library(readxl)
RBD <- read_excel("C:/Users/acer/Documents/4th year/Expiremental Design/RCBD/Yield.xlsx",
col_types = c("text", "text", "numeric"))
View(RBD)
Ho:African tall=Co-11=FS-1=K-7=Co-24, Ha: Atleast one variety is different
model <- lm(RBD$Yield~ RBD$Replication+RBD$Variety)
anova <-anova(model)
anova
## Analysis of Variance Table
##
## Response: RBD$Yield
## Df Sum Sq Mean Sq F value Pr(>F)
## RBD$Replication 3 80.80 26.934 0.9205 0.46033
## RBD$Variety 4 520.53 130.133 4.4476 0.01958 *
## Residuals 12 351.11 29.259
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
We can say that the varieties are significantly different from each other at 0.05 level of significance.
par(mfrow=c(1,2))
plot(model, which=1)
plot(model, which=2)
library(agricolae)
DNMRT <- duncan.test(RBD$Yield, RBD$Variety, 12, 29.259)
DNMRT
## $statistics
## MSerror Df Mean CV
## 29.259 12 31.275 17.29547
##
## $parameters
## test name.t ntr alpha
## Duncan RBD$Variety 5 0.05
##
## $duncan
## Table CriticalRange
## 2 3.081307 8.333639
## 3 3.225244 8.722927
## 4 3.312453 8.958792
## 5 3.370172 9.114897
##
## $means
## RBD$Yield std r Min Max Q25 Q50 Q75
## African tall 30.450 7.403378 4 22.9 39.1 25.150 29.90 35.200
## Co-11 31.200 2.762849 4 29.5 35.3 29.575 30.00 31.625
## Co-24 25.550 5.674798 4 20.4 31.8 20.925 25.00 29.625
## FS-1 28.475 3.155287 4 24.4 32.1 27.550 28.70 29.625
## K-7 40.700 6.274286 4 32.1 47.0 38.700 41.85 43.850
##
## $comparison
## NULL
##
## $groups
## RBD$Yield groups
## K-7 40.700 a
## Co-11 31.200 b
## African tall 30.450 b
## FS-1 28.475 b
## Co-24 25.550 b
##
## attr(,"class")
## [1] "group"
As we can see, K-7 is different from the rest of the varities. The Co-11, African tall, FS-1, and Co-24 are not significantly different from each other, they are same.
LSD <-LSD.test(RBD$Yield,RBD$Variety,12,29.259)
LSD
## $statistics
## MSerror Df Mean CV t.value LSD
## 29.259 12 31.275 17.29547 2.178813 8.333639
##
## $parameters
## test p.ajusted name.t ntr alpha
## Fisher-LSD none RBD$Variety 5 0.05
##
## $means
## RBD$Yield std r LCL UCL Min Max Q25 Q50
## African tall 30.450 7.403378 4 24.55723 36.34277 22.9 39.1 25.150 29.90
## Co-11 31.200 2.762849 4 25.30723 37.09277 29.5 35.3 29.575 30.00
## Co-24 25.550 5.674798 4 19.65723 31.44277 20.4 31.8 20.925 25.00
## FS-1 28.475 3.155287 4 22.58223 34.36777 24.4 32.1 27.550 28.70
## K-7 40.700 6.274286 4 34.80723 46.59277 32.1 47.0 38.700 41.85
## Q75
## African tall 35.200
## Co-11 31.625
## Co-24 29.625
## FS-1 29.625
## K-7 43.850
##
## $comparison
## NULL
##
## $groups
## RBD$Yield groups
## K-7 40.700 a
## Co-11 31.200 b
## African tall 30.450 b
## FS-1 28.475 b
## Co-24 25.550 b
##
## attr(,"class")
## [1] "group"
sink("RBD.txt")
print(anova)
## Analysis of Variance Table
##
## Response: RBD$Yield
## Df Sum Sq Mean Sq F value Pr(>F)
## RBD$Replication 3 80.80 26.934 0.9205 0.46033
## RBD$Variety 4 520.53 130.133 4.4476 0.01958 *
## Residuals 12 351.11 29.259
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print("DNMRT Result")
## [1] "DNMRT Result"
print(DNMRT$statistics)
## MSerror Df Mean CV
## 29.259 12 31.275 17.29547
print(DNMRT$groups)
## RBD$Yield groups
## K-7 40.700 a
## Co-11 31.200 b
## African tall 30.450 b
## FS-1 28.475 b
## Co-24 25.550 b
print("LSD Result")
## [1] "LSD Result"
print(LSD$statistics)
## MSerror Df Mean CV t.value LSD
## 29.259 12 31.275 17.29547 2.178813 8.333639
print(LSD$groups)
## RBD$Yield groups
## K-7 40.700 a
## Co-11 31.200 b
## African tall 30.450 b
## FS-1 28.475 b
## Co-24 25.550 b
sink()