Laporan Praktikum Spasial Sesi UAS

Tugas STA553 - Analisis Statistika Spasial

Klik disini untuk ke halaman rpubs.

setwd(“D:\Kuliah S2 IPB\Bahan Kuliah\Semester 2 SSD 2020\STA533 Spasial\PRAKTIKUM\R”)

Spatial Weights (Responsi Pertemuan 8)

Bobot Spasial

Bobot spasial digunakan agar pola spasial pada data yang diamati dapat dimodelkan dengan baik.

Steps in determining spatial weights:

  • choose the neighbour criterion to be used (pilih kriteria ketetanggaan yang akan digunakan)

  • assign weights to the identified neighbour links (tentukan bobot untuk mengidentifikasi hubungan ketetanggaan)

Beberapa istilah yang digunakan:

  • Scale & Resolution (skala dan resolusi)

  • Aggregation

Scale & Resolution (Skala dan Resolusi)

Ilustrasi:

Zonation (Zonasi) and Aggregation (Agregasi)

Data geografis sering dikumpulkan berdasarkan zona. Meskipun kita ingin memiliki data pada tingkat yang paling detail (terperinci) yang memungkinkan atau bermakna (individu, rumah tangga, plot, situs), kenyataannya sering kali kita hanya mendapatkan data agregat.

Efek Zonasi dan Aggregasi (Ilustrasi)

Membangkitkan Data

Membangkitkan data sebagai ilustrasi data income

Packages

library(raster)
library(deldir)
library(spdep) # pembobot data spasial
library(rgdal)
library(spatialreg)
library(corrplot)

membangkitkan data

set.seed(0)
xy <- cbind(x=runif(1000, 0, 100), y=runif(1000, 0, 100))
income <- (runif(1000) * abs((xy[,1] - 50) * (xy[,2] - 50))) / 500

Eksplorasi Data

par(mfrow=c(1,3), las=1)

plot(sort(income),
  col=rev(terrain.colors(1000)),
  pch=20, cex=.75,
  ylab='income')

hist(income, main='',
  col=rev(terrain.colors(10)),
  xlim=c(0,5),
  breaks=seq(0,5,0.5))

plot(xy, xlim=c(0,100), ylim=c(0,100),
  cex=income,
  col=rev(terrain.colors(50))[10*(income+1)])

Agregasi

r1 <- raster(ncol=1, nrow=4, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r1 <- rasterize(xy, r1, income, mean)

r2 <- raster(ncol=4, nrow=1, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r2 <- rasterize(xy, r2, income, mean)

r3 <- raster(ncol=2, nrow=2, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r3 <- rasterize(xy, r3, income, mean)

r4 <- raster(ncol=3, nrow=3, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r4 <- rasterize(xy, r4, income, mean)

r5 <- raster(ncol=5, nrow=5, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r5 <- rasterize(xy, r5, income, mean)

r6 <- raster(ncol=10, nrow=10, xmn=0, xmx=100, ymn=0, ymx=100, crs=NA)
r6 <- rasterize(xy, r6, income, mean)

Visualisasi Agregasi

par(mfrow=c(2,3), las=1)
plot(r1); plot(r2); plot(r3);
plot(r4); plot(r5); plot(r6)

par(mfrow=c(1,3), las=1)
hist(r4, col=rev(terrain.colors(10)),
  xlim=c(0,5),
  breaks=seq(0, 5, 0.5))
hist(r5, col=rev(terrain.colors(10)),
  xlim=c(0,5),
  breaks=seq(0, 5, 0.5))
hist(r6, col=rev(terrain.colors(10)),
  xlim=c(0,5),
  breaks=seq(0, 5, 0.5))

Distance (Jarak)

Jarak (distance) digunakan untuk mengukur seberapa jauh jaraknya.

Mungkin kita juga perlu mempertimbangkan perbatasan negara, pegunungan, atau hambatan lainnya.

Jarak antara A dan B bahkan mungkin asimetris, artinya jarak dari A ke B tidak sama dengan jarak dari B ke A; karena kita berjalan lebih cepat saat berjalan menuruni bukit daripada saat berjalan menanjak.

Matriks Jarak

A <- c(40, 43)
B <- c(101, 1)
C <- c(111, 54)
D <- c(104, 65)
E <- c(60, 22)
G <- c(20, 2)

pts <- rbind(A, B, C, D, E, G)
pts
##   [,1] [,2]
## A   40   43
## B  101    1
## C  111   54
## D  104   65
## E   60   22
## G   20    2
##   [,1] [,2]
## A   40   43
## B  101    1
## C  111   54
## D  104   65
## E   60   22
## F   20    2
plot(pts, xlim=c(0,120), ylim=c(0,120),
  pch=20, cex=2, col='red',
  xlab='X', ylab='Y', las=1)
text(pts+5, LETTERS[1:6])

dis <- dist(pts)
dis
##           A         B         C         D         E
## B  74.06079                                        
## C  71.84706  53.93515                              
## D  67.67570  64.07027  13.03840                    
## E  29.00000  46.06517  60.20797  61.52235          
## G  45.61798  81.00617 104.80935 105.00000  44.72136

Periksa jarak titik pertama menggunakan teorema Pythagoras.

A
## [1] 40 43
B
## [1] 101   1
sqrt((A[1]-B[1])^2 + (A[2]-B[2])^2) 
## [1] 74.06079

Jarak untuk Koordinat Longitude (Garis Bujur)/ Latitude (Garis Lintang)

gdis <- pointDistance(pts, lonlat = TRUE)
gdis
##         [,1]    [,2]    [,3]    [,4]    [,5] [,6]
## [1,]       0      NA      NA      NA      NA   NA
## [2,] 7614198       0      NA      NA      NA   NA
## [3,] 5155577 5946748       0      NA      NA   NA
## [4,] 4581656 7104895 1286094       0      NA   NA
## [5,] 2976166 5011592 5536367 5737063       0   NA
## [6,] 4957298 9013726 9894640 9521864 4859627    0

Matriks Ketetanggaan (Adjacency Matrix)

Misalkan: dianggap bertentangga jika jarak < 50

D <- as.matrix(dis)
round(D)
##    A  B   C   D  E   G
## A  0 74  72  68 29  46
## B 74  0  54  64 46  81
## C 72 54   0  13 60 105
## D 68 64  13   0 62 105
## E 29 46  60  62  0  45
## G 46 81 105 105 45   0
a <- D<50
a
##       A     B     C     D     E     G
## A  TRUE FALSE FALSE FALSE  TRUE  TRUE
## B FALSE  TRUE FALSE FALSE  TRUE FALSE
## C FALSE FALSE  TRUE  TRUE FALSE FALSE
## D FALSE FALSE  TRUE  TRUE FALSE FALSE
## E  TRUE  TRUE FALSE FALSE  TRUE  TRUE
## G  TRUE FALSE FALSE FALSE  TRUE  TRUE
diag(a) <- NA

Adj50 <- a*1

Adj50
##    A  B  C  D  E  G
## A NA  0  0  0  1  1
## B  0 NA  0  0  1  0
## C  0  0 NA  1  0  0
## D  0  0  1 NA  0  0
## E  1  1  0  0 NA  1
## G  1  0  0  0  1 NA

Two Nearest Neighbour (Dua Tetangga Terdekat)

Pertama-tama, dapatkan nomor kolom yang sesuai dengan urutan nilai di baris tersebut (angka yang menunjukkan bagaimana nilai diurutkan)

First, get the column numbers in order of the values in that row (that is, the numbers indicate how the values are ordered):

cols <- apply(D, 1, order)
cols <- t(cols)
cols
##   [,1] [,2] [,3] [,4] [,5] [,6]
## A    1    5    6    4    3    2
## B    2    5    3    4    1    6
## C    3    4    2    5    1    6
## D    4    3    5    2    1    6
## E    5    1    6    2    3    4
## G    6    5    1    2    3    4

Lalu ambil kolom 2 sampai 3.

And then get columns 2 to 3:

cols <- cols[,2:3]
cols
##   [,1] [,2]
## A    5    6
## B    5    3
## C    4    2
## D    3    5
## E    1    6
## G    5    1

Buat pasangan baris-kolom.

Make the row-column pairs:

rowcols <- cbind(rep(1:6, each = 2), as.vector(t(cols)))
head(rowcols)
##      [,1] [,2]
## [1,]    1    5
## [2,]    1    6
## [3,]    2    5
## [4,]    2    3
## [5,]    3    4
## [6,]    3    2

Gunakan pasangan ini sebagai indeks untuk mengubah nilai dalam matriks.

