QUESTION: How do you scale and center a single column in a dataframe?

Data scaling refers to the process of taking each element in a column of data from a dataframe and dividing each point by the standard deviation. Data centering refers to the process of subtracting the mean of the elements in the column from each ppoint.

I will demonstrate how to use the scale() function, which is a simple and straightforward way to center and scale data. In addition, I will show the mathematical steps that each process undergoes.

Data

We’ll use the “palmerpenguins” packages (https://allisonhorst.github.io/palmerpenguins/) to address this question. You’ll need to install the package with install.packages(“palmerpenguins”) if you have not done so before, call library(““palmerpenguins”), and load the data with data(penguins)

#install.packages("palmerpenguins")
library(palmerpenguins)
data(penguins)

Data Scaling and Centering

Subsetting the data

For this demonstration, we will use the column bill_length_mm from the penguins data set. To access this column individually, we use the $ operator. We need to do this because we need a numeric vector in order to use scale().

bill_length_mm <- penguins$bill_length_mm

Using scale() Function

The scale() function is part of base R so you don’t need to install any additional packages. To use the scale function, the 2 arguments we need to understand are the name of the vector, center, and scale. If center and scale are set equal to true, the data will be scaled and centered. If center = TRUE and scale = FALSE, the data will be centered but not scaled. If center = FALSE and scale = TRUE, the data will be scaled but not centered.

