Differences in students’ academic achievement is an essential phenomenon for sociological research to understand social stratification. This blog is going to analyze if there is any relationship between students’ academic achievement and their inherent characteristics such as parents’ economic condition, education, social capital, and race. To understand the pattern, randomly selected kindergarten student’s academic performance in math and reading and their parents’ socio-economical standing and race is going to be analyzed through one way ANOVA.

setwd("C:/Users/malia/OneDrive/Desktop/710 Memos")
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(foreign) # reads older version of Stata dataset
library(ggplot2) #creating plots and graphs
library(descr) # descriptive stats
library(lattice) # histograms for frequncy distribution
library(magrittr) # pipe operator
library(tidyverse) #importing, cleaning, re-coding, and analyzing data
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble  3.1.4     v purrr   0.3.4
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x tidyr::extract()   masks magrittr::extract()
## x dplyr::filter()    masks stats::filter()
## x dplyr::lag()       masks stats::lag()
## x purrr::set_names() masks magrittr::set_names()
library(sjmisc)
## 
## Attaching package: 'sjmisc'
## The following object is masked from 'package:purrr':
## 
##     is_empty
## The following object is masked from 'package:tidyr':
## 
##     replace_na
## The following object is masked from 'package:tibble':
## 
##     add_case
## The following object is masked from 'package:descr':
## 
##     descr
library(haven) # Allows read.dta, which does not translate STATA data when uploading to R
library(expss) # Allows for more creative ways to make tables
## 
## Use 'expss_output_rnotebook()' to display tables inside R Notebooks.
##  To return to the console output, use 'expss_output_default()'.
## 
## Attaching package: 'expss'
## The following objects are masked from 'package:haven':
## 
##     is.labelled, read_spss
## The following objects are masked from 'package:sjmisc':
## 
##     add_columns, add_rows, rec
## The following objects are masked from 'package:stringr':
## 
##     fixed, regex
## The following objects are masked from 'package:purrr':
## 
##     keep, modify, modify_if, transpose, when
## The following objects are masked from 'package:tidyr':
## 
##     contains, nest
## The following objects are masked from 'package:magrittr':
## 
##     and, equals, not, or
## The following object is masked from 'package:ggplot2':
## 
##     vars
## The following objects are masked from 'package:dplyr':
## 
##     between, compute, contains, first, last, na_if, recode, vars
library(Hmisc) # Calculates p-values for correlation coefficients
## Loading required package: survival
## Loading required package: Formula
## Registered S3 methods overwritten by 'Hmisc':
##   method                 from 
##   [.labelled             expss
##   print.labelled         expss
##   as.data.frame.labelled expss
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:sjmisc':
## 
##     %nin%
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
school1<-read_dta("C:\\Users\\malia\\Downloads\\school1.dta")
school2<-read_dta("C:\\Users\\malia\\Downloads\\school2.dta")
childoutcomes1<-read_dta("C:\\Users\\malia\\Downloads\\childoutcomes1.dta")
schools<-rbind(school1,school2)
schools.data<- merge(schools,childoutcomes1 ,by="CHILDID", all= TRUE)
one.way <- aov(reading ~ race, data = schools.data)
summary(one.way)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## race          1    262  262.36   2.846  0.092 .
