2.130997758
## 6452      1.5375589298       1.613672e+00  1.666190453  2.148543087
## 6454      0.8964821899       1.095614e+00  1.498357000  2.143606320
## 6455      1.4943305282       1.466068e+00  1.666719925  2.155099410
## 6456      1.9449592629       1.887076e+00  1.653614758  2.173368766
## 6458      1.6401251181       1.573201e+00  1.573905199  2.165873953
## 6461      0.8645982462       8.860703e-01  1.392310525  2.088025755
## 6462      1.2749880269       1.363130e+00  1.568592191  2.092973682
## 6473      0.9017232416       9.634476e-01  1.369539477  1.932487998
## 6479      1.3208715926       1.310564e+00  1.440338818  1.936662923
## 6480      0.7955834327       8.747988e-01  1.352741448  1.887286754
## 6484      1.1744571557       1.191981e+00  1.462226181  1.886391027
## 6494      0.9939771955       7.792592e-01  1.433213723  1.561953855
## 6499      0.9141378388       9.601354e-01  1.517186736  1.526899803
## 6504      1.1856946399       8.333628e-01  1.504943617  1.496541034
## 6512      0.6815950527       8.238202e-01  1.396547169  1.456795694
## 6519      0.8729183010       8.253345e-01  1.407282942  1.381352476
## 6521      0.7439945380       7.228350e-01  1.329507678  1.362659411
## 6525      0.7335044472       7.433636e-01  1.307288022  1.314472178
## 6527      0.7571361410       7.351719e-01  1.259975268  1.305823437
## 6529      0.4733826225       5.539965e-01  1.125156498  1.271724761
## 6532      0.6957477257       6.889753e-01  1.212583400  1.251926527
## 6534      0.5962598115       7.032920e-01  1.170844168  1.233486327
## 6536      0.4979383985       5.869114e-01  1.039928334  1.197302791
## 6538      0.4839975120       4.601818e-01  0.952742189  1.187688860
## 6547      0.5453486151       6.246859e-01  0.958969565  1.129671628
## 6549      0.4403755880       5.739549e-01  0.889231381  1.121661084
## 6553      0.3849263423       4.178232e-01  0.889994985  1.094587188
## 6560      0.3396094033       3.432878e-01  0.864523801  1.056573893
## 6561      0.3801331195       3.592996e-01  0.855795107  1.052257504
## 6569      0.3585254615       3.461258e-01  0.818238397  1.019544204
## 6575      0.5074959708       3.669593e-01  0.832542277  1.005351538
## 6582      0.3753777875       3.392410e-01  0.757512123  0.998384735
## 6585      0.0661876325       1.278473e-01  0.647340701  0.974588786
## 6591      0.6592708661       4.877977e-01  0.817413788  1.041162339
## 6596      0.3664890453       3.820194e-01  0.940078630  1.015567270
## 6608      0.4439045648       5.688425e-01  1.120570045  1.108582970
## 6615      0.6559775624       8.782288e-01  1.344365209  1.196243337
## 6616      1.0031621682       9.648316e-01  1.565088205  1.147005619
## 6617      1.1039767421       1.003801e+00  1.610628515  1.185548645
## 6620      0.3049360040       4.689807e-01  1.543172282  1.097984133
## 6623      1.3638494947       1.190165e+00  1.754211164  1.215499738
## 6625      1.4835213058       1.310730e+00  1.770744342  1.229034411
## 6628      0.0606806664       3.417400e-01  1.573320556  1.115999878
## 6636      1.0748192072       1.496151e+00  1.719594659  1.384086146
## 6644      2.4486166834       1.791317e+00  1.959250889  1.437373206
## 6646      2.4169029671       2.449731e+00  1.940095652  1.350271823
## 6647      2.2670813754       2.192100e+00  1.907721500  1.426636403
## 6649      0.2383499598       3.677030e-01  1.655967073  1.238751499
## 6655      1.1080691847       7.024303e-01  1.748844983  1.300679635
## 6657      2.1727504211       2.102587e+00  1.664328675  1.439514868
## 6658      2.7126095264       2.612314e+00  1.835857817  1.374377002
## 6661      2.6572845239       2.511505e+00  1.733425314  1.446496426
## 6670      0.3817615016       3.901486e-01  1.352851141  1.302743426
## 6674      2.3290350582       2.282743e+00  1.541885127  1.369583046
## 6687      2.2884161830       2.172168e+00  1.425975788  1.347759730
## 6689      2.0089801692       1.836482e+00  1.355786460  1.354022449
## 6695      1.6215614160       1.642861e+00  1.309837740  1.298826450
## 6706      1.1855797776       1.520004e+00  1.064942975  1.254228826
## 6714      1.3984798037       1.457860e+00  1.265974853  1.186004313
## 6715      1.5976022908       1.777616e+00  1.269359462  1.202397436
## 6721      1.4748673620       1.427157e+00  1.286466721  1.144494313
## 6722      1.4085160999       1.592859e+00  1.289389369  1.150399958
## 6727      1.4425947006       1.463368e+00  1.154372519  1.224813174
## 6730      2.0310810782       1.876187e+00  1.313573815  1.146533211
## 6734      1.2229432691       1.519843e+00  1.162382832  1.160922699
## 6735      1.5545520624       1.599474e+00  1.357605404  1.088744596
## 6740      0.4730991223       4.322305e-01  0.954091633  1.159339648
##              s1.1    ForwardMLR   BackwardMLR country
## 1     0.183506235  0.4294926639  0.6020000258     BRA
## 21    0.184011114  0.5365342646  0.7534507700     BRA
## 27    0.185144887  0.4274863777  0.6594021186     BRA
## 29    0.184893034  0.6032934950  0.8331675441     BRA
## 43    0.193088090  0.7246007426  0.9551973553     BRA
## 45    0.190894144  0.6859789042  0.9201912877     BRA
## 60    0.208308863  0.6157943916  0.8377070776     BRA
## 65    0.218808735  0.7281938853  0.9533984581     BRA
## 66    0.209110969  0.7844997833  1.0339965618     BRA
## 71    0.235854859  0.8434784403  1.0899868018     BRA
## 80    0.265350157  0.8146984081  1.0549370570     BRA
## 87    0.286486074  0.8218395604  1.0548750420     BRA
## 88    0.270014979  0.7488165898  0.9723907763     BRA
## 103   0.299755905  0.4927998133  0.7109913542     BRA
## 107   0.352739297  0.7338930009  0.9485488224     BRA
## 108   0.336262825  0.7141323781  0.9310050822     BRA
## 110   0.301743662  0.5019815327  0.7105165728     BRA
## 122   0.445118362  0.7330372351  0.9301852729     BRA
## 134   0.460428706  0.7088933655  0.9019441756     BRA
## 135   0.456746447  0.6938476769  0.8855952285     BRA
## 141   0.455762237  0.7190310818  0.9017397373     BRA
## 142   0.480508962  0.7087153909  0.8842361223     BRA
## 151   0.527862304  0.6225826846  0.7855672781     BRA
## 154   0.488382781  0.7343051023  0.9005425755     BRA
## 155   0.609576073  0.7027629510  0.8557683479     BRA
## 157   0.548202469  0.6670824379  0.8207622804     BRA
## 163   0.562003948  0.7276634567  0.8734919050     BRA
## 172   0.541827297  0.6340035619  0.7598833829     BRA
## 174   0.454228545  0.5733903529  0.7036082351     BRA
## 177   0.562999414  0.7335115805  0.8570599220     BRA
## 190   0.597498348  0.7948278173  0.9000033953     BRA
## 192   0.620960159  0.7605627628  0.8680962990     BRA
## 194   0.479054861  0.5483506842  0.6480825710     BRA
## 195   0.456862561  0.6221609687  0.7258908304     BRA
## 196   0.479478020  0.7994621791  0.9022387853     BRA
## 205   0.579628181  0.7915765487  0.8819612057     BRA
## 206   0.602002420  0.7749560956  0.8680962990     BRA
## 211   0.446135956  0.8043595116  0.8873203740     BRA
## 231   0.517450223  0.7824809447  0.8379857570     BRA
## 233   0.594854360  0.7694024282  0.8213870110     BRA
## 236   0.482344518  0.5362520777  0.5838295427     BRA
## 239   0.587232490  0.7914413382  0.8388493382     BRA
## 241   0.611489256  0.7284104916  0.7722792856     BRA
## 245   0.607595328  0.7615127225  0.8015562627     BRA
## 253   0.591470954  0.8479027523  0.8594069894     BRA
## 255   0.663417694  0.8095726004  0.8243583560     BRA
## 267   0.652487401  0.8402803029  0.8381841820     BRA
## 270   0.652576151  0.7269328339  0.7206493936     BRA
## 272   0.587964432  0.6668181671  0.6643467391     BRA
## 273   0.650099212  0.8408700476  0.8372286897     BRA
## 274   0.720922273  0.8613153248  0.8590790768     BRA
## 276   0.669108356  0.8258314578  0.8240162178     BRA
## 277   0.753848803  0.7541735663  0.7475044510     BRA
## 284   0.724064873  0.9433504560  0.9767591298     BRA
## 300   0.689062715  0.9017339207  0.9253896119     BRA
## 301   0.814582753  1.0748726565  1.0982771194     BRA
## 305   0.668991012  0.9658039054  0.9815907418     BRA
## 319   0.885606413  1.0186013563  1.0853470856     BRA
## 320   0.755524716  0.8790684197  0.9478091769     BRA
## 321   0.740864429  0.9590127260  1.0290388187     BRA
## 324   0.921841533  1.1719081142  1.2484165409     BRA
## 343   0.917480310  1.1420777402  1.2276268159     BRA
## 349   0.710291712  0.9736017855  1.0547203594     BRA
## 350   1.018048264  1.1570897906  1.2275644675     BRA
## 356   0.857590914  1.0013884122  1.0755671870     BRA
## 375   1.056790389  0.9328839088  0.9495631083     BRA
## 376   1.105073613  0.7984170678  0.8120041389     BRA
## 378   1.070255493  1.0506814996  1.0661206769     BRA
## 379   1.110833718  1.0560831760  1.0669653647     BRA
## 381   1.141575699  1.0282621908  1.0318751101     BRA
## 395   1.183854269  1.1811671427  1.0518124957     BRA
## 405   0.983105899  1.0770589768  1.0191493642     BRA
## 406   1.223181936  1.2553741901  1.1920330374     BRA
## 409   1.258207409  1.2333119039  1.1578069198     BRA
## 414   1.187460437  1.2863880166  1.1927493052     BRA
## 425   1.036506027  1.0216325770  0.8797943065     BRA
## 433   1.011617334  1.1830383442  1.0372943500     BRA
## 435   1.213364682  1.3655138147  1.2110318243     BRA
## 439   1.082221648  1.1207532502  0.9559437900     BRA
## 445   1.210631728  1.2900289388  1.1144863761     BRA
## 447   1.063882992  1.2281510251  1.0581998922     BRA
## 458   1.167912122  1.4156076670  1.2278776010     BRA
## 463   1.366943679  1.3448510440  1.1598280622     BRA
## 468   1.139708785  1.1509539776  0.9544520075     BRA
## 469   1.205502952  1.3242709107  1.1273424602     BRA
## 484   1.497134157  1.3493767550  1.1274439683     BRA
## 486   1.354834146  1.3171111386  1.0923888889     BRA
## 495   1.105697076  1.0144043304  0.7881181508     BRA
## 499   1.157521094  1.2308887558  1.0045885330     BRA
## 502   0.995078384  0.9973860886  0.7669853870     BRA
## 504   1.074642502  1.2497714627  1.0211103715     BRA
## 505   1.139484022  1.2665981069  1.0361321522     BRA
## 513   1.025381360  1.2415250779  1.0044158801     BRA
## 514   1.287860105  1.2323072724  1.0011260847     BRA
## 517   0.895003131  1.0814145244  0.8480755507     BRA
## 519   1.028327747  1.2736373013  1.0361321522     BRA
## 520   0.977786883  1.2415736112  1.0043732031     BRA
## 521   0.992191615  1.2356408559  1.0011260847     BRA
## 524   0.882807922  1.1330615371  0.8997540320     BRA
## 534   0.936052981  1.2511548574  1.0100018990     BRA
## 543   0.859924688  1.1538711285  0.9098196335     BRA
## 552   0.787192327  1.1056531139  0.8682468166     BRA
## 575   0.813882636  1.3179542691  1.0835229406     BRA
## 582   0.684679954  1.2976090813  1.0685856083     BRA
## 596   0.598677404  1.2625333055  1.0560567150     BRA
## 597   0.592260336  1.2241639972  1.0218317255     BRA
## 599   0.590323883  1.1396136410  0.9385664373     BRA
## 604   0.579433488  1.1744284514  0.9860255925     BRA
## 606   0.548249373  1.0737157647  0.8859976420     BRA
## 608   0.511060613  1.0030503492  0.8297224943     BRA
## 619   0.476895868  1.1627321020  1.0051296478     BRA
## 624   0.442917185  1.1851119134  1.0401357153     BRA
## 628   0.388478636  0.9214316369  0.7851159198     BRA
## 635   0.355268681  0.9662158636  0.8692487002     BRA
## 636   0.311404007  1.0205915795  0.9335767573     BRA
## 637   0.363462304  1.2072371773  1.1234049145     BRA
## 645   0.299552724  1.3554348835  1.3432293751     BRA
## 647   0.308179157  1.3242384138  1.3252009663     BRA
## 651   0.284577871  1.3441965652  1.3593434526     BRA
## 654   0.218245247  1.2908119764  1.3252009663     BRA
## 659   0.187698057 -0.9382422213 -1.0307132297     COL
## 670   0.187728506 -0.5245413840 -0.5723781751     COL
## 672   0.187863293 -0.6199537760 -0.6724061255     COL
## 674   0.187900365 -0.6696476589 -0.7129560505     COL
## 678   0.187923461 -0.3752677753 -0.3797035039     COL
## 679   0.188012559 -0.4496481871 -0.4621877141     COL
## 689   0.188614830 -0.2315915874 -0.2393131990     COL
## 697   0.188386514 -0.2456948063 -0.2594544280     COL
## 705   0.188790127 -0.2635000540 -0.2769167553     COL
## 707   0.189050429 -0.3461023339 -0.3611627132     COL
## 708   0.188966671 -0.4855242466 -0.4986922310     COL
## 721   0.190098655 -0.2675135724 -0.2630826618     COL
## 723   0.190592414 -0.3299030454 -0.3193578096     COL
## 727   0.190968378 -0.1929918987 -0.1805984517     COL
## 729   0.191163646 -0.4067704464 -0.4006121797     COL
## 740   0.194266114 -0.1715738957 -0.1630547114     COL
## 742   0.195589951 -0.2668911807 -0.2630826618     COL
## 746   0.195150569 -0.2716921402 -0.2489701238     COL
## 751   0.195312792 -0.4474385855 -0.4228006762     COL
## 768   0.205277506  0.4691702642  0.4872529054     COL
## 774   0.209058003  0.4975755422  0.5264666279     COL
## 776   0.206303470  0.4561709802  0.4882089999     COL
## 777   0.208472061  0.3498805712  0.3736161722     COL
## 789   0.228221624  0.4549927957  0.4797439795     COL
## 795   0.227908157  0.5813054660  0.6029185849     COL
## 799   0.232659633  0.3848913640  0.4023189993     COL
## 802   0.236028264  0.6713412418  0.6893236602     COL
## 809   0.247923778  0.6766399222  0.6943381730     COL
## 812   0.245156851  0.6378468776  0.6505127374     COL
## 814   0.248151939  0.5277436532  0.5460327644     COL
## 819   0.256963615  0.5837326376  0.5924403702     COL
## 826   0.258386192  0.5732362438  0.5793188227     COL
## 831   0.255969732  0.6410510412  0.6502865003     COL
## 834   0.250261645  0.3612572420  0.3677048057     COL
## 838   0.252919641  0.4849725774  0.4741226869     COL
## 846   0.252562969  0.4186287949  0.4081665157     COL
## 847   0.250678191  0.3275679655  0.3096044911     COL
## 848   0.252986865  0.1753280951  0.1592068759     COL
## 851   0.255740945  0.4259936695  0.4109281552     COL
## 858   0.253759964  0.3831207947  0.3657356104     COL
## 859   0.253359471  0.3647120800  0.3482349405     COL
## 862   0.256330518  0.1012664694  0.0816895503     COL
## 864   0.252063866  0.3327438420  0.3165231135     COL
## 866   0.251856260  0.2824564302  0.2563357057     COL
## 868   0.256313143  0.1816890114  0.1497986884     COL
## 870   0.258986534  0.1249638480  0.0998669563     COL
## 876   0.267306716  0.0485244230  0.0183496338     COL
## 891   0.275165113  0.0746848441  0.0384974072     COL
## 892   0.271489002  0.2527182319  0.2145555111     COL
## 897   0.277844817  0.0520526127 -0.0110462899     COL
## 911   0.275122747  0.0390444484 -0.0245715462     COL
## 916   0.280137546  0.2737846252  0.2112469303     COL
## 917   0.276774975  0.1776132820  0.1062427995     COL
## 918   0.280718039  0.0350710725 -0.0313227826     COL
## 919   0.275503241  0.1098996084  0.0466810828     COL
## 935   0.285902277  0.4723138573  0.4374579489     COL
## 936   0.287275817  0.4512147749  0.4135130613     COL
## 938   0.289620668  0.3723012964  0.3294053872     COL
## 946   0.306122571  0.2995607528  0.2587559669     COL
## 947   0.305382896  0.3774036113  0.3399589912     COL
## 949   0.320404012  0.5779499534  0.5328227358     COL
## 950   0.323995806  0.5530399364  0.5088628444     COL
## 961   0.311529701  0.6384142048  0.6678276392     COL
## 969   0.333808384  0.9159716346  0.9648778625     COL
## 972   0.364461035  0.8908880414  0.9336860862     COL
## 975   0.341391074  0.7059961951  0.7498110909     COL
## 984   0.344726705  0.6889424957  0.7239488541     COL
## 989   0.329419687  0.3396408917  0.4103136512     COL
## 992   0.331526128  0.4460123577  0.5118579021     COL
## 999   0.319234273  0.3467206047  0.4119901968     COL
## 1004  0.311057755  0.3291368736  0.3962629951     COL
## 1011  0.314262410  0.2936894282  0.3606218604     COL
## 1014  0.314960699  0.2387013320  0.3070908738     COL
## 1020  0.322232414  0.1237400887  0.1733207341     COL
## 1025  0.332913795  0.1474778517  0.1993611970     COL
## 1028  0.350689987  0.1392293821  0.1907421874     COL
## 1031  0.308711125  0.0055451479  0.0582892362     COL
## 1033  0.316216148  0.2044594575  0.2544327702     COL
## 1038  0.319133524  0.1182925664  0.1702723013     COL
## 1041  0.326451067  0.3217854610  0.3681525182     COL
## 1055  0.353214021  0.7454430971  0.7834354018     COL
## 1061  0.372317626  0.7264109281  0.7587339687     COL
## 1069  0.388770950  0.6980048999  0.7277791709     COL
## 1072  0.382230980  0.4547762350  0.4803105390     COL
## 1077  0.387851567  0.6453194266  0.6692562008     COL
## 1078  0.389269920  0.6524284308  0.6879680141     COL
## 1086  0.402392683  0.5346556911  0.5579223706     COL
## 1091  0.403861151  0.7538862273  0.7728594837     COL
## 1092  0.398133004  0.6794399217  0.6934972471     COL
## 1094  0.375482162  0.6077784097  0.6339115801     COL
## 1100  0.414201808  0.6130148881  0.6259999188     COL
## 1102  0.413911677  0.8769621149  0.8896406382     COL
## 1103  0.424184066  0.8974447939  0.9064413887     COL
## 1110  0.444451222  0.8394546757  0.8605547647     COL
## 1113  0.455643175  0.7547226379  0.7716246944     COL
## 1114  0.436540576  0.6181901543  0.6404348136     COL
## 1121  0.461299854  0.6302020582  0.6412050217     COL
## 1123  0.472365680  0.8948410196  0.8984253068     COL
## 1128  0.463802231  0.6736375193  0.6822213382     COL
## 1129  0.445726981  0.7453481268  0.7569721983     COL
## 1131  0.474163255  0.9007579307  0.9016015549     COL
## 1132  0.487096975  0.8854350498  0.8872184687     COL
## 1141  0.455890368  0.5868281278  0.5930063256     COL
## 1147  0.494501588  0.6265723252  0.6203531524     COL
## 1164  0.275410043  0.1316437779  0.1306632054     COL
## 1181  0.232085735  0.0267678801  0.0247666081     COL
## 1186  0.224347704  0.0057616449  0.0090123998     COL
## 1188  0.222834803 -0.0256649350 -0.0269541193     COL
## 1201  0.434493674 -0.0600248455 -0.0871213540     COL
## 1203  0.206653242 -0.1319826750 -0.1286584382     COL
## 1206  0.431063585 -0.2476558194 -0.2707554329     COL
## 1209  0.202412901 -0.1307546060 -0.1306646817     COL
## 1221  0.432225699 -0.0975370876 -0.1242741155     COL
## 1222  0.196457073 -0.1277183032 -0.1266704857     COL
## 1228  0.433561951 -0.1112169712 -0.1374485091     COL
## 1230  0.432517765 -0.1220809512 -0.1509428970     COL
## 1236  0.164723541 -0.1504493326 -0.1547998715     COL
## 1239  0.153521446 -0.2742535387 -0.2820710036     COL
## 1243  0.140251240 -0.1638249598 -0.1679652073     COL
## 1257  0.109825728 -0.1376302898 -0.1396838450     COL
## 1260  0.103524730 -0.2551385017 -0.2605214286     COL
## 1261  0.103357198 -0.3925759428 -0.3948747930     COL
## 1268  0.092671958 -0.2970366624 -0.3181996305     COL
## 1272  0.086651386 -0.0507607722 -0.0712211170     COL
## 1278  0.074977115  0.0104875192  0.0017495462     COL
## 1284  0.064437207  0.0185025916  0.0134196482     COL
## 1292  0.045817987 -0.0820067966 -0.1067277452     COL
## 1307  0.168870535 -0.3337567559 -0.4183214670     FRA
## 1311  0.168870649 -0.1969393176 -0.2795621091     FRA
## 1313  0.168870707 -0.4648844907 -0.5203797327     FRA
## 1314  0.168870707 -0.3878842196 -0.4391253627     FRA
## 1320  0.168870993 -0.4648844907 -0.5203797327     FRA
## 1327  0.168871050 -0.4648830921 -0.5203797327     FRA
## 1332  0.168871050 -0.2510653826 -0.3003660047     FRA
## 1336  0.168879274 -0.1766012631 -0.2189343105     FRA
## 1337  0.168887612 -0.1738004496 -0.2180707293     FRA
## 1340  0.169050439 -0.1913405268 -0.2173096025     FRA
## 1348  0.169652412 -0.4188969946 -0.4469186003     FRA
## 1353  0.174708961 -0.2049953672 -0.2269048723     FRA
## 1356  0.177974480 -0.2821131816 -0.2920906247     FRA
## 1368  0.189873096 -0.0739902951 -0.0597156897     FRA
## 1373  0.180781402  0.1331808448  0.1465600794     FRA
## 1383  0.380861501 -0.0890699583 -0.0909973889     FRA
## 1385  0.247019023  0.1627436504  0.1631588254     FRA
## 1386  0.189458310  0.1675542997  0.1640224066     FRA
## 1400  0.172560120  0.1772188541  0.1640224066     FRA
## 1410  0.181202058  0.1453271007  0.1446121802     FRA
## 1412  0.180370651  0.0322620609  0.0252658321     FRA
## 1415  0.181806163  0.1962041464  0.1815689303     FRA
## 1424  0.181649315  0.1605640875  0.1425044871     FRA
## 1435  0.166515469  0.1236307826  0.1178844649     FRA
## 1437  0.182234660  0.0850052322  0.0828783974     FRA
## 1438  0.182230886  0.0075407048  0.0003941872     FRA
## 1444  0.183328634  0.0819056968  0.0796697917     FRA
## 1446  0.181712856 -0.1362507403 -0.1403439363     FRA
## 1452  0.182829023  0.0084647914  0.0003941872     FRA
## 1456  0.181488794  0.0310238429  0.0022444692     FRA
## 1457  0.181450668  0.0092459181 -0.0184264637     FRA
## 1459  0.182331113 -0.0911129112 -0.1216630198     FRA
## 1463  0.184624332 -0.0737406545 -0.0913965216     FRA
## 1469  0.182617998 -0.0786180596 -0.0954687085     FRA
## 1470  0.184157177 -0.0759003860 -0.0946051273     FRA
## 1473  0.181922551 -0.2216822402 -0.2468112260     FRA
## 1477  0.183980073 -0.0994519015 -0.1261123426     FRA
## 1492  0.187446654 -0.1045986560 -0.1339488529     FRA
## 1494  0.182123764 -0.1732650673 -0.1965894981     FRA
## 1513  0.203739740  0.0043761408 -0.0250956353     FRA
## 1514  0.204647554 -0.0153556456 -0.0426393756     FRA
## 1520  0.231525838  0.0221583086 -0.0122612127     FRA
## 1532  0.217696296  0.1070107482  0.0679723102     FRA
## 1533  0.225734124  0.1126186137  0.0720444970     FRA
## 1535  0.230608550  0.0732697928  0.0338298238     FRA
## 1540  0.236008885  0.1173275508  0.0752531027     FRA
## 1541  0.236481039  0.1055530689  0.0642079867     FRA
## 1553  0.235165249  0.1558725188  0.1213809823     FRA
## 1555  0.257087069  0.1332289620  0.0901504333     FRA
## 1559  0.229832245  0.0194057874 -0.0276493972     FRA
## 1561  0.285548715  0.2246356468  0.1782020848     FRA
## 1567  0.269894547  0.2521665874  0.1939036032     FRA
## 1570  0.323066473  0.2345891008  0.1725955394     FRA
## 1579  0.260801894  0.1393352778  0.1060728111     FRA
## 1581  0.379842502  0.4641896939  0.3955236875     FRA
## 1583  0.434037226  0.4562826835  0.3853421527     FRA
## 1587  0.688662260  0.5125652168  0.4458718312     FRA
## 1593  0.430318136  0.3450736110  0.3164883765     FRA
## 1595  0.368167400  0.5825977918  0.5193069004     FRA
## 1598  0.379664201  0.4957908111  0.4370353294     FRA
## 1607  0.347539833  0.1592747677  0.1207634321     FRA
## 1610  0.364053887  0.3958163508  0.3372799598     FRA
## 1619  0.348470222  0.4929406696  0.4664487710     FRA
## 1621  0.347554608  0.2573952230  0.2464350430     FRA
## 1622  0.317184772  0.3648566493  0.3308980186     FRA
## 1629  0.321144733  0.3674721463  0.3212722017     FRA
## 1634  0.383510307  0.3278477976  0.2599298531     FRA
## 1639  0.404759746  0.3940359758  0.3086201132     FRA
## 1647  0.401634836  0.4435025215  0.4849909456     FRA
## 1652  0.429041756  0.5495105524  0.5520830696     FRA
## 1668  0.437978644  0.5483844829  0.5395372416     FRA
## 1676  0.449448494  0.4458237629  0.4442186088     FRA
## 1689  0.447426130  0.4486284892  0.4560166623     FRA
## 1691  0.432850655  0.1903851632  0.2327943287     FRA
## 1694  0.468613038  0.4822459840  0.4910227299     FRA
## 1700  0.453763243  0.5115048371  0.5190365995     FRA
## 1704  0.474230523  0.4396791738  0.4666187272     FRA
## 1707  0.471433449  0.3856945411  0.3775969298     FRA
## 1712  0.472290527  0.1497897908  0.1812323285     FRA
## 1716  0.501256479  0.3959565690  0.3779178001     FRA
## 1719  0.497861979  0.1615218090  0.1908581454     FRA
## 1745  0.430208242  0.6033767252  0.5851159630     FRA
## 1749  0.595255704  0.6522083527  0.6449272945     FRA
## 1754  0.562008011  0.3697748893  0.3971882915     FRA
## 1760  0.580488389  0.5332886817  0.5379264150     FRA
## 1764  0.577218279  0.6224880111  0.6201220306     FRA
## 1765  0.556557777  0.5967796077  0.5866166751     FRA
## 1774  0.530127651  0.4068828513  0.4349652231     FRA
## 1787  0.469967130  0.4365249184  0.4231687646     FRA
## 1789  0.456791678  0.1726397470  0.1999464309     FRA
## 1790  0.426085456  0.2481219939  0.2747835897     FRA
## 1796  0.445165131  0.1579132643  0.1871120083     FRA
## 1797  0.410432402  0.2750719510  0.2683663784     FRA
## 1805  0.420024716  0.2785805757  0.2997734752     FRA
## 1808  0.404907396  0.2346811830  0.2527965663     FRA
## 1814  0.387296274  0.2341680953  0.2575058840     FRA
## 1818  0.374427983  0.0345731334  0.0527191843     FRA
## 1822  0.371340205  0.1718648691  0.1882699366     FRA
## 1829  0.360114988  0.0757609071  0.0995723721     FRA
## 1830  0.359325107 -0.0137651423  0.0170881619     FRA
## 1831  0.356648035 -0.1764529241 -0.1204413559     FRA
## 1840  0.357716490  0.1249308947  0.1456726928     FRA
## 1847  0.391059164  0.1949660073  0.2162620170     FRA
## 1851  0.415174804  0.1127216840  0.1124697431     FRA
## 1854  0.418628001  0.2214493741  0.2323050453     FRA
## 1865  0.408165975  0.1543245953  0.1562742597     FRA
## 1867  0.332389303  0.1958738572  0.1850084804     FRA
## 1868  0.420149369  0.3512509074  0.3547017191     FRA
## 1875  0.404572440  0.3553007495  0.3664168735     FRA
## 1888  0.329421851  0.1600498667  0.1710547897     FRA
## 1894  0.336727708  0.0230427400  0.1091119142     FRA
## 1898  0.365660208  0.3017642310  0.3370435655     FRA
## 1903  0.348328445  0.2951050386  0.3408078890     FRA
## 1904  0.289876984  0.2878578576  0.3384628646     FRA
## 1911  0.312888192  0.2697178682  0.3288370476     FRA
## 1916  0.287183756  0.1023789442  0.1518630165     FRA
## 1920  0.298945291  0.2286848700  0.2599475433     FRA
## 1924  0.300372332  0.2309810248  0.2908814240     FRA
## 1932  0.277052686  0.2264432216  0.2949536108     FRA
## 1950  0.282914761 -0.0456449394  0.0752284774     FRA
## 1966  0.322708615  0.3700376115  0.4544747858     FRA
## 1983  0.410298976  0.5623097083  0.6921443409     FRA
## 1995  0.163685813 -0.0200572358 -0.1682588695     DEU
## 2000  0.163694381 -0.2499568510 -0.3628281907     DEU
## 2002  0.163686271 -0.0741846995 -0.1890627652     DEU
## 2006  0.163690440 -0.3269571221 -0.4440825607     DEU
## 2010  0.163686500 -0.0665835478 -0.1750178771     DEU
## 2014  0.163686500 -0.2244329664 -0.3313209754     DEU
## 2020  0.163686500 -0.3014332375 -0.4125753454     DEU
## 2024  0.163765257 -0.0410136743 -0.1434538920     DEU
## 2027  0.163899815 -0.3682832861 -0.4783704277     DEU
## 2037  0.165623432 -0.0793133395 -0.1786728332     DEU
## 2044  0.176838892  0.0101242056 -0.0683124249     DEU
## 2051  0.183406116  0.1232301220  0.0710005596     DEU
## 2063  0.182780851  0.0571607278  0.0034829527     DEU
## 2068  0.181928475  0.1208928885  0.0597581005     DEU
## 2077  0.179724999  0.0614293558  0.0034829527     DEU
## 2088  0.177401576  0.2791600838  0.2403223620     DEU
## 2100  0.177403070  0.2622020327  0.2043662329     DEU
## 2107  0.176712618  0.2413049476  0.1780818352     DEU
## 2115  0.176832320  0.2238381691  0.1606195079     DEU
## 2116  0.177092806  0.2028537424  0.1430757677     DEU
## 2118  0.170486183  0.0214834115 -0.0444887081     DEU
## 2122  0.175660926  0.1041675501  0.0576280283     DEU
## 2130  0.176564539  0.0833425676  0.0400842880     DEU
## 2142  0.176303554  0.1395619945  0.0961519355     DEU
## 2144  0.177481204  0.1006590308  0.0611458680     DEU