scale(bill_length_mm, center = TRUE, scale = TRUE)
##               [,1]
##   [1,] -0.88320467
##   [2,] -0.80993901
##   [3,] -0.66340769
##   [4,]          NA
##   [5,] -1.32279862
##   [6,] -0.84657184
##   [7,] -0.91983750
##   [8,] -0.86488825
##   [9,] -1.79902541
##  [10,] -0.35202864
##  [11,] -1.12131806
##  [12,] -1.12131806
##  [13,] -0.51687637
##  [14,] -0.97478674
##  [15,] -1.70744334
##  [16,] -1.34111504
##  [17,] -0.95647033
##  [18,] -0.26044656
##  [19,] -1.74407616
##  [20,]  0.38062795
##  [21,] -1.12131806
##  [22,] -1.13963448
##  [23,] -1.46932994
##  [24,] -1.04805240
##  [25,] -0.93815391
##  [26,] -1.57922843
##  [27,] -0.60845845
##  [28,] -0.62677486
##  [29,] -1.10300165
##  [30,] -0.62677486
##  [31,] -0.80993901
##  [32,] -1.23121655
##  [33,] -0.80993901
##  [34,] -0.55350920
##  [35,] -1.37774787
##  [36,] -0.86488825
##  [37,] -0.93815391
##  [38,] -0.31539581
##  [39,] -1.15795089
##  [40,] -0.75498976
##  [41,] -1.35943145
##  [42,] -0.57182562
##  [43,] -1.45101353
##  [44,]  0.03261607
##  [45,] -1.26784938
##  [46,] -0.79162259
##  [47,] -0.51687637
##  [48,] -1.17626731
##  [49,] -1.45101353
##  [50,] -0.29707939
##  [51,] -0.79162259
##  [52,] -0.70004052
##  [53,] -1.63417768
##  [54,] -0.35202864
##  [55,] -1.72575975
##  [56,] -0.46192713
##  [57,] -0.90152108
##  [58,] -0.60845845
##  [59,] -1.35943145
##  [60,] -1.15795089
##  [61,] -1.50596277
##  [62,] -0.48024354
##  [63,] -1.15795089
##  [64,] -0.51687637
##  [65,] -1.37774787
##  [66,] -0.42529430
##  [67,] -1.54259560
##  [68,] -0.51687637
##  [69,] -1.46932994
##  [70,] -0.38866147
##  [71,] -1.90892390
##  [72,] -0.77330618
##  [73,] -0.79162259
##  [74,]  0.34399512
##  [75,] -1.54259560
##  [76,] -0.20549732
##  [77,] -0.55350920
##  [78,] -1.23121655
##  [79,] -1.41438070
##  [80,] -0.33371222
##  [81,] -1.70744334
##  [82,] -0.18718091
##  [83,] -1.32279862
##  [84,] -1.61586126
##  [85,] -1.21290014
##  [86,] -0.48024354
##  [87,] -1.39606428
##  [88,] -1.28616579
##  [89,] -1.02973599
##  [90,] -0.91983750
##  [91,] -1.50596277
##  [92,] -0.51687637
##  [93,] -1.81734182
##  [94,] -0.79162259
##  [95,] -1.41438070
##  [96,] -0.57182562
##  [97,] -1.06636882
##  [98,] -0.66340769
##  [99,] -1.98218956
## [100,] -0.13223166
## [101,] -1.63417768
## [102,] -0.53519279
## [103,] -1.13963448
## [104,] -1.12131806
## [105,] -1.10300165
## [106,] -0.77330618
## [107,] -0.97478674
## [108,] -1.04805240
## [109,] -1.06636882
## [110,] -0.13223166
## [111,] -1.06636882
## [112,]  0.30736229
## [113,] -0.77330618
## [114,] -0.31539581