## Residuals   740  68212   92.18                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 250 observations deleted due to missingness
## Aggregate function: calculating means by group

aggregate(x = schools.data$reading,                      
          by = list(schools.data$race),               
          FUN = mean,                          
          na.rm=TRUE)   
##   Group.1        x
## 1       1 36.49492
## 2       2 34.02132
## 3       3 32.03534
## 4       4 41.01810
one.way <- aov(WKSESL ~ math4, data = schools.data)
summary(one.way)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## math4         1   69.7   69.65   125.9 <2e-16 ***
## Residuals   939  519.7    0.55                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 51 observations deleted due to missingness
## Aggregate function: calculating means by group

aggregate(x = schools.data$WKSESL,                      
          by = list(schools.data$math4),               
          FUN = mean,                          
          na.rm=TRUE) 
##   Group.1          x
## 1       1 -0.3881132
## 2       2 -0.0580000
## 3       3  0.2586580
## 4       4  0.3276923
schools.data%>%
  select(race,math4)
##     race math4
## 1      1     2
## 2      1     1
## 3      1     4
## 4      1     4
## 5     NA     2
## 6      1     4
## 7      4     4
## 8      1     1
## 9      1     2
## 10     1     4
## 11     1     4
## 12     1     3
## 13     1     3
## 14     1     1
## 15    NA     2
## 16     1     1
## 17     1     2
## 18     1     4
## 19     1     4
## 20     1     2
## 21     1     4
## 22     1     1
## 23     1     1
## 24     1     1
## 25     1     1
## 26     1     2
## 27    NA     4
## 28     1     3
## 29    NA     2
## 30     1     1
## 31    NA     3
## 32    NA     4
## 33     1     4
## 34     1     2
## 35     1     3
## 36     1     4
## 37     1     4
## 38     1     2
## 39     1     3
## 40     1     2
## 41     1     1
## 42     1     4
## 43     1     1
## 44     1     2
## 45     2     1
## 46     3     2
## 47     2     4
## 48     1     1
## 49     1     1
## 50     2     3
## 51     2     1
## 52     1     2
## 53     3     1
## 54     2     4
## 55     1     4
## 56     1     4
## 57     1     2
## 58     3     3
## 59     1     3
## 60     1     3
## 61     3     3
## 62     3     4
## 63     3     1
## 64     2     1
## 65     1     4
## 66     1     4
## 67     1     1
## 68     1     2
## 69     3     2
## 70     1     1
## 71     1     3
## 72     1     3
## 73    NA     4
## 74     1     4
## 75     1     1
## 76     4     4
## 77    NA     3
## 78     1     3
## 79     1     4
## 80     1     2
## 81     1     4
## 82     1     4
## 83     1     4
## 84     1     2
## 85     1     4
## 86     1     4
## 87     4     2
## 88     1     4
## 89     1     3
## 90     1     3
## 91     3     1
## 92     1     2
## 93    NA     1
## 94    NA     2
## 95    NA     4
## 96     4     1
## 97     1     1
## 98     1     1
## 99     1     4
## 100    1     4
## 101    1     2
## 102    1     3
## 103    3     2
## 104    1     3
## 105    1     1
## 106    3     1
## 107    2     3
## 108    2     2
## 109    1     3
## 110    1     2
## 111    1     4
## 112    1     2
## 113    1     1
## 114   NA     2
## 115    1     3
## 116    1     4
## 117    1     4
## 118    3     2
## 119    1     4
## 120    2     3
## 121   NA     1
## 122    3     2
## 123    3     1
## 124    1     4
## 125    1     4
## 126    1     4
## 127    1     4
## 128    1     4
## 129    1     3
## 130    1     2
## 131    1     3
## 132    3     1
## 133    2     2
## 134   NA     1
## 135    1     3
## 136   NA     3
## 137    1     3
## 138    1     4
## 139    1     2
## 140   NA     4
## 141    3     1
## 142    2     3
## 143   NA     1
## 144    4     4
## 145    2     1
## 146    2     1
## 147    3     1
## 148    2     1
## 149    3     1
## 150    3     1
## 151    1     1
## 152   NA     1
## 153   NA     4
## 154    2     1
## 155    2     1
## 156    4     3
## 157    3     2
## 158   NA     1
## 159   NA     1
## 160    3     1
## 161    2     2
## 162    1     4
## 163    1     2
## 164    1     2
## 165    1     2
## 166    3     1
## 167    4     2
## 168    2     3
## 169    