#abro el df

df <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQ4Nk96Jx1n-pLC1e7lXlUgMtqAFc1xOTyNCP6_72cvgtcZXjITM2-wocUbgKWin63eOHWZP3ezwJoB/pub?gid=1163641714&single=true&output=csv")

#histogram

#boxplot

#outler ?

boxplot.stats(df$`Reduccion(Area)`)$out
[1]  15.9  17.6 148.8 170.7

#hist por tiempo

#summary reducción

summary(df$`Reduccion(Area)`)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  15.90   68.40   86.30   83.14  100.00  170.70 

#analisis

df %>%
  group_by(Colutorio, Tiempo) %>%
  summarise(n = n(), 
            mean = mean(`Reduccion(Area)`), 
            sd = sd(`Reduccion(Area)`))
`summarise()` has grouped output by 'Colutorio'. You can override using the `.groups` argument.

#anova

aov <- aov(df$`Reduccion(Area)` ~ Colutorio*Tiempo + Error(df$ID))
Error in eval(predvars, data, env) : object 'Colutorio' not found

#summary

summary(aov)

Error: df$ID
             Df Sum Sq Mean Sq
df$Colutorio  1  25750   25750

Error: Within
                        Df Sum Sq Mean Sq F value   Pr(>F)    
df$Colutorio             1    604     604   1.834    0.177    
df$Tiempo                6  27142    4524  13.739 1.53e-13 ***
df$Colutorio:df$Tiempo   6   3370     562   1.706    0.120    
Residuals              258  84949     329                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
LS0tCnRpdGxlOiAiQW5hbGlzaXMgSURTSU4gKE5vdmllbWJyZSkiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI2Ficm8gZWwgZGYKYGBge3J9CmRmIDwtIHJlYWRfY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2UTROazk2Sngxbi1wTEMxZTdsWGxVZ010cUFGYzF4T1R5TkNQNl83MmN2Z3RjWlhqSVRNMi13b2NVYmdLV2luNjNlT0hXWlAzZXp3Sm9CL3B1Yj9naWQ9MTE2MzY0MTcxNCZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiNoaXN0b2dyYW0KYGBge3J9CmRmICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBgUmVkdWNjaW9uKEFyZWEpYCkpICsgCiAgZ2VvbV9oaXN0b2dyYW0oKQpgYGAKI2JveHBsb3QKYGBge3J9CmRmICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBgUmVkdWNjaW9uKEFyZWEpYCkpICsgCiAgZ2VvbV9ib3hwbG90KCkrCiAgY29vcmRfZmxpcCgpCmBgYAojb3V0bGVyID8KYGBge3J9CmJveHBsb3Quc3RhdHMoZGYkYFJlZHVjY2lvbihBcmVhKWApJG91dApgYGAKI2hpc3QgcG9yIHRpZW1wbwpgYGB7cn0KZGYgJT4lIAogIGdncGxvdChhZXMoeCA9IGBSZWR1Y2Npb24oQXJlYSlgKSkgKyAKICBnZW9tX2hpc3RvZ3JhbSgpICsgCiAgZmFjZXRfZ3JpZChDb2x1dG9yaW8gfiBUaWVtcG8pCmBgYAojc3VtbWFyeSByZWR1Y2Npw7NuCmBgYHtyfQpzdW1tYXJ5KGRmJGBSZWR1Y2Npb24oQXJlYSlgKQpgYGAKI2FuYWxpc2lzIApgYGB7cn0KZGYgJT4lCiAgZ3JvdXBfYnkoQ29sdXRvcmlvLCBUaWVtcG8pICU+JQogIHN1bW1hcmlzZShuID0gbigpLCAKICAgICAgICAgICAgbWVhbiA9IG1lYW4oYFJlZHVjY2lvbihBcmVhKWApLCAKICAgICAgICAgICAgc2QgPSBzZChgUmVkdWNjaW9uKEFyZWEpYCkpCmBgYAojYW5vdmEKYGBge3J9CmFvdiA8LSBhb3YoZGYkYFJlZHVjY2lvbihBcmVhKWAgfiBkZiRDb2x1dG9yaW8qIGRmJFRpZW1wbyArIEVycm9yKGRmJElEKSkKYGBgCiNzdW1tYXJ5CmBgYHtyfQpzdW1tYXJ5KGFvdikKYGBgCgo=