Use these pairs as indices to change the values in matrix:

Ak3 <- Adj50*0
Ak3[rowcols] <- 1
Ak3
##    A  B  C  D  E  G
## A NA  0  0  0  1  1
## B  0 NA  1  0  1  0
## C  0  1 NA  1  0  0
## D  0  0  1 NA  1  0
## E  1  0  0  0 NA  1
## G  1  0  0  0  1 NA

Jenis-jenis Matriks Bobot (Type of Weight Matrix)

Berdasarkan Jarak (Based on Distance)

Bobot Kedekatan Spasial (Spatial Continuity Weights)

Pengaruh Spasial untuk Poligon (Spatial influence for polygons)

p <- shapefile(system.file("external/lux.shp", package="raster"))

Create a “rook’s case” neighbors-list (Membuat Daftar Tetangga “rook’s case”)

wr <- poly2nb(p, row.names=p$ID_2, queen=FALSE)
wr
## Neighbour list object:
## Number of regions: 12 
## Number of nonzero links: 46 
## Percentage nonzero weights: 31.94444 
## Average number of links: 3.833333

Inspect the content (Memeriksa Isinya)

wm <- nb2mat(wr, style='B',
zero.policy = TRUE)
dim(wm)
## [1] 12 12
wr[1:6]
## [[1]]
## [1] 2 4 5
## 
## [[2]]
## [1]  1  3  4  5  6 12
## 
## [[3]]
## [1]  2  5  9 12
## 
## [[4]]
## [1] 1 2
## 
## [[5]]
## [1] 1 2 3
## 
## [[6]]
## [1]  2  8 12
wm[1:6,1:11]
##   [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## 1    0    1    0    1    1    0    0    0    0     0     0
## 2    1    0    1    1    1    1    0    0    0     0     0
## 3    0    1    0    0    1    0    0    0    1     0     0
## 4    1    1    0    0    0    0    0    0    0     0     0
## 5    1    1    1    0    0    0    0    0    0     0     0
## 6    0    1    0    0    0    0    0    1    0     0     0

Compute the number of neighbors for each area (Menghitung Jumlah Tetangga untuk Setiap Daerah)

i <- rowSums(wm)
i
##  1  2  3  4  5  6  7 12  8  9 10 11 
##  3  6  4  2  3  3  3  4  4  3  5  6

Compute Spatial Influence (Menghitung Pengaruh Spasial)

Berdasarkan Jarak (Distance Based)

wd10 <- dnearneigh(xy, 0, 10)
wd25 <- dnearneigh(xy, 0, 25, longlat=TRUE)

Plot hubungannya (plot the links)

par(mfrow=c(1,2))

plot(p, col='gray', border='blue', main ="wd10")
plot(wd10, xy, col='red', lwd=2, add=TRUE)

plot(p, col='gray', border='blue', main ="wd25")
plot(wd25, xy, col='red', lwd=2, add=TRUE)

Tetangga Terdekat (Nearest Neighbours)

k3 <- knn2nb(knearneigh(xy, k=3))
k6 <- knn2nb(knearneigh(xy, k=6))
## Warning in knearneigh(xy, k = 6): k greater than one-third of the number of data
## points
par(mfrow=c(1,2))

plot(p, col='gray', border='blue', main ="k3")
plot(k3, xy, col='red', lwd=2, add=TRUE)

plot(p, col='gray', border='blue', main ="k6")
plot(k6, xy, col='red', lwd=2, add=TRUE)

Lag-two Rook

wr2 <- wr
for (i in 1:length(wr)) {
lag1 <- wr[[i]]
lag2 <- wr[lag1]
lag2 <- sort(unique(unlist(lag2)))
lag2 <- lag2[!(lag2 %in% c(wr[[i]], i))]
wr2[[i]] <- lag2
}

plot(p, col='gray', border='blue', main ="wr")
plot(wr, xy, col='red', lwd=2, add=TRUE)

plotit <- function(nb, lab='') {
plot(p, col='gray', border='white')
plot(nb, xy, add=TRUE, pch=20)
text(6.3, 50.1, paste0('(', lab, ')'),
cex=1.25)
}
par(mfrow=c(2, 3), mai=c(0,0,0,0))
plotit(wr, 'adjacency')
plotit(wr2, 'lag-2 adj.')
plotit(wd10, '10 km')
plotit(wd25, '25 km')
plotit(k3, 'k=3')
plotit(k6, 'k=6')

Exercise: Using Columbus data set (Latihan: Menggunakan Columbus Dataset)

data(columbus)
summary(columbus)
##       AREA           PERIMETER        COLUMBUS.    COLUMBUS.I     POLYID  
##  Min.   :0.03438   Min.   :0.9021   Min.   : 2   Min.   : 1   Min.   : 1  
##  1st Qu.:0.09315   1st Qu.:1.4023   1st Qu.:14   1st Qu.:13   1st Qu.:13  
##  Median :0.17477   Median :1.8410   Median :26   Median :25   Median :25  
##  Mean   :0.18649   Mean   :1.8887   Mean   :26   Mean   :25   Mean   :25  
##  3rd Qu.:0.24669   3rd Qu.:2.1992   3rd Qu.:38   3rd Qu.:37   3rd Qu.:37  
##  Max.   :0.69926   Max.   :5.0775   Max.   :50   Max.   :49   Max.   :49  
##       NEIG        HOVAL            INC             CRIME        
##  Min.   : 1   Min.   :17.90   Min.   : 4.477   Min.   : 0.1783  
##  1st Qu.:13   1st Qu.:25.70   1st Qu.: 9.963   1st Qu.:20.0485  
##  Median :25   Median :33.50   Median :13.380   Median :34.0008  
##  Mean   :25   Mean   :38.44   Mean   :14.375   Mean   :35.1288  
##  3rd Qu.:37   3rd Qu.:43.30   3rd Qu.:18.324   3rd Qu.:48.5855  
##  Max.   :49   Max.   :96.40   Max.   :31.070   Max.   :68.8920  
##       OPEN             PLUMB             DISCBD            X        
##  Min.   : 0.0000   Min.   : 0.1327   Min.   :0.370   Min.   :24.25  
##  1st Qu.: 0.2598   1st Qu.: 0.3323   1st Qu.:1.700   1st Qu.:36.15  
##  Median : 1.0061   Median : 1.0239   Median :2.670   Median :39.61  
##  Mean   : 2.7709   Mean   : 2.3639   Mean   :2.852   Mean   :39.46  
##  3rd Qu.: 3.9364   3rd Qu.: 2.5343   3rd Qu.:3.890   3rd Qu.:43.44  
##  Max.   :24.9981   Max.   :18.8111   Max.   :5.570   Max.   :51.24  
##        Y              AREA             NSA              NSB        
##  Min.   :24.96   Min.   : 1.093   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:28.26   1st Qu.: 3.193   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :31.91   Median : 6.029   Median :0.0000   Median :1.0000  
##  Mean   :32.37   Mean   : 6.372   Mean   :0.4898   Mean   :0.5102  
##  3rd Qu.:35.92   3rd Qu.: 7.989   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :44.07   Max.   :21.282   Max.   :1.0000   Max.   :1.0000  
##        EW               CP             THOUS          NEIGNO    
##  Min.   :0.0000   Min.   :0.0000   Min.   :1000   Min.   :1001  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1000   1st Qu.:1013  
##  Median :1.0000   Median :0.0000   Median :1000   Median :1025  
##  Mean   :0.5918   Mean   :0.4898   Mean   :1000   Mean   :1025  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1000   3rd Qu.:1037  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1000   Max.   :1049  
##      PERIM       
##  Min.   :0.9021  
##  1st Qu.:1.4023  
##  Median :1.8410  
##  Mean   :1.8887  
##  3rd Qu.:2.1992  
##  Max.   :5.0775

Columbus Data Set

The columbus data frame has 49 rows and 22 columns. Unit of analysis: 49 neighbourhoods in Columbus, OH, 1980 data.

This data frame contains the following columns:

X : x coordinate

Y : y coordinate

HOVAL : housing value (in “$1,000”)

INC : household income (in “$1,000”)

CRIME : residential burglaries and vehicle thefts per thousand households in the neighborhood

OPEN : open space in neighborhood

PLUMB : percentage housing units without plumbing

DISCBD : distance to CBD

columbus: the data frame, contains 22 variables

col.gal.nb: is an object of class “nb”, a list of vectors, one for each spatial unit, and containing the sequence numbers of the neighbors (this contiguity file uses the queen definition for Columbus)

coords: centroid coordinates that can be used to construct distancebased weights

col.listw <- nb2listw(col.gal.nb)
print(col.gal.nb)
## Neighbour list object:
## Number of regions: 49 
## Number of nonzero links: 230 
## Percentage nonzero weights: 9.579342 
## Average number of links: 4.693878

Exercise! (Latihan!)

matnb <- nb2mat(col.gal.nb)
View(matnb)

Apakah matriks bobot sudah dinormalisasi?

rowSums(matnb,na.rm=TRUE) 
## 1005 1001 1006 1002 1007 1008 1004 1003 1018 1010 1038 1037 1039 1040 1009 1036 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1011 1042 1041 1017 1043 1019 1012 1035 1032 1020 1021 1031 1033 1034 1045 1013 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1022 1044 1023 1046 1030 1024 1047 1016 1014 1049 1029 1025 1028 1048 1015 1027 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1026 
##    1

Karena semua baris berjumlah 1 sehingga matriks bobot sudah dinormalisasi.