## 2149  0.176817019  0.0430161035  0.0121367616     DEU
## 2152  0.176660545 -0.0702840555 -0.1053535161     DEU
## 2153  0.169536169 -0.1948273395 -0.2278285255     DEU
## 2155  0.176162426  0.0019136278 -0.0360727972     DEU
## 2158  0.176429847 -0.0341983128 -0.0702152836     DEU
## 2160  0.168658613 -0.2334726680 -0.2755146409     DEU
## 2162  0.176271129  0.0019779649 -0.0360727972     DEU
## 2172  0.178456219 -0.0341185907 -0.0702152836     DEU
## 2193  0.182609532  0.0079900650 -0.0223255732     DEU
## 2195  0.167843825 -0.1807045791 -0.2169634220     DEU
## 2196  0.183517957 -0.1288189815 -0.1610849312     DEU
## 2199  0.183346766  0.0290682002 -0.0047818329     DEU
## 2205  0.183143538  0.0598066397  0.0284624869     DEU
## 2207  0.183840791  0.0208589198 -0.0065435807     DEU
## 2208  0.180451001 -0.0535089043 -0.0890277908     DEU
## 2212  0.183498391  0.0864841523  0.0541911927     DEU
## 2233  0.186186654  0.0398086315 -0.0036004202     DEU
## 2236  0.185317541 -0.0734761426 -0.1210906979     DEU
## 2243  0.187550195 -0.0934712461 -0.1485569234     DEU
## 2248  0.201237123  0.0020292599 -0.0485289730     DEU
## 2249  0.200483924 -0.0189957272 -0.0660727133     DEU
## 2252  0.209247504 -0.1557558216 -0.2048320712     DEU
## 2258  0.179132817 -0.0884086133 -0.1315863465     DEU
## 2276  0.291269646  0.1392752945  0.0801425992     DEU
## 2295  0.285158596  0.1596043247  0.0967413453     DEU
## 2304  0.324640219  0.3383973100  0.3160811373     DEU
## 2310  0.337167436  0.3596250127  0.3335434646     DEU
## 2318  0.369226656  0.4162455071  0.4002139177     DEU
## 2321  0.240088508  0.5231243316  0.5026582104     DEU
## 2328  0.271260625  0.5824794821  0.5564823319     DEU
## 2334  0.309639450  0.3814453266  0.4203026101     DEU
## 2336  0.316057852  0.3207028715  0.3640274623     DEU
## 2337  0.341503647  0.5078112953  0.5527112991     DEU
## 2347  0.313146954  0.4747996489  0.5080096379     DEU
## 2353  0.315688854  0.5026244979  0.5255533782     DEU
## 2355  0.333712318  0.4084809459  0.4255254277     DEU
## 2361  0.338019157  0.4887159239  0.5080096379     DEU
## 2366  0.337835211  0.4781383796  0.5222118098     DEU
## 2372  0.311499295  0.4794902713  0.5213482286     DEU
## 2373  0.325946643  0.4831317678  0.5222118098     DEU
## 2376  0.315151612  0.3713896296  0.4047215321     DEU
## 2378  0.309835995  0.3092431872  0.3484463843     DEU
## 2379  0.312958083  0.4828825166  0.5213482286     DEU
## 2386  0.313457292  0.4777821395  0.5108458235     DEU
## 2388  0.335362185  0.4631535444  0.4942470774     DEU
## 2400  0.319259306  0.3328425267  0.3451927379     DEU
## 2404  0.335207554  0.2224469502  0.2285660415     DEU
## 2405  0.278025177  0.2653826196  0.2744822039     DEU
## 2412  0.283847851  0.2909071643  0.2962935370     DEU
## 2420  0.339460311  0.1477493984  0.1565089011     DEU
## 2424  0.365222320  0.3921486565  0.4015160777     DEU
## 2425  0.314886577  0.3176732554  0.3190318675     DEU
## 2432  0.378069426  0.3165885459  0.3190318675     DEU
## 2435  0.422349579  0.4269329043  0.4356585640     DEU
## 2436  0.430240857  0.4293409527  0.4365221452     DEU
## 2437  0.406168407  0.4110575814  0.4190598180     DEU
## 2447  0.310854108  0.5344878126  0.5425958959     DEU
## 2459  0.365726533  0.4620362351  0.4995961290     DEU
## 2469  0.316037695  0.3227033323  0.3608367710     DEU
## 2471  0.338803134  0.4979380142  0.5346021965     DEU
## 2475  0.236139008  0.3889311000  0.4256205689     DEU
## 2477  0.288909120  0.4943427523  0.5337386153     DEU
## 2484  0.256424238  0.3474949602  0.3991831506     DEU
## 2489  0.160614034  0.1442929543  0.1927112742     DEU
## 2492  0.214249859  0.3398228012  0.3895443267     DEU
## 2517  0.026968518 -0.0368241662  0.0328991318     DEU
## 2521  0.087048572  0.2167089854  0.2880668255     DEU
## 2526  0.075905342  0.2310596507  0.3046655716     DEU
## 2531 -0.010325761 -0.0145748145  0.0577564475     DEU
## 2532  0.059176310  0.0572352594  0.1317637273     DEU
## 2533  0.059549304  0.2300703480  0.3046655716     DEU
## 2538 -0.025307195  0.0068390370  0.0798213137     DEU
## 2540  0.046861482  0.2294472800  0.3046655716     DEU
## 2543  0.041176901  0.1929576854  0.2705230852     DEU
## 2547  0.035588705  0.2240077568  0.2947636689     DEU
## 2550  0.032196066  0.1875914045  0.2606211826     DEU
## 2555  0.033825483  0.2262032878  0.2956272501     DEU
## 2556  0.031533156  0.2081642072  0.2781649229     DEU
## 2561  0.024143790  0.2228815688  0.2947636689     DEU
## 2565  0.023010330  0.0990854322  0.1623549799     DEU
## 2573 -0.059113905  0.1907356823  0.2623162578     DEU
## 2577  0.043135605  0.2367041970  0.3091732162     DEU
## 2578 -0.003159033  0.2153704468  0.2916294759     DEU
## 2581  0.011374521  0.0782125133  0.1528701180     DEU
## 2584  0.078236270  0.2348902827  0.3091732162     DEU
## 2590  0.029769711  0.2254976790  0.2950715584     DEU
## 2595 -0.006176224  0.0482000919  0.1213061329     DEU
## 2614 -0.013786712  0.0445348572  0.1028258473     DEU
## 2616 -0.021983590 -0.0607357085 -0.0060180958     DEU
## 2626  0.025266674  0.1169847565  0.1817922178     DEU
## 2642  0.047666678  0.0912576375  0.1473646391     DEU
## 2645  0.118171819  0.1979239155  0.2639913356     DEU
## 2648  0.131382903  0.1610739775  0.2403512544     DEU
## 2660  0.249827779  0.2834937153  0.4330637079     DEU
## 2661  0.226127968  0.2571330385  0.4156013806     DEU
## 2662  0.183898018  0.2407361342  0.4138396329     DEU
## 2664 -0.085245056  0.6350751600  0.8107494543     DEU
## 2666  0.181156123  0.2543694844  0.4479821192     DEU
## 2670  0.046750001  0.3013579672  0.5804645445     DEU
## 2682  0.163168806  0.0268657430 -0.0425736370     IND
## 2686  0.163164809  0.2617154327  0.1949838313     IND
## 2695  0.163164809  0.1663030407  0.0949558809     IND
## 2697  0.163164809  0.1038660141  0.0386807331     IND
## 2700  0.163164809  0.2617154327  0.1949838313     IND
## 2712  0.163164923  0.1461100073  0.0669343021     IND
## 2718  0.163183316  0.0497549133 -0.0113891265     IND
## 2724  0.163215704  0.0281281727 -0.0242927087     IND
## 2729  0.163380438  0.4551199843  0.4431403449     IND
## 2730  0.163531240  0.4333322839  0.4191723517     IND
## 2732  0.163609480  0.4437949771  0.4466783003     IND
## 2733  0.163343981  0.6373341966  0.6401152207     IND
## 2735  0.163490058  0.6749808448  0.6907749965     IND
## 2741  0.165715851  0.8914622120  0.9052886822     IND
## 2743  0.163404310  0.7606301486  0.7785137147     IND
## 2749  0.166820322  0.7905372875  0.8047176895     IND
## 2765  0.171738839  0.7038180740  0.7083738548     IND
## 2766  0.171235808  0.5487399116  0.5551203355     IND
## 2770  0.172408135  0.7515475282  0.7602627181     IND
## 2775  0.177928132  0.7868801782  0.8004646840     IND
## 2776  0.180658035  0.7943087522  0.8058169234     IND
## 2777  0.179941049  0.7810086813  0.7928434210     IND
## 2786  0.187935085  0.7024577838  0.7081857702     IND
## 2797  0.201570505  0.8744902780  0.8817824694     IND
## 2800  0.207133931  0.7679114676  0.7700529561     IND
## 2803  0.210528611  0.7920793276  0.8222969758     IND
## 2806  0.214795616  0.7648604951  0.7958383612     IND
## 2808  0.221644433  0.5598466046  0.5838349780     IND
## 2815  0.228454186  0.5743548941  0.5950255326     IND
## 2819  0.239618231  0.8283270415  0.8473190256     IND
## 2821  0.248673629  0.7359149758  0.7492016239     IND
## 2825  0.258369372  0.8613052194  0.8762883226     IND
## 2826  0.260861874  0.8442256484  0.8591385761     IND
## 2827  0.267002002  0.8256989054  0.8435113860     IND
## 2843  0.329159337  0.5780340948  0.5913099144     IND
## 2852  0.383513681  0.8732799264  0.8825745384     IND
## 2856  0.438513484  0.8170527399  0.8149809942     IND
## 2859  0.458874823  0.8896098318  0.8901573857     IND
## 2870  0.545940927  0.7697133215  0.7530077503     IND
## 2874  0.570250295  0.8743221445  0.8559544995     IND
## 2876  0.568345483  0.8184792143  0.8006672557     IND
## 2880  0.581292543  0.8222124954  0.7968187197     IND
## 2882  0.606657566  0.8072876358  0.7775844614     IND
## 2895  0.720863040  0.8845196265  0.8353903286     IND
## 2896  0.723357259  0.8625376294  0.8114640565     IND
## 2899  0.768718827  0.6315366435  0.5737741118     IND
## 2902  0.803473853  0.8983276396  0.8376594189     IND
## 2913  0.825578918  0.6780768182  0.5969263728     IND
## 2916  0.837584653  0.9353510741  0.8512860267     IND
## 2918  0.842572756  0.8744406185  0.7882594534     IND
## 2921  0.796282228  0.7240217964  0.6362236163     IND
## 2931  0.838688327  0.7940589446  0.6695336699     IND
## 2932  0.854060620  0.7696283484  0.6474513150     IND
## 2935  0.792387863  0.6296412445  0.5031081851     IND
## 2942  0.781340177  0.5812394812  0.4380591188     IND
## 2948  0.792102148  0.4622658191  0.3080581207     IND
## 2954  0.814738597  0.5919288670  0.4289137533     IND
## 2959  0.830149162  0.7666755127  0.5835475043     IND
## 2966  0.836600513  0.7672253574  0.5790670755     IND
## 2968  0.826051456  0.6719226610  0.4792774657     IND
## 2969  0.784961012  0.5326858510  0.3420366896     IND
## 2972  0.852210509  0.7875559090  0.5963093496     IND
## 2980  0.861649774  0.8106384476  0.6212181078     IND
## 2982  0.861100205  0.7110943085  0.5153233673     IND
## 2989  0.851468708  0.8585627426  0.6985930684     IND
## 2990  0.840998519  0.7193055844  0.5610196511     IND
## 3000  0.819981630  0.9609249709  0.7996112142     IND
## 3003  0.834630416  0.8358530144  0.6685074262     IND
## 3018  0.810333372  0.7349559833  0.6373486809     IND
## 3023  0.747300772  0.9426650822  0.8501265448     IND
## 3027  0.816509438  0.9872110100  0.8915165699     IND
## 3047  0.797081441  0.7202451321  0.6526016939     IND
## 3056  0.816877587  0.8880034622  0.8193804875     IND
## 3070  0.831756974  0.9016908644  0.8372530001     IND
## 3071  0.830632582  0.8847499789  0.8210424963     IND
## 3075  0.812257652  0.5973946284  0.5228580609     IND
## 3076  0.823214122  0.7701461721  0.6954087595     IND
## 3083  0.828375024  0.7454948164  0.6761550095     IND
## 3084  0.847273466  0.7550780169  0.6805176051     IND
## 3090  0.866696907  0.7651636979  0.6996768043     IND
## 3097  0.934581977  0.7829315278  0.7308366820     IND
## 3098  0.959506773  0.7906933946  0.7383974363     IND
## 3107  1.113967058  0.9158265733  0.8817758615     IND
## 3110  1.147947986  0.8772181524  0.8638645051     IND
## 3112  1.271074268  1.0763877917  1.0648066108     IND
## 3123  1.932345379  1.0140242497  1.0138937100     IND
## 3124  1.885036985  1.1288358235  1.1382382006     IND
## 3128  2.501810831  1.4972089961  1.3675398130     IND
## 3130  2.348572767  1.1806566558  1.1724147311     IND
## 3137  2.525901130  1.3331658964  1.3210241055     IND
## 3138  2.500531631  1.4153225117  1.4054270667     IND
## 3140  2.760595735  1.6241300931  1.6034500864     IND
## 3146  2.596126654  1.6718881365  1.6346875235     IND
## 3164  2.061457690  1.2292820588  1.1171728595     IND
## 3172  1.822888220  0.8166713886  0.7050118139     IND
## 3174  1.793582497  1.0459337898  0.9477999307     IND
## 3175  1.797752180  1.0500004150  0.9495468522     IND
## 3186  1.623129358  0.7902200978  0.6815038767     IND
## 3187  1.579163052  0.8531372392  0.7588525177     IND
## 3191  1.576229818  0.9661628264  0.8883422108     IND
## 3193  1.546905254  0.7386698633  0.6585153429     IND
## 3196  1.542304638  0.9737994366  0.9046392358     IND
## 3202  1.488304405  0.8565562543  0.8170627920     IND
## 3211  1.406673152  0.8192989402  0.7959522260     IND
## 3215  1.336003742  0.6456114809  0.6361450063     IND
## 3223  1.345820526  0.7770076029  0.7738690018     IND
## 3227  2.113561876  1.0750452484  0.6608030065     IND
## 3228  1.285672228  0.5467451048  0.5605894433     IND
## 3243  1.117662148  0.5281596264  0.6052831406     IND
## 3245  1.156857583  0.6946915260  0.7753746761     IND
## 3246  1.149506633  0.6749133483  0.7588001902     IND
## 3247  1.134715066  0.6492708237  0.7389147362     IND
## 3252  1.147409467  0.6699460192  0.7755076076     IND
## 3255  1.099638391  0.5472820802  0.6690200058     IND
## 3268  0.877502744  0.5465375077  0.7438970266     IND
## 3275  0.788543165  0.5032046578  0.7370561574     IND
## 3286  0.517259547  0.4702472592  0.7628399422     IND
## 3288  0.524659396  0.4451413663  0.7425830322     IND
## 3292  0.433698810  0.2487858185  0.5573191041     IND
## 3299  0.317033782  0.1810016908  0.5044652670     IND
## 3311  0.186613994  0.1809818343  0.5179087842     IND
## 3313  0.142329898  0.0860162640  0.4290705947     IND
## 3314  0.137660074  0.2570723223  0.6016064564     IND
## 3324 -0.005760870  0.2797909691  0.6237674346     IND
## 3327 -0.030547969  0.1436834544  0.4848862694     IND
## 3328 -0.038205732  0.2891102063  0.6252155913     IND
## 3338 -0.220056944  0.2194913877  0.5717432636     IND
## 3340 -0.269244111  0.0007892950  0.3519602077     IND
## 3345 -0.379210623  0.2382786340  0.6167995114     IND
## 3348 -0.447706875  0.0930521193  0.4766296805     IND
## 3350 -0.480270247  0.4551336598  0.8869475590     IND
## 3364  0.171495279 -0.4209806276 -0.4632158098     ITA
## 3365  0.171495279 -0.3439803565 -0.3819614397     ITA
## 3366  0.171495279 -0.1710076199 -0.2090595954     ITA
## 3369  0.171499391 -0.2071629181 -0.2432020818     ITA
## 3370  0.171495336 -0.2815433299 -0.3256862919     ITA
## 3376  0.171495336 -0.2071629181 -0.2432020818     ITA
## 3386  0.171801868 -0.1374382588 -0.1270124605     ITA
## 3387  0.171877868  0.0360896516  0.0458854384     ITA
## 3388  0.172038010  0.0384609013  0.0467481305     ITA
## 3390  0.172467434 -0.0001352848  0.0117364505     ITA
## 3391  0.172505156 -0.0746011948 -0.0707504825     ITA
## 3392  0.173855719 -0.3448251878 -0.3529305540     ITA
## 3393  0.172963696  0.0633686024  0.0647032815     ITA
## 3396  0.174785962  0.4434274804  0.4474994899     ITA
## 3408  0.187373892  0.7743712682  0.7833255968     ITA
## 3415  0.196295066  0.8298391006  0.8342657741     ITA
## 3431  0.195490839  0.4719965816  0.4587996248     ITA
## 3432  0.194611616  0.4281977422  0.4168212475     ITA
## 3447  0.189692607  0.2349795746  0.2098672754     ITA
## 3451  0.188763851  0.3259232209  0.3034269929     ITA
## 3467  0.183233825  0.2038173874  0.1792974485     ITA
## 3469  0.182668365  0.0027284550 -0.0233599642     ITA
## 3478  0.181040162  0.1842175005  0.1492644057     ITA
## 3480  0.181689746  0.1702915010  0.1312504078     ITA
## 3481  0.181299997  0.1478614657  0.1126776809     ITA
## 3489  0.179807890 -0.0533278745 -0.0805752313     ITA
## 3496  0.179662190 -0.0592213913 -0.0841310320     ITA
## 3497  0.179565240 -0.1968109941 -0.2207499807     ITA
## 3506  0.178115667  0.0463066063  0.0281946177     ITA
## 3511  0.178060516 -0.1984463581 -0.2204261645     ITA
## 3512  0.177832694 -0.1237427395 -0.1401594378     ITA
## 3519  0.177771501 -0.2240681351 -0.2273556498     ITA
## 3538  0.176994987 -0.1554184216 -0.1689840037     ITA
## 3548  0.176111229 -0.0246330143 -0.0302170162     ITA
## 3552  0.176506356 -0.1302483437 -0.1432029366     ITA
## 3553  0.176947388 -0.2691783615 -0.2782001894     ITA
## 3554  0.176095792 -0.1930011091 -0.1963284374     ITA
## 3559  0.177382916 -0.1171155495 -0.1303315554     ITA
## 3560  0.176739321 -0.2583721634 -0.2675740541     ITA
## 3564  0.177991180 -0.0026804059 -0.0104531111     ITA
## 3570  0.179855068  0.0291882869  0.0188072111     ITA
## 3575  0.178105213 -0.1489218102 -0.1527829801     ITA
## 3578  0.179531994  0.0384731762  0.0277105979     ITA
## 3590  0.178310668  0.0500875578  0.0402456711     ITA
## 3605  0.180188804  0.0438804172  0.0245436866     ITA
## 3611  0.183517759  0.0411544613  0.0179374415     ITA
## 3615  0.196207099 -0.0309792679 -0.0648321227     ITA
## 3619  0.203385300  0.1291350387  0.0986782311     ITA
## 3624  0.213344662  0.0063762891 -0.0157532078     ITA
## 3628  0.255610141  0.2689932242  0.2482556002     ITA
## 3629  0.258485180  0.2166093458  0.1880680900     ITA
## 3631  0.249573389  0.1977863086  0.1847950651     ITA
## 3632  0.270773331  0.3995404604  0.3796757495     ITA
## 3633  0.284067729  0.4255627158  0.4002495304     ITA
## 3635  0.311459753  0.4278021059  0.4036841652     ITA
## 3636  0.315701005  0.3717459804  0.3389694319     ITA
## 3639  0.305303275  0.5912663561  0.5478176940     ITA
## 3640  0.316090724  0.6071844918  0.5574703794     ITA
## 3641  0.333770662  0.6022692958  0.5513566502     ITA
## 3644  0.331445227  0.4068989549  0.3592830176     ITA
## 3669  0.327406033  0.6763777124  0.6456994132     ITA
## 3672  0.312656655  0.4154550056  0.3846000729     ITA
## 3680  0.290318050  0.4743495467  0.4487126492     ITA
## 3681  0.302333102  0.6514018864  0.6166502706     ITA
## 3682  0.350734634  0.6855418220  0.6679662789     ITA
## 3685  0.311385125  0.6027873550  0.5566691416     ITA
## 3692  0.291744938  0.5391324369  0.5030465165     ITA
## 3699  0.302084634  0.6569802667  0.6904150794     ITA
## 3701  0.299015694  0.6004791537  0.6378236626     ITA
## 3705  0.329210673  0.7568632606  0.7813024900     ITA
## 3706  0.339901209  0.6673861088  0.6790873582     ITA
## 3707  0.335160636  0.5230925360  0.5404666165     ITA
## 3708  0.310969842  0.5857969441  0.6111342277     ITA
## 3710  0.325180923  0.7535332963  0.7647144499     ITA
## 3713  0.328822188  0.5428094803  0.5342228839     ITA
## 3714  0.313853014  0.3669010105  0.3663382038     ITA
## 3717  0.318689708  0.5648967251  0.5559066779     ITA
## 3721  0.311888276  0.2731703840  0.2678482623     ITA
## 3727  0.316595602  0.4269256407  0.4052626622     ITA
## 3729  0.297209335  0.2877484228  0.3249684056     ITA
## 3737  0.308395835  0.4801510835  0.4960548667     ITA
## 3738  0.317994974  0.4846119323  0.4934235509     ITA
## 3742  0.311346721  0.2157755803  0.2345252708     ITA
## 3745  0.315802815  0.4930002917  0.5054263210     ITA
## 3747  0.330177364  0.4546082332  0.4698811787     ITA
## 3765  0.353936857  0.4373674843  0.4275009655     ITA
## 3768  0.384028518  0.4118981752  0.4000439429     ITA
## 3771  0.338597228  0.2550490848  0.2650163380     ITA
## 3772  0.359574189  0.4516613467  0.4362947134     ITA
## 3773  0.370785697  0.4548913618  0.4371394064     ITA
## 3774  0.378827734  0.4357783835  0.4199932216     ITA
## 3779  0.356282856  0.4601398548  0.4461197263     ITA
## 3780  0.366653725  0.4648087242  0.4447232854     ITA
## 3782  0.378780960  0.4223011312  0.4065018989     ITA
## 3787  0.379124007  0.4493564479  0.4283115277     ITA
## 3788  0.372351847  0.5367980929  0.5138813058     ITA
## 3792  0.326623222  0.3603116338  0.3744133465     ITA
## 3804  0.343987520  0.3829535407  0.3523548874     ITA
## 3805  0.332882217  0.2273740360  0.2117257955     ITA
## 3807  0.329842889  0.4863015589  0.4661179662     ITA
## 3814  0.318607766  0.4577284191  0.4324724838     ITA
## 3816  0.332390033  0.4453435843  0.4149394511     ITA
## 3822  0.308283481  0.5077756663  0.4942609216     ITA
## 3825  0.301430044  0.3844171518  0.3655902741     ITA
## 3836  0.263603965  0.4332968117  0.4226339616     ITA
## 3838  0.257726985  0.3852554764  0.3810521497     ITA
## 3839  0.252193749  0.3090517927  0.2947746874     ITA
## 3841  0.237298431  0.2061807151  0.2186598706     ITA
## 3842  0.237363345  0.3957039778  0.3894039953     ITA
## 3848  0.214625322  0.2088726097  0.2304024834     ITA
## 3856  0.185688378  0.2646660865  0.2890215122     ITA
## 3860  0.173952703  0.1440307177  0.1652067514     ITA
## 3862  0.167853701  0.0607377575  0.1061685606     ITA
## 3863  0.167442756  0.2492672570  0.2775911931     ITA
## 3865  0.163805988  0.2273463932  0.2564498366     ITA
## 3877  0.138998078  0.2172991994  0.2510331959     ITA
## 3878  0.137400216  0.2179770769  0.2507638765     ITA
## 3879  0.135730317  0.0010332843  0.0222274729     ITA
## 3880  0.133306346 -0.0189922076  0.0045002994     ITA
## 3881  0.131810356 -0.0900092797 -0.0781939060     ITA
## 3894  0.112411029  0.1274265477  0.1821707188     ITA
## 3897  0.103255351 -0.0156150425  0.0525777334     ITA
## 3898  0.107122466  0.1776682395  0.2291285780     ITA
## 3902  0.104966588  0.0495940944  0.0813424608     ITA
## 3904  0.093595457 -0.0299582578  0.0302781059     ITA
## 3906  0.099755951  0.1693246703  0.2071216107     ITA
## 3907  0.099816271  0.1501868838  0.1916983685     ITA
## 3911  0.081883892 -0.0652985560 -0.0177868956     ITA
## 3915  0.089814668  0.1264309350  0.1616709286     ITA
## 3916  0.089746364  0.0570230334  0.0779536269     ITA
## 3920  0.085737580  0.1600639977  0.1940858437     ITA
## 3927  0.082305143  0.1669835766  0.2021059340     ITA
## 3929  0.081234518  0.1273700061  0.1673483259     ITA
## 3933  0.074178853  0.1677727611  0.2001142468     ITA
## 3936  0.078721309  0.1273766800  0.1620904367     ITA
## 3937  0.073963138  0.0527580977  0.0758066395     ITA
## 3938  0.069709243 -0.0986120433 -0.0644950902     ITA
## 3942  0.069117099  0.1812106720  0.2139188533     ITA
## 3944  0.064816003  0.0839453667  0.1072166903     ITA
## 3949  0.057837726  0.1634999642  0.1967370603     ITA
## 3952  0.051775626 -0.0798550259 -0.0461290421     ITA
## 3967  0.026598032 -0.0463901628  0.0114862899     ITA
## 3980  0.016107400 -0.1078883423 -0.0690422614     ITA
## 3989  0.005104879  0.1693034463  0.1666088130     ITA
## 3990  0.007335720  0.1474566395  0.1667044812     ITA
## 3995 -0.005038841 -0.0436809966  0.0207466013     ITA
## 3996 -0.001028598  0.1828711076  0.1943430233     ITA
## 4004 -0.009543695  0.2699074523  0.2577680616     ITA
## 4009 -0.021458377  0.0302528251  0.0874009354     ITA
## 4014 -0.017435755  0.1273311202  0.1497909247     ITA
## 4016 -0.034113272  0.0257729920  0.0948017303     ITA
## 4020 -0.023764356  0.1932513478  0.2361769658     ITA
## 4024 -0.035653706  0.2446612817  0.2745575204     ITA
## 4036 -0.068468888  0.1018067684  0.2399985342     ITA
## 4037 -0.096296537  0.1699543954  0.3531242180     ITA
## 4038 -0.077283186  0.3901094140  0.5282739305     ITA
## 4045  0.177230883 -0.0008444042 -0.0355055453     RUS
## 4055  0.177230883  0.1096913058  0.0811211512     RUS
## 4060  0.177230883 -0.1402817019 -0.1730350631     RUS
## 4070  0.177230883  0.1124907207  0.0819847324     RUS
## 4074  0.177230883 -0.2710104453 -0.3176833384     RUS
## 4080  0.177194695 -0.0930156105 -0.1328306818     RUS
## 4083  0.177200721  0.0619903820  0.0389721623     RUS
## 4086  0.177244048  0.0283991267  0.0073873360     RUS
## 4095  0.177397342 -0.0044630716  0.0071017812     RUS
## 4098  0.177808226  0.2567814702  0.2704519485     RUS
## 4106  0.180206928  0.4599572268  0.4974439746     RUS
## 4109  0.179741446  0.2313988128  0.2649504252     RUS
## 4110  0.180973479  0.3030774074  0.3401803235     RUS
## 4112  0.181874353  0.4879813470  0.5199624138     RUS
## 4115  0.183982052  0.3829456564  0.4107101522     RUS
## 4118  0.188753919  0.5165136939  0.5503477318     RUS
## 4122  0.197540486  0.4466463311  0.4727015400     RUS
## 4123  0.202993465  0.3209379919  0.3495713491     RUS
## 4131  0.205419984  0.4025235617  0.4339415854     RUS
## 4147  0.227951413  0.6779213179  0.7129791911     RUS
## 4150  0.225850154  0.5512423632  0.5788477909     RUS
## 4154  0.225611648  0.6334514097  0.6645415370     RUS
## 4160  0.228325047  0.6108438408  0.6431847336     RUS
## 4168  0.229305647  0.4676566509  0.5063351669     RUS
## 4169  0.230805639  0.4502459365  0.4884298940     RUS
## 4170  0.230672720  0.4294273377  0.4701167350     RUS
## 4174  0.231455086  0.4357639204  0.4700088281     RUS
## 4184  0.231829997  0.3988417117  0.4301876182     RUS
## 4189  0.229828255  0.4289548551  0.4569390650     RUS
## 4193  0.229109413  0.1723817416  0.1985674122     RUS
## 4197  0.229819570  0.3064217673  0.3475132498     RUS
## 4204  0.230203909  0.3112702818  0.3493424560     RUS
## 4209  0.230208999  0.3052967069  0.3424908249     RUS
## 4216  0.229815624  0.2896666600  0.3227577140     RUS
## 4224  0.229557675  0.2919983739  0.3199134075     RUS
## 4225  0.229826874  0.2743184172  0.3016937200     RUS
## 4230  0.229105005  0.3164124240  0.3523074091     RUS
## 4231  0.229491521  0.3217063749  0.3527423815     RUS
## 4234  0.229813907  0.2087010294  0.2342587977     RUS
## 4235  0.229836019  0.0654915764  0.0956729533     RUS
## 4236  0.229717948  0.1381693843  0.1762181970     RUS
## 4239  0.229798737  0.3020979710  0.3312388585     RUS
## 4241  0.230038849  0.2055476309  0.2293663805     RUS
## 4247  0.250884595  0.2361291009  0.2743846593     RUS
## 4249  0.229970477  0.0213280730  0.0405158502     RUS
## 4252  0.229693860  0.2761140227  0.2946165242     RUS
## 4255  0.230709719  0.1630387882  0.1744982413     RUS
## 4258  0.230377175  0.2167286274  0.2180379825     RUS
## 4263  0.232576680 -0.0315199605 -0.0347953250     RUS
## 4266  0.233254220  0.2310513596  0.2307365498     RUS
## 4269  0.234482212  0.1218001188  0.1131677028     RUS
## 4272  0.235035971  0.2311778582  0.2310940730     RUS
## 4275  0.236870944  0.1987182757  0.1968789632     RUS
## 4278  0.238526681  0.0572316989  0.0597079650     RUS
## 4283  0.244736971  0.1405461212  0.1302947897     RUS
## 4288  0.251785622  0.2266609950  0.2115180377     RUS
## 4289  0.282924622  0.2366688361  0.2528659469     RUS
## 4299  0.274709084  0.1072113451  0.1109089724     RUS
## 4303  0.282941042  0.2625528566  0.2450187222     RUS
## 4307  0.290059164  0.2945384729  0.2752419867     RUS
## 4317  0.303918620  0.2688420816  0.2432636471     RUS
## 4320  0.306213764  0.2030786553  0.1632418839     RUS
## 4325  0.318599174  0.2892571479  0.2313125365     RUS
## 4332  0.334110617  0.2971005436  0.2336796715     RUS
## 4336  0.330867467  0.4250438182  0.3693698563     RUS
## 4337  0.342459537  0.4114566253  0.3545679969     RUS
## 4349  0.367453096  0.6293955678  0.6150439471     RUS
## 4352  0.374917822  0.6074061816  0.5870386096     RUS
## 4356  0.374802553  0.6470180444  0.6285382828     RUS
## 4360  0.387773221  0.5458683687  0.5123887226     RUS
## 4363  0.385672906  0.6260555344  0.6253392560     RUS
## 4365  0.394321917  0.6420323265  0.6093081629     RUS
## 4369  0.404280322  0.4840007455  0.4619452159     RUS
## 4370  0.403259410  0.6631217498  0.6359806329     RUS
## 4378  0.404715289  0.6828358089  0.6447968992     RUS
## 4401  0.410466205  0.6943783866  0.7200127497     RUS
## 4404  0.404412519  0.5437358568  0.5731456953     RUS
## 4409  0.407449710  0.5871281166  0.5961077029     RUS
## 4411  0.403636342  0.4562222518  0.5138664389     RUS
## 4423  0.400539157  0.4925963582  0.5466930077     RUS
## 4424  0.398429163  0.3716346700  0.4109744035     RUS
## 4428  0.397766685  0.6053778867  0.6410084381     RUS
## 4429  0.398295701  0.5830648599  0.6220420553     RUS
## 4435  0.392642107  0.6095673710  0.6470107211     RUS
## 4437  0.394840143  0.5140701412  0.5386709641     RUS
## 4442  0.386965265  0.4489328703  0.4687695702     RUS
## 4443  0.384929748  0.4025591065  0.4182884702     RUS
## 4444  0.384721233  0.3283921631  0.3372736414     RUS
## 4454  0.464361826  0.4685759537  0.4886995006     RUS
## 4461  0.464259606  0.4709338881  0.4870951978     RUS
## 4466  0.395747557  0.1700255101  0.1633674104     RUS
## 4471  0.370741500  0.4834978523  0.4835962988     RUS
## 4472  0.371691771  0.4095338245  