## [115,] -0.79162259
## [116,] -0.22381374
## [117,] -0.97478674
## [118,] -1.21290014
## [119,] -1.50596277
## [120,] -0.51687637
## [121,] -1.41438070
## [122,] -1.13963448
## [123,] -0.68172411
## [124,] -0.46192713
## [125,] -1.59754485
## [126,] -0.60845845
## [127,] -0.93815391
## [128,] -0.44361071
## [129,] -0.90152108
## [130,]  0.03261607
## [131,] -0.99310316
## [132,] -0.15054808
## [133,] -1.30448221
## [134,] -1.17626731
## [135,] -1.06636882
## [136,] -0.51687637
## [137,] -1.52427919
## [138,] -0.68172411
## [139,] -1.26784938
## [140,] -0.77330618
## [141,] -0.68172411
## [142,] -0.60845845
## [143,] -2.16535371
## [144,] -0.59014203
## [145,] -1.21290014
## [146,] -0.90152108
## [147,] -0.86488825
## [148,] -1.34111504
## [149,] -1.45101353
## [150,] -1.12131806
## [151,] -1.45101353
## [152,] -0.44361071
## [153,]  0.39894437
## [154,]  1.11328455
## [155,]  0.87517115
## [156,]  1.11328455
## [157,]  0.67369059
## [158,]  0.47221003
## [159,]  0.27072946
## [160,]  0.50884286
## [161,] -0.11391525
## [162,]  0.52715927
## [163,] -0.55350920
## [164,]  0.93012040
## [165,]  0.28904588
## [166,]  0.82022191
## [167,]  0.34399512
## [168,]  0.98506964
## [169,] -0.35202864
## [170,]  0.96675323
## [171,]  0.41726078
## [172,]  0.87517115
## [173,]  1.14991738
## [174,]  0.21578022
## [175,]  0.47221003
## [176,]  0.43557720
## [177,] -0.18718091
## [178,]  0.39894437
## [179,]  0.10588173
## [180,]  0.71032342
## [181,]  0.78358908
## [182,]  1.11328455
## [183,]  0.61874135
## [184,] -0.20549732
## [185,]  0.21578022
## [186,]  2.87166037
## [187,]  0.94843681
## [188,]  0.82022191
## [189,] -0.24213015
## [190,]  0.08756532
## [191,]  0.01429966
## [192,]  0.87517115
## [193,] -0.22381374
## [194,]  1.04001889
## [195,]  0.25241305
## [196,]  1.04001889
## [197,]  1.20486662
## [198,] -0.05896600
## [199,]  0.28904588
## [200,]  1.20486662
## [201,]  0.17914739
## [202,]  0.23409663
## [203,]  0.49052644
## [204,]  0.83853832
## [205,]  0.21578022
## [206,]  1.13160096
## [207,]  0.47221003
## [208,]  0.19746381
## [209,] -0.02233317
## [210,]  0.28904588
## [211,] -0.13223166
## [212,]  1.18655021
## [213,]  0.25241305
## [214,]  0.41726078
## [215,]  0.32567871
## [216,]  1.90089038
## [217,]  0.34399512
## [218,]  1.07665172
## [219,]  0.41726078
## [220,]  1.02170247
## [221,] -0.07728242
## [222,]  1.24149945
## [223,]  0.69200701
## [224,]  0.45389361
## [225,]  0.78358908
## [226,]  0.47221003
## [227,]  0.45389361
## [228,]  0.85685474
## [229,]  0.65537418
## [230,]  1.31476511
## [231,]  0.23409663