Buatlah matriks bobot dengan pendekatan berikut:

Power distance weights

#menggunakan centroid coordinates
coords 
##            [,1]     [,2]
##  [1,]  8.827218 14.36908
##  [2,]  8.332658 14.03162
##  [3,]  9.012265 13.81972
##  [4,]  8.460801 13.71696
##  [5,]  9.007982 13.29637
##  [6,]  9.739926 13.47463
##  [7,]  8.118750 13.29570
##  [8,]  8.496488 13.40261
##  [9,]  9.630793 12.94272
## [10,] 10.366383 13.00189
## [11,]  8.669735 12.98012
## [12,]  8.544996 12.95313
## [13,]  8.349223 12.99609
## [14,]  8.292702 12.86371
## [15,]  8.973462 12.74159
## [16,]  8.655866 12.62732
## [17,] 10.528621 12.64748
## [18,]  8.487918 12.54534
## [19,]  8.312368 12.66672
## [20,] 10.190582 12.25690
## [21,]  7.847424 12.08500
## [22,]  9.655244 12.46277
## [23,] 10.671381 12.29157
## [24,]  8.420744 12.31801
## [25,]  8.938752 12.38051
## [26,]  9.250921 12.41378
## [27,]  9.737004 12.14969
## [28,]  9.297976 11.97779
## [29,]  8.977862 11.99401
## [30,]  8.688719 11.93872
## [31,]  6.892482 11.91415
## [32,] 10.763784 11.84443
## [33,]  9.783876 11.92271
## [34,]  7.339431 11.62855
## [35,]  9.668249 11.69254
## [36,]  6.728838 11.63436
## [37,]  8.912363 11.63031
## [38,]  9.210527 11.65984
## [39,]  6.221943 11.40251
## [40,] 10.492493 11.50720
## [41,] 10.953587 11.47925
## [42,]  7.110051 11.29544
## [43,]  9.214330 11.43277
## [44,]  9.641904 11.39104
## [45,]  8.910340 11.14864
## [46,]  6.423385 11.21924
## [47,] 10.935302 11.01003
## [48,]  9.251957 11.18125
## [49,]  9.492144 11.01496
(head)
## standardGeneric for "head" defined from package "utils"
## 
## function (x, ...) 
## standardGeneric("head")
## <environment: 0x0000000018715488>
## Methods may be defined for arguments: x
## Use  showMethods(head)  for currently available ones.
koordinat<-coords