0.4000104178     RUS
## 4473  0.370716605  0.2648517445  0.2630275981     RUS
## 4474  0.370238111  0.3641492318  0.3751301586     RUS
## 4475  0.369041368  0.5419166453  0.5495412272     RUS
## 4483  0.442965522  0.5812051702  0.5957249069     RUS
## 4486  0.447009763  0.4723932648  0.4817640954     RUS
## 4489  0.364081757  0.5201620461  0.5173564411     RUS
## 4495  0.364530641  0.3471640339  0.3466756253     RUS
## 4499  0.441683462  0.5265223205  0.5339677627     RUS
## 4522  0.352596589  0.3538850247  0.3541477189     RUS
## 4529  0.353289030  0.3546793871  0.3497470977     RUS
## 4531  0.351686597  0.4819718768  0.4994088371     RUS
## 4542  0.362876672  0.4003946270  0.4018228000     RUS
## 4545  0.366176001  0.5742583798  0.6019229265     RUS
## 4552  0.375104155  0.5962191612  0.6131366054     RUS
## 4557  0.387640820  0.3991065711  0.4144394478     RUS
## 4558  0.392305927  0.4497897325  0.4796714285     RUS
## 4559  0.388349463  0.5985270773  0.6102617407     RUS
## 4564  0.405115586  0.2635669466  0.2781116452     RUS
## 4569  0.407395999  0.4148577056  0.4031573400     RUS
## 4577  0.399800727  0.3379362892  0.3222810708     RUS
## 4586  0.389492918  0.2518250555  0.2673054510     RUS
## 4590  0.489104813  0.4550413256  0.4666509805     RUS
## 4592  0.484193959  0.2759685597  0.2837036972     RUS
## 4607  0.356377904  0.3552527356  0.3730847837     RUS
## 4608  0.463356421  0.5986377932  0.6121320079     RUS
## 4612  0.462299872  0.4867001151  0.4910132635     RUS
## 4628  0.448022501  0.5048378557  0.5097702415     RUS
## 4631  0.450071165  0.6698374677  0.6705653876     RUS
## 4634  0.451116777  0.4757170334  0.4810846667     RUS
## 4645  0.561205181  0.6771149699  0.6206064577     RUS
## 4646  0.423307402  0.6703640351  0.6756015366     RUS
## 4648  0.429408368  0.4608486252  0.4578338326     RUS
## 4651  0.309715718  0.6253172101  0.6220951792     RUS
## 4653  0.435460715  0.6465811327  0.6345102939     RUS
## 4656  0.318527281  0.4362878534  0.4237714050     RUS
## 4657  0.434764771  0.6904618922  0.6731448281     RUS
## 4666  0.325019800  0.6216501251  0.5992472606     RUS
## 4674  3.078556912  0.7001111300  0.6770987554     RUS
## 4675  3.099101998  0.6269987938  0.5949354058     RUS
## 4678  0.789207836  0.8256695226  0.7144498474     RUS
## 4681  0.530109945  0.7246980835  0.6953878076     RUS
## 4682  0.531954415  0.6543594142  0.6164330637     RUS
## 4690  0.505493333  0.6339627219  0.5754968746     RUS
## 4696  0.374161952  0.6149810027  0.5345660343     RUS
## 4698  0.370595237  0.5403129757  0.4643808046     RUS
## 4709  0.457103369  0.8163604850  0.7700766244     RUS
## 4714  0.447883885  1.0250284420  1.0136852021     RUS
## 4725  0.271327668  0.3942734657  0.3201881423     RUS
## 4726  0.178308395 -0.2885674323 -0.4382628564     TUR
## 4727  0.178304340 -0.3064901652 -0.4557251837     TUR
## 4729  0.178304569 -0.4019025572 -0.5557531341     TUR
## 4732  0.178424560 -0.1551000975 -0.2709176466     TUR
## 4735  0.179001967 -0.1657273153 -0.2735529176     TUR
## 4743  0.185621095 -0.1583283816 -0.2561322461     TUR
## 4749  0.190690757  0.5461818566  0.4526583554     TUR
## 4753  0.195844264  0.5688972598  0.4726299640     TUR
## 4755  0.196920413  0.5625040530  0.4636969186     TUR
## 4757  0.201805674  0.4685265423  0.3664288763     TUR
## 4759  0.198002590  0.3680036078  0.2697654465     TUR
## 4760  0.198074398  0.5152407460  0.4169768293     TUR
## 4765  0.198741297  0.1888159122  0.0875286636     TUR
## 4771  0.195197319  0.2587222312  0.1524765948     TUR
## 4788  0.191831152  0.3081420244  0.2265934633     TUR
## 4789  0.191626230  0.3003372077  0.2171677235     TUR
## 4790  0.191666898  0.2755226277  0.1926237360     TUR
## 4791  0.192019929  0.2500495095  0.1702418590     TUR
## 4792  0.191670224  0.1731460221  0.0848423415     TUR
## 4794  0.189918174  0.1120961954  0.0314153737     TUR
## 4807  0.188978462  0.0060649258 -0.0802541175     TUR
## 4819  0.190537472  0.0151708229 -0.0617511578     TUR
## 4825  0.191188221  0.0561389091 -0.0251389946     TUR
## 4827  0.191015093 -0.0405830643 -0.1258625681     TUR
## 4843  0.190702954 -0.2228595697 -0.2907257216     TUR
## 4846  0.190471985 -0.0697301609 -0.1390126394     TUR
## 4852  0.190212201 -0.0541499270 -0.1233342140     TUR
## 4853  0.190164103 -0.0710994732 -0.1398616885     TUR
## 4854  0.190145243 -0.0912789250 -0.1564697980     TUR
## 4859  0.190087998 -0.1507526378 -0.2431635126     TUR
## 4872  0.190937962 -0.1176715418 -0.2047664659     TUR
## 4880  0.191494848 -0.0978206135 -0.1829210692     TUR
## 4881  0.191621150 -0.1170781058 -0.2017105715     TUR
## 4887  0.191820274 -0.1041727911 -0.1912788868     TUR
## 4890  0.191776767 -0.2225479927 -0.3144051157     TUR
## 4893  0.192508254 -0.1132472288 -0.1995620987     TUR
## 4897  0.192597011 -0.2242454625 -0.3171019709     TUR
## 4898  0.192313906 -0.3639737595 -0.4540494486     TUR
## 4902  0.192867619 -0.1175446890 -0.2117899519     TUR
## 4903  0.192714745 -0.1251648088 -0.2136282737     TUR
## 4904  0.192953068 -0.2005102341 -0.2955357229     TUR
## 4911  0.192160264 -0.0779468088 -0.1449209524     TUR
## 4916  0.192633987  0.0186065091 -0.0452469764     TUR
## 4917  0.193117039 -0.0016621689 -0.0622215687     TUR
## 4925  0.191909164 -0.0950010107 -0.1675561672     TUR
## 4926  0.191708160 -0.2351421162 -0.3057934776     TUR
## 4927  0.191444178 -0.1580958546 -0.2258980681     TUR
## 4929  0.191281047  0.0144980983 -0.0551687569     TUR
## 4941  0.191819445 -0.1718471361 -0.2461391061     TUR
## 4946  0.192143136 -0.1159141006 -0.1984964304     TUR
## 4954  0.193297939 -0.2451920206 -0.3266745257     TUR
## 4971  0.195868727  0.0535505579 -0.0585082527     TUR
## 4980  0.206095374  0.0586968932 -0.0477374372     TUR
## 4982  0.210137883 -0.1405733925 -0.2535135439     TUR
## 4983  0.213174255 -0.0539457248 -0.1633803813     TUR
## 4986  0.334309280  0.2107767675  0.0981623201     TUR
## 4990  0.321892192  0.3460332640  0.2324286449     TUR
## 4992  0.327911756  0.7972289455  0.7207635921     TUR
## 5002  0.377997817  0.4948896432  0.4074137987     TUR
## 5003  0.370357374  0.3446185024  0.2594983809     TUR
## 5013  0.352893543  0.5444562471  0.4564513818     TUR
## 5024  0.320355366  0.3032623740  0.3068874274     TUR
## 5031  0.320871444  0.1974727307  0.1812482061     TUR
## 5032  0.325653414  0.2675167596  0.2537215347     TUR
## 5034  0.323688863  0.4216765625  0.4060796072     TUR
## 5036  0.351713167  0.4084615699  0.4059498262     TUR
## 5042  0.370229174  0.3897847716  0.3827548433     TUR
## 5045  0.372940987  0.1398551575  0.1310967974     TUR
## 5057  0.454538436  0.3222491445  0.3453975683     TUR
## 5061  0.467672453  0.3761018508  0.3985695089     TUR
## 5066  0.313039634  0.1339171987  0.1584447549     TUR
## 5067  0.319892958  0.2290748882  0.2598970914     TUR
## 5072  0.316809076  0.2974698741  0.3234913561     TUR
## 5074  0.318053124  0.2367505301  0.2689976703     TUR
## 5075  0.322100601  0.4123474138  0.4443855462     TUR
## 5079  0.320964235  0.3211371832  0.3473224584     TUR
## 5082  0.331757295  0.2825872909  0.2920695988     TUR
## 5083  0.330270359  0.2887159430  0.2960515972     TUR
## 5084  0.329347108  0.2735434834  0.2813868822     TUR
## 5088  0.337762554  0.1384234235  0.1475084645     TUR
## 5089  0.340293902  0.3502922800  0.3671975852     TUR
## 5091  0.341948312  0.3499850898  0.3648470741     TUR
## 5101  0.366916285  0.1732049630  0.1804298346     TUR
## 5104  0.406065056  0.4517357106  0.4578159633     TUR
## 5105  0.402178346  0.4432685686  0.4495130572     TUR
## 5108  0.439786065  0.2479816970  0.2416823771     TUR
## 5113  0.466259352  0.6429297304  0.6483417914     TUR
## 5123  0.537457337  0.5943883350  0.5918038446     TUR
## 5128  0.584055231  0.7453466155  0.7460576607     TUR
## 5130  0.559237144  0.6848498692  0.6909816067     TUR
## 5135  0.512544068  0.6933862380  0.6955569316     TUR
## 5137  0.502380468  0.6177034329  0.6304783860     TUR
## 5140  0.506724825  0.7141055213  0.7236624854     TUR
## 5141  0.483717198  0.6719178347  0.6857312099     TUR
## 5142  0.472138959  0.6630818877  0.6902595314     TUR
## 5154  0.405637662  0.5356653817  0.5680555609     TUR
## 5155  0.405310686  0.5033207579  0.5388281972     TUR
## 5162  0.395868973  0.4102055650  0.4325203270     TUR
## 5171  0.383722289  0.1402408475  0.1521217304     TUR
## 5178  0.374469289 -0.0483424403 -0.0278647194     TUR
## 5185  0.369135300 -0.0738354063 -0.0559780694     TUR
## 5194  0.360218718  0.1600284491  0.1911006179     TUR
## 5203  0.340940298 -0.0224566273  0.0209647991     TUR
## 5204  0.334266834 -0.0499544002  0.0019914146     TUR
## 5206  0.324823735 -0.2735632933 -0.2208735444     TUR
## 5208  0.316697997 -0.0354331178  0.0310658249     TUR
## 5214  0.296088908 -0.2193876307 -0.1379078803     TUR
## 5216  0.293986192 -0.0421920096  0.0400402961     TUR
## 5219  0.288500169 -0.1485002265 -0.0676372201     TUR
## 5223  0.286147180 -0.0190954970  0.0714413034     TUR
## 5226  0.299318085 -0.1035314451 -0.0195247903     TUR
## 5230  0.321848115  0.0738695631  0.1692161035     TUR
## 5232  0.311958995  0.0641387621  0.1682038679     TUR
## 5239  0.315021719  0.1412231973  0.2564025801     TUR
## 5240  0.318023879  0.0725930948  0.1808165413     TUR
## 5253  0.253794877 -0.0494057107  0.0738005469     TUR
## 5256  0.245005011 -0.1891766277 -0.0632555294     TUR
## 5261  0.230642085 -0.1442205456 -0.0175684867     TUR
## 5264  0.243558785 -0.0364381512  0.0991335163     TUR
## 5265  0.249535408 -0.0029137493  0.1309825518     TUR
## 5274  0.232138722  0.1106094079  0.2924828008     TUR
## 5290  0.230159284 -0.0991461798  0.0846457170     TUR
## 5291  0.234841389 -0.0236797522  0.1643858112     TUR
## 5292  0.240879557  0.1223176172  0.3048488929     TUR
## 5294  0.239877189  0.1079744684  0.2903509188     TUR
## 5296  0.235249099  0.0197225289  0.1974872489     TUR
## 5300  0.244810461  0.1365565476  0.3198288490     TUR
## 5301  0.242776522  0.1189686361  0.3027716301     TUR
## 5306  0.259570148  0.1424931245  0.3294466059     TUR
## 5318  0.227590644 -0.1320429821  0.0535666655     TUR
## 5324  0.222327368 -0.1309217115  0.0258261749     TUR
## 5325  0.226416387 -0.2721335153 -0.1138554500     TUR
## 5326  0.245916968 -0.1164195869  0.0258378209     TUR
## 5329  0.249934264  0.0470940879  0.1884891798     TUR
## 5331  0.242197260 -0.0419321796  0.0960124632     TUR
## 5348  0.247911467  0.0467982742  0.2027178943     TUR
## 5357  0.223675833  0.2354482396  0.4467013647     TUR
## 5360  0.214376405 -0.0110572466  0.1985051628     TUR
## 5367  0.208554984 -0.0342476003  0.1786096113     TUR
## 5371  0.168044950 -0.2840987445 -0.2961743033     GBR
## 5379  0.168025077 -0.1111260079 -0.1232724590     GBR
## 5382  0.168025248 -0.1472813062 -0.1574149453     GBR
## 5383  0.168021193 -0.2216617179 -0.2398991555     GBR
## 5395  0.168051064 -0.1262493259 -0.1398712050     GBR
## 5399  0.168190020 -0.4148274879 -0.4408225786     GBR
## 5408  0.169765154 -0.2390455460 -0.2670571531     GBR
## 5410  0.170096307 -0.2694881017 -0.2915608155     GBR
## 5416  0.172716318 -0.1630691389 -0.1688794846     GBR
## 5420  0.178273826 -0.1055929565 -0.0597271975     GBR
## 5422  0.180057658  0.0770457999  0.1219292242     GBR
## 5426  0.181460015 -0.1743629554 -0.1330905713     GBR
## 5436  0.193003294  1.2905489186  1.3185473786     GBR
## 5441  0.190204109  1.0273034225  1.0516735974     GBR
## 5445  0.194432446  1.1264007320  1.1467424612     GBR
## 5449  0.194495286  1.0191510700  1.0329008776     GBR
## 5452  0.196144042  0.9301180008  0.9422360863     GBR
## 5470  0.192880599  0.6355436863  0.6502679323     GBR
## 5472  0.189983452  0.5682145429  0.5734067718     GBR
## 5474  0.187941884  0.4531486458  0.4527876761     GBR
## 5475  0.187016341  0.3078544933  0.3101042177     GBR
## 5479  0.190414502  0.5017456535  0.5035938176     GBR
## 5480  0.188403939  0.4754173943  0.4805661628     GBR
## 5484  0.187053124  0.4630425023  0.4658430426     GBR
## 5486  0.187471467  0.4273284510  0.4267240981     GBR
## 5489  0.184855195  0.1653123265  0.1605607444     GBR
## 5492  0.186088080  0.2712330427  0.2814633355     GBR
## 5498  0.185377737  0.2593091475  0.2760477016     GBR
## 5500  0.184775687  0.2374974485  0.2526419226     GBR
## 5504  0.184894301  0.0683343464  0.0831486166     GBR
## 5505  0.185109679  0.2412619987  0.2550522595     GBR
## 5508  0.184706787  0.2005966735  0.2163102548     GBR
## 5513  0.183824425  0.2279283887  0.2389606371     GBR
## 5516  0.183160116  0.1018757471  0.1088344900     GBR
## 5520  0.180702138  0.1014005246  0.1238790074     GBR
## 5529  0.182241389  0.0324216193  0.0506614519     GBR
## 5539  0.181561688 -0.1177234868 -0.1052972189     GBR
## 5540  0.180855610  0.0561614306  0.0642968846     GBR
## 5542  0.181937585  0.0432583835  0.0484441679     GBR
## 5546  0.181131546 -0.1202282923 -0.1075939669     GBR
## 5551  0.180752494  0.0072987631  0.0180194138     GBR
## 5555  0.180783526  0.1228030886  0.1350683070     GBR
## 5565  0.179865266 -0.0027852745 -0.0012348384     GBR
## 5573  0.178645614 -0.1472926708 -0.1417596671     GBR
## 5577  0.180053897  0.0913252753  0.0975021942     GBR
## 5578  0.178913138  0.0705088618  0.0807836135     GBR
## 5579  0.177994352 -0.0044254134 -0.0024812958     GBR
## 5588  0.184424218 -0.0345279701 -0.0303607797     GBR
## 5592  0.186360964  0.1162957823  0.1154011742     GBR
## 5593  0.186108794  0.0418638695  0.0349828333     GBR
## 5594  0.185346617 -0.0993151287 -0.1033621143     GBR
## 5597  0.187735179  0.1626771056  0.1593226281     GBR
## 5602  0.188916612 -0.0116659195 -0.0073470626     GBR
## 5631  0.269258174  0.3069436031  0.2923796273     GBR
## 5638  0.281863026  0.3866579906  0.3802388877     GBR
## 5642  0.281646785  0.2882793564  0.2719708078     GBR
## 5643  0.288097195  0.2348611411  0.2041438188     GBR
## 5649  0.300634560  0.3588818594  0.3129451376     GBR
## 5650  0.283625157  0.2074154953  0.1681398016     GBR
## 5653  0.296005736  0.4222516868  0.3653047004     GBR
## 5654  0.340090376  0.4153873748  0.3571724520     GBR
## 5656  0.315349903  0.3203924652  0.2601078865     GBR
## 5657  0.308733720  0.1802321079  0.1294233605     GBR
## 5660  0.289521285  0.4422693016  0.3831261606     GBR
## 5661  0.303705384  0.4116673025  0.3499696221     GBR
## 5668  0.286116955  0.3699197536  0.3075884131     GBR
## 5673  0.271912355  0.5278446221  0.5115347021     GBR
## 5681  0.288454448  0.5293446278  0.4981654222     GBR
## 5692  0.377940407  0.4153018688  0.3804738983     GBR
## 5701  0.462788033  0.7628432524  0.7387299383     GBR
## 5709  0.521731813  0.9490752436  0.9714442126     GBR
## 5711  0.549867723  0.8939405466  0.9046200076     GBR
## 5725  0.454884273  0.7476444264  0.7475289674     GBR
## 5726  0.428601054  0.6512983623  0.6582485099     GBR
## 5733  0.389013094  0.5746268962  0.5785758961     GBR
## 5754  0.327790318  0.4537278374  0.4849510352     GBR
## 5756  0.327457099  0.4034281557  0.4078737856     GBR
## 5766  0.301611014  0.4252325358  0.3771633225     GBR
## 5786  0.257366499  0.4587674693  0.3157995925     GBR
## 5787  0.257400907  0.3802649929  0.2976265432     GBR
## 5794  0.234012773  0.4047719215  0.3515274368     GBR
## 5803  0.209003134  0.2412978367  0.2381303413     GBR
## 5812  0.187659157  0.1936901243  0.1237870954     GBR
## 5814  0.179787277  0.4047539331  0.2955331387     GBR
## 5816  0.175536409  0.2883301123  0.2587580273     GBR
## 5817  0.170402853  0.1881524342  0.1758849454     GBR
## 5822  0.157148887  0.3446418622  0.2710545498     GBR
## 5830  0.137978405  0.3469502700  0.3381641378     GBR
## 5833  0.130155894  0.2362360000  0.1971811869     GBR
## 5834  0.128607242  0.3803759805  0.3698347542     GBR
## 5835  0.124771862  0.4356935798  0.3697474389     GBR
## 5840  0.110924132  0.2476038896  0.2087031048     GBR
## 5853  0.081367468  0.1195076807  0.1232528497     GBR
## 5857  0.081887019  0.2598857659  0.2609263451     GBR
## 5863  0.077016091  0.2552899942  0.2153826669     GBR
## 5866  0.072195562  0.0784893834  0.0980192847     GBR
## 5871  0.076050567  0.2359679967  0.1998553220     GBR
## 5874  0.064188971  0.0101254031 -0.0371553610     GBR
## 5876  0.071935998  0.2239673317  0.2180816564     GBR
## 5878  0.089891151  0.2421444469  0.2057739359     GBR
## 5880  0.093075854  0.0976287848  0.1103465250     GBR
## 5883  0.099331390  0.2465082500  0.2356369988     GBR
## 5888  0.110578113 -0.0410594456 -0.0871222337     GBR
## 5893  0.157635850  0.1392788267  0.1413931475     GBR
## 5895  0.139020917 -0.0448475802 -0.0724058416     GBR
## 5902  0.209420431 -0.0150971871 -0.0342545698     GBR
## 5904  0.205984516  0.1888423855  0.1832879652     GBR
## 5906  0.179619088  0.1960813658  0.1688468591     GBR
## 5910  0.118373387 -0.0152692551 -0.0125439470     GBR
## 5914  0.135314764  0.0997716374  0.1019616982     GBR
## 5915  0.120793224  0.0047321526  0.0173325545     GBR
## 5919  0.133852467  0.1719522205  0.1726965244     GBR
## 5926  0.134555089  0.1765533069  0.1777561770     GBR
## 5927  0.148812504  0.1600850576  0.1612201554     GBR
## 5929  0.134114177  0.0425832765  0.0606486396     GBR
## 5933  0.152876188  0.1813233304  0.1838119194     GBR
## 5937  0.147109178 -0.0787347354 -0.0620173551     GBR
## 5939  0.142559774  0.1813865532  0.1941562881     GBR
## 5946  0.150620122  0.1834817369  0.1760032918     GBR
## 5955  0.175116700  0.2042959875  0.1547389888     GBR
## 5958  0.139461313 -0.0735843616 -0.1083157739     GBR
## 5966  0.170714650 -0.0128833814 -0.0349781767     GBR
## 5969  0.171722325  0.1617540804  0.1295554170     GBR
## 5985  0.166422243 -0.0220713400  0.0037542090     GBR
## 5993  0.173356974 -0.1345647280 -0.1176968947     GBR
## 5997  0.191122973  0.1260661311  0.1613921825     GBR
## 5999  0.158177882 -0.0138546824  0.0642360499     GBR
## 6003  0.146065872  0.1100584600  0.1825889826     GBR
## 6004  0.124382876  0.0840995347  0.1624916537     GBR
## 6007  0.109859355 -0.1629079397 -0.0844100267     GBR
## 6011  0.094586002  0.1165399876  0.1943986749     GBR
## 6014  0.055306536 -0.1527730212 -0.0575490311     GBR
## 6021  0.053824920 -0.1799588552 -0.0580450776     GBR
## 6027  0.047964167 -0.0856208641  0.0847618174     GBR
## 6028  0.042809410 -0.1917322713 -0.0552253206     GBR
## 6031  0.046590717  0.0521328918  0.2008987995     GBR
## 6033  0.067396239 -0.0218944178  0.1643209632     GBR
## 6040  0.045899838  0.1146830440  0.3562507656     GBR
## 6045  0.026411598 -0.0627023287  0.1230328605     GBR
## 6046  0.019590647 -0.0840527010  0.0999947790     GBR
## 6047  0.048200523 -0.1280438888  0.0818097779     GBR
## 6064  0.151657231  0.4085555661  0.6695580317     USA
## 6069  0.151657288  0.2327834147  0.4957926062     USA
## 6074  0.151657402  0.2952204412  0.5520677540     USA
## 6075  0.151657402  0.1557831436  0.4145382362     USA
## 6078  0.151657402  0.4085555661  0.6695580317     USA
## 6079  0.151657402  0.3906328333  0.6520957044     USA
## 6080  0.151665626  0.3696008530  0.6345519642     USA
## 6087  0.151657574  0.3696008530  0.6345519642     USA
## 6097  0.151991732  0.3430103817  0.6075206310     USA
## 6098  0.152459780  0.5201967132  0.7845931069     USA
## 6102  0.154890285  0.4837329849  0.7582336198     USA
## 6105  0.159425415  0.6576940496  0.9585757389     USA
## 6109  0.177346830  0.6908222371  1.0031042837     USA
## 6117  0.224918104  0.7799644190  1.0884276565     USA
## 6118  0.250590292  0.8775476611  1.1889130443     USA
## 6125  0.302064500  1.2026131585  1.4974476699     USA
## 6130  0.300601194  1.2259285294  1.4974211824     USA
## 6131  0.292352502  1.0932258824  1.3662902603     USA
## 6134  0.292936277  1.3452931196  1.6093632524     USA
## 6139  0.316428156  1.1325678296  1.3844400186     USA
## 6140  0.303633357  1.2785475127  1.5255397691     USA
## 6148  0.316280657  1.1678421430  1.3887562294     USA
## 6159  0.303124032  0.8807043337  1.0939166366     USA
## 6160  0.303664478  0.9472478718  1.1616414611     USA
## 6176  0.323449483  1.0842407171  1.2636959024     USA
## 6177  0.333622018  1.0589835487  1.2378016788     USA
## 6179  0.346030924  0.9633837596  1.1366441619     USA
## 6181  0.319029494  0.7738192056  0.9685786553     USA
## 6187  0.331341515  0.6927732465  0.8771700073     USA
## 6188  0.324424150  0.7704763093  0.9573868330     USA
## 6199  0.399167914  0.9100853818  1.0781445298     USA
## 6209  0.450965831  0.8295088031  0.9893124605     USA
## 6211  0.504559753  0.9216963513  1.0851892976     USA
## 6212  0.526941902  0.9107949139  1.0743217298     USA
## 6215  0.511148631  0.6876515824  0.8544071523     USA
## 6220  0.596801104  0.9199468489  1.0755718566     USA
## 6223  0.564992123  0.7825175014  0.9373734833     USA
## 6226  0.651136646  0.9568894264  1.1024694141     USA
## 6230  0.600738234  0.7906461833  0.9347445722     USA
## 6232  0.649183456  0.9711461603  1.1052639994     USA
## 6234  0.672014750  0.9285636214  1.0644429930     USA
## 6236  0.605682137  0.7085335516  0.8454524221     USA
## 6248  0.662938152  0.9630239916  1.0833891296     USA
## 6250  0.616043693  0.7405249227  0.8615304295     USA
## 6255  0.698746071  0.9642227064  1.0759526720     USA
## 6258  0.586122457  0.8175432430  0.9310811314     USA
## 6263  0.633183953  0.8641535872  0.9609101906     USA
## 6270  0.647570817  0.8657017356  0.9534984056     USA
## 6271  0.611641117  0.7211895377  0.8145828096     USA
## 6283  0.687932143  0.9682908267  1.0419316367     USA
## 6285  0.637207435  0.7214922343  0.7934590096     USA
## 6288  0.660430330  0.9865007814  1.0451210576     USA
## 6297  0.720143995  0.9650038334  1.0178730726     USA
## 6300  0.660881546  0.8131724721  0.8729702466     USA
## 6304  0.762128695  0.9499544159  0.9870247152     USA
## 6306  0.683453325  0.7237528719  0.7660993120     USA
## 6310  0.791676055  0.9793265119  1.0015589745     USA
## 6318  0.856137707  1.0049279878  1.0285463613     USA
## 6329  0.928118638  1.0576418946  1.0629723428     USA
## 6342  1.169557436  1.0721682083  1.0456373693     USA
## 6344  1.312714487  1.2740074826  1.2281519502     USA
## 6366  1.822812835  1.5756305929  1.5189600984     USA
## 6368  1.838814674  1.4732681998  1.4157295542     USA
## 6369  1.675615750  1.3319904370  1.2837597522     USA
## 6375  1.923255784  1.5234121528  1.4405401574     USA
## 6382  1.928710179  1.5600397185  1.4519216838     USA
## 6393  2.125466073  1.7223801781  1.5735796396     USA
## 6395  1.917491333  1.7415669270  1.6838284318     USA
## 6397  2.097262435  1.5563972048  1.4920093733     USA
## 6399  2.232418477  1.8375678010  1.7494517225     USA
## 6403  2.404497582  1.7084796091  1.6022135953     USA
## 6411  2.158568699  1.5437398403  1.4258251997     USA
## 6412  2.022671678  1.6164882773  1.4962749522     USA
## 6413  2.125290113  1.7958994221  1.6611730141     USA
## 6418  2.059396122  1.4918330508  1.3529421492     USA
## 6419  2.084844337  1.5771886352  1.4355936053     USA
## 6421  2.150902310  1.7693064094  1.5974830883     USA
## 6422  2.208193189  1.7482435586  1.5768128275     USA
## 6427  2.022713343  1.6982017214  1.5538035117     USA
## 6436  2.026832603  1.6271506212  1.4561681702     USA
## 6440  1.826059701  1.4486130002  1.2873271256     USA
## 6443  1.899463034  1.6053772071  1.4217608703     USA
## 6452  1.890756615  1.4821196112  1.2864153393     USA
## 6454  1.847802945  1.2875503421  1.0845775180     USA
## 6455  1.858952664  1.4712601332  1.2527174714     USA
## 6456  1.899988605  1.4744605118  1.2494397111     USA
## 6458  1.888980898  1.4057555871  1.1874176465     USA
## 6461  1.769990340  1.2491594951  1.0395507793     USA
## 6462  1.804999620  1.4361548483  1.2128364490     USA
## 6473  1.695989632  1.3064478405  1.0954723227     USA
## 6479  1.744421374  1.3849162266  1.1737375446     USA
## 6480  1.674093808  1.3026679036  1.0926907080     USA
## 6484  1.665960560  1.4112870814  1.1901619398     USA
## 6494  1.446927173  1.3890043333  1.1851781851     USA
## 6499  1.422530459  1.4915961829  1.2854091501     USA
## 6504  1.359893588  1.4927035120  1.2882278561     USA
## 6512  1.306686664  1.4638016076  1.2594578750     USA
## 6519  1.221358555  1.5349359825  1.3510671120     USA
## 6521  1.214353620  1.4829303404  1.3108330912     USA
## 6525  1.135995379  1.4876726673  1.3043045331     USA
## 6527  1.140132379  1.4659606740  1.2840734123     USA
## 6529  1.089586935  1.3574075647  1.1811660018     USA
## 6532  1.064719694  1.4716712271  1.2922473854     USA
## 6534  1.057560886  1.4487924118  1.2730374716     USA
## 6536  1.006153218  1.3373515752  1.1643844115     USA
## 6538  1.013919666  1.2470674293  1.0744898398     USA
## 6547  0.946726080  1.2992340629  1.1296631683     USA
## 6549  0.935905503  1.2451702232  1.0847212088     USA
## 6553  0.903608578  1.2755749560  1.1123476875     USA
## 6560  0.866651276  1.3342359954  1.1847195813     USA
## 6561  0.869148969  1.3324943532  1.1819221089     USA
## 6569  0.849699804  1.3262478343  1.1806280770     USA
## 6575  0.848101934  1.3505914027  1.2045798101     USA
## 6582  0.864270826  1.2819010995  1.1456292243     USA
## 6585  0.802277084  1.1239342708  0.9771796840     USA
## 6591  1.081000815  1.2517129993  1.1068187937     USA
## 6596  0.971640837  1.3194353948  1.1659628763     USA
## 6608  1.277379630  1.2843115487  1.1356739345     USA
## 6615  1.545931219  1.3198088826  1.1660818024     USA
## 6616  1.312315180  1.5303085537  1.3758525300     USA
## 6617  1.460001208  1.5500954240  1.3908999973     USA
## 6620  1.040217344  1.4121598922  1.2573116886     USA
## 6623  1.472350096  1.5478711241  1.3887263772     USA
## 6625  1.497829023  1.5288244964  1.3670772261     USA
## 6628  1.016149174  1.2786798859  1.1340605503     USA
## 6636  1.962492995  1.3521068766  1.1977026617     USA
## 6644  2.028892601  1.5444341941  1.3777837851     USA
## 6646  1.612316191  1.5351863081  1.3470251746     USA
## 6647  1.896511464  1.5071082500  1.3211170040     USA
## 6649  1.133264898  1.2619606152  1.0949097403     USA
## 6655  1.250671472  1.4184840643  1.2324539926     USA
## 6657  1.804313090  1.3443672809  1.1629556616     USA
## 6658  1.510317853  1.5237469465  1.3278382198     USA
## 6661  1.746223509  1.4662810405  1.2670346485     USA
## 6670  1.180847526  1.1624208873  1.0009955534     USA
## 6674  1.418265737  1.3942807820  1.2235950146     USA
## 6687  1.360841397  1.3391017789  1.2007341553     USA
## 6689  1.366731119  1.2773789979  1.1603417629     USA
## 6695  1.246649568  1.2237420818  1.1491566048     USA
## 6706  1.302738583  1.0043290521  1.0134748767     USA
## 6714  1.144949727  1.1444073344  1.2123348394     USA
## 6715  1.233009776  1.1410620966  1.2157640879     USA
## 6721  1.107088799  1.0836207274  1.2318350648     USA
## 6722  1.178186902  1.0851703740  1.2388434026     USA
## 6727  1.509844254  0.9076477798  1.1032106920     USA
## 6730  1.240927135  0.9882027952  1.1890491389     USA
## 6734  1.392125607  0.7815772533  1.0421715975     USA
## 6735  1.097468994  0.9571343561  1.2183337318     USA
## 6740  0.965116475  0.5077167094  0.8232138482     USA
library(shiny)
library(shinydashboard)
library(leaflet)
library(plotly)