## [232,]  0.23409663
## [233,]  0.94843681
## [234,]  1.57119492
## [235,]  0.63705776
## [236,]  1.11328455
## [237,]  0.17914739
## [238,]  1.25981586
## [239,] -0.09559883
## [240,]  1.35139794
## [241,]  0.65537418
## [242,]  1.49792926
## [243,]  0.65537418
## [244,]  1.51624567
## [245,]  0.28904588
## [246,]  1.02170247
## [247,]  0.10588173
## [248,]  1.25981586
## [249,]  1.00338606
## [250,]  0.54547569
## [251,]  0.82022191
## [252,]  1.31476511
## [253,]  0.83853832
## [254,]  2.19395302
## [255,]  0.60042493
## [256,]  0.94843681
## [257,]  0.61874135
## [258,]  0.52715927
## [259,] -0.40697788
## [260,]  1.73604265
## [261,] -0.11391525
## [262,]  0.76527266
## [263,]  1.20486662
## [264,]  1.07665172
## [265,] -0.07728242
## [266,]  1.38803077
## [267,]  0.41726078
## [268,]  2.04742170
## [269,]  0.10588173
## [270,]  0.89348757
## [271,]  0.60042493
## [272,]          NA
## [273,]  0.52715927
## [274,]  1.18655021
## [275,]  0.23409663
## [276,]  1.09496813
## [277,]  0.47221003
## [278,]  1.11328455
## [279,]  1.35139794
## [280,]  0.27072946
## [281,]  1.60782775
## [282,]  0.23409663
## [283,]  0.39894437
## [284,]  1.35139794
## [285,]  0.38062795
## [286,]  1.35139794
## [287,]  0.49052644
## [288,]  1.42466360
## [289,]  0.56379210
## [290,]  1.47961284
## [291,]  0.36231154
## [292,]  1.20486662
## [293,]  1.16823379
## [294,]  2.57859773
## [295,]  0.45389361
## [296,]  0.96675323
## [297,] -0.27876298
## [298,]  0.83853832
## [299,] -0.13223166
## [300,]  1.22318303
## [301,]  0.50884286
## [302,]  1.47961284
## [303,]  1.20486662
## [304,]  1.02170247
## [305,]  0.45389361
## [306,]  1.62614416
## [307,] -0.55350920
## [308,]  1.88257397
## [309,] -0.26044656
## [310,]  1.29644869
## [311,]  1.05833530
## [312,]  0.65537418
## [313,]  0.67369059
## [314,]  1.47961284
## [315,]  0.54547569
## [316,]  1.75435906
## [317,]  0.93012040
## [318,]  0.41726078
## [319,]  1.27813228
## [320,]  0.28904588
## [321,]  1.27813228
## [322,]  1.25981586
## [323,]  1.13160096
## [324,]  0.93012040
## [325,]  1.38803077
## [326,]  1.07665172
## [327,]  0.76527266
## [328,]  1.36971435
## [329,]  0.32567871
## [330,]  1.24149945
## [331,] -0.26044656
## [332,]  1.51624567
## [333,]  0.23409663
## [334,]  0.98506964
## [335,]  1.14991738
## [336,]  0.30736229
## [337,]  1.46129643
## [338,]  0.52715927
## [339,]  0.32567871
## [340,]  2.17563660
## [341,] -0.07728242
## [342,]  1.04001889
## [343,]  1.25981586
## [344,]  1.14991738
## attr(,"scaled:center")
## [1] 43.92193
## attr(,"scaled:scale")
## [1] 5.459584