jarak<-dist(koordinat)
jarak
##            1         2         3         4         5         6         7
## 2  0.5987183                                                            
## 3  0.5796856 0.7118774                                                  
## 4  0.7480069 0.3397537 0.5609564                                        
## 5  1.0878333 0.9983315 0.5233702 0.6901508                              
## 6  1.2779137 1.5134864 0.8053411 1.3018772 0.7533395                    
## 7  1.2861008 0.7663780 1.0358386 0.5426392 0.8892323 1.6310201          
## 8  1.0214864 0.6499968 0.6633281 0.3163691 0.5224120 1.2455216 0.3925755
## 9  1.6371347 1.6943600 1.0731708 1.4029704 0.7162096 0.5429878 1.5526974
## 10 2.0586952 2.2795588 1.5819226 2.0353307 1.3899528 0.7848150 2.2667553
## 11 1.3978539 1.1042094 0.9067805 0.7658901 0.4630569 1.1789185 0.6349622
## 12 1.4438023 1.0992023 0.9845431 0.7684627 0.5763426 1.3037745 0.5468501
## 13 1.4538083 1.0356624 1.0573470 0.7294520 0.7239657 1.4707319 0.3780000
## 14 1.5974486 1.1685996 1.1965492 0.8696555 0.8359545 1.5708875 0.4657036
## 15 1.6340467 1.4404255 1.0788304 1.1018978 0.5558526 1.0605767 1.0186160
## 16 1.7501686 1.4410222 1.2445264 1.1069687 0.7560518 1.3759110 0.8574593
## 17 2.4204709 2.5957888 1.9166350 2.3280211 1.6533005 1.1429039 2.4955318
## 18 1.8550280 1.4943689 1.3780333 1.1719335 0.9135117 1.5591997 0.8362579
## 19 1.7785063 1.3650540 1.3488001 1.0606787 0.9382606 1.6403182 0.6581090
## 20 2.5139710 2.5693436 1.9572519 2.2636089 1.5744947 1.2984474 2.3176714
## 21 2.4853598 2.0061925 2.0895253 1.7434279 1.6775909 2.3479036 1.2407370
## 22 2.0783756 2.0519624 1.5015805 1.7319652 1.0553854 1.0154041 1.7477415
## 23 2.7779420 2.9150313 2.2556375 2.6302859 1.9433243 1.5057368 2.7430289
## 24 2.0909517 1.7158730 1.6140066 1.3995221 1.1410623 1.7544255 1.0232688
## 25 1.9916915 1.7588426 1.4410855 1.4193456 0.9184695 1.3560917 1.2288137
## 26 2.0006731 1.8602727 1.4260475 1.5239963 0.9154081 1.1681296 1.4351289
## 27 2.3986187 2.3481593 1.8205037 2.0211452 1.3587985 1.3249431 1.9829492
## 28 2.4371851 2.2693788 1.8639584 1.9301784 1.3500910 1.5607256 1.7684671
## 29 2.3798366 2.1373230 1.8260311 1.7988632 1.3027026 1.6652266 1.5596391
## 30 2.4343008 2.1229775 1.9086240 1.7927905 1.3946817 1.8612006 1.4718270
## 31 3.1256777 2.5608200 2.8503807 2.3895086 2.5270257 3.2470045 1.8472739
## 32 3.1818417 3.2701961 2.6399959 2.9681816 2.2783667 1.9250564 3.0170175
## 33 2.6267679 2.5599919 2.0479339 2.2293217 1.5776401 1.5525468 2.1581848
## 34 3.1183364 2.6002479 2.7567407 2.3704339 2.3591718 3.0282695 1.8403144
## 35 2.8055607 2.6935312 2.2260279 2.3571617 1.7344185 1.7835324 2.2295913
## 36 3.4470055 2.8842836 3.1606669 2.7086728 2.8207710 3.5289146 2.1660803
## 37 2.7400887 2.4702963 2.1916866 2.1349527 1.6687976 2.0214809 1.8448187
## 38 2.7362185 2.5290351 2.1689607 2.1894853 1.6490140 1.8904337 1.9667313
## 39 3.9481582 3.3715488 3.6917180 3.2201176 3.3687821 4.0828766 2.6799341
## 40 3.3111158 3.3222905 2.7456929 3.0018048 2.3248435 2.1064565 2.9721052
## 41 3.5878355 3.6584017 3.0408134 3.3498297 2.6621997 2.3354964 3.3668713
## 42 3.5207825 2.9969114 3.1607611 2.7727785 2.7578713 3.4154250 2.2402085
## 43 2.9617120 2.7443357 2.3954848 2.4052718 1.8749839 2.1084228 2.1612061
## 44 3.0874641 2.9473427 2.5089731 2.6086274 2.0080191 2.0859009 2.4388026
## 45 3.2215095 2.9402923 2.6730240 2.6073683 2.1499457 2.4695057 2.2883406
## 46 3.9623092 3.3992410 3.6694418 3.2233040 3.3158113 4.0107665 2.6806665
## 47 3.9657538 3.9879546 3.4047643 3.6675108 2.9903000 2.7391948 3.6272949
## 48 3.2159933 2.9949492 2.6493303 2.6562653 2.1291372 2.3447174 2.3989701
## 49 3.4193877 3.2318201 2.8455141 2.8921406 2.3322141 2.4721207 2.6623293
##            8         9        10        11        12        13        14
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9  1.2239873                                                            
## 10 1.9123505 0.7379648                                                  
## 11 0.4566323 0.9617853 1.6967869                                        
## 12 0.4520965 1.0858477 1.8220398 0.1276276                              
## 13 0.4323702 1.2826807 2.0171676 0.3209097 0.2004320                    
## 14 0.5761486 1.3404230 2.0782800 0.3945969 0.2676712 0.1439476          
## 15 0.8151436 0.6874161 1.4170339 0.3861979 0.4778414 0.6741276 0.6916275
## 16 0.7915088 1.0246784 1.7510487 0.3530782 0.3441575 0.4796116 0.4333241
## 17 2.1679013 0.9451279 0.3897826 1.8884146 2.0070358 2.2071043 2.2463511
## 18 0.8573127 1.2099904 1.9331488 0.4712647 0.4117584 0.4716071 0.3734514
## 19 0.7585755 1.3470058 2.0811813 0.4753227 0.3689763 0.3314289 0.1979661
## 20 2.0451433 0.8852794 0.7654518 1.6840497 1.7868085 1.9841897 1.9925273
## 21 1.4688071 1.9789150 2.6806428 1.2155016 1.1136667 1.0401445 0.8970297
## 22 1.4919877 0.4805815 0.8923967 1.1130520 1.2137154 1.4107195 1.4203089
## 23 2.4422472 1.2275275 0.7730302 2.1167633 2.2269193 2.4266785 2.4465193
## 24 1.0872405 1.3617944 2.0623278 0.7073782 0.6471522 0.6818421 0.5605150
## 25 1.1136834 0.8916319 1.5569979 0.6571941 0.6949337 0.8523425 0.8067597
## 26 1.2437651 0.6512158 1.2610008 0.8114898 0.8883810 1.0733799 1.0585918
## 27 1.7631470 0.8001129 1.0594132 1.3522849 1.4374939 1.6255246 1.6111571
## 28 1.6347804 1.0207208 1.4799585 1.1829449 1.2321781 1.3917897 1.3399366
## 29 1.4885816 1.1516841 1.7157528 1.0331281 1.0522698 1.1829430 1.1071652
## 30 1.4764615 1.3767834 1.9861738 1.0415762 1.0245383 1.1105409 1.0061985
## 31 2.1882304 2.9251175 3.6402141 2.0724193 1.9519909 1.8145787 1.6918250
## 32 2.7511011 1.5779468 1.2237799 2.3821903 2.4803677 2.6751501 2.6730453
## 33 1.9615004 1.0314400 1.2263548 1.5360444 1.6113923 1.7917548 1.7632588
## 34 2.1180407 2.6414791 3.3239303 1.8964360 1.7910612 1.6999623 1.5602409
## 35 2.0730091 1.2507447 1.4838407 1.6293841 1.6884227 1.8544753 1.8065884
## 36 2.5002575 3.1832615 3.8861109 2.3618098 2.2444509 2.1165909 1.9892094
## 37 1.8204410 1.4961865 1.9988502 1.3714437 1.3728797 1.4773256 1.3803075
## 38 1.8833777 1.3499705 1.7711864 1.4267454 1.4544839 1.5897869 1.5138376
## 39 3.0288531 3.7406567 4.4423399 2.9121358 2.7930219 2.6579732 2.5343893
## 40 2.7525682 1.6742954 1.5000027 2.3434909 2.4255831 2.6096774 2.5844151
## 41 3.1203646 1.9727024 1.6319475 2.7328754 2.8237628 3.0138912 2.9995080
## 42 2.5223775 3.0112612 3.6763664 2.2958161 2.1924853 2.1042284 1.9642122
## 43 2.0965613 1.5663333 1.9466265 1.6403886 1.6611697 1.7867251 1.7020509
## 44 2.3148255 1.5517285 1.7662720 1.8628754 1.9087516 2.0608821 1.9972756
## 45 2.2916521 1.9333382 2.3568190 1.8472192 1.8410999 1.9307880 1.8228928
## 46 3.0107939 3.6411366 4.3272481 2.8542601 2.7399996 2.6203189 2.4897037
## 47 3.4164691 2.3317484 2.0715141 3.0023410 3.0804520 3.2607134 3.2279184
## 48 2.3463093 1.8017483 2.1346328 1.8907426 1.9077014 2.0269617 1.9367041
## 49 2.5869302 1.9327434 2.1707552 2.1303077 2.1572137 2.2871717 2.2037525
##           15        16        17        18        19        20        21
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16 0.3375278                                                            
## 17 1.5580040 1.8728634                                                  
## 18 0.5237030 0.1868856 2.0432572                                        
## 19 0.6653201 0.3457514 2.2163370 0.2134260                              
## 20 1.3100769 1.5787841 0.5165470 1.7269228 1.9224050                    
## 21 1.3034848 0.9734932 2.7395624 0.7887654 0.7446981 2.3494551          
## 22 0.7365922 1.0128342 0.8926952 1.1702433 1.3582766 0.5735564 1.8468690
## 23 1.7565428 2.0432876 0.3834687 2.1981607 2.3886568 0.4820481 2.8315029
## 24 0.6963560 0.3885234 2.1334693 0.2370461 0.3651606 1.7708923 0.6188642
## 25 0.3627414 0.3754163 1.6121276 0.4800217 0.6886754 1.2579178 1.1306303
## 26 0.4294629 0.6322074 1.2988955 0.7742618 0.9720390 0.9526670 1.4414942
## 27 0.9660925 1.1819402 0.9351178 1.3102498 1.5155550 0.4660747 1.8906877
## 28 0.8298781 0.9133406 1.4010602 0.9890963 1.2025189 0.9352262 1.4545087
## 29 0.7475876 0.7104608 1.6828162 0.7375701 0.9462658 1.2408866 1.1340935
## 30 0.8518662 0.6893807 1.9716935 0.6389945 0.8195293 1.5351966 0.8539182
## 31 2.2394480 1.9021376 3.7093491 1.7157558 1.6069959 3.3158611 0.9701038
## 32 2.0025331 2.2486048 0.8367687 2.3813526 2.5856527 0.7061802 2.9262651
## 33 1.1520993 1.3299917 1.0391983 1.4377692 1.6489062 0.5263962 1.9432410
## 34 1.9770990 1.6524363 3.3480076 1.4695376 1.4228194 2.9195701 0.6829388
## 35 1.2582628 1.3779413 1.2853560 1.4561768 1.6695628 0.7689806 1.8626397
## 36 2.5028543 2.1678079 3.9325245 1.9809706 1.8903244 3.5172745 1.2059454
## 37 1.1129546 1.0294707 1.9096900 1.0086807 1.1975560 1.4235365 1.1579446
## 38 1.1074197 1.1151953 1.6470573 1.1429264 1.3492598 1.1476006 1.4278696
## 39 3.0600613 2.7247245 4.4830133 2.5378537 2.4429686 4.0595649 1.7629440
## 40 1.9573376 2.1512465 1.1408505 2.2574464 2.4692993 0.8082099 2.7074421
## 41 2.3482760 2.5685768 1.2431239 2.6862776 2.8958830 1.0894598 3.1646783
## 42 2.3587381 2.0404513 3.6762244 1.8603164 1.8237269 3.2270846 1.0803338
## 43 1.3307945 1.3186423 1.7896553 1.3287167 1.5284524 1.2775963 1.5145402
## 44 1.5069180 1.5813470 1.5378253 1.6322093 1.8425632 1.0250684 1.9239915
## 45 1.5941978 1.5004139 2.2057523 1.4591850 1.6316077 1.6932978 1.4165306
## 46 2.9699224 2.6394423 4.3465879 2.4537420 2.3798029 3.9074941 1.6665608
## 47 2.6166969 2.7948952 1.6871916 2.8890953 3.1023230 1.4523395 3.2696403
## 48 1.5849916 1.5641035 1.9441390 1.5634877 1.7576805 1.4275952 1.6701699
## 49 1.8028495 1.8163280 1.9337501 1.8304469 2.0298229 1.4248599 1.9621624
##           22        23        24        25        26        27        28
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16                                                                      