load("external1.RData")
load("rf_results.RData")

ui <- dashboardPage(skin = "green",
                    dashboardHeader(title = "COVID-19 Metrics by Country",
                                    titleWidth = 300),
                    dashboardSidebar(width = 300,
                                     sidebarMenu(
                                       menuItem("Map", tabName = "map", icon = icon("map")
                                                ),
                                       
                                       selectInput(inputId = "vars",
                                                   label = "Select the Metric (for Map)",
                                                   choices = c(colnames(map_ds1)[2:5], colnames(map_ds1)[8]),
                                                   selected =  colnames(map_ds1)[2]),
                                       selectInput(inputId = "selected_country",
                                                   label = "Select the Country (for Time Series)",
                                                   choices = c(levels(res_dataset$country)),
                                                   selected = "USA"),
                                       
                                      menuItem("Time-Series (Trees)", tabName = "ts-rf", icon = icon("chart-line")),
          
                                       menuItem("Time-Series (Linear Methods)", tabName = "ts-lin", icon = icon("chart-line")),
                                       menuItem("Time-Series", tabName = "ts-final", icon = icon("chart-line"))
                                       
                                     )),
                    
                    dashboardBody(
                      
                      tabItems(
                        
                        tabItem(tabName = "map",
                                
                      
                      fluidRow(
                                  column(8, leafletOutput("map1", height = 800)),
                                  column(4, dataTableOutput("table1"))
                      )
                      ),
                      
                    tabItem(tabName = "ts-rf",
                            fluidRow(
                              box(plotlyOutput("time_series_trees"))
                            )),
                    tabItem(tabName = "ts-lin",
                            fluidRow(
                              box(plotlyOutput("time_series_linear"))
                            )),
                    tabItem(tabName = "ts-final",
                            fluidRow(
                              box(plotlyOutput("time_series_final"))
                            ))
                      ))         
                      )
library(shinydashboard)
library(shiny)
library(leaflet)
library(dplyr)
library(stats)
library(sf)
library(lubridate)
library(plotly)

load("external1.RData")
load("rf_results.RData")



server <- function(input, output) {

  time_series <- reactive({
    filter(res_dataset, country == input$selected_country)
    
  })
  
  reactive_ds <- reactive({
    select(map_ds1, geometry, "selection" = input$vars)
  })
  
  bw <- reactive({2 * IQR(reactive_ds()$selection) / length(reactive_ds()$selection)^(1/3)})
  

  pal1 <- reactive({colorBin("viridis",
                      domain = seq(from = min(range(reactive_ds()$selection)),
                                   to = max(range(reactive_ds()$selection)), by = bw()))})

  pop <- reactive({paste("Country: ", map_ds1$name, "<br/>",
                         "Value: ", round(reactive_ds()$selection, 3))})
              
  
  
  output$map1 <- renderLeaflet({
    
    
    leaflet(reactive_ds()) %>%
      addProviderTiles(providers$CartoDB) %>%
      addPolygons(data = reactive_ds()$geometry , fillColor = pal1()(reactive_ds()$selection),
                  color = "black", popup = pop()) %>%
     addLegend(pal = pal1(), values = reactive_ds()$selection)
  })
  
  
  output$table1 <- renderDataTable({
    reactive_ds() %>% select(-geometry) %>%
      cbind("Country" = map_ds1$name)
  })
  
  
  output$time_series_trees <- renderPlotly({
   
   p <- time_series() %>% plot_ly(x = ~ date, y = ~rf_predicted_cases, name = "Random Forest", type = "scatter", mode = "lines") %>%
     add_trace(y = ~actual_deaths, name = "Actual Deaths", mode = "lines+markers") %>%
     add_trace(y = ~decision_tree_pred, name = "Decision Tree") %>%
     add_trace(y = ~bagged_tree_pred, name = "Bagged Tree") %>%
     add_trace(y = ~boosted_tree_pred, name = "Boosted Tree") %>%
     layout(title = paste0("Actual vs. Predicted Daily Deaths (thousands) for", " ", input$selected_country),
            yaxis = list(title = "Deaths"))
   
   return(p)
   
   
     
  })
  
  output$time_series_linear <- renderPlotly({
  
  p.all <- time_series() %>% plot_ly(x = ~ date, y = ~MLR, name = "MLR (Reduced by p-values)", type = "scatter", mode = "lines") %>%
    add_trace(y = ~actual_deaths, name = "Actual Deaths", mode = "lines+markers") %>%
    add_trace(y = ~ForwardMLR, "MLR (Forward Selection)") %>%
    add_trace(y = ~BackwardMLR, "MLR (Backward Selection)") %>%
    add_trace(y = ~s1, name = "Ridge") %>%
    add_trace(y = ~s1.1, name = "LASSO") %>%
    layout(title = paste0("Actual vs. Predicted Daily Deaths (thousands) for", " ", input$selected_country),
           yaxis = list(title = "Deaths"))
  
  return(p.all)
  })
  
  
  output$time_series_final <- renderPlotly({
  
  p.final <- time_series() %>% plot_ly(x = ~date, y = ~new_deaths_thousand.15.comps, name = "PCR",
                                       type = "scatter", mode = "lines") %>%
    add_trace(y = ~actual_deaths, name = "Actual Deaths", mode = "lines+markers") %>%
    add_trace(y = ~MLR, name = "MLR (Reduced by p-values") %>%
    add_trace(y = ~s1.1, name = "LASSO")  %>%
    layout(title = paste0("Actual vs. Predicted Daily Deaths (thousands) for", " ", input$selected_country),
           yaxis = list(title = "Deaths"))
  
  return(p.final)
    
  })
  