2     4
## 170    2     2
## 171    2     1
## 172   NA     3
## 173    3     2
## 174    1     4
## 175    3     3
## 176    2     1
## 177    2     2
## 178   NA     1
## 179   NA     1
## 180    4     1
## 181    1     4
## 182   NA     1
## 183    1     2
## 184    2     2
## 185    1     4
## 186    1     4
## 187    1     2
## 188    1     1
## 189    1     4
## 190    1     4
## 191    1     4
## 192    1     1
## 193    1     1
## 194   NA     4
## 195   NA     1
## 196   NA     3
## 197    3     4
## 198    1     3
## 199   NA     2
## 200   NA     3
## 201   NA     3
## 202    1     3
## 203    3     2
## 204   NA     1
## 205   NA     1
## 206    1     3
## 207   NA     2
## 208    1     1
## 209    1     2
## 210    2     2
## 211    3     3
## 212    2     1
## 213    2     1
## 214    4     4
## 215    1     3
## 216    3     2
## 217    1     4
## 218   NA     1
## 219    3     3
## 220    3     2
## 221    1     3
## 222    3     2
## 223    1     4
## 224    1     4
## 225    1     2
## 226    2     4
## 227    2     3
## 228   NA     2
## 229    1     3
## 230    1     3
## 231    1     4
## 232   NA     1
## 233   NA     1
## 234    2     4
## 235    1     4
## 236    1     2
## 237    2     2
## 238   NA     2
## 239    2     1
## 240    1     2
## 241    1     3
## 242    1     2
## 243    1     3
## 244    1     4
## 245    1     4
## 246    1     4
## 247    1     3
## 248    1     3
## 249    1     3
## 250    1     3
## 251    1     4
## 252    2     2
## 253    1     1
## 254   NA     2
## 255    1     4
## 256    1     3
## 257    1     4
## 258    3     1
## 259    1     3
## 260    1     3
## 261    1     4
## 262    1     4
## 263    1     4
## 264    1     2
## 265    1     3
## 266    1     3
## 267   NA     4
## 268   NA     2
## 269    2     2
## 270    1     4
## 271   NA     1
## 272    2     1
## 273    1     2
## 274    1     3
## 275    1     3
## 276    1     4
## 277    1     4
## 278    1     4
## 279    1     3
## 280    1     1
## 281    1     4
## 282    1     4
## 283    1     2
## 284   NA     1
## 285    1     1
## 286    3     1
## 287    1     1
## 288   NA     3
## 289   NA     3
## 290    1     3
## 291    1     3
## 292    1     4
## 293    1     3
## 294    1     2
## 295    1     1
## 296    1     1
## 297    1     3
## 298    2     1
## 299    1     3
## 300   NA     1
## 301   NA     4
## 302    1     3
## 303    1     2
## 304    1     4
## 305    1     4
## 306    1     1
## 307    1     2
## 308    1     4
## 309    1     1
## 310    1     4
## 311    1     2
## 312    1     2
## 313    1     1
## 314    1     2
## 315    1     4
## 316    2     2
## 317    2     1
## 318    2     1
## 319   NA     1
## 320    2     4
## 321   NA     4
## 322    1     1
## 323    1     2
## 324    1     2
## 325    2     3
## 326    1     4
## 327    1     3
## 328   NA     1
## 329    1     3
## 330    2     2
## 331    4     4
## 332    1     3
## 333    1     1
## 334    1     4
## 335    1     3
## 336    1     3
## 337    1     2
## 338    1     4
## 339    3     1
## 340    1     3
## 341    1     4
## 342    1     2
## 343    3     2
## 344    1     4
## 345    1     4
## 346    3     3
## 347    1     3
## 348    1     3
## 349    1     2
## 350    1     2
## 351    1     3
## 352   NA     3
## 353    1     4
## 354    1     4
## 355    1     2
## 356    2     1
## 357    1     2
## 358    1     2
## 359   NA     4
## 360    1     4
## 361    2     4
## 362    2     1
## 363    1     1
## 364    1     2
## 365    2     2
## 366    1     3
## 367    1     4
## 368    1     3
## 369    1     4
## 370    1     3
## 371    1     4
## 372    1     2
## 373    1     2
## 374    1     3
## 375    4     4
## 376    4     4
## 377    1     4
## 378    1     3
## 379    1     2
## 380    1     1
## 381    1     2
## 382    1     3
## 383    1     1
## 384   NA     2
## 385   NA     1
## 386    1     2
## 387    3     3
## 388    1     2
## 389    1     4
## 390    1     2
## 391    1     1
## 392    4     1
## 393    1     4
## 394    1     2
## 395   NA     4
## 396   NA     3
## 397    1     2
## 398    1     1
## 399   NA     1
## 400    1     3
## 401   NA     4
## 402    1     2
## 403    1     2
## 404    1     1
## 405    1     