## 17                                                                      
## 18                                                                      
## 19                                                                      
## 20                                                                      
## 21                                                                      
## 22                                                                      
## 23 1.0304569                                                            
## 24 1.2429579 2.2507924                                                  
## 25 0.7211987 1.7349105 0.5217642                                        
## 26 0.4072794 1.4257077 0.8356829 0.3139376                              
## 27 0.3235728 0.9450872 1.3269787 0.8309532 0.5531913                    
## 28 0.6023657 1.4087946 0.9408979 0.5396543 0.4385274 0.4714840          
## 29 0.8237583 1.7194622 0.6444817 0.3884715 0.5007690 0.7749413 0.3205252
## 30 1.0994526 2.0138154 0.4644089 0.5076375 0.7360418 1.0693040 0.6105077
## 31 2.8167060 3.7976996 1.5807242 2.0987400 2.4107813 2.8542572 2.4063351
## 32 1.2693294 0.4565880 2.3904213 1.9021359 1.6164513 1.0711959 1.4718615
## 33 0.5551652 0.9611063 1.4192938 0.9611541 0.7247040 0.2317736 0.4890121
## 34 2.4614868 3.3972779 1.2824216 1.7672801 2.0664934 2.4535593 1.9894394
## 35 0.7703344 1.1683797 1.3955228 1.0027297 0.8332785 0.4622931 0.4674055
## 36 3.0413985 3.9969451 1.8248076 2.3324779 2.6397725 3.0519877 2.5919897
## 37 1.1157306 1.8792049 0.8453545 0.7506633 0.8534938 0.9745723 0.5190740
## 38 0.9178589 1.5915966 1.0280814 0.7702133 0.7550260 0.7191208 0.3297557
## 39 3.5932845 4.5373917 2.3817780 2.8874777 3.1933330 3.5935960 3.1293639
## 40 1.2704707 0.8045146 2.2247617 1.7823538 1.5373348 0.9917476 1.2838715
## 41 1.6288052 0.8599494 2.6681129 2.2072243 1.9422753 1.3890911 1.7290443
## 42 2.8001182 3.6980201 1.6624005 2.1263880 2.4153716 2.7623601 2.2918585
## 43 1.1203986 1.6913113 1.1888784 0.9869908 0.9816939 0.8872225 0.5513975
## 44 1.0718127 1.3677667 1.5331404 1.2138705 1.0949338 0.7645939 0.6801209
## 45 1.5105665 2.0994185 1.2677307 1.2321983 1.3101853 1.2982609 0.9152863
## 46 3.4628422 4.3812520 2.2796382 2.7704913 3.0695112 3.4417754 2.9729900
## 47 1.9362303 1.3084345 2.8343997 2.4216579 2.1926381 1.6537074 1.9019443
## 48 1.3434706 1.8021011 1.4082393 1.2394808 1.2325301 1.0831179 0.7978623
## 49 1.4569628 1.7379111 1.6869624 1.4734197 1.4194690 1.1608500 0.9822101
##           29        30        31        32        33        34        35
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16                                                                      
## 17                                                                      
## 18                                                                      
## 19                                                                      
## 20                                                                      
## 21                                                                      
## 22                                                                      
## 23                                                                      
## 24                                                                      
## 25                                                                      
## 26                                                                      
## 27                                                                      
## 28                                                                      
## 29                                                                      
## 30 0.2943815                                                            
## 31 2.0869078 1.7964052                                                  
## 32 1.7921752 2.0772050 3.8719290                                        
## 33 0.8091623 1.0952736 2.8914064 0.9830290                              
## 34 1.6786964 1.3844810 0.5304089 3.4311512 2.4620814                    
## 35 0.7533389 1.0099907 2.7845989 1.1060138 0.2575780 2.3296974          
## 36 2.2775985 1.9833729 0.3241293 4.0404105 3.0686156 0.6106209 2.9399871
## 37 0.3695523 0.3809616 2.0397261 1.8637613 0.9192560 1.5729331 0.7584434
## 38 0.4071918 0.5916563 2.3319535 1.5641864 0.6307369 1.8713583 0.4588884
## 39 2.8186801 2.5243815 0.8434429 4.5632891 3.5997180 1.1401181 3.4584883
## 40 1.5909418 1.8546719 3.6229387 0.4328110 0.8214540 3.1553961 0.8448254
## 41 2.0416849 2.3110045 4.0843258 0.4115650 1.2509531 3.6172391 1.3029159
## 42 1.9941717 1.7047003 0.6558511 3.6947469 2.7464172 0.4044439 2.5888352
## 43 0.6090223 0.7295537 2.3712241 1.6032058 0.7512789 1.8850930 0.5229936
## 44 0.8969576 1.0993258 2.7987445 1.2100329 0.5503008 2.3146913 0.3026538
## 45 0.8480652 0.8205737 2.1581844 1.9797418 1.1671535 1.6425795 0.9328745
## 46 2.6693866 2.3768450 0.8384248 4.3851939 3.4333322 1.0033304 3.2792008
## 47 2.1908432 2.4309659 4.1426835 0.8518466 1.4692728 3.6486782 1.4391820
## 48 0.8577322 0.9439223 2.4706802 1.6508853 0.9125195 1.9641354 0.6593280
## 49 1.1059054 1.2242621 2.7507782 1.5182518 0.9534740 2.2384499 0.7000914
##           36        37        38        39        40        41        42
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16                                                                      
## 17                                                                      
## 18                                                                      
## 19                                                                      
## 20                                                                      
## 21                                                                      
## 22                                                                      
## 23                                                                      
## 24                                                                      
## 25                                                                      
## 26                                                                      
## 27                                                                      
## 28                                                                      
## 29                                                                      
## 30                                                                      
## 31                                                                      
## 32                                                                      
## 33                                                                      
## 34                                                                      
## 35                                                                      
## 36                                                                      
## 37 2.1835291                                                            
## 38 2.4818205 0.2996231                                                  
## 39 0.5574022 2.7000464 2.9996421                                        
## 40 3.7658028 1.5849185 1.2910206 4.2718325                              
## 41 4.2275967 2.0468069 1.7523905 4.7322666 0.4619413                    
## 42 0.5100927 1.8331578 2.1318510 0.8945394 3.3890638 3.8479291          
## 43 2.4936547 0.3608405 0.2270989 2.9925403 1.2803273 1.7398780 2.1087560
## 44 2.9232119 0.7677780 0.5082726 3.4199808 0.8584833 1.3146457 2.5336577
## 45 2.2349239 0.4816757 0.5928215 2.7003580 1.6222729 2.0698210 1.8062649
## 46 0.5153946 2.5226952 2.8217532 0.2723395 4.0792838 4.5376578 0.6908810
## 47 4.2525450 2.1158996 1.8431222 4.7296722 0.6657740 0.4695714 3.8358840
## 48 2.5634827 0.5630065 0.4803749 3.0380822 1.2826405 1.7275254 2.1449479
## 49 2.8318759 0.8454588 0.7036867 3.2930850 1.1148967 1.5334206 2.3985481
##           43        44        45        46        47        48
## 2                                                             
## 3                                                             
## 4                                                             
## 5                                                             
## 6                                                             
## 7                                                             
## 8                                                             
## 9                                                             
## 10                                                            
## 11                                                            
## 12                                                            
## 13                                                            
## 14                                                            
## 15                                                            
## 16                                                            
## 17                                                            
## 18                                                            
## 19                                                            
## 20                                                            
## 21                                                            
## 22                                                            
## 23                                                            
## 24                                                            
## 25                                                            
## 26                                                            
## 27                                                            
## 28                                                            
## 29                                                            
## 30                                                            
## 31                                                            
## 32                                                            
## 33                                                            
## 34                                                            
## 35                                                            
## 36                                                            
## 37                                                            
## 38                                                            
## 39                                                            
## 40                                                            
## 41                                                            
## 42                                                            
## 43                                                            
## 44 0.4296062                                                  
## 45 0.4161024 0.7706765                                        
## 46 2.7991020 3.2231013 2.4879573                              
## 47 1.7721328 1.3483483 2.0297001 4.5167649                    
## 48 0.2543169 0.4427949 0.3431703 2.8288274 1.6920305          
## 49 0.5017429 0.4047973 0.5969628 3.0755500 1.4431672 0.2921347
koordinat<-cbind(columbus$X,columbus$Y)
View(koordinat)
plot(koordinat)