}
LS0tDQp0aXRsZTogIk1BVEggNjI0IEdyb3VwIDIgRmluYWwgUHJvamVjdCINCmF1dGhvcjogIkNvbGxpbiBIb3NraW5zLCBNZWlyZW4gSmlhbmcsIENvcmRlbGwgSm9uZXMsIFNhbXVlbCBIYXJvbGQiDQpkYXRlOiAiMTIvMTMvMjAyMSINCm91dHB1dDoNCiAgIG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KDQotLS0NCg0KDQo8c3R5bGUgdHlwZT0idGV4dC9jc3MiPg0KLm1haW4tY29udGFpbmVyIHsNCiAgbWF4LXdpZHRoOiAxODAwcHg7DQogIG1hcmdpbi1sZWZ0OiBhdXRvOw0KICBtYXJnaW4tcmlnaHQ6IGF1dG87DQp9DQo8L3N0eWxlPg0KDQoNCg0KYGBge3Igc2V0dXAsIGluY2x1ZGUgPSBGfQ0KDQojIHNldHdkKCJDOi9Vc2Vycy9Db2xsaW4vRGVza3RvcC9BY2FkZW1pYy9Db3Vyc2VzL01BVEggNjI0L1Byb2plY3QgMiIpDQoNCmBgYA0KDQojIEFic3RyYWN0DQpGb3IgdGhpcyBhbmFseXNpcywgd2UgZGV2ZWxvcGVkIGEgc3RhdGlzdGljYWwgbW9kZWwgZm9yIHRoZSBnbG9iYWwgcHJlZGljdGlvbiBvZiBuZXcgQ09WSUQgZGVhdGhzIGZvciB0aGUgdG9wIDEwIGNvdW50cmllcyBiYXNlZCBvbiB0aGUgaGlnaGVzdCBhbW91bnQgb2YgZGVhdGhzLiBBIHZhcmlldHkgb2Ygc3VwZXJ2aXNlZCBhbmQgdW5zdXBlcnZpc2VkIGxlYXJuaW5nIG1ldGhvZHMgd2VyZSB1c2VkLiANCg0KIyAxLiBJbnRybw0KVGhlIENPVklELTE5IHZpcnVzIGhhcyBjYXVzZWQgYSBnbG9iYWwgcGFuZGVtaWMgd2hpY2ggaGFzIGRldHJpbWVudGFsbHkgYWZmZWN0ZWQgdGhlIHdvcmxkIGNhdXNpbmcgbG9zcyBvZiBwb3B1bGF0aW9uIGFuZCBleHRyZW1lIHVzZSBvZiB2YXJpb3VzIHJlc291cmNlcy4gTWVkaWNhbCBmYWNpbGl0aWVzIHJlc291cmNlcyBoYXZlIGJlZW4gZXhhY2VyYmF0ZWQsIGxhYm9yIGZvcmNlcyBoYXZlIGR3aW5kbGVkLCBhbmQgYnVzaW5lc3NlcyBoYXZlIG5lZWRlZCB0byBhZGFwdCB0byB3aWxkbHkgY2hhbmdpbmcgbWFya2V0cy4gVGhlIHB1cnBvc2Ugb2YgdGhpcyBwcm9qZWN0IHdhcyB0byBkZXZlbG9wIGEgc3RhdGlzdGljYWwgbW9kZWwgZm9yIHRoZSBnbG9iYWwgcHJlZGljdGlvbiBvZiBuZXcgQ09WSUQgZGVhdGhzIGZvciB0aGUgdG9wIHRlbiBsZWFkaW5nIGNvdW50cmllcyBmb3IgYmVuZWZpdCBvZiBnbG9iYWwgcHJlcGFyYXRpb25zIGFuZCBhY2NvbW1vZGF0aW9ucyBvZiBwaHlzaWNhbCwgbWVkaWNhbCwgYW5kIHBvcHVsb3VzIHJlc291cmNlcy4gTW9kZWwgZXZhbHVhdGlvbiB3YXMgYmFzZWQgb24gTVNFIGNvbXBhcmlzb24gYmV0d2VlbiBtb2RlbHMgZm9yIHByZWRpY3Rpb24gYWNjdXJhY3kuIFdvcmsgZm9yIHRoaXMgZ3JvdXAgd2FzIGRpdmlkZWQgZXF1YWxseSBhbW9uZyBjb2xsZWFndWVzLiBXb3JrIHdhcyBkaXZpZGVkIGludG8gZm91ciBwYXJ0cywgZGF0YSBkaXNjb3ZlcnkgYW5kIHZpc3VhbGl6YXRpb24sIHRyZWUgYmFzZWQgbWV0aG9kcywgbGluZWFyIG1ldGhvZHMsIGFuZCB1bnN1cGVydmlzZWQgbWV0aG9kcy4gQSBudW1iZXIgb2YgbW9kZWxzIHdlcmUgdGVzdGVkIGFuZCBjb21wYXJlZCB3aXRoIHRoZSBtZW50aW9uZWQgbWV0aG9kcyBiZWZvcmUgZGVjaWRpbmcgb24gdGhlIGZpbmFsIHdvcmtpbmcgbW9kZWwuIE91ciBpbml0aWFsIHByZXN1bXB0aW9uIGlzIHRoYXQgdHJlZSBtZXRob2RzIHdpbGwgbGlrZWx5IGJlIHRoZSBtb3N0IGFjY3VyYXRlIGZvciB0aGlzIGFuYWx5c2lzLiBXZSBhcmUgdGVzdGluZyBtdWx0aXBsZSBtb2RlbHMgdG8gc2VlIGlmIG90aGVyIG1vZGVscyBtYXkgYmUgbW9yZSBhY2N1cmF0ZSB0aGFuIG91ciBpbml0aWFsIHRob3VnaHQuIFRoaXMgbWF5IGFsc28gcHJvdmUgdG8gYmUgaW5jb3JyZWN0LCBhcyBhIG1vcmUgY29tcGxleCBtb2RlbCBkb2VzIG5vdCBhbHdheXMgbWVhbiBtb3JlIGFjY3VyYXRlIHByZWRpY3Rpb25zLiBUaGVyZSBhbHNvIGlzIHBvdGVudGlhbCBmb3IgY2VydGFpbiBtb2RlbHMgdG8gb3Zlci1maXQgZHVlIHRvIHZhcmlhYmxlcyB0aGEgZGlyZWN0bHkgaW1wYWN0IG5ldyBkZWF0aHMgaW5jbHVkZWQgaW4gbW9kZWxzLg0KDQojIDIuIE1ldGhvZA0KVGhlIG1ldGhvZG9sb2d5IGluIHRoaXMgYW5hbHlzaXMgY29uc2lzdGVkIG9mIGRpYWdub3NpbmcgYSB3b3JsZCBpc3N1ZSwgZXhwbG9yaW5nIGRhdGEgYmFzZWQgYXJvdW5kIHRoZSBpc3N1ZSwgYnVpbGRpbmcgdmFyaW91cyBtb2RlbHMgdG8gY29tcGFyZSBhY2N1cmFjeSwgYW5kIGZpbmFsbHkgYW5hbHl6ZSBtb2RlbCByZXN1bHRzIGZvciBpbnNpZ2h0cy4NCg0KDQojIyAyLjEgRGF0YQ0KRGF0YSB3YXMgY29sbGVjdGVkIGZyb20gb25lIHNvdXJjZSB1c2luZyB0aGUgY29kZSBiZWxvdyB0byBleHRyYWN0IGEgY3N2IGZpbGUgYXQgdGhlIGxpbmsgImh0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9vd2lkL2NvdmlkLTE5LWRhdGEvbWFzdGVyL3B1YmxpYy9kYXRhL293aWQtY292aWQtZGF0YS5jc3YiLiBUaGlzIHJlc291cmNlIGNhbiBiZSBmb3VuZCB0aHJvdWdoIGEgYnJvd3NlciBhdCB3aXRoIHRoZSBsaW5rICJodHRwczovL2dpdGh1Yi5jb20vb3dpZC9jb3ZpZC0xOS1kYXRhIi4gVGhlIGlucHV0IGRhdGEgd2FzIGZpbHRlcmVkIHRvIHRoZSB0b3AgMTAgbGVhZGluZyBjb3VudHJpZXMgaW4gZGVhdGhzLiBWYXJpYWJsZXMgdGhhdCB3ZXJlIG5vdCBzY2FsZWQgdG8gdGhvdXNhbmRzIHdlcmUgYXBwcm9wcmlhdGVseSBjaGFuZ2VkIHRvIHRoaXMgc2NhbGluZyBhbmQgdmFyaWFibGVzIHRoYXQgd2VyZSBzY2FsZWQgaW4gYW5vdGhlciBmYXNoaW9uIHdoaWNoIGhhZCBhIHRob3VzYW5kIGNvdW50ZXJwYXJ0IHdlcmUgcmVtb3ZlZCB0byByZWR1Y2UgZHVwbGljYXRlZCB2YXJpYWJsZXMgYW5kIG1vZGVsIG5vaXNlLiBTb21lIG90aGVyIHZhcmlhYmxlcyB3aXRoIHVubmVlZGVkIGluZm9ybWF0aW9uLCBzdWNoIGFzIGV4Y2Vzc19tb3J0YWxpdHlfcmF0ZSwgd2VyZSBhbHNvIHJlbW92ZWQgZm9yIG5vaXNlIHJlZHVjdGlvbi4NCg0KDQojIyMjIFJlYWRpbmcgdGhlIGluaXRpYWwgZGF0YSBzZXQgYW5kIGZpbHRlcmluZw0KDQpgYGB7ciwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCg0KcmVxdWlyZShkcGx5cikNCg0KZGF0YXNldCA8LSByZWFkLmNzdigiaHR0cHM6Ly9yYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tL293aWQvY292aWQtMTktZGF0YS9tYXN0ZXIvcHVibGljL2RhdGEvb3dpZC1jb3ZpZC1kYXRhLmNzdiIsIHN0cmluZ3NBc0ZhY3RvcnMgPSBUKSAlPiUgICBzZWxlY3QoLWMoY29udGluZW50LCBsb2NhdGlvbiwgd2Vla2x5X2ljdV9hZG1pc3Npb25zLCB3ZWVrbHlfaWN1X2FkbWlzc2lvbnNfcGVyX21pbGxpb24sIHdlZWtseV9ob3NwX2FkbWlzc2lvbnMsDQogICAgICAgICAgICB3ZWVrbHlfaG9zcF9hZG1pc3Npb25zX3Blcl9taWxsaW9uLCBob3NwX3BhdGllbnRzX3Blcl9taWxsaW9uLCB0b3RhbF9ib29zdGVyc19wZXJfaHVuZHJlZCwgY29udGluZW50LA0KICAgICAgICAgICAgbG9jYXRpb24sIHdlZWtseV9pY3VfYWRtaXNzaW9ucywgd2Vla2x5X2ljdV9hZG1pc3Npb25zX3Blcl9taWxsaW9uLCB3ZWVrbHlfaG9zcF9hZG1pc3Npb25zLA0KICAgICAgICAgICAgd2Vla2x5X2hvc3BfYWRtaXNzaW9uc19wZXJfbWlsbGlvbiwgaWN1X3BhdGllbnRzX3Blcl9taWxsaW9uLCB0b3RhbF9kZWF0aHNfcGVyX21pbGxpb24sDQogICAgICAgICAgICBuZXdfZGVhdGhzX3Blcl9taWxsaW9uLCBuZXdfdGVzdHMsIGV4Y2Vzc19tb3J0YWxpdHlfY3VtdWxhdGl2ZSwgdG90YWxfdmFjY2luYXRpb25zX3Blcl9odW5kcmVkLA0KICAgICAgICAgICAgcGVvcGxlX2Z1bGx5X3ZhY2NpbmF0ZWRfcGVyX2h1bmRyZWQsIG5ld192YWNjaW5hdGlvbnNfc21vb3RoZWRfcGVyX21pbGxpb24sIHRvdGFsX2Nhc2VzX3Blcl9taWxsaW9uLA0KICAgICAgICAgICAgbmV3X3Blb3BsZV92YWNjaW5hdGVkX3Ntb290aGVkX3Blcl9odW5kcmVkLCBleGNlc3NfbW9ydGFsaXR5X2N1bXVsYXRpdmVfYWJzb2x1dGUsIG5ld19jYXNlc19wZXJfbWlsbGlvbiwNCiAgICAgICAgICAgIGV4Y2Vzc19tb3J0YWxpdHlfY3VtdWxhdGl2ZV9wZXJfbWlsbGlvbiwgZXhjZXNzX21vcnRhbGl0eV9jdW11bGF0aXZlLCBleGNlc3NfbW9ydGFsaXR5LCB0b3RhbF90ZXN0cywNCiAgICAgICAgICAgIHBlb3BsZV92YWNjaW5hdGVkX3Blcl9odW5kcmVkLCBuZXdfZGVhdGhzX3Ntb290aGVkX3Blcl9taWxsaW9uLCBuZXdfY2FzZXNfc21vb3RoZWRfcGVyX21pbGxpb24sDQogICAgICAgICAgICBuZXdfdGVzdHNfc21vb3RoZWQsIG5ld19kZWF0aHNfc21vb3RoZWQsIHJlcHJvZHVjdGlvbl9yYXRlLA0KICAgICAgICAgICAgbmV3X3Rlc3RzX3Ntb290aGVkX3Blcl90aG91c2FuZCwgdGVzdHNfcGVyX2Nhc2UsIG5ld192YWNjaW5hdGlvbnNfc21vb3RoZWQsIHRlc3RzX3VuaXRzLA0KICAgICAgICAgICAgbmV3X3Blb3BsZV92YWNjaW5hdGVkX3Ntb290aGVkLCBuZXdfY2FzZXNfc21vb3RoZWQpKSAlPiUNCiAgZmlsdGVyKGlzb19jb2RlICVpbiUgYygiVVNBIiwgIklORCIsICJCUkEiLCAiUlVTIiwgIkdCUiIsICJGUkEiLCAiVFVSIiwgIklUQSIsICJDT0wiLCAiREVVIikpIA0KDQoNCiMjIENyZWF0aW5nICJieSB0aG91c2FuZHMiIHZhcmlhYmxlDQpkYXRhc2V0JHRvdGFsX2Nhc2VzX3Rob3VzYW5kID0gZGF0YXNldCR0b3RhbF9jYXNlcyAvIDEwMDANCmRhdGFzZXQkbmV3X2Nhc2VzX3Rob3VzYW5kID0gZGF0YXNldCRuZXdfY2FzZXMgLyAxMDAwDQpkYXRhc2V0JG5ld19kZWF0aHNfdGhvdXNhbmQgPSBkYXRhc2V0JG5ld19kZWF0aHMgLyAxMDAwDQpkYXRhc2V0JGljdV9wYXRpZW50c190aG91c2FuZCA9IGRhdGFzZXQkaWN1X3BhdGllbnRzIC8gMTAwMA0KZGF0YXNldCRob3NwX3BhdGllbnRzX3Rob3VzYW5kID0gZGF0YXNldCRob3NwX3BhdGllbnRzIC8gMTAwMA0KZGF0YXNldCR0b3RhbF92YWNjaW5hdGlvbnNfdGhvdXNhbmQgPSBkYXRhc2V0JHRvdGFsX3ZhY2NpbmF0aW9ucyAvIDEwMDANCmRhdGFzZXQkcGVvcGxlX3ZhY2NpbmF0ZWRfdGhvdXNhbmQgPSBkYXRhc2V0JHBlb3BsZV92YWNjaW5hdGVkIC8gMTAwMA0KZGF0YXNldCRwZW9wbGVfZnVsbHlfdmFjY2luYXRlZF90aG91c2FuZCA9IGRhdGFzZXQkcGVvcGxlX2Z1bGx5X3ZhY2NpbmF0ZWQgLyAxMDAwDQpkYXRhc2V0JHRvdGFsX2Jvb3N0ZXJzX3Rob3VzYW5kID0gZGF0YXNldCR0b3RhbF9ib29zdGVycyAvIDEwMDANCmRhdGFzZXQkbmV3X3ZhY2NpbmF0aW9uc190aG91c2FuZCA9IGRhdGFzZXQkbmV3X3ZhY2NpbmF0aW9ucyAvIDEwMDANCmRhdGFzZXQkcG9wdWxhdGlvbl90aG91c2FuZCA9IGRhdGFzZXQkcG9wdWxhdGlvbiAvIDEwMDANCmRhdGFzZXQkdG90YWxfZGVhdGhzX3Rob3VzYW5kID0gZGF0YXNldCR0b3RhbF9kZWF0aHMgLyAxMDAwDQoNCiMgUmVtb3ZlIG9sZCBzY2FsZXMNCmRhdGFzZXQgPSBzdWJzZXQoZGF0YXNldCwgc2VsZWN0ID0gLWModG90YWxfY2FzZXMsIG5ld19jYXNlcywgbmV3X2RlYXRocywgaWN1X3BhdGllbnRzLCBob3NwX3BhdGllbnRzLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG90YWxfdmFjY2luYXRpb25zLCBwZW9wbGVfdmFjY2luYXRlZCwgcGVvcGxlX2Z1bGx5X3ZhY2NpbmF0ZWQsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0b3RhbF9ib29zdGVycywgbmV3X3ZhY2NpbmF0aW9ucywgcG9wdWxhdGlvbiwgdG90YWxfZGVhdGhzKSkgIA0KDQoNCg0KDQpgYGANCg0KDQojIyMjIERhdGVzDQoNCg0KYGBge3IgZGF0ZSwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCg0KZGF0YXNldCRkYXRlIDwtIGFzLkRhdGUoZGF0YXNldCRkYXRlKQ0KDQojIyBDcmVhdGluZyBkYXkgb2Ygd2VlayB2YXJpYWJsZSBhbmQgDQoNCiMjIENyZWF0aW5nIHNlYXNvbiB2YXJpYWJsZSAodXNpbmcgYXN0cm9uaW1pY2FsIHN0YXJ0IGRhdGVzKQ0KDQoNCg0KZGF0YXNldCA8LSBtdXRhdGUoZGF0YXNldCwgZGF5X29mX3dlZWsgPSBhcy5mYWN0b3Iod2Vla2RheXMoZGF0ZSkpLA0KICAgICAgICAgICAgICAgICAgc2Vhc29uID0gYXMuZmFjdG9yKGNhc2Vfd2hlbihtb250aHMoZGF0ZSkgJWluJSBjKCJNYXJjaCIsICJBcHJpbCIsICJNYXkiKSB+ICJTcHJpbmciLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vbnRocyhkYXRlKSAlaW4lIGMoIkp1bmUiLCAiSnVseSIsICJBdWd1c3QiKSB+ICJTdW1tZXIiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vbnRocyhkYXRlKSAlaW4lIGMoIlNlcHRlbWJlciIsICJPY3RvYmVyIiwgIk5vdmVtYmVyIikgfiAiRmFsbCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9udGhzKGRhdGUpICVpbiUgYygiRGVjZW1iZXIiLCAiSmFudWFyeSIsICJGZWJydWFyeSIpIH4gIldpbnRlciIpKSkNCg0KZGF0YXNldCR5ZWFyIDwtIGZhY3RvcihsdWJyaWRhdGU6OnllYXIoZGF0YXNldCRkYXRlKSkNCg0KZGF0YXNldCRtb250aCA8LSBmYWN0b3IobHVicmlkYXRlOjptb250aChkYXRhc2V0JGRhdGUpKQ0KDQoNCg0KZGF0YXNldCA8LSBkYXRhc2V0ICU+JSByZXBsYWNlKGlzLm5hKC4pLCAwKQ0KDQpkYXRhc2V0JGlzb19jb2RlIDwtIGZhY3RvcihkYXRhc2V0JGlzb19jb2RlKQ0KDQoNCg0Kbm9fZGF0ZSA8LSBzZWxlY3QoZGF0YXNldCwgLWRhdGUpDQoNCnJlcXVpcmUoY2FUb29scykNCnJlcXVpcmUocnNhbXBsZSkNCg0KIyMgU3BsaXR0aW5nIHRoZSBkYXRhDQoNCnNldC5zZWVkKDEwMSkNCg0KDQpzcGxpdCA8LSByc2FtcGxlOjppbml0aWFsX3NwbGl0KGRhdGFzZXQsIHByb3AgPSAwLjgsIHN0cmF0YSA9ICJuZXdfZGVhdGhzX3Rob3VzYW5kIikNCg0KdHJhaW4uZGF0IDwtIHJzYW1wbGU6OnRyYWluaW5nKHNwbGl0KQ0KdGVzdC5kYXQgPC0gcnNhbXBsZTo6dGVzdGluZyhzcGxpdCkNCg0KDQpgYGANCg0KDQojIyAyLjIgRGF0YSBWaXN1YWxpemF0aW9uDQoNCldlIGNyZWF0ZWQgYW4gaW50ZXJhY3RpdmUgZ2VvZ3JhcGhpY2FsIHNoaW55IGFwcCBmb3IgZXhwbG9yYXRvcnkgaW5mb3JtYXRpb24gcmVsYXRlZCB0byBhdmVyYWdlIGRhaWx5IGNhc2VzLCBhdmVyYWdlIG5ldyB2YWNjaW5hdGlvbnMsIGF2ZXJhZ2UgZGFpbHkgZGVhdGhzLCBwb3B1bGF0aW9uIGRlbnNpdHksIGFuZCBIREkuIEFkZGl0aW9uYWwgdGltZSBzZXJpZXMgY2hhcnRzIGFyZSBhdmFpbGFibGUgaGVyZSBhcyB3ZWxsIGZvciBvdXIgbGF0ZSB1c2VkIG1ldGhvZHMuIFRoaXMgc2hpbnkgYXBwIGlzIGF2YWlsYWJsZSB0byB2aWV3IHZpYSBpbnRlcm5ldCBicm93c2VyIGF0ICJodHRwczovL2Nob3NraW5zLnNoaW55YXBwcy5pby9zaGlueS8iLg0KDQpUaGUgZmlndXJlIGJlbG93IGRlcGljdHMgdGhlIHRyYWluaW5nIGFuZCB0ZXN0aW5nIHNwbGl0IG9mIHRoZSByZXNwb25zZSB2YXJpYWJsZSAobmV3IGRhaWx5IGRlYXRocyBieSB0aG91c2FuZHMpIGZvciB0aGUgdGltZSBzZXJpZXMuDQoNCmBgYHtyIHZpejEsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9DQoNCnJlcXVpcmUoZ2dwbG90MikNCnJlcXVpcmUoZ2dwdWJyKQ0KDQpnZ3Bsb3QoZGF0YSA9IHRyYWluLmRhdCwgYWVzKHggPSBkYXRlLCB5ID0gbmV3X2RlYXRoc190aG91c2FuZCkpICsgZ2VvbV9wb2ludChjb2xvciA9ICJibHVlIikgKw0KICBnZW9tX3BvaW50KGRhdGEgPSB0ZXN0LmRhdCwgYWVzKHggPSBkYXRlLCB5ID0gbmV3X2RlYXRoc190aG91c2FuZCksIGNvbG9yID0gIm9yYW5nZSIpICsgdGhlbWVfY2xhc3NpYygpDQoNCg0KYGBgDQoNClRoZXJlIGlzIG5vIGNsZWFyIHRyZW5kLCBvdGhlciB0aGFuIHRoZSBwb3RlbnRpYWwgb2YgbW9udGggaW4gdGhlIG51bWJlciBvZiBDT1ZJRC0xOSBkZWF0aHMuIFRoZSBibHVlIHBvaW50cyBpbiB0aGUgZmlndXJlIGFib3ZlIGluZGljYXRlIHRoZSBvYnNlcnZhdGlvbnMgaW4gdGhlIHRyYWluaW5nIHNldCwgYW5kIHRoZSBvcmFuZ2UgcG9pbnRzIGNvbXBvc2UgdGhlIG9ic2VydmF0aW9ucyBpbiB0aGUgdGVzdGluZyBzZXQuIFRoZSBkaXN0cmlidXRpb24gd2l0aCB0aW1lIGlzIGZhaXJseSBjb25zaXN0ZW50LiANCg0KYGBge3Igdml6MiwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCg0KDQoNCkEgPC0gZ2dwbG90KGRhdGFzZXQpICsgZ2VvbV9ib3hwbG90KGFlcyh4ID0gaXNvX2NvZGUsIHkgPSBuZXdfZGVhdGhzX3Rob3VzYW5kLCBmaWxsID0gaXNvX2NvZGUpKSArIHRoZW1lX2NsYXNzaWMoKQ0KDQpCIDwtIGdncGxvdChkYXRhc2V0KSArIGdlb21fYm94cGxvdChhZXMoeCA9IHNlYXNvbiwgeSA9IG5ld19kZWF0aHNfdGhvdXNhbmQsIGZpbGwgPSBzZWFzb24pKSArIHRoZW1lX2NsYXNzaWMoKQ0KDQpDIDwtIGdncGxvdChkYXRhc2V0KSArIGdlb21fcG9pbnQoYWVzKHggPSBuZXdfdmFjY2luYXRpb25zX3Rob3VzYW5kLCB5ID0gbmV3X2RlYXRoc190aG91c2FuZCkpICsgdGhlbWVfY2xhc3NpYygpICsgDQogIGZhY2V0X3dyYXAofnNlYXNvbikNCkQgPC0gZ2dwbG90KGRhdGFzZXQpICsgZ2VvbV9oaXN0b2dyYW0oYWVzKHggPSBuZXdfZGVhdGhzX3Rob3VzYW5kLCBmaWxsID0gbW9udGgpKSArIGZhY2V0X3dyYXAofm1vbnRoKSANCg0KQQ0KDQpgYGANCg0KVGhlIG5ldyBkYWlseSBkZWF0aHMgdmFyeSBzaWduaWZpY2FudGx5IGRlcGVuZGluZyBvbiB0aGUgY291bnRyeS4gTm90aWNlIHRoYXQgdGhlIFVuaXRlZCBTdGF0ZXMgKFVTQSkgaGFzIHRoZSBoaWdoZXN0IG1lZGlhbiBuZXcgZGFpbHkgZGVhdGhzLCBidXQgSW5kaWEgKElORCkgaGFzIHRoZSBoaWdoZXN0IHNpbmdsZSB2YWx1ZSBvZiBuZXcgZGFpbHkgZGVhdGhzLg0KDQpgYGB7ciwgIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9DQpCDQoNCmBgYA0KDQpBcyBleHBlY3RlZCB0aGUgV2ludGVyIGFuZCBTcHJpbmcgc2Vhc29ucyBoYXZlIHRoZSBoaWdoZXN0IG1lZGlhbiB2YWx1ZXMgZm9yIG5ldyBkYWlseSBkZWF0aHMuIEhvd2V2ZXIsIHRoZSBTdW1tZXIgc2Vhc29uIGhhcyB0aGUgaGlnaGVzdCBzaW5nbGUgdmFsdWUgb2YgbmV3IGRhaWx5IGRlYXRocywgd2hpY2ggb2NjdXJyZWQsIHdoaWNoIG9jY3VycmVkIGluIGxhdGUgSnVuZS4NCg0KYGBge3IsICBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQ0KQw0KDQpgYGANCg0KVGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIG5ldyBkYWlseSB2YWNjaW5hdGlvbnMgYW5kIG5ldyBkYWlseSBkZWF0aHMgaXMgaW50ZXJlc3RpbmcgdG8gb2JzZXJ2ZS4gVGhlcmUgYXJlIGJ1bmRsZXMgb2Ygb2JzZXJ2YXRpb25zIG5lYXIgMCB2YWNjaW5hdGlvbnMgaW4gd2hpY2ggdGhlcmUgd2VyZSBtYW55IGRlYXRocywgd2hpY