Data Centering Mathematically

Mathematically, data centering involves subtracting the mean from each data point. The mean() function in base R calculates the mean of the given numeric vector. The na.rm argument omits all NA values when calculating the mean, if set to true.

bill_length_mean <- mean(bill_length_mm, na.rm = TRUE)
centered <- bill_length_mm - bill_length_mean
centered
##   [1]  -4.82192982  -4.42192982  -3.62192982           NA  -7.22192982
##   [6]  -4.62192982  -5.02192982  -4.72192982  -9.82192982  -1.92192982
##  [11]  -6.12192982  -6.12192982  -2.82192982  -5.32192982  -9.32192982
##  [16]  -7.32192982  -5.22192982  -1.42192982  -9.52192982   2.07807018
##  [21]  -6.12192982  -6.22192982  -8.02192982  -5.72192982  -5.12192982
##  [26]  -8.62192982  -3.32192982  -3.42192982  -6.02192982  -3.42192982
##  [31]  -4.42192982  -6.72192982  -4.42192982  -3.02192982  -7.52192982
##  [36]  -4.72192982  -5.12192982  -1.72192982  -6.32192982  -4.12192982
##  [41]  -7.42192982  -3.12192982  -7.92192982   0.17807018  -6.92192982
##  [46]  -4.32192982  -2.82192982  -6.42192982  -7.92192982  -1.62192982
##  [51]  -4.32192982  -3.82192982  -8.92192982  -1.92192982  -9.42192982
##  [56]  -2.52192982  -4.92192982  -3.32192982  -7.42192982  -6.32192982
##  [61]  -8.22192982  -2.62192982  -6.32192982  -2.82192982  -7.52192982
##  [66]  -2.32192982  -8.42192982  -2.82192982  -8.02192982  -2.12192982
##  [71] -10.42192982  -4.22192982  -4.32192982   1.87807018  -8.42192982
##  [76]  -1.12192982  -3.02192982  -6.72192982  -7.72192982  -1.82192982
##  [81]  -9.32192982  -1.02192982  -7.22192982  -8.82192982  -6.62192982
##  [86]  -2.62192982  -7.62192982  -7.02192982  -5.62192982  -5.02192982
##  [91]  -8.22192982  -2.82192982  -9.92192982  -4.32192982  -7.72192982
##  [96]  -3.12192982  -5.82192982  -3.62192982 -10.82192982  -0.72192982
## [101]  -8.92192982  -2.92192982  -6.22192982  -6.12192982  -6.02192982
## [106]  -4.22192982  -5.32192982  -5.72192982  -5.82192982  -0.72192982
## [111]  -5.82192982   1.67807018  -4.22192982  -1.72192982  -4.32192982
## [116]  -1.22192982  -5.32192982  -6.62192982  -8.22192982  -2.82192982
## [121]  -7.72192982  -6.22192982  -3.72192982  -2.52192982  -8.72192982
## [126]  -3.32192982  -5.12192982  -2.42192982  -4.92192982   0.17807018
## [131]  -5.42192982  -0.82192982  -7.12192982  -6.42192982  -5.82192982
## [136]  -2.82192982  -8.32192982  -3.72192982  -6.92192982  -4.22192982
## [141]  -3.72192982  -3.32192982 -11.82192982  -3.22192982  -6.62192982
## [146]  -4.92192982  -4.72192982  -7.32192982  -7.92192982  -6.12192982
## [151]  -7.92192982  -2.42192982   2.17807018   6.07807018   4.77807018
## [156]   6.07807018   3.67807018   2.57807018   1.47807018   2.77807018
## [161]  -0.62192982   2.87807018  -3.02192982   5.07807018   1.57807018
## [166]   4.47807018   1.87807018   5.37807018  -1.92192982   5.27807018
## [171]   2.27807018   4.77807018   6.27807018   1.17807018   2.57807018
## [176]   2.37807018  -1.02192982   2.17807018   0.57807018   3.87807018
## [181]   4.27807018   6.07807018   3.37807018  -1.12192982   1.17807018
## [186]  15.67807018   5.17807018   4.47807018  -1.32192982   0.47807018
## [191]   0.07807018   4.77807018  -1.22192982   5.67807018   1.37807018
## [196]   5.67807018   6.57807018  -0.32192982   1.57807018   6.57807018
## [201]   0.97807018   1.27807018   2.67807018   4.57807018   1.17807018
## [206]   6.17807018   2.57807018   1.07807018  -0.12192982   1.57807018
## [211]  -0.72192982   6.47807018   1.37807018   2.27807018   1.77807018
## [216]  10.37807018   1.87807018   5.87807018   2.27807018   5.57807018
## [221]  -0.42192982   6.77807018   3.77807018   2.47807018   4.27807018
## [226]   2.57807018   2.47807018   4.67807018   3.57807018   7.17807018
## [231]   1.27807018   1.27807018   5.17807018   8.57807018   3.47807018
## [236]   6.07807018   0.97807018   6.87807018  -0.52192982   7.37807018
## [241]   3.57807018   8.17807018   3.57807018   8.27807018   1.57807018
## [246]   5.57807018   0.57807018   6.87807018   5.47807018   2.97807018
## [251]   4.47807018   7.17807018   4.57807018  11.97807018   3.27807018
## [256]   5.17807018   3.37807018   2.87807018  -2.22192982   9.47807018
## [261]  -0.62192982   4.17807018   6.57807018   5.87807018  -0.42192982
## [266]   7.57807018   2.27807018  11.17807018   0.57807018   4.87807018
## [271]   3.27807018           NA   2.87807018   6.47807018   1.27807018
## [276]   5.97807018   2.57807018   6.07807018   7.37807018   1.47807018
## [281]   8.77807018   1.27807018   2.17807018   7.37807018   2.07807018
## [286]   7.37807018   2.67807018   7.77807018   3.07807018   8.07807018
## [291]   1.97807018   6.57807018   6.37807018  14.07807018   2.47807018
## [296]   5.27807018  -1.52192982   4.57807018  -0.72192982   6.67807018
## [301]   2.77807018   8.07807018   6.57807018   5.57807018   2.47807018
## [306]   8.87807018  -3.02192982  10.27807018  -1.42192982   7.07807018
## [311]   5.77807018   3.57807018   3.67807018   8.07807018   2.97807018
## [316]   9.57807018   5.07807018   2.27807018   6.97807018   1.57807018
## [321]   6.97807018   6.87807018   6.17807018   5.07807018   7.57807018
## [326]   5.87807018   4.17807018   7.47807018   1.77807018   6.77807018
## [331]  -1.42192982   8.27807018   1.27807018   5.37807018   6.27807018
## [336]   1.67807018   7.97807018   2.87807018   1.77807018  11.87807018
## [341]  -0.42192982   5.67807018   6.87807018   6.27807018

Data Scaling Mathematically

Mathematically, data scaling involves dividing each point by the standard deviation. To calculate standard deviation, we use the sd() function. The na.rm argument omits all NA values when calculating the standard deviation, if set to true.

