library(readxl)
RBD <- read_excel("C:/Users/acer/Documents/4th year/Expiremental Design/RCBD/Yield.xlsx", 
    col_types = c("text", "text", "numeric"))
View(RBD)

Ho:African tall=Co-11=FS-1=K-7=Co-24, Ha: Atleast one variety is different

model <- lm(RBD$Yield~ RBD$Replication+RBD$Variety)
anova <-anova(model)
anova
## Analysis of Variance Table
## 
## Response: RBD$Yield
##                 Df Sum Sq Mean Sq F value  Pr(>F)  
## RBD$Replication  3  80.80  26.934  0.9205 0.46033  
## RBD$Variety      4 520.53 130.133  4.4476 0.01958 *
## Residuals       12 351.11  29.259                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can say that the varieties are significantly different from each other at 0.05 level of significance.

par(mfrow=c(1,2))
plot(model, which=1)
plot(model, which=2)

library(agricolae)
DNMRT <- duncan.test(RBD$Yield, RBD$Variety, 12, 29.259)
DNMRT
## $statistics
##   MSerror Df   Mean       CV
##    29.259 12 31.275 17.29547
## 
## $parameters
##     test      name.t ntr alpha
##   Duncan RBD$Variety   5  0.05
## 
## $duncan
##      Table CriticalRange
## 2 3.081307      8.333639
## 3 3.225244      8.722927
## 4 3.312453      8.958792
## 5 3.370172      9.114897
## 
## $means
##              RBD$Yield      std r  Min  Max    Q25   Q50    Q75
## African tall    30.450 7.403378 4 22.9 39.1 25.150 29.90 35.200
## Co-11           31.200 2.762849 4 29.5 35.3 29.575 30.00 31.625
## Co-24           25.550 5.674798 4 20.4 31.8 20.925 25.00 29.625
## FS-1            28.475 3.155287 4 24.4 32.1 27.550 28.70 29.625
## K-7             40.700 6.274286 4 32.1 47.0 38.700 41.85 43.850
## 
## $comparison
## NULL
## 
## $groups
##              RBD$Yield groups
## K-7             40.700      a
## Co-11           31.200      b
## African tall    30.450      b
## FS-1            28.475      b
## Co-24           25.550      b
## 
## attr(,"class")
## [1] "group"

As we can see, K-7 is different from the rest of the varities. The Co-11, African tall, FS-1, and Co-24 are not significantly different from each other, they are same.

LSD <-LSD.test(RBD$Yield,RBD$Variety,12,29.259)
LSD
## $statistics
##   MSerror Df   Mean       CV  t.value      LSD
##    29.259 12 31.275 17.29547 2.178813 8.333639
## 
## $parameters
##         test p.ajusted      name.t ntr alpha
##   Fisher-LSD      none RBD$Variety   5  0.05
## 
## $means
##              RBD$Yield      std r      LCL      UCL  Min  Max    Q25   Q50
## African tall    30.450 7.403378 4 24.55723 36.34277 22.9 39.1 25.150 29.90
## Co-11           31.200 2.762849 4 25.30723 37.09277 29.5 35.3 29.575 30.00
## Co-24           25.550 5.674798 4 19.65723 31.44277 20.4 31.8 20.925 25.00
## FS-1            28.475 3.155287 4 22.58223 34.36777 24.4 32.1 27.550 28.70
## K-7             40.700 6.274286 4 34.80723 46.59277 32.1 47.0 38.700 41.85
##                 Q75
## African tall 35.200
## Co-11        31.625
## Co-24        29.625
## FS-1         29.625
## K-7          43.850
## 
## $comparison
## NULL
## 
## $groups
##              RBD$Yield groups
## K-7             40.700      a
## Co-11           31.200      b
## African tall    30.450      b
## FS-1            28.475      b
## Co-24           25.550      b
## 
## attr(,"class")
## [1] "group"
sink("RBD.txt")
print(anova)
## Analysis of Variance Table
## 
## Response: RBD$Yield
##                 Df Sum Sq Mean Sq F value  Pr(>F)  
## RBD$Replication  3  80.80  26.934  0.9205 0.46033  
## RBD$Variety      4 520.53 130.133  4.4476 0.01958 *
## Residuals       12 351.11  29.259                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print("DNMRT Result")
## [1] "DNMRT Result"
print(DNMRT$statistics)
##   MSerror Df   Mean       CV
##    29.259 12 31.275 17.29547
print(DNMRT$groups)
##              RBD$Yield groups
## K-7             40.700      a
## Co-11           31.200      b
## African tall    30.450      b
## FS-1            28.475      b
## Co-24           25.550      b
print("LSD Result")
## [1] "LSD Result"
print(LSD$statistics)
##   MSerror Df   Mean       CV  t.value      LSD
##    29.259 12 31.275 17.29547 2.178813 8.333639
print(LSD$groups)
##              RBD$Yield groups
## K-7             40.700      a
## Co-11           31.200      b
## African tall    30.450      b
## FS-1            28.475      b
## Co-24           25.550      b
sink()