2ggaXMgZHVlIHRvIHRoZSBsYWcgYmV0d2VlbiB2YWNjaW5lIGF2YWlsYWJpbGl0eSBhbmQgdGhlIHBhbmRlbWljLiBUaGUgU3ByaW5nIHNlYXNvbiBoYXMgYSB2ZXJ5IHVuaXF1ZSBiZWhhdmlvciwgYXMgYWxsIG9ic2VydmF0aW9ucyBhcmUgYnVuZGxlZCBjbG9zZWx5IHRvZ2V0aGVyLiANCg0KYGBge3IsICBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQ0KRA0KYGBgDQoNCkVhY2ggbW9udGggaGFzIGEgc2ltaWxhciBkaXN0cmlidXRpb24gb2YgbmV3IGRhaWx5IGRlYXRocy4gRWFjaCBtb250aCBoYXMgdGhlIGhpZ2hlc3QgY291bnRzIG9mIG5ldyBkYWlseSBkZWF0aHMgbmVhciAwLCB3aGljaCBpcyBsaWtlbHkgZHVlIHRvIG91ciBkYXRhIHByZXBhcmF0aW9uLCBpbiB3aGljaCB3ZSBzY2FsZWQgdGhlIG5ldyBkYWlseSBkZWF0aHMuIA0KDQojIyAyLjMgTW9kZWxzDQpNdWx0aXBsZSBtb2RlbHMgd2VyZSB1c2VkIGZvciB0aGlzIGFuYWx5c2lzLiBUaGV5IGluY2x1ZGVkIGZvcndhcmQgYW5kIGJhY2t3YXJkIHN1YnNldCBzZWxlY3Rpb24sIG11bHRpbm9taWFsIGxpbmVhciBtb2RlbHMsIHJhbmRvbSBmb3Jlc3QsIHJpZGdlIGFuZCBsYXNzbyByZWdyZXNzaW9uLCBiYWdnaW5nLCBhbmQgZ2VuZXJhbGl6ZWQgYm9vc3RlZCByZWdyZXNzaW9uIG1vZGVscy4NCg0KDQojIyMgMi4zLjEgRGVjaXNpb24gVHJlZQ0KVG8gZGVtb25zdHJhdGUgYSBjb21wYXJhdGl2ZSBhbmFseXNpcyB3aXRoIHJlZ3Jlc3Npb24gdHJlZSwgYmFnZ2luZywgcmFuZG9tIGZvcmVzdHMsIGFuZCBib29zdGluZyB3ZSBjb25zdHJ1Y3RlZA0KYSByZWdyZXNzaW9uIHRyZWUgZm9yIG5ld19kZWF0aHNfdGhvdXNhbmQgb24gdGhlIHJlc3Qgb2YgdGhlIHByZWRpY3RvcnMgYW5kIGNhbGN1bGF0ZWQgdGhlIHRlc3QgcHJlZGljdGlvbiBlcnJvci4gDQoNCmBgYHtyIGRlYy5UcmVlLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQ0KDQpyZXF1aXJlKHRyZWUpDQoNCnRyZWUuZGVhdGhzID0gdHJlZShuZXdfZGVhdGhzX3Rob3VzYW5kIH4uLWRhdGUsIGRhdGEgPSB0cmFpbi5kYXQpDQpjdi5kZWF0aHMgPSBjdi50cmVlKHRyZWUuZGVhdGhzKQ0KcGxvdChjdi5kZWF0aHMkc2l6ZSwgY3YuZGVhdGhzJGRldiwgdHlwZSA9ICdiJykNCnBydW5lLmRlYXRocyA9IHBydW5lLnRyZWUodHJlZS5kZWF0aHMsIGJlc3QgPSAxMSkNCg0KIyMgcHJlZGljdGlvbiBlcnJvcg0KeWhhdCA9IHByZWRpY3QocHJ1bmUuZGVhdGhzLCBuZXdkYXRhID0gdGVzdC5kYXQpDQp0cmVlX21zZSA8LSBtZWFuKCh5aGF0IC0gdGVzdC5kYXQkbmV3X2RlYXRoc190aG91c2FuZCleMikNCg0KdHJlZV9tc2UNCg0KYGBgDQoNCiMjIyAyLjMuMiBCYWdnZWQgVHJlZQ0KVGhlIG1haW4gZGlmZmVyZW5jZSBiZXR3ZWVuIHJhbmRvbSBmb3Jlc3QgKFJGKSBhIGFuZCBib29zdHJhcHBlZCBhZ2dyZWdhdGVkIGRlY2lzaW9uIHRyZWUgKEJhZ2dlZCBUcmVlKSBpcyB0aGF0IGluIEJhZ2dlZCBUcmVlcywgdGhlIG51bWJlciBvZiB2YXJpYWJsZXMgc2VsZWN0ZWQgYXQgZWFjaCBub2RlIGlzIG5vdCByZXN0cmljdGVkLiBJbiBSRiwgdGhlIG51bWJlciBvZiB2YXJpYWJsZXMgc2VsZWN0ZWQgaXMgdXN1YWxseSBkZWNpZGVkIHVzaW5nIHRoZSBsZW5ndGggb2YgdGhlIHByZWRpY3RvcnMgZGl2aWRlZCBieSAzIChmb3IgbnVtZXJpYyByZXNwb25zZXMpLiBXZSBhc3N1bWUgdGhhdCB0aGlzIG1vZGVsIHdpbGwgcHJlZGljdCBhY2N1cmF0ZWx5LCBidXQgaGFzIHBvc3NpYmlsaXR5IHRvIGJlIGluYWNjdXJhdGUgY29tcGFyYXRpdmVseSBkdWUgdG8gY29tcGxleGl0eSBhbmQgb3Zlci1maXR0aW5nLg0KDQpgYGB7ciBiYWdnZWRUcmVlLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KDQpyZXF1aXJlKHJhbmRvbUZvcmVzdCkNCg0KIyBiYWcuZGVhdGhzDQoNCmJhZy5kZWF0aHMgPSByYW5kb21Gb3Jlc3QobmV3X2RlYXRoc190aG91c2FuZCB+Li1kYXRlLCBkYXRhID0gdHJhaW4uZGF0LCBtdHJ5ID0gMzQsIGltcG9ydGFuY2UgPSBUUlVFKQ0KDQoNCiMjIHByZWRpY3Rpb24gZXJyb3INCg0KeWhhdC5iYWcgPSBwcmVkaWN0KGJhZy5kZWF0aHMsIG5ld2RhdGEgPSB0ZXN0LmRhdCkNCmJhZ19tc2UgPC0gbWVhbigoeWhhdC5iYWcgLSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kKV4yKQ0KDQpiYWdfbXNlDQoNCmBgYA0KDQojIyMgMi4zLjMgQmFnZ2VkIFRyZWUNCldlIGFzc3VtZSB0aGF0IHRoaXMgbW9kZWwgd2lsbCBwcmVkaWN0IGFjY3VyYXRlbHkgYXMgd2VsbCwgYnV0IGhhcyBwb3NzaWJpbGl0eSB0byBiZSBpbmFjY3VyYXRlIGNvbXBhcmF0aXZlbHkgZm9yIHNpbWlsYXIgcmVhc29ucy4NCmBgYHtyIGJvb3N0LCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQ0KDQpsaWJyYXJ5KGdibSkNCg0KYm9vc3QuZGVhdGhzID0gZ2JtKG5ld19kZWF0aHNfdGhvdXNhbmQgfi4tZGF0ZSwgZGF0YSA9IHRyYWluLmRhdCwgZGlzdHJpYnV0aW9uID0gImdhdXNzaWFuIiwgbi50cmVlcyA9IDUwMCwNCiAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGlvbi5kZXB0aCA9IDMpDQoNCnN1bW1hcnkoYm9vc3QuZGVhdGhzKQ0KDQojIyBwcmVkaWN0aW9uIGVycm9yDQoNCnloYXQuYm9vc3QgPSBwcmVkaWN0KGJvb3N0LmRlYXRocywgbmV3ZGF0YSA9IHRlc3QuZGF0LCBuLnRyZWVzID0gNTAwKQ0KYm9vc3RfbXNlIDwtIG1lYW4oKHloYXQuYm9vc3QgLSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kKV4yKQ0KDQpib29zdF9tc2UNCg0KYGBgDQoNCiMjIyAyLjMuNCBSYW5kb20gRm9yZXN0DQpXZSBhc3N1bWUgdGhhdCB0aGlzIG1vZGVsIHdpbGwgcHJlZGljdCBhY2N1cmF0ZWx5LCBidXQgaGFzIHBvc3NpYmlsaXR5IHRvIGJlIGluYWNjdXJhdGUgY29tcGFyYXRpdmVseSBmb3Igc2ltaWxhciByZWFzb25zLiBPdXIgaG9wZXMgaXMgZm9yIHRoaXMgdG8gYmUgbW9yZSBhY2N1cmF0ZSB0aGFuIGJhZ2dpbmcgb3IgYm9vc3RpbmcgZHVlIHRvIGl0cyBjb21wb3NpdGlvbiBjb25zaXN0aW5nIG9mIGFzcGVjdHMgb2YgYm90aCBiYWdnaW5nIGFuZCBib29zdGluZy4gT25jZSBhZ2FpbiB0aGlzIG1heSBhY3R1YWxseSBkZWNyZWFzZSBhY2N1cmFjeSBkdWUgdG8gY29tcGxleGl0eS4gDQpgYGB7ciByZiwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCg0KDQoNCnJmIDwtIHJhbmRvbUZvcmVzdChuZXdfZGVhdGhzX3Rob3VzYW5kIH4uLWRhdGUsIGRhdGEgPSB0cmFpbi5kYXQsIG10cnkgPSAoMzUvMyksIGltcG9ydGFuY2UgPSBUKQ0KDQoNCg0KcmZfcHJlZGljdGlvbnMgPC0gcHJlZGljdChyZiwgdGVzdC5kYXRbLTIzXSkNCg0KDQojIyBwcmVkaWN0aW9uIGVycm9yDQoNCnJmX21zZSA8LSBtZWFuKChyZl9wcmVkaWN0aW9ucyAtIHRlc3QuZGF0JG5ld19kZWF0aHNfdGhvdXNhbmQpXjIpDQoNCnJmX21zZQ0KDQpgYGANCg0KIyMjIDIuMy41IE11bHRpcGxlIExpbmVhciBSZWdyZXNzaW9uIChNTFIpDQpNdWx0aXBsZSBsaW5lYXIgcmVncmVzc2lvbiB3YXMgdXNlZCBpbiBhdHRlbXB0IHRvIGZpbmQgbWVhbmluZ2Z1bCByZXN1bHRzIGZyb20gYSBsZXNzIGNvbXBsZXggbW9kZWwuIEFzIGEgc2ltcGxlIGFuZCBlYXN5IHRvIHVzZSBtb2RlbCBpdCB3YXMgZmF2b3JhYmxlIGZvciBxdWljayBhbmQgZWFzeSB0byBpbnRlcnByZXRlZCByZXN1bHRzLiBBIG1pbmltdW0gZXJyb3Igb2YgMC4xNjQgd2FzIGFjaGlldmVkIHRocm91Z2ggdGhpcyBtb2RlbCB0eXBlLiBXZSBjb250aW51ZWQgYWZ0ZXIgdG8gdGVzdCBvdGhlciBtb2RlbHMgdG8gc2VlIGlmIHdlIGNvdWxkIHByb2R1Y2UgbW9yZSBhY2N1cmF0ZSByZXN1bHRzIHdpdGggYSBsb3dlciBlcnJvci4NCldlIGFudGljaXBhdGUgdGhpcyBtZXRob2QgbWF5IHBvc3NpYmx5IGhhdmUgdGhlIGhpZ2hlc3QgZXJyb3IgcmF0ZSwgc2luY2UgdGhlIGRhdGEgd2UgYXJlIGFuYWx5emluZyBhcmUgY29tcG9zZWQgZnJvbSB0aW1lLXNlcmllcyBkYXRhIGluIHdoaWNoIHRoZSB0cmVuZHMgd2l0aCB0aW1lIGhhdmUgYmVlbiByZW1vdmVkLiBXZSBkbyBub3QgYXNzdW1lIHRoaXMgd2lsbCBiZSBhcyBhY2N1cmF0ZSBhcyB0aGUgbW9yZSBjb21wbGV4IG1vZGVscyBkdWUgdG8gdGhlIGxhcmdlIGFtb3VudCBvZiB2YXJpYWJsZXMgaW4gZWFjaCBtb2RlbC4NCg0KYGBge3IgbWxyMSwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCg0KbW9kZWwxID0gZ2xtKG5ld19kZWF0aHNfdGhvdXNhbmQgfiAuLCBkYXRhPXRyYWluLmRhdCkNCnJlc3VsdHMgPC0gc3VtbWFyeShtb2RlbDEpDQoNCiMjIEV4dHJhY3RpbmcgdmFyaWFibGVzIHdpdGggbG93IHAtdmFsdWVzIGZyb20gdGhlIGdlbmVyYWxpemVkIG11bHRpcGxlIGxpbmVhciByZWdyZXNzaW9uDQoNCnB2YWxzIDwtIGRhdGEuZnJhbWUocmVzdWx0cyRjb2VmZmljaWVudHMpDQpwdmFscyA8LSBmaWx0ZXIocHZhbHMsIHB2YWxzJFByLi4udC4uIDwgMC4wNSkNCnByaW50KHJvd25hbWVzKHB2YWxzKSkNCg0KDQpgYGANCg0KIyMjIyBBIE1MUiBtb2RlbCBpcyBidWlsdCBiYXNlZCBvbiB0aGUgY29lZmZpY2llbnRzIGZyb20gdGhlIG1vZGVsIHRoYXQgaGF2ZSBsb3cgcC12YWx1ZXMuIA0KDQpgYGB7ciBtbHIyLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQ0KDQptb2RlbDIgPC0gZ2xtKG5ld19kZWF0aHNfdGhvdXNhbmQgfiBpc29fY29kZSArIHRvdGFsX3Rlc3RzX3Blcl90aG91c2FuZCArIHN0cmluZ2VuY3lfaW5kZXggKw0KICAgICAgICAgICAgICAgIGljdV9wYXRpZW50c190aG91c2FuZCArIHRvdGFsX2RlYXRoc190aG91c2FuZCArIGRheV9vZl93ZWVrICsNCiAgICAgICAgICAgICAgICBtb250aCArIG5ld190ZXN0c19wZXJfdGhvdXNhbmQgKyB0b3RhbF9jYXNlc190aG91c2FuZCArIGhvc3BfcGF0aWVudHNfdGhvdXNhbmQgKw0KICAgICAgICAgICAgICAgIHBlb3BsZV9mdWxseV92YWNjaW5hdGVkX3Rob3VzYW5kICsgcG9zaXRpdmVfcmF0ZSArIHRvdGFsX3ZhY2NpbmF0aW9uc190aG91c2FuZCArDQogICAgICAgICAgICAgICAgdG90YWxfYm9vc3RlcnNfdGhvdXNhbmQsIGRhdGEgPSB0cmFpbi5kYXQpDQoNCm1scl9wcmVkaWN0aW9ucyA8LSBwcmVkaWN0KG1vZGVsMiwgdGVzdC5kYXRbLTIzXSkNCg0KIyMgUHJlZGljdGlvbiBFcnJvcg0KDQptbHJfbXNlIDwtIG1lYW4oKG1scl9wcmVkaWN0aW9ucyAtIHRlc3QuZGF0JG5ld19kZWF0aHNfdGhvdXNhbmQpXjIpDQoNCm1scl9tc2UNCg0KYGBgDQoNCiMjIyAyLjMuNiBGb3J3YXJkIFNlbGVjdGlvbg0KDQpgYGB7ciBmb3J3YXJkLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQ0KcmVxdWlyZShsZWFwcykNCg0Kc2V0LnNlZWQoMTAxKQ0KcmVnZml0LmZ3ZCA8LSByZWdzdWJzZXRzKG5ld19kZWF0aHNfdGhvdXNhbmR+Li1kYXRlLCBkYXRhID0gdHJhaW4uZGF0LCBudm1heCA9IDYwLA0KICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJmb3J3YXJkIiwgcmVhbGx5LmJpZyA9IFQpDQoNCmZ3ZC5zdW0gPC0gc3VtbWFyeShyZWdmaXQuZndkKQ0KZm9yd2FyZF9zZWxlY3Q9d2hpY2gubWluKGZ3ZC5zdW0kYmljKQ0KZm9yd2FyZF9zZWxlY3QNCg0KYGBgDQoNClRoZSBmb3J3YXJkIHNlbGVjdGlvbiBtZXRob2QgY2hvb3NlcyB0aGUgZm9sbG93aW5nIHZhcmlhYmxlcyAoc2hvd24gYmVsb3cpLg0KDQpgYGB7ciBmb3J3YXJkMiwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCg0KY29lZihyZWdmaXQuZndkLCBmb3J3YXJkX3NlbGVjdCkNCg0KDQpgYGANCg0KIyMjIDIuMy43IEJhY2t3YXJkIFNlbGVjdGlvbg0KDQoNCmBgYHtyIGJhY2t3YXJkLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQ0KDQpzZXQuc2VlZCgxMDEpDQpyZWdmaXQuYndkIDwtIHJlZ3N1YnNldHMobmV3X2RlYXRoc190aG91c2FuZCB+Li1kYXRlLCBkYXRhID0gdHJhaW4uZGF0LCBudm1heCA9IDYwLCByZWFsbHkuYmlnID0gVCwNCiAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2QgPSAiYmFja3dhcmQiKQ0KDQpid2Quc3VtIDwtIHN1bW1hcnkocmVnZml0LmJ3ZCkNCg0KYmFja3dhcmRfc2VsZWN0IDwtIHdoaWNoLm1pbihid2Quc3VtJGJpYykNCmJhY2t3YXJkX3NlbGVjdA0KDQpgYGANCg0KQmFja3dhcmQgc2VsZWN0aW9uIGNob29zZXMgMjYgdmFyaWFibGVzIChzaG93biBiZWxvdykuIFJlY2FsbCB0aGF0IGZvcndhcmQgc2VsZWN0aW9uIHNlbGVjdGVkIDI4IHZhcmlhYmxlcy4gDQoNCmBgYHtyIGJhY2t3YXJkMiwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCg0KY29lZihyZWdmaXQuYndkLCBiYWNrd2FyZF9zZWxlY3QpDQoNCg0KYGBgDQoNCiMjIyMgQ29tcGFyaXNvbiBvZiBGb3J3YXJkIGFuZCBCYWNrd2FyZCBTZWxlY3Rpb24NCg0KYGBge3IgbGluZWFyX2NvbXAsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9DQoNCnBhcihtZnJvdyA9IGMoMSwgMikpDQoNCnBsb3QoZndkLnN1bSRiaWMseGxhYj0iIE51bWJlciBvZiBWYXJpYWJsZXMgIiwgeWxhYj0iIEJJQyIsDQogICAgIHR5cGU9ImwiLCBtYWluPSJGb3J3YXJkIFNlbGVjdGlvbjogQklDIHBsb3QiKQ0KcG9pbnRzIChmb3J3YXJkX3NlbGVjdCwgZndkLnN1bSRiaWNbZm9yd2FyZF9zZWxlY3RdLCBjb2wgPSIgcmVkIiwgY2V4ID0yLCBwY2ggPTIwKQ0KcGxvdChid2Quc3VtJGJpYyx4bGFiPSIgTnVtYmVyIG9mIFZhcmlhYmxlcyAiLCB5bGFiPSIgQklDIiwNCiAgICAgdHlwZT0ibCIsIG1haW49IkJhY2t3YXJkIFNlbGVjdGlvbjogQklDIHBsb3QiKQ0KcG9pbnRzIChiYWNrd2FyZF9zZWxlY3QsIGJ3ZC5zdW0kYmljW2JhY2t3YXJkX3NlbGVjdF0sIGNvbCA9IiByZWQiLGNleCA9MiwgcGNoID0yMCkNCg0KYGBgDQoNClRoZSBhYm92ZSBmaWd1cmUgcmVpdGVyYXRlcyB0aGUgb3B0aW1hbCBudW1iZXIgb2YgZmVhdHVyZXMgc2VsZWN0ZWQgaW4gZWFjaCBtZXRob2QgdXNpbmcgQklDIGFzIGEgbWV0cmljLiANCg0KIyMjIyBGb3J3YXJkIGFuZCBCYWNrd2FyZCBTZWxlY3Rpb24gTUxSIE1vZGVscw0KDQoNClJlY2FsbCB0aGF0IGluIHRoZSBsaXN0IG9mIGNvZWZmaWNpZW50cywgZHVtbXkgdmFyaWFibGVzIGZvciB0aGUgY2F0ZWdvcmljYWwgdmFyaWFibGVzIGFyZSBpbmNsdWRlZCwgc28gdGhlIGFjdHVhbCBudW1iZXIgb2YgdmFyaWFibGVzIHVzZWQgaW4gYm90aCBtb2RlbHMgYXJlIG5vdCAyNiAoZm9yd2FyZCBzZWxlY3Rpb24pIG5vciAyOCAoYmFja3dhcmQgc2VsZWN0aW9uKS4NCg0KYGBge3IgZmIsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9DQoNCmZvcndhcmRfbWxyIDwtIGdsbShuZXdfZGVhdGhzX3Rob3VzYW5kIH4gbmV3X3Rlc3RzX3Blcl90aG91c2FuZCArIHRvdGFsX2Jvb3N0ZXJzX3Rob3VzYW5kICsgc2Vhc29uICsgbW9udGggKyBhZ2VkXzcwX29sZGVyICsgaG9zcGl0YWxfYmVkc19wZXJfdGhvdXNhbmQgKw0KICBpc29fY29kZSArIHBvc2l0aXZlX3JhdGUgKyB0b3RhbF9kZWF0aHNfdGhvdXNhbmQgKyB5ZWFyICsgZXh0cmVtZV9wb3ZlcnR5ICsgc3RyaW5nZW5jeV9pbmRleCArIGRheV9vZl93ZWVrICsgY2FyZGlvdmFzY19kZWF0aF9yYXRlICsNCiAgdG90YWxfdGVzdHNfcGVyX3Rob3VzYW5kICsgcGVvcGxlX3ZhY2NpbmF0ZWRfdGhvdXNhbmQgKyBmZW1hbGVfc21va2VycywgZGF0YSA9IHRyYWluLmRhdCkNCg0KYmFja3dhcmRfbWxyIDwtIGdsbShuZXdfZGVhdGhzX3Rob3VzYW5kIH4gaXNvX2NvZGUgKyBwb3NpdGl2ZV9yYXRlICsgeWVhciArIG1vbnRoICsgZXh0cmVtZV9wb3ZlcnR5ICsgc3RyaW5nZW5jeV9pbmRleCArIGNhcmRpb3Zhc2NfZGVhdGhfcmF0ZSArDQogIHRvdGFsX3Rlc3RzX3Blcl90aG91c2FuZCArIGRheV9vZl93ZWVrICsgZmVtYWxlX3Ntb2tlcnMgKyBzZWFzb24gKyBhZ2VkXzcwX29sZGVyICsgaG9zcGl0YWxfYmVkc19wZXJfdGhvdXNhbmQsDQogIGRhdGEgPSB0cmFpbi5kYXQpDQoNCmBgYA0KDQojIyMjIEZvcndhcmQgYW5kIEJhY2t3YXJkIFNlbGVjdGlvbiBNTFIgVGVzdCBFcnJvcnMNCg0KYGBge3IgZmJtc2UsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9DQoNCmZvcndhcmRfcHJlZCA8LSBwcmVkaWN0KGZvcndhcmRfbWxyLCB0ZXN0LmRhdFstMjNdKQ0KYmFja3dhcmRfcHJlZCA8LSBwcmVkaWN0KGJhY2t3YXJkX21sciwgdGVzdC5kYXRbLTIzXSkNCg0Kc3ByaW50ZigiRm9yd2FyZC1TZWxlY3RlZCBNb2RlbCBNU0U6ICUuNGYiLCBtZWFuKChmb3J3YXJkX3ByZWQgLSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kKV4yKSkNCnNwcmludGYoIkJhY2t3YXJkLVNlbGVjdGVkIE1vZGVsIE1TRSAlLjRmIiwgbWVhbigoYmFja3dhcmRfcHJlZCAtIHRlc3QuZGF0JG5ld19kZWF0aHNfdGhvdXNhbmQpXjIpKQ0KDQpmX21zZSA8LSBtZWFuKChmb3J3YXJkX3ByZWQgLSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kKV4yKQ0KYl9tc2UgPC0gbWVhbigoYmFja3dhcmRfcHJlZCAtIHRlc3QuZGF0JG5ld19kZWF0aHNfdGhvdXNhbmQpXjIpDQoNCg0KYGBgDQoNCg0KIyMjIDIuMy43IFJpZGdlIFJlZ3Jlc3Npb24NClJlY2FsbCB0aGF0IHJpZGdlIHJlZ3Jlc3Npb24gc2hyaW5rcyB0aGUgY29lZmZpY2llbnRzIGluIHRoZSBtb2RlbCB0b3dhcmRzIDAsIGJ1dCBuZXZlciB0byAwLiBUaGlzIHNocmlua2FnZSBsZWFkcyB0byBhIHN1YnN0YW50aWFsIHJlZHVjdGlvbiBpbiB0aGUgdmFyaWFuY2Ugb2YgdGhlIHByZWRpY3Rpb25zLCB3aXRoIGEgcGVuYWx0eSBvZiBzbGlnaHRseSBpbmNyZWFzZWQgYmlhcy4gVGhpcyBjYW4gcmVzdWx0IGluIGEgbG93ZXIgTVNFIHdoZW4gYW4gb3B0aW1hbCAizrsiIGlzIHNlbGVjdGVkLiBUaGUgZmlndXJlIGJlbG93IHJlcHJlc2VudHMgaG93IG5vaXNlIGlzIHJlbW92ZWQgZnJvbSB0aGUgbW9kZWwuIFRoZSBudW1iZXIgb2YgdmFyaWFibGVzIHRoYXQgbWluaW1pemUgbm9pc2Ugd2hpbGUgcmV0YWluaW5nIHRoZSBwcmVkaWN0aXZlIHBvd2VyIG9mIHRoZSBtb2RlbCB3aWxsIGJlIGNob3NlbiBiYXNlZCBvbiAqbG9nIGxhbWJkYSogb24gdGhlIGdyYXBoLiBXZSBiZWxpZXZlIHRoYXQgdGhpcyBhbmQgTEFTU08gbWF5IGJlIGhpZ2hseSBhY2N1cmF0ZSBhcyBpdCBzaHJpbmtzIGNvZWZmaWNpZW50cyBhbmQgbWF5IGJlIGFibGUgdG8gcmVkdWNlIG5vaXNlIGJldHRlciB0aGFuIG90aGVyIG1vZGVscy4NCg0KYGBge3IgcmlkZ2UsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9DQoNCnJlcXVpcmUoZ2xtbmV