bill_length_sd <- sd(bill_length_mm, na.rm = TRUE)
scaled <- bill_length_mm/bill_length_sd
scaled
##   [1]  7.161718  7.234984  7.381515        NA  6.722124  7.198351  7.125085
##   [8]  7.180035  6.245897  7.692894  6.923605  6.923605  7.528046  7.070136
##  [15]  6.337480  6.703808  7.088453  7.784476  6.300847  8.425551  6.923605
##  [22]  6.905288  6.575593  6.996870  7.106769  6.465694  7.436464  7.418148
##  [29]  6.941921  7.418148  7.234984  6.813706  7.234984  7.491414  6.667175
##  [36]  7.180035  7.106769  7.729527  6.886972  7.289933  6.685491  7.473097
##  [43]  6.593909  8.077539  6.777073  7.253300  7.528046  6.868656  6.593909
##  [50]  7.747843  7.253300  7.344882  6.410745  7.692894  6.319163  7.582996
##  [57]  7.143402  7.436464  6.685491  6.886972  6.538960  7.564679  6.886972
##  [64]  7.528046  6.667175  7.619629  6.502327  7.528046  6.575593  7.656261
##  [71]  6.135999  7.271617  7.253300  8.388918  6.502327  7.839426  7.491414
##  [78]  6.813706  6.630542  7.711211  6.337480  7.857742  6.722124  6.429062
##  [85]  6.832023  7.564679  6.648859  6.758757  7.015187  7.125085  6.538960
##  [92]  7.528046  6.227581  7.253300  6.630542  7.473097  6.978554  7.381515
##  [99]  6.062733  7.912691  6.410745  7.509730  6.905288  6.923605  6.941921
## [106]  7.271617  7.070136  6.996870  6.978554  7.912691  6.978554  8.352285
## [113]  7.271617  7.729527  7.253300  7.821109  7.070136  6.832023  6.538960
## [120]  7.528046  6.630542  6.905288  7.363199  7.582996  6.447378  7.436464
## [127]  7.106769  7.601312  7.143402  8.077539  7.051820  7.894375  6.740441
## [134]  6.868656  6.978554  7.528046  6.520644  7.363199  6.777073  7.271617
## [141]  7.363199  7.436464  5.879569  7.454781  6.832023  7.143402  7.180035
## [148]  6.703808  6.593909  6.923605  6.593909  7.601312  8.443867  9.158207
## [155]  8.920094  9.158207  8.718613  8.517133  8.315652  8.553766  7.931008
## [162]  8.572082  7.491414  8.975043  8.333969  8.865145  8.388918  9.029993
## [169]  7.692894  9.011676  8.462184  8.920094  9.194840  8.260703  8.517133
## [176]  8.480500  7.857742  8.443867  8.150805  8.755246  8.828512  9.158207
## [183]  8.663664  7.839426  8.260703 10.916583  8.993360  8.865145  7.802793
## [190]  8.132488  8.059223  8.920094  7.821109  9.084942  8.297336  9.084942
## [197]  9.249789  7.985957  8.333969  9.249789  8.224070  8.279019  8.535449
## [204]  8.883461  8.260703  9.176524  8.517133  8.242387  8.022590  8.333969
## [211]  7.912691  9.231473  8.297336  8.462184  8.370602  9.945813  8.388918
## [218]  9.121575  8.462184  9.066625  7.967640  9.286422  8.736930  8.498816
## [225]  8.828512  8.517133  8.498816  8.901778  8.700297  9.359688  8.279019
## [232]  8.279019  8.993360  9.616118  8.681981  9.158207  8.224070  9.304739
## [239]  7.949324  9.396321  8.700297  9.542852  8.700297  9.561169  8.333969
## [246]  9.066625  8.150805  9.304739  9.048309  8.590399  8.865145  9.359688
## [253]  8.883461 10.238876  8.645348  8.993360  8.663664  8.572082  7.637945
## [260]  9.780966  7.931008  8.810196  9.249789  9.121575  7.967640  9.432954
## [267]  8.462184 10.092345  8.150805  8.938410  8.645348        NA  8.572082
## [274]  9.231473  8.279019  9.139891  8.517133  9.158207  9.396321  8.315652
## [281]  9.652751  8.279019  8.443867  9.396321  8.425551  9.396321  8.535449
## [288]  9.469586  8.608715  9.524536  8.407234  9.249789  9.213157 10.623521
## [295]  8.498816  9.011676  7.766160  8.883461  7.912691  9.268106  8.553766
## [302]  9.524536  9.249789  9.066625  8.498816  9.671067  7.491414  9.927497
## [309]  7.784476  9.341372  9.103258  8.700297  8.718613  9.524536  8.590399
## [316]  9.799282  8.975043  8.462184  9.323055  8.333969  9.323055  9.304739
## [323]  9.176524  8.975043  9.432954  9.121575  8.810196  9.414637  8.370602
## [330]  9.286422  7.784476  9.561169  8.279019  9.029993  9.194840  8.352285
## [337]  9.506219  8.572082  8.370602 10.220559  7.967640  9.084942  9.304739
## [344]  9.194840