jarak<-dist(koordinat)
jarak
##             1          2          3          4          5          6          7
## 2   3.6011799                                                                  
## 3   3.0647189  4.3680672                                                       
## 4   4.2299522  2.0576699  3.3849668                                            
## 5   6.1894263  6.2013305  3.1856709  4.3209358                                 
## 6   6.8881507  8.7009729  4.3651923  7.3552772  3.9529751                      
## 7   7.8504254  4.5682052  7.0288326  3.7830799  6.6626241 10.4263597           
## 8   5.7530610  3.8284481  3.9715250  1.8221425  3.3755136  7.0630386  3.3634039
## 9   9.3782798 10.1431770  6.3852967  8.3260798  4.0113982  3.3742714 10.3829894
## 10 11.6678475 13.3896148  9.1291694 11.8423874  7.7625029  4.8040830 14.3882802
## 11  7.8278616  6.4760574  5.2626341  4.4306775  2.7487458  6.6098732  4.9610661
## 12  8.1235097  6.4395443  5.7305938  4.4448746  3.4393003  7.3355291  4.4110095
## 13  8.1823809  5.9890975  6.1502255  4.1565469  4.3638938  8.3147079  3.2784435
## 14  9.0126201  6.7807405  6.9243349  4.9814474  4.9156977  8.8330794  3.6695655
## 15  9.1957438  8.4688270  6.2735157  6.4143750  3.1157820  6.0196747  7.1632744
## 16 10.0618121  8.5328998  7.4389771  6.5332664  4.6015741  8.0537254  6.0602357
## 17 13.7113303 15.1884202 11.0406544 13.5148089  9.2723555  6.8235855 15.7242150
## 18 10.4902347  8.4765886  8.1348949  6.6092757  5.6165813  9.2999774  5.2862296
## 19  9.8888678  7.7212703  7.6807562  5.9065390  5.4053770  9.2295462  4.4522450
## 20 14.5172489 15.2660749 11.5620500 13.3710508  9.0689871  7.9496720 14.8662999
## 21 14.4430216 12.0587402 12.1952932 10.3858746  9.6239936 13.1151990  8.0223750
## 22 11.5523600 11.8164688  8.4971118  9.8509137  5.6481161  5.8323924 11.1670305
## 23 15.7249006 17.0409224 12.9847982 15.2908141 10.9901108  8.8485294 17.2406519
## 24 12.1803286 10.3365622  9.6434700  8.4305931  6.8232104 10.1399514  7.1021110
## 25 11.2040028 10.2096824  8.3127362  8.1577687  5.1610935  7.7609320  8.1597113
## 26 11.1755909 10.7581485  8.1460247  8.7121366  4.9873857  6.6756269  9.3886000
## 27 13.4823624 13.6154997 10.4231372 11.6142411  7.5070441  7.6726051 12.5852329
## 28 13.4070508 12.8127493 10.3874204 10.7554874  7.2180335  8.7279997 10.9362974
## 29 13.4614758 12.4353393 10.5404754 10.3914785  7.3657120  9.5336505 10.0410416
## 30 13.7294755 12.3227365 10.9375407 10.3263258  7.8409750 10.4669227  9.4482009
## 31 17.8926789 14.6963701 16.4165549 13.6792720 14.5639050 18.4087194 10.1316336
## 32 18.1224100 19.1170365 15.2609639 17.2570052 12.9405626 11.3245969 18.7833038
## 33 14.6614764 14.6775613 11.5985681 12.6560013  8.6306489  8.8868938 13.3980460
## 34 17.9406378 15.0819235 16.0367204 13.7295302 13.7391288 17.3725438 10.5954757
## 35 15.6755261 15.4766424 12.6116774 13.4326324  9.5607804 10.1001228 13.8603211
## 36 19.6081745 16.4472320 18.0478094 15.3860009 16.0670989 19.8528411 11.8797362
## 37 15.2575522 13.8261937 12.4506867 11.8407094  9.3342645 11.7854350 10.7967444
## 38 15.4532093 14.6402330 12.4598707 12.5872628  9.2773535 10.8440791 12.3174381
## 39 22.6664253 19.3766090 21.2693435 18.4751555 19.3982890 23.2111622 14.8442074
## 40 18.7997128 19.3172185 15.8071782 17.3514171 13.1327764 12.2808211 18.3640066
## 41 20.4808839 21.3672870 17.5909315 19.4696195 15.1707946 13.7073167 20.7910211
## 42 20.0386746 17.1230844 18.1603965 15.8200506 15.8491784 19.4489813 12.6009725
## 43 16.7373984 15.8629455 13.7487818 13.8148109 10.5653445 12.0863426 13.3790614
## 44 17.3355860 16.8824487 14.2830329 14.8255532 11.1644317 11.9812896 14.8535148
## 45 18.2274189 16.9390360 15.3381518 14.9385843 12.1695767 14.1417740 13.9023447
## 46 22.6887315 19.5169533 21.1007929 18.4661055 19.0382692 22.7662763 14.9513263
## 47 22.3771535 22.9554467 19.4069183 20.9892942 16.7687812 15.7512272 21.9260058
## 48 18.3291298 17.4022565 15.3430928 15.3599639 12.1593586 13.6189566 14.7689732
## 49 19.4979237 18.7925239 16.4684827 16.7386531 13.3085396 14.3606687 16.3578290
##             8          9         10         11         12         13         14
## 2                                                                              
## 3                                                                              
## 4                                                                              
## 5                                                                              
## 6                                                                              
## 7                                                                              
## 8                                                                              
## 9   7.2853967                                                                  
## 10 11.1379598  4.1998710                                                       
## 11  2.6660266  5.6029021  9.7607407                                            
## 12  2.6238334  6.3131668 10.4842930  0.7421561                                 
## 13  2.4318066  7.5053630 11.6600171  1.9026269  1.2127661                      
## 14  3.2637712  7.7266273 11.9182423  2.2420724  1.5028310  0.8324100           
## 15  4.7801678  3.9609318  8.1412587  2.2427010  2.7594379  3.9516713  3.9507211
## 16  4.7147609  6.1230055 10.2798707  2.2340292  2.0934385  2.8469089  2.4175973
## 17 12.6079130  5.3433349  2.1868923 10.8866242 11.5697071 12.7781273 12.9104308
## 18  4.8226244  7.5593688 11.7295173  2.9247891  2.4084025  2.4880555  1.7341571
## 19  4.1599271  7.7826737 11.9799902  2.6566326  2.0021252  1.7503451  0.9408486
## 20 12.1095172  5.1869250  4.5950499  9.9058834 10.4825604 11.6776923 11.6118975
## 21  8.6971816 10.8563125 14.8007043  6.9847876  6.4647106  6.2655662  5.4334129
## 22  8.4804540  2.4609947  5.1709971  6.2077380  6.7833012  7.9812272  7.9436808
## 23 14.2524951  6.9829649  4.2676539 12.3134134 12.9534273 14.1653839 14.1998090
## 24  6.6209129  7.8392920 11.8308516  4.3916502  4.0647011  4.3587399  3.6186297
## 25  6.4040134  5.0880218  8.9774205  3.7385151  3.9332540  4.9008680  4.5440052
## 26  7.1106482  3.6144827  7.2628365  4.5545603  4.9880257  6.1204591  5.9430375
## 27 10.1403945  4.3400664  6.0441435  7.6945512  8.1763367  9.3243825  9.1462001
## 28  9.0640004  5.4531891  8.3761792  6.4133930  6.6873604  7.6798191  7.3032925
## 29  8.6130722  6.4588524  9.7806180  5.9609153  6.0612292  6.8840783  6.3719377
## 30  8.5079956  7.5859974 11.1223773  5.9662460  5.8854472  6.4867653  5.8452869
## 31 12.4664529 16.6461651 20.7382201 11.8241502 11.1251511 10.3471071  9.6742378
## 32 16.0312207  8.9782516  6.9735267 13.8253304 14.3890405 15.5764478 15.4741131
## 33 11.1206191  5.5593144  6.9685362  8.5949106  9.0166095 10.1203990  9.8622679
## 34 12.2488598 15.1924305 19.1188311 11.0155551 10.3997932  9.8972998  9.1123862
## 35 11.8186720  6.7450111  8.2283456  9.2150378  9.5565939 10.5920219 10.2419126
## 36 14.1196169 17.9140434 21.9344415 13.3185757 12.6407167 11.9339250 11.2256226
## 37 10.0201888  8.7535342 12.0026700  7.4947506  7.3963561  7.9418717  7.2614301
## 38 10.8329949  7.5325658 10.0764306  8.1686283  8.3164698  9.1636519  8.6495525
## 39 17.3127677 21.2943398 25.3053846 16.6526877 15.9630601 15.2044120 14.5240824
## 40 15.9311418  9.4255009  8.5304726 13.4983334 13.9639585 15.0910896 14.8535255
## 41 18.1700052 11.2594152  9.3531433 15.8600822 16.3803092 17.5426390 17.3698133
## 42 14.3622060 17.1805685 21.0336325 13.1319170 12.5213297 12.0190413 11.2361193
## 43 12.0446165  8.7514205 11.0569108  9.3868895  9.4951817 10.2862882  9.7267136
## 44 13.1327991  8.6125596 10.1082387 10.4768565 10.7156935 11.6458808 11.1858915
## 45 13.1221827 10.8802230 13.4331297 10.5528851 10.5009035 11.0751720 10.3933851
## 46 17.1853891 20.6679699 24.5943849 16.2914847 15.6308588 14.9701906 14.2434062
## 47 19.5579465 13.0217072 11.6512120 17.0986901 17.5417195 18.6480343 18.3700408
## 48 13.5774104 10.2651478 12.3138290 10.9292994 11.0043066 11.7438333 11.1458530
## 49 14.9861299 10.9870141 12.4793913 12.3218505 12.4594208 13.2677062 12.7087386
##            15         16         17         18         19         20         21
## 2                                                                              
## 3                                                                              
## 4                                                                              
## 5                                                                              
## 6                                                                              
## 7                                                                              
## 8                                                                              
## 9                                                                              
## 10                                                                             
## 11                                                                             
## 12                                                                             
## 13                                                                             
## 14                                                                             
## 15                                                                             
## 16  2.1746284                                                                  
## 17  8.9812816 10.9865775                                                       
## 18  3.5988466  1.4587973 12.4417242                                            
## 19  3.8581113  1.9292480 12.8215640  0.8364844                                 
## 20  7.7262142  9.3843404  3.1503972 10.7692363 11.3094405                      
## 21  7.1232709  5.0779904 15.0522952  4.0663111  4.5607002 12.7374467           
## 22  4.0298992  5.8032159  5.3051043  7.2346358  7.7040326  3.7002843  9.7747449
## 23 10.2521993 12.0948366  2.0825434 13.5197804 13.9950947  2.9735515 15.6892886
## 24  4.1246234  2.2271300 12.2121821  1.8845130  2.7037936 10.1316011  3.0231242
## 25  2.0453352  2.1301674  9.3544007  3.3742684  4.0160202  7.4335582  5.8249459
## 26  2.3330888  3.6530161  7.5660369  5.0407131  5.5809798  5.7334881  7.5565125
## 27  5.4521182  6.8134751  5.4368555  8.1348676  8.7394876  2.7961391  9.9414779
## 28  4.3554678  4.8863621  8.0948445  5.9787940  6.7037402  5.5133011  7.2459151
## 29  4.2714176  4.0407961  9.6484205  4.8480188  5.6428744  7.1241132  5.6442881
## 30  4.7472097  3.7932861 11.0804428  4.1622688  4.9977010  8.5829589  4.2105809
## 31 12.7197681 10.5455421 21.1485634  9.1634601  9.1808743 18.9025835  6.1664019
## 32 11.6297033 13.1867013  4.8003529 14.5245191 15.1157231  3.9273919 16.0381099
## 33  6.3639746  7.4694320  6.0459927  8.6944133  9.3649987  3.0326573 10.0200160
## 34 11.4248247  9.3204503 19.2838705  8.1255462  8.3996177 16.8110261  4.3362674
## 35  7.0399574  7.8243246  7.1897705  8.9145985  9.6474892  4.0784548  9.6995866
## 36 14.0415682 11.8813212 22.2076267 10.5573919 10.6622033 19.8086246  7.1596251
## 37  6.2251267  5.3090511 11.7079985  5.5424607  6.3764575  8.9596987  4.5318410
## 38  6.2945840  6.3185150  9.4400208  7.0944809  7.9027097  6.4940729  7.1506072
## 39 17.4211944 15.2589174 25.5405925 13.9241841 14.0000335 23.0781019 10.5138876
## 40 11.2556326 12.4630713  6.5314997 13.6720190 14.3553239  4.3318006 14.5742792
## 41 13.6311789 15.0162627  7.1715549 16.2838106 16.9319266  6.1018216 17.3588596
## 42 13.4735675 11.3958938 21.0876282 10.2329125 10.5220708 18.4946749  6.3521036
## 43  7.5661613  7.4570933 10.2313741  8.1085421  8.9340820  7.1656123  7.5976952
## 44  8.4181000  8.8051044  8.9300068  9.6859929 10.4796682  5.7801392  9.6640866
## 45  9.0646401  8.4078142 12.6443553  8.6702800  9.5020900  9.5724448  6.9528756
## 46 16.8694895 14.7374973 24.7110246 13.4709520 13.6376903 22.1456013  9.8140848
## 47 14.8575656 15.9615088  9.5049707 17.1058434 17.8228317  7.8609473 17.5900085
## 48  9.1509613  8.9411711 11.2955977  9.4828233 10.3169817  8.1603009  8.4419937
## 49 10.4099040 10.4345270 11.1883040 11.0811520 11.9095810  8.0489832 10.1783909
##            22         23         24         25         26         27         28
## 2                                                                              
## 3                                                                              
## 4                                                                              
## 5                                                                              
## 6                                                                              
## 7                                                                              
## 8                                                                              
## 9                                                                              
## 10                                                                             
## 11                                                                             
## 12                                                                             
## 13                                                                             
## 14                                                                             
## 15                                                                             
## 16                                                                             
## 17                                                                             
## 18                                                                             
## 19                                                                             
## 20                                                                             
## 21                                                                             
## 