0KQ0KDQpzZXQuc2VlZCgxMDEpDQoNCg0KDQp4X3RyYWluID0gbW9kZWwubWF0cml4KG5ld19kZWF0aHNfdGhvdXNhbmR+Li1kYXRlLCB0cmFpbi5kYXQpWywtMV0NCg0KeV90cmFpbiA8LSB0cmFpbi5kYXQkbmV3X2RlYXRoc190aG91c2FuZA0KDQp4X3Rlc3QgPC0gbW9kZWwubWF0cml4KG5ld19kZWF0aHNfdGhvdXNhbmQgfi4tZGF0ZSwgdGVzdC5kYXQpWywgLTFdDQp5X3Rlc3QgPC0gdGVzdC5kYXQkbmV3X2RlYXRoc190aG91c2FuZA0KDQojIHRyYWluID0gc2FtcGxlKDY3MjAsIDUzNzcpICMgODAlIHRyYWluaW5nDQojIHRlc3QgPSAoLXRyYWluKQ0KDQoNCnJpZGdlLm1vZGVsMSA8LSBnbG1uZXQoeCA9IHhfdHJhaW4sDQogICAgICAgICAgICAgICAgICAgICAgIHkgPSB5X3RyYWluLA0KICAgICAgICAgICAgICAgICAgICAgICBhbHBoYSA9IDAsIHN0YW5kYXJkaXplID0gRikNCg0KY3Yub3V0IDwtIGN2LmdsbW5ldCh4ID0geF90cmFpbiwNCiAgICAgICAgICAgICAgICAgICAgICAgeSA9IHlfdHJhaW4sDQogICAgICAgICAgICAgICAgICAgICAgIGFscGhhID0gMCwgc3RhbmRhcmRpemUgPSBGKQ0KDQoNCnBsb3QocmlkZ2UubW9kZWwxLCB4dmFyID0gImxhbWJkYSIpDQoNCg0KYGBgDQoNCiMjIyMgRmluZGluZyB0aGUgYmVzdCBMYW1iZGEgVXNpbmcgQ3Jvc3MtVmFsaWRhdGlvbg0KDQoNCmBgYHtyIHJpZGdlMSwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCg0Kc2V0LnNlZWQoMTAxKQ0KDQpjdi5vdXQgPC0gY3YuZ2xtbmV0KHggPSB4X3RyYWluLA0KICAgICAgICAgICAgICAgICAgICAgICB5ID0geV90cmFpbiwNCiAgICAgICAgICAgICAgICAgICAgICAgYWxwaGEgPSAwLCBzdGFuZGFyZGl6ZSA9IEYpDQoNCnBsb3QoY3Yub3V0KQ0KDQoNCg0KYmVzdGxhbV9yaWRnZSA8LSBjdi5vdXQkbGFtYmRhLm1pbg0KDQoNCmBgYA0KDQpBYm92ZSB3ZSBjaGFydCB0aGUgaW1wYWN0IG9mIGRpZmZlcmVudCAizrsiIHBhcmFtZXRlcnMgYW5kIHNlbGVjdCB0aGUgYmVzdCBvbmUgZm9yIG91ciByaWRnZSByZWdyZXNzaW9uIG1vZGVsLiBUaGUgTG93ZXN0IE1TRSBvY2N1cnMgYXQgYHIgbG9nKGJlc3RsYW1fcmlkZ2UpYC4gTm93LCB0aGUgdHJhaW5pbmcgYW5kIHRlc3RpbmcgZXJyb3JzIGFyZSBjb21wYXJlZC4NCg0KYGBge3IgcmlkZ2VfcmVzLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQ0KcmlkZ2VfdHJhaW5fcHJlZHMgPC0gcHJlZGljdChjdi5vdXQsIHhfdHJhaW4sIHMgPSAibGFtYmRhLm1pbiIpDQoNCnJpZGdlX3Rlc3RfcHJlZHMgPC0gcHJlZGljdChyaWRnZS5tb2RlbDEsIHhfdGVzdCwgcyA9IGJlc3RsYW1fcmlkZ2UpDQoNCnNwcmludGYoIlRlc3QgTVNFOiAlLjRmIiwgbWVhbigocmlkZ2VfdGVzdF9wcmVkcyAtIHlfdGVzdCleMikpDQpzcHJpbnRmKCJUcmFpbiBNU0U6ICUuNGYiLCBtZWFuKChyaWRnZV90cmFpbl9wcmVkcyAtIHlfdHJhaW4pXjIpKQ0KDQpyaWRnZV9tc2UgPC0gbWVhbigocmlkZ2VfdGVzdF9wcmVkcyAtIHlfdGVzdCleMikNCg0KYGBgDQoNCiMjIyAyLjMuOCBMQVNTTyBSZWdyZXNzaW9uDQoNClJlY2FsbCB0aGF0IGluIExBU1NPLCBhcyBvcHBvc2VkIHRvIHJpZGdlLCB0aGUgY29lZmZpY2llbnRzIGFyZSBpbmRlZWQgc2hydW5rIHRvIDAuIEFzIHByZXZpb3VzbHkgbWVudGlvbmVkLCB3ZSBiZWxpZXZlIHRoYXQgdGhpcyBhbmQgcmlkZ2UgcmVncmVzc2lvbiBtYXkgYmUgaGlnaGx5IGFjY3VyYXRlIGFzIGl0IHNocmlua3MgY29lZmZpY2llbnRzIGFuZCBtYXkgYmUgYWJsZSB0byByZWR1Y2Ugbm9pc2UgYmV0dGVyIHRoYW4gb3RoZXIgbW9kZWxzLg0KDQpgYGB7ciBMQVNTTywgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCg0KcmVxdWlyZShnbG1uZXQpDQoNCg0Kc2V0LnNlZWQoMTAxKQ0KDQpsYXNzby5tb2RlbDEgPC0gZ2xtbmV0KHggPSB4X3RyYWluLA0KICAgICAgICAgICAgICAgICAgICAgICB5ID0geV90cmFpbiwNCiAgICAgICAgICAgICAgICAgICAgICAgYWxwaGEgPSAxLCBzdGFuZGFyZGl6ZSA9IEYpDQoNCg0KDQpwbG90KGxhc3NvLm1vZGVsMSwgeHZhciA9ICJsYW1iZGEiKQ0KDQoNCg0KYGBgDQpCYXNlZCBvbiB0aGUgZmlndXJlIGFib3ZlLCBpdCBpcyBjbGVhciB0aGF0IG1hbnkgb2YgdGhlIGNvZWZmaWNpZW50cyBzaHJpbmsgdG8gMCwgd2hpY2ggaW5kaWNhdGVzIHRoZXkgYXJlIG5vdCBpbXBvcnRhbnQgdG8gdGhlIG1vZGVsLiBUaGlzIGlzIGV4cGxvcmVkIGZ1cnRoZXIgYmVsb3cuICANCg0KDQpgYGB7ciBsYXNzbzIsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9DQoNCnNldC5zZWVkKDEwMSkNCg0KbGFzc28uY3YgPC0gY3YuZ2xtbmV0KHggPSB4X3RyYWluLA0KICAgICAgICAgICAgICAgICAgICAgICB5ID0geV90cmFpbiwNCiAgICAgICAgICAgICAgICAgICAgICAgYWxwaGEgPSAxLCBzdGFuZGFyZGl6ZSA9IEYpDQoNCnBsb3QobGFzc28uY3YpDQoNCg0KYmVzdF9sYXNzbyA8LSBsYXNzby5jdiRsYW1iZGEubWluDQoNCmBgYA0KDQpUaGUgaWRlYWwgbGFtYmRhIHZhbHVlIG9jY3VycyBhdCBgciBsb2cobGFzc28uY3YkbGFtYmRhLm1pbilgICwgYXMgaW5kaWNhdGVkIGFib3ZlLiANCg0KIyMjIyBDb21wYXJpbmcgTEFTU08gdHJhaW5pbmcgYW5kIHRlc3RpbmcgTVNFDQoNCmBgYHtyIGxhc3NvTVNFLCBlY2hvID0gVCwgbWVzc2FnZSA9IEYsIHdhcm5pbmcgPSBGfQ0KDQpsYXNzb190cmFpbl9wcmVkcyA8LSBwcmVkaWN0KGxhc3NvLmN2LCB4X3RyYWluLCBzID0gImxhbWJkYS5taW4iKQ0KDQpsYXNzb190ZXN0X3ByZWRzIDwtIHByZWRpY3QobGFzc28ubW9kZWwxLCB4X3Rlc3QsIHMgPSBiZXN0X2xhc3NvKQ0KDQpzcHJpbnRmKCJUZXN0IE1TRTogJS40ZiIsIG1lYW4oKGxhc3NvX3Rlc3RfcHJlZHMgLSB5X3Rlc3QpXjIpKQ0Kc3ByaW50ZigiVHJhaW4gTVNFOiAlLjRmIiwgbWVhbigobGFzc29fdHJhaW5fcHJlZHMgLSB5X3RyYWluKV4yKSkNCg0KbGFzc29fbXNlIDwtIG1lYW4oKGxhc3NvX3Rlc3RfcHJlZHMgLSB5X3Rlc3QpXjIpDQoNCmBgYA0KDQpUaGlzIGlzIGFuIGltcHJvdmVtZW50IGluIGJvdGggdGhlIHRyYWluaW5nIGFuZCB0ZXN0aW5nIGVycm9ycyBjb21wYXJlZCB0byB0aGUgcmVzdWx0cyBmcm9tIFJpZGdlIHJlZ3Jlc3Npb24uIA0KDQojIyMjIExBU1NPIFJlZ3Jlc3Npb24gTW9zdCBJbmZsdWVudGlhbCBGZWF0dXJlcw0KDQpgYGB7ciBsYXNzb19mZWF0dXJlcywgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCnJlcXVpcmUoYnJvb20pDQoNCmNvZWYobGFzc28uY3YsIHMgPSAibGFtYmRhLm1pbiIpICU+JQ0KICB0aWR5KCkgJT4lDQogIGZpbHRlcihyb3cgIT0gIihJbnRlcmNlcHQpIikgJT4lDQogIGdncGxvdChhZXModmFsdWUsIHJlb3JkZXIocm93LCB2YWx1ZSkpKSArDQogIGdlb21fcG9pbnQoKSArDQogIHhsYWIoIkNvZWZmaWNpZW50IikgKw0KICB5bGFiKE5VTEwpDQoNCg0KDQoNCmBgYA0KDQpOb3RpY2UgdGhlIHRvcCAxMCB2YXJpYWJsZXMgdGhhdCBjb250cmlidXRlZCB0byBuZXcgZGVhdGhzLiANCg0KIyMjIDIuMy44IFBDUg0KDQpPdXIgbW90aXZhdGlvbiBiZWhpbmQgdXNpbmcgcHJpbmNpcGFsIGNvbXBvbmVudCByZWdyZXNzaW9uIChQQ1IpLCBpcyB0aGlzIG1ldGhvZCBoZWxwcyB0byBhdm9pZCBtdWx0aWNvbGxpbmVhcml0eS4gSW4gdGhpcyBkYXRhIHNldCwgaXQgaXMgY2xlYXIgdGhhdCBtYW55IG9mIHRoZSB2YXJpYWJsZXMgYXJlIGNvcnJlbGF0ZWQgd2l0aCBlYWNoIG90aGVyLiBXZSBhc3N1bWUgdGhpcyB3aWxsIHBlcmZvcm0gYmV0dGVyIHRoYW4gdGhhdCBvZiBMQVNTTyBvciByaWRnZSByZWdyZXNzaW9uIHVzaW5nIHRoZSBwcmluY2lwYWwgY29tcG9uZW50IG9mIHRoZSB2YXJpYWJsZXMgd2l0aCBhc3N1bXB0aW9ucyBmb3IgdGhlIGJlc3QgYmlhcyB2YXJpYW5jZSB0cmFkZS1vZmYgbW9kZWwuIA0KDQpgYGB7ciBwY3IsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9DQpyZXF1aXJlKHBscykNCg0KDQpzZXQuc2VlZCgxMDEpDQoNCnBjcl9tb2RlbCA8LSBwbHM6OnBjcihuZXdfZGVhdGhzX3Rob3VzYW5kfi4sIGRhdGEgPSBub19kYXRlLCBzY2FsZSA9IEYsIHZhbGlkYXRpb24gPSAiQ1YiKQ0KDQp2YWxpZGF0aW9ucGxvdChwY3JfbW9kZWwsIHZhbC50eXBlID0gIk1TRVAiKQ0KdmFsaWRhdGlvbnBsb3QocGNyX21vZGVsLCB2YWwudHlwZSA9ICJSMiIpDQoNCmBgYA0KDQpUaGUgZmlyc3QgZmlndXJlIGFib3ZlIHJlcHJlc2VudHMgTVNFIGZvciBlYWNoIGNvbXBvbmVudCBkZXJpdmVkIHVzaW5nIHByaW5jaXBhbCBjb21wb25lbnQgYW5hbHlzaXMgKFBDQSkuIFRoZSBzZWNvbmQgZmlndXJlIGRpc3BsYXlzIHRoZSAkUl4yJCBzY29yZSBmb3IgdGhlIG51bWJlciBvZiBjb21wb25lbnRzLiBPYnNlcnZlIHRoYXQgZGltZW5zaW9uYWxpdHkgcmVkdWN0aW9uIGhhcyBvY2N1cmVkLCB0aGUgbnVtYmVyIG9mIGNvbXBvbmVudHMgKDE1KSB0aGF0IGV4cGxhaW4gYWJvdXQgODAlIG9mIHRoZSB2YXJpYWJpbGl0eSBpcyBsZXNzIHRoYW4gdGhlIG51bWJlciBvZiBwcmVkaWN0b3JzIGluIHRoZSBkYXRhIHNldC4NCg0KQmVsb3cgZGlzcGxheXMgdGhlIHByZWRpY3RlZCB2cyBhY3R1YWwgZGVhdGhzIGJhc2VkIG9uIGEgdHJhaW5lZCBQQ1IgbW9kZWwgdXNpbmcgdGhlIHNhbWUgdHJhaW5pbmcgYW5kIHRlc3Rpbmcgc3BsaXQgZGF0YSBzZXRzIHRoYXQgd2VyZSB1c2VkIGluIGFsbCB0aGUgb3RoZXIgbW9kZWxzLg0KDQojIyMjIFBDUiB3aXRoIDE1IENvbXBvb25lbnRzDQoNCmBgYHtyIHBjcjEsIGVjaG8gPSBULCBtZXNzYWdlID0gRiwgd2FybmluZyA9IEZ9DQoNCnNldC5zZWVkKDEwMSkNCg0KcGNyX3RyYWluZWQgPC0gcGNyKG5ld19kZWF0aHNfdGhvdXNhbmR+Li1kYXRlLCBkYXRhID0gdHJhaW4uZGF0LCBzY2FsZSA9IEYsIHZhbGlkYXRpb24gPSAiQ1YiKQ0KDQpwY3JfcHJlZHMgPC0gcHJlZGljdChwY3JfdHJhaW5lZCwgdGVzdC5kYXRbLTIzXSwgbmNvbXAgPSAxNSkNCg0KcGNyX21zZSA8LSBtZWFuKChwY3JfcHJlZHMgLSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kKV4yKQ0KDQpgYGANCiMgMy4gUmVzdWx0cw0KDQpgYGB7ciByZXN1bHRzX3RhYiwgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRn0NCg0KcmVzdWx0c190YWIgPC0gZGF0YS5mcmFtZShNZXRob2QgPSBjKCJEZWNpc2lvbiBUcmVlIiwgIkJhZ2dlZCBUcmVlIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkJvb3N0ZWQgVHJlZSIsICJSYW5kb20gRm9yZXN0IiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiTUxSIiwgIk1MUiAtIEZvcndhcmQiLCAiTUxSLUJhY2t3YXJkIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiTEFTU08iLCAiUmlkZ2UiLCAiUENSIiksDQogICAgICAgICAgICAgICAgICAgICAgICAgIE1TRSA9IGModHJlZV9tc2UsIGJhZ19tc2UsIGJvb3N0X21zZSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZl9tc2UsIG1scl9tc2UsIGZfbXNlLCBiX21zZSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYXNzb19tc2UsIHJpZGdlX21zZSwgcGNyX21zZSkpIA0KDQoNCmtuaXRyOjprYWJsZShyZXN1bHRzX3RhYikNCg0KYGBgDQoNCkFmdGVyIGVhY2ggbW9kZWwgd2FzIHRlc3RlZCBmaW5hbCByZXN1bHRzIHNob3duIGFib3ZlIHdlcmUgY29tcGFyZWQuIEFzIHByZXZpb3VzbHkgcHJlZGljdGVkLCBNTFIgbW9kZWxzIGhhZCB0aGUgaGlnaGVzdCBlcnJvciByYXRlIGFuZCB3ZXJlIG5vdCBjb25zaWRlcmVkIGZvciB1c2UuIFJpZGdlIHJlZ3Jlc3Npb24gYW5kIExBU1NPIHNob3dlZCBzaW1pbGFyIHJlc3VsdHMgd2l0aCBhIGhpZ2hlciBNU0UuIFBDUiB3YXMgb24gdGhlIGxvd2VyIGVuZCBvZiB0aGUgbW9kZWxzIGNvbXBhcmVkLCBidXQgZGlkIG5vdCBjb21wYXJlIHRvIHRoZSB0cmVlIGJhc2VkIG1vZGVscy4gVGhlIGdlbmVyYWwgZGVjaXNpb24gdHJlZSwgYWx0aG91Z2ggbm90IGZhcmluZyB3ZWxsLCBkaWQgcHJvdmUgdG8gaGF2ZSBhIGxvd2VyIE1TRSB0aGFuIGFsbCBvdGhlciBub24tdHJlZSBiYXNlZCBtb2RlbHMuIEJvb3N0aW5nIGFuZCBiYWdnaW5nIG1ldGhvZHMgd2VyZSBhcHBsaWVkIHRvIHRyeSBhbmQgcmVkdWNlIGVycm9yIHJhdGUgZnVydGhlciwgYnV0IFJhbmRvbSBGb3Jlc3QgcHJvdmVkIHRvIHlpZWxkIHRoZSBsb3dlciBNU0UuIEJhZ2dlZCB0cmVlIGxhZ2dlZCBjbG9zZSBiZWhpbmQgYnkgYSBkaWZmZXJlbmNlIGluIE1TRSBvZiAwLjAwMDY3NDUuIEJvb3N0aW5nIGhvd2V2ZXIgcGVyZm9ybWVkIGV2ZW4gd29yc2UgdGhhbiBiYWdnaW5nLiANCg0KIyA0LiBEaXNjdXNzaW9uDQpUaGVyZSB3ZXJlIG90aGVyIHBvdGVudGlhbCBwcm9ibGVtcyB3ZSBjb3VsZCBoYXZlIGFuYWx5emVkLCBidXQgdGhpcyBvbmUgd2FzIHNlbGVjdGVkIGR1ZSB0byB0aGUgcmVsZXZhbmN5IGZvciBjdXJyZW50IGlzc3VlcyBhcyB3ZWxsIGFzIGVhc2Ugb2YgdW5kZXJzdGFuZGluZyBhc3BlY3RzIG9mIHRoZSBkYXRhLiBUaGVyZSB3YXMgbGl0dGxlIGludGVycHJldGF0aW9uIG5lZWRlZCB0byB1bmRlcnN0YW5kIGluaXRpYWwgZGF0YSBhbmQgYWRkaXRpb25hbGx5IGxpdHRsZSBjbGVhbmluZyBhbmQgbWFuaXB1bGF0aW9uIG9mIGRhdGEgZHVlIHRvIHN1Y2NpbmN0IGRhdGEgbWFpbnRlbmFuY2UgZnJvbSBvdXIgc291cmNlLiBXZSB3ZXJlIGFibGUgdG8gdXRpbGl6ZSBtb3N0IGFsbCBvZiB0aGUgc2tpbGxzIHdlIGxlYXJuZWQgdGhpcyBzZW1lc3RlciBpbiB0aGlzIHByb2plY3QuIEFkZGl0aW9uYWwgbWV0aG9kcyBzdWNoIGFzIGhpc3RvcmljYWwgY2x1c3RlcmluZyBhbmQgUENBIHdlcmUgYXR0ZW1wdGVkLCBidXQgdGhpcyBsZWFkIHRvIGNvbXB1dGF0aW9uYWwgaXNzdWVzIGFuZCB2aXN1YWxpemF0aW9ucyBzbyBsYXJnZSB0aGF0IHRoZXkgd2VyZSB1bmFibGUgdG8gYmUgaW50ZXJwcmV0ZWQuIFRoZXNlIHdvdWxkIGhhdmUgYmVlbiBzdXBwbGVtZW50YXJ5IHRvIG91ciBhbmFseXNpcywgYW5kIHRoZXJlZm9yZSB3ZXJlIHVudXNlZC4gRWFjaCBncm91cCBtZW1iZXIgY29udHJpYnV0ZWQgZXF1YWxseSB0byB0aGlzIHdvcmsuIFRhc2tzIHN1Y2ggYXMgZGF0YSBleHRyYWN0aW9uLCBjb2Rpbmcgb2YgbWV0aG9kcywgYW5kIGNvbXBpbGF0aW9uIG9mIHRoaXMgZG9jdW1lbnQgd2VyZSBkaXZpZGVkIGVxdWFsbHkgYW1vbmcgbWVtYmVycywgYW5kIGFzc2lnbmVkIGJhc2VkIG9uIGVhY2ggbWVtYmVycyBzcGVjaWFsaXplZCBza2lsbHMuIEl0IHdhcyBhbiBpbW1lbnNlbHkgaGVscGZ1bCBsZWFybmluZyBleHBlcmllbmNlIHRvIGdldCB0byBzaG93IHdoYXQgd2UgaGF2ZSBsZWFybmVkIHRoaXMgc2VtZXN0ZXIgaW4gb25lIHByb2plY3QuDQoNCiMgNS4gRnV0dXJlIFdvcmsNClRoZSBtb2RlbHMgY3JlYXRlZCBpbiB0aGlzIHByb2plY3QgYXJlIGFwcGxpY2FibGUgdG8gb3RoZXIgcmVzdWx0cyBhcyB3ZWxsIGZyb20gdGhlIHNhbWUgZGF0YXNldC4gV2UgY2hvc2UgbmV3X2RlYXRocyBhcyB0aGUgcmVzcG9uc2UgdmFyaWFibGUgZm9yIG91ciBtb2RlbHMsIGJ1dCBvdGhlcnMgY2FuIGJlIGVhc2lseSBpbnRlcmNoYW5nZWQgYW5kIGNvbXBhcmVkIGZvciBkaWZmZXJlbnQgcmVzdWx0cy4gTm90ZSB0aGF0IGRvaW5nIHNvIG1heSB5aWVsZCBkaWZmZXJlbnQgcmVzdWx0cyBmb3Igd2hpY2ggbW9kZWwgaXMgbW9zdCBhY2N1cmF0ZS4gT3RoZXIgYWx0ZXJuYXRpdmUgcmVzcG9uc2VzIHBvc3NpYmxlIGNvdWxkIGJlIG5ldyBjYXNlcywgbmV3IHZhY2NpbmF0aW9ucywgb3Igb3RoZXIgQ09WSUQgcmVsYXRlZCByZXNwb25zZXMuIE9uIHRoZSBvdGhlciBoYW5kLCBvdXIgbWV0aG9kb2xvZ2llcyB3b3VsZCBsaWtlbHkgbm90IHByb2R1Y2UgYWNjdXJhdGUgcmVzdWx0cyBmb3Igc29tZXRoaW5nIHN1Y2ggYXMgcG9wdWxhdGlvbiwgc2luY2UgdGhlIGRhdGEgaXMgZ2VhcmVkIHRvd2FyZHMgQ09WSUQgaW5mb3JtYXRpb24uIE90aGVyIG1vZGVscywgc3VjaCBhcyAoU1ZNKSBzdXBwb3J0IHZlY3RvciBtYWNoaW5lcyB3aGljaCBub3QgYmVlbiBjb3ZlcmVkLCBjb3VsZCBiZSBhcHBsaWVkIGZvciBkaWZmZXJlbnQgcmVzdWx0cyBhcyB3ZWxsIGFuZCBjb21wYXJlZCB0byBzZWUgaWYgZXJyb3IgcmF0ZSBpcyBoaWdoZXIgb3IgbG93ZXIgdGhhbiB0aGUgY3VycmVudCByZXN1bHRzLiBGdXJ0aGVyIHRpbWUgYW5kIGluZm9ybWF0aW9uIGNvdWxkIGFsc28geWllbGQgdXNhYmxlIHJlc3VsdHMgd2l0aCBQQ0EgYW5kIGNsdXN0ZXJpbmcgbWV0aG9kcyBhdHRlbXB0ZWQuDQoNCiMgNi4gQXBwZW5kaXgNCjEuIEEuIExpYXcgYW5kIE0uIFdpZW5lciAoMjAwMikuIENsYXNzaWZpY2F0aW9uIGFuZCBSZWdyZXNzaW9uIGJ5IHJhbmRvbUZvcmVzdC4gUiBOZXdzIDIoMyksIDE4LS0yMi4NCjIuIEFjaGltIFplaWxlaXMgYW5kIEdhYm9yIEdyb3RoZW5kaWVjayAoMjAwNSkuIHpvbzogUzMgSW5mcmFzdHJ1Y3R1cmUgZm9yIFJlZ3VsYXIgYW5kIElycmVndWxhciBUaW1lIFNlcmllcy4gSm91cm5hbCBvZiBTdGF0aXN0aWNhbCBTb2Z0d2FyZSwgMTQoNiksIDEtMjcuIGRvaToxMC4xODYzNy9qc3MudjAxNC5pMDYNCjMuIEFsYm91a2FkZWwgS2Fzc2FtYmFyYSAoMjAyMCkuIGdncHVicjogJ2dncGxvdDInIEJhc2VkIFB1YmxpY2F0aW9uIFJlYWR5IFBsb3RzLiBSIHBhY2thZ2UgdmVyc2lvbiAwLjQuMC4gaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1nZ3B1YnINCjQuIEFyYXZpbmQgSGViYmFsaSAoMjAyMCkuIG9sc3JyOiBUb29scyBmb3IgQnVpbGRpbmcgT0xTIFJlZ3Jlc3Npb24gTW9kZWxzLiBSIHBhY2thZ2UgdmVyc2lvbiAwLjUuMy4gaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1vbHNycg0KNS4gQnJhbmRvbiBHcmVlbndlbGwsIEJyYWRsZXkgQm9laG1rZSwgSmF5IEN1bm5pbmdoYW0gYW5kIEdCTSBEZXZlbG9wZXJzICgyMDIwKS4gZ2JtOiBHZW5lcmFsaXplZCBCb29zdGVkIFJlZ3Jlc3Npb24gTW9kZWxzLiBSIHBhY2thZ2UgdmVyc2lvbiAyLjEuOC4gaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1nYm0NCjYuIEJyaWFuIFJpcGxleSAoMjAyMSkuIHRyZWU6IENsYXNzaWZpY2F0aW9uIGFuZCBSZWdyZXNzaW9uIFRyZWVzLiBSIHBhY2thZ2UgdmVyc2lvbiAxLjAtNDEuIGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9dHJlZQ0KNy4gRGF2aWQgUm9iaW5zb24sIEFsZXggSGF5ZXMgYW5kIFNpbW9uIENvdWNoICgyMDIxKS4gYnJvb206IENvbnZlcnQgU3RhdGlzdGljYWwgT2JqZWN0cyBpbnRvIFRpZHkgVGliYmxlcy4gUiBwYWNrYWdlIHZlcnNpb24gMC43LjkuIGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9YnJvb20NCjguIERvdWdsYXMgQmF0ZXMgYW5kIE1hcnRpbiBNYWVjaGxlciAoMjAxOSkuIE1hdHJpeDogU3BhcnNlIGFuZCBEZW5zZSBNYXRyaXggQ2xhc3NlcyBhbmQgTWV0aG9kcy4gUiBwYWNrYWdlIHZlcnNpb24gMS4yLTE4LiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPU1hdHJpeA0KOS4gSC4gV2lja2hhbS4gZ2dwbG90MjogRWxlZ2FudCBHcmFwaGljcyBmb3IgRGF0YSBBbmFseXNpcy4gU3ByaW5nZXItVmVybGFnIE5ldyBZb3JrLCAyMDE2Lg0KMTAuIEhhZGxleSBXaWNraGFtICgyMDE5KS4gc3RyaW5ncjogU2ltcGxlLCBDb25zaXN0ZW50IFdyYXBwZXJzIGZvciBDb21tb24gU3RyaW5nIE9wZXJhdGlvbnMuIFIgcGFja2FnZSB2ZXJzaW9uIDEuNC4wLiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPXN0cmluZ3INCjExLiBIYWRsZXkgV2lja2hhbSwgUm9tYWluIEZyYW7Dp29pcywgTGlvbmVsIEhlbnJ5IGFuZCBLaXJpbGwgTcO8bGxlciAoMjAyMSkuIGRwbHlyOiBBIEdyYW1tYXIgb2YgRGF0YSBNYW5pcHVsYXRpb24uIFIgcGFja2FnZSB2ZXJzaW9uIDEuMC43LiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWRwbHlyDQoxMi4gSmFyZWsgVHVzenluc2tpICgyMDIxKS4gY2FUb29sczogVG9vbHM6IE1vdmluZyBXaW5kb3cgU3RhdGlzdGljcywgR0lGLCBCYXNlNjQsIFJPQyBBVUMsIGV0Yy4gUiBwYWNrYWdlIHZlcnNpb24gMS4xOC4yLiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWNhVG9vbHMNCjEzLiBKZXJvbWUgRnJpZWRtYW4sIFRyZXZvciBIYXN0aWUsIFJvYmVydCBUaWJzaGlyYW5pICgyMDEwKS4gUmVndWxhcml6YXRpb24gUGF0aHMgZm9yIEdlbmVyYWxpemVkIExpbmVhciBNb2RlbHMgdmlhIENvb3JkaW5hdGUgRGVzY2VudC4gSm91cm5hbCBvZiBTdGF0aXN0aWNhbCBTb2Z0d2FyZSwgMzMoMSksIDEtMjIuIFVSTCBodHRwczovL3d3dy5qc3RhdHNvZnQub3JnL3YzMy9pMDEvLg0KMTQuIEp1bGlhIFNpbGdlLCBGYW5ueSBDaG93LCBNYXggS3VobiBhbmQgSGFkbGV5IFdpY2toYW0gKDIwMjEpLiByc2FtcGxlOiBHZW5lcmFsIFJlc2FtcGxpbmcgSW5mcmFzdHJ1Y3R1cmUuIFIgcGFja2FnZSB2ZXJzaW9uIDAuMS4xLiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPXJzYW1wbGUNCjE1LiBLcmlzdGlhbiBIb3ZkZSBMaWxhbmQsIEJqw7hybi1IZWxnZSBNZXZpayBhbmQgUm9uIFdlaHJlbnMgKDIwMjEpLiBwbHM6IFBhcnRpYWwgTGVhc3QgU3F1YXJlcyBhbmQgUHJpbmNpcGFsIENvbXBvbmVudCBSZWdyZXNzaW9uLiBSIHBhY2thZ2UgdmVyc2lvbiAyLjgtMC4gaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1wbHMNCjE2LiBNYXggS3VobiAoMjAyMSkuIGNhcmV0OiBDbGFzc2lmaWNhdGlvbiBhbmQgUmVncmVzc2lvbiBUcmFpbmluZy4gUiBwYWNrYWdlIHZlcnNpb24gNi4wLTg4LiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWNhcmV0DQoxNy4gUG9uY2UgZXQgYWwuICgyMDIxKS4gY292aWQxOS5hbmFseXRpY3M6IEFuIFIgUGFja2FnZSB0byBPYnRhaW4sIEFuYWx5emUgYW5kIFZpc3VhbGl6ZSBEYXRhIGZyb20gdGhlIENvcm9uYXZpcnVzIERpc2Vhc2UgUGFuZGVtaWMuIEpvdXJuYWwgb2YgT3BlbiBTb3VyY2UgU29mdHdhcmUsIDYoNTkpLCAyOTk1LiBodHRwczovL2RvaS5vcmcvMTAuMjExMDUvam9zcy4wMjk5NQ0KMTguIFIgQ29yZSBUZWFtICgyMDIwKS4gUjogQSBsYW5ndWFnZSBhbmQgZW52aXJvbm1lbnQgZm9yIHN0YXRpc3RpY2FsIGNvbXB1dGluZy4gUiBGb3VuZGF0aW9uIGZvciBTdGF0aXN0aWNhbCBDb21wdXRpbmcsIFZpZW5uYSwgQXVzdHJpYS4gVVJMIGh0dHBzOi8vd3d3LlItcHJvamVjdC5vcmcvLg0KMTkuIFNhcmthciwgRGVlcGF5YW4gKDIwMDgpIExhdHRpY2U6IE11bHRpdmFyaWF0ZSBEYXRhIFZpc3VhbGl6YXRpb24gd2l0aCBSLiBTcHJpbmdlciwgTmV3IFlvcmsuIElTQk4gOTc4LTAtMzg3LTc1OTY4LTUNCjIwLiBUaG9tYXMgTHVtbGV5IGJhc2VkIG9uIEZvcnRyYW4gY29kZSBieSBBbGFuIE1pbGxlciAoMjAyMCkuIGxlYXBzOiBSZWdyZXNzaW9uIFN1YnNldCBTZWxlY3Rpb24uIFIgcGFja2FnZSB2ZXJzaW9uIDMuMS4gaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1sZWFwcw0KMjEuIA0KDQojIyA2LjEgV2ViIEFwcCBDb2RlDQoNCmBgYHtyIHRzLXJlcywgZWNobyA9IFQsIG1lc3NhZ2UgPSBGLCB3YXJuaW5nID0gRiwgaW5jbHVkZSA9IFR9DQoNCnJlcXVpcmUoZ2dwbG90MikNCnJlcXVpcmUoZ2dwdWJyKQ0KDQoNCnJlc19kYXRhc2V0IDwtIGRhdGEuZnJhbWUoZGF0ZSA9IHRlc3QuZGF0JGRhdGUsIGFjdHVhbF9kZWF0aHMgPSB0ZXN0LmRhdCRuZXdfZGVhdGhzX3Rob3VzYW5kLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgZGVjaXNpb25fdHJlZV9wcmVkID0geWhhdCwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgYmFnZ2VkX3RyZWVfcHJlZCA9IHloYXQuYmFnLA0KICAgICAgICAgICAgICAgICAgICAgICAgICBib29zdGVkX3RyZWVfcHJlZCA9IHloYXQuYm9vc3QsDQogICAgICAgICAgICAgICAgICAgICAgICAgIHJmX3ByZWRpY3RlZF9jYXNlcyA9IHJmX3ByZWRpY3Rpb25zLA0KICAgICAgICAgICAgICAgICAgICAgICAgICBNTFIgPSBtbHJfcHJlZGljdGlvbnMsDQogICAgICAgICAgICAgICAgICAgICAgICAgIFJpZGdlID0gcmlkZ2VfdGVzdF9wcmVkcywNCiAgICAgICAgICAgICAgICAgICAgICAgICAgTEFTU08gPSBsYXNzb190ZXN0X3ByZWRzLA0KICAgICAgICAgICAgICAgICAgICAgICAgICBGb3J3YXJkTUxSID0gZm9yd2FyZF9wcmVkLA0KICAgICAgICAgICAgICAgICAgICAgICAgICBCYWNrd2FyZE1MUiA9IGJhY2t3YXJkX3ByZWQsDQogICAgICAgICAgICAgICAgICAgICAgICAgIGNvdW50cnkgPSB0ZXN0LmRhdCRpc29fY29kZSkNCg0KDQojIHNhdmUocmVzX2RhdGFzZXQsIGZpbGUgPSAic2hpbnkvcmZfcmVzdWx0cy5SRGF0YSIpDQojIHJlc19kYXRhc2V0DQpyZXNfZGF0YXNldA0KDQpgYGANCg0KDQpgYGB7ciB1aSwgZXZhbCA9IEZ9DQoNCmxpYnJhcnkoc2hpbnkpDQpsaWJyYXJ5KHNoaW55ZGFzaGJvYXJkKQ0KbGlicmFyeShsZWFmbGV0KQ0KbGlicmFyeShwbG90bHkpDQoNCmxvYWQoImV4dGVybmFsMS5SRGF0YSIpDQpsb2FkKCJyZl9yZXN1bHRzLlJEYXRhIikNCg0KdWkgPC0gZGFzaGJvYXJkUGFnZShza2luID0gImdyZWVuIiwNCiAgICAgICAgICAgICAgICAgICAgZGFzaGJvYXJkSGVhZGVyKHRpdGxlID0gIkNPVklELTE5IE1ldHJpY3MgYnkgQ291bnRyeSIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aXRsZVdpZHRoID0gMzAwKSwNCiAgICAgICAgICAgICAgICAgICAgZGFzaGJvYXJkU2lkZWJhcih3aWR0aCA9IDMwMCwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzaWRlYmFyTWVudSgNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1lbnVJdGVtKCJNYXAiLCB0YWJOYW1lID0gIm1hcCIsIGljb24gPSBpY29uKCJtYXAiKQ0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2VsZWN0SW5wdXQoaW5wdXRJZCA9ICJ2YXJzIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsID0gIlNlbGVjdCB0aGUgTWV0cmljIChmb3IgTWFwKSIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjaG9pY2VzID0gYyhjb2xuYW1lcyhtYXBfZHMxKVsyOjVdLCBjb2xuYW1lcyhtYXBfZHMxKVs4XSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWxlY3RlZCA9ICBjb2xuYW1lcyhtYXBfZHMxKVsyXSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWxlY3RJbnB1dChpbnB1dElkID0gInNlbGVjdGVkX2NvdW50cnkiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWwgPSAiU2VsZWN0IHRoZSBDb3VudHJ5IChmb3IgVGltZSBTZXJpZXMpIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNob2ljZXMgPSBjKGxldmVscyhyZXNfZGF0YXNldCRjb3VudHJ5KSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWxlY3RlZCA9ICJVU0EiKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZW51SXRlbSgiVGltZS1TZXJpZXMgKFRyZWVzKSIsIHRhYk5hbWUgPSAidHMtcmYiLCBpY29uID0gaWNvbigiY2hhcnQtbGluZSIpKSwNCiAgICAgICAgICANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1lbnVJdGVtKCJUaW1lLVNlcmllcyAoTGluZWFyIE1ldGhvZHMpIiwgdGFiTmFtZSA9ICJ0cy1saW4iLCBpY29uID0gaWNvbigiY2hhcnQtbGluZSIpKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1lbnVJdGVtKCJUaW1lLVNlcmllcyIsIHRhYk5hbWUgPSAidHMtZmluYWwiLCBpY29uID0gaWNvbigiY2hhcnQtbGluZSIpKQ0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgKSksDQogICAgICAgICAgICAgICAgICAgIA0KICAgICAgICAgICAgICAgICAgICBkYXNoYm9hcmRCb2R5KA0KICAgICAgICAgICAgICAgICAgICAgIA0KICAgICAgICAgICAgICAgICAgICAgIHRhYkl0ZW1zKA0KICAgICAgICAgICAgICAgICAgICAgICAgDQogICAgICAgICAgICAgICAgICAgICAgICB0YWJJdGVtKHRhYk5hbWUgPSAibWFwIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgDQogICAgICAgICAgICAgICAgICAgICAgDQogICAgICAgICAgICAgICAgICAgICAgZmx1aWRSb3coDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sdW1uKDgsIGxlYWZsZXRPdXRwdXQoIm1hcDEiLCBoZWlnaHQgPSA4MDApKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb2x1bW4oNCwgZGF0YVRhYmxlT3V0cHV0KCJ0YWJsZTEiKSkNCiAgICAgICAgICAgICAgICAgICAgICApDQogICAgICAgICAgICAgICAgICAgICAgKSwNCiAgICAgICAgICAgICAgICAgICAgICANCiAgICAgICAgICAgICAgICAgICAgdGFiSXRlbSh0YWJOYW1lID0gInRzLXJmIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBmbHVpZFJvdygNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJveChwbG90bHlPdXRwdXQoInRpbWVfc2VyaWVzX3RyZWVzIikpDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgKSksDQogICAgICAgICAgICAgICAgICAgIHRhYkl0ZW0odGFiTmFtZSA9ICJ0cy1saW4iLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZsdWlkUm93KA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYm94KHBsb3RseU91dHB1dCgidGltZV9zZXJpZXNfbGluZWFyIikpDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgKSksDQogICAgICAgICAgICAgICAgICAgIHRhYkl0ZW0odGFiTmFtZSA9ICJ0cy1maW5hbCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgZmx1aWRSb3coDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBib3gocGxvdGx5T3V0cHV0KCJ0aW1lX3Nlcmllc19maW5hbCIpKQ0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICkpDQogICAgICAgICAgICAgICAgICAgICAgKSkgICAgICAgICANCiAgICAgICAgICAgICAgICAgICAgICApDQogICAgICAgICAgICAgICAgICAgIA0KDQoNCg0KDQpgYGANCg0KDQoNCmBgYHtyIHNlcnZlciwgZXZhbCA9IEZ9DQoNCmxpYnJhcnkoc2hpbnlkYXNoYm9hcmQpDQpsaWJyYXJ5KHNoaW55KQ0KbGlicmFyeShsZWFmbGV0KQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoc3RhdHMpDQpsaWJyYXJ5KHNmKQ0KbGlicmFyeShsdWJyaWRhdGUpDQpsaWJyYXJ5KHBsb3RseSkNCg0KbG9hZCgiZXh0ZXJuYWwxLlJEYXRhIikNCmxvYWQoInJmX3Jlc3VsdHMuUkRhdGEiKQ0KDQoNCg0Kc2VydmVyIDwtIGZ1bmN0aW9uKGlucHV0LCBvdXRwdXQpIHsNCg0KICB0aW1lX3NlcmllcyA8LSByZWFjdGl2ZSh7DQogICAgZmlsdGVyKHJlc19kYXRhc2V0LCBjb3VudHJ5ID09IGlucHV0JHNlbGVjdGVkX2NvdW50cnkpDQogICAgDQogIH0pDQogIA0KICByZWFjdGl2ZV9kcyA8LSByZWFjdGl2ZSh7DQogICAgc2VsZWN0KG1hcF9kczEsIGdlb21ldHJ5LCAic2VsZWN0aW9uIiA9IGlucHV0JHZhcnMpDQogIH0pDQogIA0KICBidyA8LSByZWFjdGl2ZSh7MiAqIElRUihyZWFjdGl2ZV9kcygpJHNlbGVjdGlvbikgLyBsZW5ndGgocmVhY3RpdmVfZHMoKSRzZWxlY3Rpb24pXigxLzMpfSkNCiAgDQoNCiAgcGFsMSA8LSByZWFjdGl2ZSh7Y29sb3JCaW4oInZpcmlkaXMiLA0KICAgICAgICAgICAgICAgICAgICAgIGRvbWFpbiA9IHNlcShmcm9tID0gbWluKHJhbmdlKHJlYWN0aXZlX2RzKCkkc2VsZWN0aW9uKSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvID0gbWF4KHJhbmdlKHJlYWN0aXZlX2RzKCkkc2VsZWN0aW9uKSksIGJ5ID0gYncoKSkpfSkNCg0KICBwb3AgPC0gcmVhY3RpdmUoe3Bhc3RlKCJDb3VudHJ5OiAiLCBtYXBfZHMxJG5hbWUsICI8YnIvPiIsDQogICAgICAgICAgICAgICAgICAgICAgICAgIlZhbHVlOiAiLCByb3VuZChyZWFjdGl2ZV9kcygpJHNlbGVjdGlvbiwgMykpfSkNCiAgICAgICAgICAgICAgDQogIA0KICANCiAgb3V0cHV0JG1hcDEgPC0gcmVuZGVyTGVhZmxldCh7DQogICAgDQogICAgDQogICAgbGVhZmxldChyZWFjdGl2ZV9kcygpKSAlPiUNCiAgICAgIGFkZFByb3ZpZGVyVGlsZXMocHJvdmlkZXJzJENhcnRvREIpICU+JQ0KICAgICAgYWRkUG9seWdvbnMoZGF0YSA9IHJlYWN0aXZlX2RzKCkkZ2VvbWV0cnkgLCBmaWxsQ29sb3IgPSBwYWwxKCkocmVhY3RpdmVfZHMoKSRzZWxlY3Rpb24pLA0KICAgICAgICAgICAgICAgICAgY29sb3IgPSAiYmxhY2siLCBwb3B1cCA9IHBvcCgpKSAlPiUNCiAgICAgYWRkTGVnZW5kKHBhbCA9IHBhbDEoKSwgdmFsdWVzID0gcmVhY3RpdmVfZHMoKSRzZWxlY3Rpb24pDQogIH0pDQogIA0KICANCiAgb3V0cHV0JHRhYmxlMSA8LSByZW5kZXJEYXRhVGFibGUoew0KICAgIHJlYWN0aXZlX2RzKCkgJT4lIHNlbGVjdCgtZ2VvbWV0cnkpICU+JQ0KICAgICAgY2JpbmQoIkNvdW50cnkiID0gbWFwX2RzMSRuYW1lKQ0KICB9KQ0KICANCiAgDQogIG91dHB1dCR0aW1lX3Nlcmllc190cmVlcyA8LSByZW5kZXJQbG90bHkoew0KICAgDQogICBwIDwtIHRpbWVfc2VyaWVzKCkgJT4lIHBsb3RfbHkoeCA9IH4gZGF0ZSwgeSA9IH5yZl9wcmVkaWN0ZWRfY2FzZXMsIG5hbWUgPSAiUmFuZG9tIEZvcmVzdCIsIHR5cGUgPSAic2NhdHRlciIsIG1vZGUgPSAibGluZXMiKSAlPiUNCiAgICAgYWRkX3RyYWNlKHkgPSB+YWN0dWFsX2RlYXRocywgbmFtZSA9ICJBY3R1YWwgRGVhdGhzIiwgbW9kZSA9ICJsaW5lcyttYXJrZXJzIikgJT4lDQogICAgIGFkZF90cmFjZSh5ID0gfmRlY2lzaW9uX3RyZWVfcHJlZCwgbmFtZSA9ICJEZWNpc2lvbiBUcmVlIikgJT4lDQogICAgIGFkZF90cmFjZSh5ID0gfmJhZ2dlZF90cmVlX3ByZWQsIG5hbWUgPSAiQmFnZ2VkIFRyZWUiKSAlPiUNCiAgICAgYWRkX3RyYWNlKHkgPSB+Ym9vc3RlZF90cmVlX3ByZWQsIG5hbWUgPSAiQm9vc3RlZCBUcmVlIikgJT4lDQogICAgIGxheW91dCh0aXRsZSA9IHBhc3RlMCgiQWN0dWFsIHZzLiBQcmVkaWN0ZWQgRGFpbHkgRGVhdGhzICh0aG91c2FuZHMpIGZvciIsICIgIiwgaW5wdXQkc2VsZWN0ZWRfY291bnRyeSksDQogICAgICAgICAgICB5YXhpcyA9IGxpc3QodGl0bGUgPSAiRGVhdGhzIikpDQogICANCiAgIHJldHVybihwKQ0KICAgDQogICANCiAgICAgDQogIH0pDQogIA0KICBvdXRwdXQkdGltZV9zZXJpZXNfbGluZWFyIDwtIHJlbmRlclBsb3RseSh7DQogIA0KICBwLmFsbCA8LSB0aW1lX3NlcmllcygpICU+JSBwbG90X2x5KHggPSB+IGRhdGUsIHkgPSB+TUxSLCBuYW1lID0gIk1MUiAoUmVkdWNlZCBieSBwLXZhbHVlcykiLCB0eXBlID0gInNjYXR0ZXIiLCBtb2RlID0gImxpbmVzIikgJT4lDQogICAgYWRkX3RyYWNlKHkgPSB+YWN0dWFsX2RlYXRocywgbmFtZSA9ICJBY3R1YWwgRGVhdGhzIiwgbW9kZSA9ICJsaW5lcyttYXJrZXJzIikgJT4lDQogICAgYWRkX3RyYWNlKHkgPSB+Rm9yd2FyZE1MUiwgIk1MUiAoRm9yd2FyZCBTZWxlY3Rpb24pIikgJT4lDQogICAgYWRkX3RyYWNlKHkgPSB+QmFja3dhcmRNTFIsICJNTFIgKEJhY2t3YXJkIFNlbGVjdGlvbikiKSAlPiUNCiAgICBhZGRfdHJhY2UoeSA9IH5zMSwgbmFtZSA9ICJSaWRnZSIpICU+JQ0KICAgIGFkZF90cmFjZSh5ID0gfnMxLjEsIG5hbWUgPSAiTEFTU08iKSAlPiUNCiAgICBsYXlvdXQodGl0bGUgPSBwYXN0ZTAoIkFjdHVhbCB2cy4gUHJlZGljdGVkIERhaWx5IERlYXRocyAodGhvdXNhbmRzKSBmb3IiLCAiICIsIGlucHV0JHNlbGVjdGVkX2NvdW50cnkpLA0KICAgICAgICAgICB5YXhpcyA9IGxpc3QodGl0bGUgPSAiRGVhdGhzIikpDQogIA0KICByZXR1cm4ocC5hbGwpDQogIH0pDQogIA0KICANCiAgb3V0cHV0JHRpbWVfc2VyaWVzX2ZpbmFsIDwtIHJlbmRlclBsb3RseSh7DQogIA0KICBwLmZpbmFsIDwtIHRpbWVfc2VyaWVzKCkgJT4lIHBsb3RfbHkoeCA9IH5kYXRlLCB5ID0gfm5ld19kZWF0aHNfdGhvdXNhbmQuMTUuY29tcHMsIG5hbWUgPSAiUENSIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHR5cGUgPSAic2NhdHRlciIsIG1vZGUgPSAibGluZXMiKSAlPiUNCiAgICBhZGRfdHJhY2UoeSA9IH5hY3R1YWxfZGVhdGhzLCBuYW1lID0gIkFjdHVhbCBEZWF0aHMiLCBtb2RlID0gImxpbmVzK21hcmtlcnMiKSAlPiUNCiAgICBhZGRfdHJhY2UoeSA9IH5NTFIsIG5hbWUgPSAiTUxSIChSZWR1Y2VkIGJ5IHAtdmFsdWVzIikgJT4lDQogICAgYWRkX3RyYWNlKHkgPSB+czEuMSwgbmFtZSA9ICJMQVNTTyIpICAlPiUNCiAgICBsYXlvdXQodGl0bGUgPSBwYXN0ZTAoIkFjdHVhbCB2cy4gUHJlZGljdGVkIERhaWx5IERlYXRocyAodGhvdXNhbmRzKSBmb3IiLCAiICIsIGlucHV0JHNlbGVjdGVkX2NvdW50cnkpLA0KICAgICAgICAgICB5YXhpcyA9IGxpc3QodGl0bGUgPSAiRGVhdGhzIikpDQogIA0KICByZXR1cm4ocC5maW5hbCkNCiAgICANCiAgfSkNCiAgDQp9DQoNCg0KDQpgYGA=