Data Centering and Scaling Mathematically

In the following code chunk, I am scaling and centering the data simultaneously.

scaled_and_centered <- (bill_length_mm - bill_length_mean)/bill_length_sd
scaled_and_centered
##   [1] -0.88320467 -0.80993901 -0.66340769          NA -1.32279862 -0.84657184
##   [7] -0.91983750 -0.86488825 -1.79902541 -0.35202864 -1.12131806 -1.12131806
##  [13] -0.51687637 -0.97478674 -1.70744334 -1.34111504 -0.95647033 -0.26044656
##  [19] -1.74407616  0.38062795 -1.12131806 -1.13963448 -1.46932994 -1.04805240
##  [25] -0.93815391 -1.57922843 -0.60845845 -0.62677486 -1.10300165 -0.62677486
##  [31] -0.80993901 -1.23121655 -0.80993901 -0.55350920 -1.37774787 -0.86488825
##  [37] -0.93815391 -0.31539581 -1.15795089 -0.75498976 -1.35943145 -0.57182562
##  [43] -1.45101353  0.03261607 -1.26784938 -0.79162259 -0.51687637 -1.17626731
##  [49] -1.45101353 -0.29707939 -0.79162259 -0.70004052 -1.63417768 -0.35202864
##  [55] -1.72575975 -0.46192713 -0.90152108 -0.60845845 -1.35943145 -1.15795089
##  [61] -1.50596277 -0.48024354 -1.15795089 -0.51687637 -1.37774787 -0.42529430
##  [67] -1.54259560 -0.51687637 -1.46932994 -0.38866147 -1.90892390 -0.77330618
##  [73] -0.79162259  0.34399512 -1.54259560 -0.20549732 -0.55350920 -1.23121655
##  [79] -1.41438070 -0.33371222 -1.70744334 -0.18718091 -1.32279862 -1.61586126
##  [85] -1.21290014 -0.48024354 -1.39606428 -1.28616579 -1.02973599 -0.91983750
##  [91] -1.50596277 -0.51687637 -1.81734182 -0.79162259 -1.41438070 -0.57182562
##  [97] -1.06636882 -0.66340769 -1.98218956 -0.13223166 -1.63417768 -0.53519279
## [103] -1.13963448 -1.12131806 -1.10300165 -0.77330618 -0.97478674 -1.04805240
## [109] -1.06636882 -0.13223166 -1.06636882  0.30736229 -0.77330618 -0.31539581
## [115] -0.79162259 -0.22381374 -0.97478674 -1.21290014 -1.50596277 -0.51687637
## [121] -1.41438070 -1.13963448 -0.68172411 -0.46192713 -1.59754485 -0.60845845
## [127] -0.93815391 -0.44361071 -0.90152108  0.03261607 -0.99310316 -0.15054808
## [133] -1.30448221 -1.17626731 -1.06636882 -0.51687637 -1.52427919 -0.68172411
## [139] -1.26784938 -0.77330618 -0.68172411 -0.60845845 -2.16535371 -0.59014203
## [145] -1.21290014 -0.90152108 -0.86488825 -1.34111504 -1.45101353 -1.12131806
## [151] -1.45101353 -0.44361071  0.39894437  1.11328455  0.87517115  1.11328455
## [157]  0.67369059  0.47221003  0.27072946  0.50884286 -0.11391525  0.52715927
## [163] -0.55350920  0.93012040  0.28904588  0.82022191  0.34399512  0.98506964
## [169] -0.35202864  0.96675323  0.41726078  0.87517115  1.14991738  0.21578022
## [175]  0.47221003  0.43557720 -0.18718091  0.39894437  0.10588173  0.71032342
## [181]  0.78358908  1.11328455  0.61874135 -0.20549732  0.21578022  2.87166037
## [187]  0.94843681  0.82022191 -0.24213015  0.08756532  0.01429966  0.87517115
## [193] -0.22381374  1.04001889  0.25241305  1.04001889  1.20486662 -0.05896600
## [199]  0.28904588  1.20486662  0.17914739  0.23409663  0.49052644  0.83853832
## [205]  0.21578022  1.13160096  0.47221003  0.19746381 -0.02233317  0.28904588
## [211] -0.13223166  1.18655021  0.25241305  0.41726078  0.32567871  1.90089038
## [217]  0.34399512  1.07665172  0.41726078  1.02170247 -0.07728242  1.24149945
## [223]  0.69200701  0.45389361  0.78358908  0.47221003  0.45389361  0.85685474
## [229]  0.65537418  1.31476511  0.23409663  0.23409663  0.94843681  1.57119492
## [235]  0.63705776  1.11328455  0.17914739  1.25981586 -0.09559883  1.35139794
## [241]  0.65537418  1.49792926  0.65537418  1.51624567  0.28904588  1.02170247
## [247]  0.10588173  1.25981586  1.00338606  0.54547569  0.82022191  1.31476511
## [253]  0.83853832  2.19395302  0.60042493  0.94843681  0.61874135  0.52715927
## [259] -0.40697788  1.73604265 -0.11391525  0.76527266  1.20486662  1.07665172
## [265] -0.07728242  1.38803077  0.41726078  2.04742170  0.10588173  0.89348757
## [271]  0.60042493          NA  0.52715927  1.18655021  0.23409663  1.09496813
## [277]  0.47221003  1.11328455  1.35139794  0.27072946  1.60782775  0.23409663
## [283]  0.39894437  1.35139794  0.38062795  1.35139794  0.49052644  1.42466360
## [289]  0.56379210  1.47961284  0.36231154  1.20486662  1.16823379  2.57859773
## [295]  0.45389361  0.96675323 -0.27876298  0.83853832 -0.13223166  1.22318303
## [301]  0.50884286  1.47961284  1.20486662  1.02170247  0.45389361  1.62614416
## [307] -0.55350920  1.88257397 -0.26044656  1.29644869  1.05833530  0.65537418
## [313]  0.67369059  1.47961284  0.54547569  1.75435906  0.93012040  0.41726078
## [319]  1.27813228  0.28904588  1.27813228  1.25981586  1.13160096  0.93012040
## [325]  1.38803077  1.07665172  0.76527266  1.36971435  0.32567871  1.24149945
## [331] -0.26044656  1.51624567  0.23409663  0.98506964  1.14991738  0.30736229
## [337]  1.46129643  0.52715927  0.32567871  2.17563660 -0.07728242  1.04001889
## [343]  1.25981586  1.14991738

Additional Reading

For more information on this topic, see https://scientistcafe.com/ids/centering-and-scaling.html

Keywords

  1. scale()
  2. mean()
  3. sd()
  4. data centering
  5. data scaling
  6. palmerspenguins