22                                                                             
## 23  6.2923541                                                                  
## 24  6.9072289 13.0220498                                                       
## 25  4.0517258 10.2525801  2.8708393                                            
## 26  2.2627397  8.4941449  4.6500995  1.7889938                                 
## 27  1.9387870  5.7547547  7.3656597  4.7624573  3.2083164                      
## 28  3.2859073  8.4824824  4.8580066  2.7790113  2.2472195  2.7338071           
## 29  4.6124706 10.0921857  3.4404828  2.2687461  2.8702091  4.3397931  1.6111178
## 30  5.9563809 11.5512947  2.4256360  2.7469629  3.9811675  5.7985518  3.0696742
## 31 15.8466694 21.8501467  8.9450069 11.8151304 13.5941235 16.1064491 13.4111670
## 32  7.6177503  2.7852488 13.6847573 11.1527309  9.5432329  6.3902741  8.8555124
## 33  3.1458691  5.9516924  7.6880492  5.3495772  4.0408510  1.2192627  2.8344458
## 34 14.0478633 19.7832317  7.3557647 10.1521440 11.8604600 14.0356487 11.3026423
## 35  4.2927023  6.8533943  7.6732094  5.7031226  4.7208571  2.4428272  2.9445713
## 36 16.9343576 22.7769460 10.1046163 12.9605958 14.7106943 17.0229976 14.2953745
## 37  6.8579939 11.9219561  3.6947675  4.1910870  5.1534937  6.2833921  3.6423215
## 38  5.2279319  9.4032871  5.5380249  4.4308464  4.3609268  4.0591871  2.1371232
## 39 20.2831761 26.0509359 13.4789629 16.3287547 18.0703323 20.3050841 17.5717878
## 40  7.5023855  4.8628514 12.5495507 10.3416088  8.9766453  5.8053845  7.7238443
## 41  9.6939438  5.1165841 15.2556162 12.9205590 11.4336224  8.2255839 10.4026403
## 42 15.9140459 21.4660911  9.3710442 12.1080813 13.7726436 15.7545498 13.0271457
## 43  6.3905621  9.9607248  6.4280726  5.6608310  5.6501406  5.0153777  3.4170895
## 44  6.1515933  8.3198585  8.1734531  6.7824638  6.1966843  4.3598645  4.0711796
## 45  8.6205903 12.3338618  6.8070560  7.0301148  7.5113374  7.3901638  5.4279466
## 46 19.5057043 25.1177893 12.8289240 15.6314134 17.3332214 19.3989819 16.6685864
## 47 11.1408610  7.5197423 15.8469754 13.8315028 12.5565738  9.4202168 11.1270824
## 48  7.8625177 10.7760178  7.7180444  7.2210045  7.2404410  6.3333816  5.0009999
## 49  8.5287749 10.3585611  9.3638568  8.5838518  8.3237005  6.7720702  6.0937020
##            29         30         31         32         33         34         35
## 2                                                                              
## 3                                                                              
## 4                                                                              
## 5                                                                              
## 6                                                                              
## 7                                                                              
## 8                                                                              
## 9                                                                              
## 10                                                                             
## 11                                                                             
## 12                                                                             
## 13                                                                             
## 14                                                                             
## 15                                                                             
## 16                                                                             
## 17                                                                             
## 18                                                                             
## 19                                                                             
## 20                                                                             
## 21                                                                             
## 22                                                                             
## 23                                                                             
## 24                                                                             
## 25                                                                             
## 26                                                                             
## 27                                                                             
## 28                                                                             
## 29                                                                             
## 30  1.4591091                                                                  
## 31 11.8064600 10.3620703                                                       
## 32 10.4156132 11.8281867 22.1700812                                            
## 33  4.3865674  5.8102121 16.1693538  6.0299449                                 
## 34  9.6966187  8.2394791  2.8622535 19.8586666 13.9451764                      
## 35  4.2393392  5.5350700 15.7742353  6.4514339  1.2838994 13.4115930           
## 36 12.6849290 11.2258642  1.7715825 22.9031799 16.9718867  3.0504098 16.4586097
## 37  2.2961705  1.5302941 10.4309769 11.8402797  5.9920595  8.0195760  5.3920322
## 38  2.2807877  3.1666065 13.1436258  9.1401202  3.4623660 10.7326056  2.6899069
## 39 15.9663213 14.5092116  4.8581582 26.0597016 20.1937246  6.2697525 19.6087387
## 40  9.1313997 10.4345033 20.5897139  2.5902329  4.9936468 18.1230037  4.9020487
## 41 11.8649072 13.1986754 23.3900096  2.3935343  7.5986619 20.9250588  7.6652474
## 42 11.4443704 10.0072883  3.4437331 21.3512773 15.5563087  2.1242410 14.9084684
## 43  3.4350242  4.0024486 13.3600926  9.3389945  4.1866679 10.7974904  3.1093738
## 44  4.8382841  5.8004479 15.4995379  7.3548908  3.2101406 12.9449064  1.9281610
## 45  4.8066715  4.6163728 12.0625195 11.5285611  6.5993091  9.3170865  5.5021186
## 46 15.0787087 13.6338571  4.8208421 24.9953937 19.2112720  5.4795086 18.5573134
## 47 12.4068064 13.5967661 23.4084281  4.7346908  8.5281718 20.7905089  8.1987603
## 48  4.9686703  5.3224889 13.8454089  9.7616666  5.3480926 11.1427859  4.1180711
## 49  6.4003814  6.9452491 15.5204678  8.9362271  5.6248121 12.7832882  4.3438824
##            36         37         38         39         40         41         42
## 2                                                                              
## 3                                                                              
## 4                                                                              
## 5                                                                              
## 6                                                                              
## 7                                                                              
## 8                                                                              
## 9                                                                              
## 10                                                                             
## 11                                                                             
## 12                                                                             
## 13                                                                             
## 14                                                                             
## 15                                                                             
## 16                                                                             
## 17                                                                             
## 18                                                                             
## 19                                                                             
## 20                                                                             
## 21                                                                             
## 22                                                                             
## 23                                                                             
## 24                                                                             
## 25                                                                             
## 26                                                                             
## 27                                                                             
## 28                                                                             
## 29                                                                             
## 30                                                                             
## 31                                                                             
## 32                                                                             
## 33                                                                             
## 34                                                                             
## 35                                                                             
## 36                                                                             
## 37 11.0668244                                                                  
## 38 13.7817934  2.7202951                                                       
## 39  3.3809457 14.2303126 16.9195814                                            
## 40 21.1718506 10.1590590  7.4486557 24.2217598                                 
## 41 23.9735082 12.9602027 10.2469715 27.0128174  2.8030193                      
## 42  2.3915260  9.5659605 12.2196738  4.7712682 19.4668657 22.2534691           
## 43 13.8387427  3.0727512  1.2909696 16.8589916  7.3631573 10.1547349 12.1042555
## 44 15.9853558  5.1369449  2.6376128 18.9901237  5.2467600  8.0249755 14.2287385
## 45 12.2789289  3.1338315  3.3975446 15.0933926  9.3541853 12.0784496 10.3258365
## 46  3.0805849 13.2209921 15.8697787  1.5648647 23.0770298 25.8546157  3.6550525
## 47 23.8059918 13.0698613 10.4668079 26.6794312  3.6384887  2.5838144 21.9110122
## 48 14.1300979  4.1083445  2.8850139 16.9783883  7.5095805 10.2083768 12.2089506
## 49 15.7392007  5.8156763  4.1532283 18.5010603  6.4895160  9.0283204 13.7457939
##            43         44         45         46         47         48
## 2                                                                   
## 3                                                                   
## 4                                                                   
## 5                                                                   
## 6                                                                   
## 7                                                                   
## 8                                                                   
## 9                                                                   
## 10                                                                  
## 11                                                                  
## 12                                                                  
## 13                                                                  
## 14                                                                  
## 15                                                                  
## 16                                                                  
## 17                                                                  
## 18                                                                  
## 19                                                                  
## 20                                                                  
## 21                                                                  
## 22                                                                  
## 23                                                                  
## 24                                                                  
## 25                                                                  
## 26                                                                  
## 27                                                                  
## 28                                                                  
## 29                                                                  
## 30                                                                  
## 31                                                                  
## 32                                                                  
## 33                                                                  
## 34                                                                  
## 35                                                                  
## 36                                                                  
## 37                                                                  
## 38                                                                  
## 39                                                                  
## 40                                                                  
## 41                                                                  
## 42                                                                  
## 43                                                                  
## 44  2.1475568                                                       
## 45  2.4129857  4.1736911                                            
## 46 15.7210952 17.8319274 13.8507086                                 
## 47 10.0549729  7.9347641 11.5860682 25.4243446                      
## 48  1.5945218  2.4634328  1.8906603 15.7411467  9.7024739           
## 49  2.9828340  2.4158026  3.4662066 17.2163430  8.2247685  1.7364328
D<-as.matrix(jarak)