1
## 406    4     1
## 407    1     4
## 408    3     1
## 409    1     2
## 410   NA     2
## 411   NA     1
## 412    1     3
## 413    1     4
## 414    1     4
## 415    1     3
## 416    1     4
## 417    1     2
## 418   NA     1
## 419    1     2
## 420    4     4
## 421    1     3
## 422    1     3
## 423    1     4
## 424   NA     4
## 425    1     1
## 426    1     2
## 427    1     4
## 428   NA     1
## 429   NA     1
## 430    1     3
## 431    1     3
## 432    1     4
## 433    1     4
## 434    1     3
## 435    1     3
## 436    2     1
## 437   NA     1
## 438    1     3
## 439    1     2
## 440   NA     4
## 441   NA     1
## 442    1     1
## 443    1     3
## 444   NA     1
## 445    1     3
## 446   NA     1
## 447    1     2
## 448    1     2
## 449    1     2
## 450    1     4
## 451    1     2
## 452    1     3
## 453    1     4
## 454    1     4
## 455   NA     4
## 456    1     3
## 457    1     4
## 458    3     4
## 459    1     2
## 460    1     3
## 461    1     3
## 462    1     3
## 463    1     3
## 464    2     3
## 465    2     4
## 466    1     2
## 467    1     4
## 468    1     3
## 469    1     3
## 470    1     3
## 471    1     3
## 472    1     3
## 473    2     1
## 474    3     4
## 475    2     4
## 476    3     1
## 477    2     4
## 478    1     4
## 479    1     3
## 480    1     3
## 481    1     4
## 482    1     4
## 483    1     3
## 484    4     2
## 485    1     2
## 486    1     3
## 487    1     3
## 488    4     1
## 489    1     1
## 490   NA     2
## 491    1     3
## 492    4     4
## 493    1     4
## 494    1     4
## 495    1     3
## 496    1     1
## 497    1     1
## 498    1     1
## 499    1     2
## 500    1     3
## 501    3     2
## 502    4     2
## 503    1     2
## 504    1     4
## 505    1     4
## 506   NA     4
## 507   NA     4
## 508   NA     3
## 509    4     4
## 510    1     3
## 511    1     1
## 512    1     1
## 513   NA     3
## 514   NA     4
## 515   NA     3
## 516    1     3
## 517    1     2
## 518    1     4
## 519    1     2
## 520    1     4
## 521    1     2
## 522    1     2
## 523    1     3
## 524    1     3
## 525    1     2
## 526    1     4
## 527   NA     3
## 528   NA     3
## 529   NA     4
## 530    4     4
## 531    3     1
## 532    3     3
## 533    2     1
## 534    2     1
## 535   NA     1
## 536   NA     1
## 537   NA     1
## 538    2     2
## 539    2     1
## 540    2     1
## 541    1     4
## 542    1     4
## 543    1     4
## 544   NA     1
## 545    2     4
## 546   NA     3
## 547    2     2
## 548    1     1
## 549    3     2
## 550    3     1
## 551    3     1
## 552    1     1
## 553   NA     4
## 554    1     4
## 555    1     4
## 556    2     4
## 557    1     1
## 558    1     1
## 559    2     2
## 560   NA     3
## 561   NA     3
## 562    1     4
## 563    1     3
## 564    1     2
## 565    1     2
## 566    1     3
## 567    1     3
## 568    4     3
## 569    1     4
## 570    1     4
## 571    1     3
## 572    1     1
## 573    1     1
## 574    1     3
## 575    1     1
## 576   NA     2
## 577    1     4
## 578    1     2
## 579    3     4
## 580    1     4
## 581   NA     1
## 582    4     1
## 583    1     3
## 584   NA     1
## 585   NA     2
## 586    1     4
## 587    1     4
## 588    1     2
## 589    1     2
## 590    1     2
## 591    1     2
## 592   NA     2
## 593    1     2
## 594    1     4
## 595    1     1
## 596    1     4
## 597    1     4
## 598    1     2
## 599    1     3
## 600    1     2
## 601    1     1
## 602    1     1
## 603    2     4
## 604   NA     4
## 605    1     2
## 606    4     3
## 607   NA     4
## 608   NA     4
## 609    1     3
## 610    1     4
## 611   NA     4
## 612    1     2
## 613    1     4
## 614    4     3
## 615    2     1
## 616    1     3
## 617    1     2
## 618    1     4
## 619    1     1
## 620    1     1
## 621    4     1
## 622   NA     1
## 623    4     1
## 624    2     3
## 625    1     3
## 626    1     4
## 627    1     2
## 628   NA     3
## 629    1     4
## 630    1     2
## 631    1     3
## 632   NA     2
## 633    1     2
## 634    1     3
## 635    1     4
## 636    1     4
## 637    1     3
## 638    1     1
## 639    1     4
## 640    1     4
## 641    1     2
## 642    1     1
## 643    1     4
## 644    1     3
## 645    1     3
## 646    1     4
## 647    1     2
## 648    1     4
## 649   NA     4
## 650    1     1
## 651    1     4
## 652    1     1
## 653    1     4
## 654   NA     1
## 655    1     4
## 656    1     2
## 657    1     3
## 658    1     2
## 659    1     4
## 660    1     2
## 661    1     3
## 662   NA     2
## 663    1     4
## 664    1     3
## 665   NA     2
## 666    1     3
## 667    1     3
## 668    2     2
## 669    2     2
## 670    1     2
## 671    1     4
## 672    1     4
## 673    1     4
## 674    1     3
## 675    1     2
## 676    1     1
## 677    1     3
## 678    1     2
## 679    2     2
## 680    1     4
## 681    1     3
## 682    1     2
## 683    1     2
## 684    1     4
## 685    1     1
## 686    1     3
## 687    1     4
## 688    1     4
## 689   NA     4
## 690   NA     3
## 691    1     4
## 692    1     2
## 693    1     4
## 694    1     2
## 695    1     4
## 696    1     1
## 697    1     4
## 698    1     4
## 699    1     3
## 700    1     1
## 701    1     4
## 702    1     3
## 703    2     1
## 704    1     4
## 705    1     3
## 706    2     3
## 707    1     4
## 708    1     2
## 709    1     4
## 710    1     4
## 711    1     3
## 712    1     4
## 713   NA     3
## 714   NA     3
## 715   NA     4
## 716   NA     3
## 717    1     4
## 718    1     3
## 719    1     1
## 720    3     3
## 721   NA     4
## 722   NA     3
## 723   NA     1
## 724   NA     4
## 725    1     1
## 726    1     3
## 727   NA     2
## 728   NA     1
## 729   NA     1
## 730   NA     1
## 731   NA     1
## 732   NA     1
## 733   NA     1
## 734   NA     2
## 735   NA     1
## 736   NA     3
## 737   NA     3
## 738   NA     1
## 739   NA     3
## 740   NA     4
## 741   NA     1
## 742   NA     2
## 743   NA     2
## 744    1     2
## 745   NA     3
## 746   NA     2
## 747    1     3
## 748    3     1
## 749   NA     4
## 750    1     2
## 751    1     2
## 752   NA     2
## 753   NA     2
## 754    2     2
## 755   NA     2
## 756    1     3
## 757   NA     4
## 758    1     2
## 759   NA     3
## 760   NA     1
## 761    1     2
## 762    2     2
## 763   NA     2
## 764    3     1
## 765    1     3
## 766    1     2
## 767    1     1
## 768    2     1
## 769    1     3
## 770    1     4
## 771    2     1
## 772    2     1
## 773    1     2
## 774    1     1
## 775    1     4
## 776    1     3
## 777    1     3
## 778   NA     4
## 779   NA     3
## 780   NA     1
## 781   NA     1
## 782   NA     1
## 783   NA     4
## 784    1     3
## 785    1     1
## 786   NA     2
## 787   NA     2
## 788    4     4
## 789    1     4
## 790    3     2
## 791    3     1
## 792   NA     1
## 793   NA     1
## 794   NA     4
## 795   NA     4
## 796    4     4
## 797    1     4
## 798    1     4
## 799   NA     4
## 800    1     4
## 801    2     1
## 802    2     3
## 803    1     3
## 804    3     1
## 805   NA     1
## 806    1     2
## 807    1     2
## 808    1     2
## 809   NA     1
## 810    2     2
## 811    2     4
## 812    1     3
## 813   NA     4
## 814    1     4
## 815    1     4
## 816    1     4
## 817    3     2
## 818    2     1
## 819    4     1
## 820    2     1
## 821    2     2
## 822    2     2
## 823    1     1
## 824    1     2
## 825    1     3
## 826    1     2
## 827    1     3
## 828    1     3
## 829    1     4
## 830    2     2
## 831    1     2
## 832    1     1
## 833    1     2
## 834   NA     2
## 835   NA     4
## 836    1     4
## 837    1     2
## 838   NA     2
## 839   NA     4
## 840   NA     4
## 841   NA     1
## 842   NA     1
## 843   NA     2
## 844   NA     2
## 845   NA     4
## 846   NA     2
## 847   NA     1
## 848   NA     1
## 849   NA     1
## 850    1     4
## 851    1     4
## 852    1     3
## 853   NA     1
## 854    2     4
## 855    2     4
## 856    2     3
## 857    1     4
## 858    1     3
## 859    1     2
## 860   NA     3
## 861    1     4
## 862    1     3
## 863   NA     1
## 864    2     3
## 865    2     3
## 866    2     1
## 867    1     4
## 868    1     4
## 869    2     2
## 870    1     4
## 871    1     4
## 872    2     3
## 873   NA     3
## 874    1     3
## 875    4     1
## 876    1     3
## 877    1     3
## 878    1     2
## 879    1     4
## 880    2     3
## 881    2     4
## 882    1     2
## 883    2     3
## 884    2     2
## 885    2     3
## 886    1     4
## 887    2     4
## 888    2     1
## 889    1     2
## 890   NA     1
## 891    3     1
## 892    1     2
## 893    1     4
## 894    1     4
## 895   NA     4
## 896    1     4
## 897    1     2
## 898    2     2
## 899    1     3
## 900    1     3
## 901    1     3
## 902    3     1
## 903    1     4
## 904    1     3
## 905    1     3
## 906    2     1
## 907   NA     1
## 908    1     3
## 909    1     2
## 910   NA     4
## 911    1     4
## 912   NA     2
## 913    3     1
## 914    1     1
## 915    1     4
## 916    1     2
## 917    1     2
## 918    3     1
## 919    2     2
## 920    3     4
## 921    1     3
## 922    1     4
## 923    2     4
## 924    1     2
## 925   NA     3
## 926    1     2
## 927    3     2
## 928    1     3
## 929    3     3
## 930    2     2
## 931    2     1
## 932    1     3
## 933    4     3
## 934   NA     3
## 935    1     4
## 936    1     4
## 937    1     3
## 938   NA     4
## 939    2     2
## 940    1     2
## 941    1     1
## 942    4     4
## 943   NA     1
## 944    1     4
## 945   NA     3
## 946   NA     3
## 947   NA     4
## 948   NA     1
## 949    4     2
## 950    2     4
## 951   NA     2
## 952   NA     2
## 953    3     1
## 954    3     3
## 955    1     4
## 956    3     3
## 957    3     2
## 958    3     2
## 959    3     1
## 960    3     2
## 961    2     1
## 962    2     1
## 963    2     4
## 964    3     3
## 965   NA     2
## 966    3     4
## 967    3     3
## 968    3     4
## 969    3     1
## 970    2     4
## 971   NA     4
## 972    3     1
## 973    1     4
## 974    1     4
## 975    1     4
## 976    1     3
## 977    1     3
## 978   NA     2
## 979    1     4
## 980    1     4
## 981    2     3
## 982    1     2
## 983   NA     1
## 984   NA     1
## 985   NA     1
## 986   NA     2
## 987   NA     1
## 988   NA     2
## 989    2     1
## 990    1     4
## 991   NA     3
## 992   NA     3
  crosstab(schools.data$race,schools.data$math4,prop.r = T, chisq = T, dnn=c("Race", "Math Score"))

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |             Row Percent | 
## |-------------------------|
## 
## ==============================================
##          Math Score
## Race         1       2       3       4   Total
## ----------------------------------------------
## 1          80     136     157     197     570 
##          14.0%   23.9%   27.5%   34.6%   72.2%
## ----------------------------------------------
## 2          40      31      19      22     112 
##          35.7%   27.7%   17.0%   19.6%   14.2%
## ----------------------------------------------
## 3          32      20      14       8      74 
##          43.2%   27.0%   18.9%   10.8%    9.4%
## ----------------------------------------------
## 4          10       5       5      14      34 
##          29.4%   14.7%   14.7%   41.2%    4.3%
## ----------------------------------------------
## Total     162     192     195     241     790 
## ==============================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 71.37265      d.f. = 9      p = 8.19e-12 
## 
##         Minimum expected frequency: 6.972152
correlate<-data.frame(schools.data$WKSESL,schools.data$reading)
correlate2<-rcorr(as.matrix(correlate))
correlate2
##                      schools.data.WKSESL schools.data.reading
## schools.data.WKSESL                  1.0                  0.4
## schools.data.reading                 0.4                  1.0
## 
## n
##                      schools.data.WKSESL schools.data.reading
## schools.data.WKSESL                  941                  809
## schools.data.reading                 809                  842
## 
## P
##                      schools.data.WKSESL schools.data.reading
## schools.data.WKSESL                       0                  
## schools.data.reading  0

In the United States, discrimination based on race is still persistent, which plays a key role in income disparities. Moreover, students who belong to a privileged background are more likely to perform better academically than their peers who have socio-economically disadvantaged families.