Power distance weigth dengan alpha=1

###power distance weigth dengan alpha=1
alpha1=1
W1<-1/(D^alpha1)
round(W1,4) #menjadikan 4 angka di belakang koma
##         1      2      3      4      5      6      7      8      9     10     11
## 1     Inf 0.2777 0.3263 0.2364 0.1616 0.1452 0.1274 0.1738 0.1066 0.0857 0.1277
## 2  0.2777    Inf 0.2289 0.4860 0.1613 0.1149 0.2189 0.2612 0.0986 0.0747 0.1544
## 3  0.3263 0.2289    Inf 0.2954 0.3139 0.2291 0.1423 0.2518 0.1566 0.1095 0.1900
## 4  0.2364 0.4860 0.2954    Inf 0.2314 0.1360 0.2643 0.5488 0.1201 0.0844 0.2257
## 5  0.1616 0.1613 0.3139 0.2314    Inf 0.2530 0.1501 0.2963 0.2493 0.1288 0.3638
## 6  0.1452 0.1149 0.2291 0.1360 0.2530    Inf 0.0959 0.1416 0.2964 0.2082 0.1513
## 7  0.1274 0.2189 0.1423 0.2643 0.1501 0.0959    Inf 0.2973 0.0963 0.0695 0.2016
## 8  0.1738 0.2612 0.2518 0.5488 0.2963 0.1416 0.2973    Inf 0.1373 0.0898 0.3751
## 9  0.1066 0.0986 0.1566 0.1201 0.2493 0.2964 0.0963 0.1373    Inf 0.2381 0.1785
## 10 0.0857 0.0747 0.1095 0.0844 0.1288 0.2082 0.0695 0.0898 0.2381    Inf 0.1025
## 11 0.1277 0.1544 0.1900 0.2257 0.3638 0.1513 0.2016 0.3751 0.1785 0.1025    Inf
## 12 0.1231 0.1553 0.1745 0.2250 0.2908 0.1363 0.2267 0.3811 0.1584 0.0954 1.3474
## 13 0.1222 0.1670 0.1626 0.2406 0.2292 0.1203 0.3050 0.4112 0.1332 0.0858 0.5256
## 14 0.1110 0.1475 0.1444 0.2007 0.2034 0.1132 0.2725 0.3064 0.1294 0.0839 0.4460
## 15 0.1087 0.1181 0.1594 0.1559 0.3209 0.1661 0.1396 0.2092 0.2525 0.1228 0.4459
## 16 0.0994 0.1172 0.1344 0.1531 0.2173 0.1242 0.1650 0.2121 0.1633 0.0973 0.4476
## 17 0.0729 0.0658 0.0906 0.0740 0.1078 0.1466 0.0636 0.0793 0.1871 0.4573 0.0919
## 18 0.0953 0.1180 0.1229 0.1513 0.1780 0.1075 0.1892 0.2074 0.1323 0.0853 0.3419
## 19 0.1011 0.1295 0.1302 0.1693 0.1850 0.1083 0.2246 0.2404 0.1285 0.0835 0.3764
## 20 0.0689 0.0655 0.0865 0.0748 0.1103 0.1258 0.0673 0.0826 0.1928 0.2176 0.1010
## 21 0.0692 0.0829 0.0820 0.0963 0.1039 0.0762 0.1247 0.1150 0.0921 0.0676 0.1432
## 22 0.0866 0.0846 0.1177 0.1015 0.1771 0.1715 0.0895 0.1179 0.4063 0.1934 0.1611
## 23 0.0636 0.0587 0.0770 0.0654 0.0910 0.1130 0.0580 0.0702 0.1432 0.2343 0.0812
## 24 0.0821 0.0967 0.1037 0.1186 0.1466 0.0986 0.1408 0.1510 0.1276 0.0845 0.2277
## 25 0.0893 0.0979 0.1203 0.1226 0.1938 0.1289 0.1226 0.1562 0.1965 0.1114 0.2675
## 26 0.0895 0.0930 0.1228 0.1148 0.2005 0.1498 0.1065 0.1406 0.2767 0.1377 0.2196
## 27 0.0742 0.0734 0.0959 0.0861 0.1332 0.1303 0.0795 0.0986 0.2304 0.1654 0.1300
## 28 0.0746 0.0780 0.0963 0.0930 0.1385 0.1146 0.0914 0.1103 0.1834 0.1194 0.1559
## 29 0.0743 0.0804 0.0949 0.0962 0.1358 0.1049 0.0996 0.1161 0.1548 0.1022 0.1678
## 30 0.0728 0.0812 0.0914 0.0968 0.1275 0.0955 0.1058 0.1175 0.1318 0.0899 0.1676
## 31 0.0559 0.0680 0.0609 0.0731 0.0687 0.0543 0.0987 0.0802 0.0601 0.0482 0.0846
## 32 0.0552 0.0523 0.0655 0.0579 0.0773 0.0883 0.0532 0.0624 0.1114 0.1434 0.0723
## 33 0.0682 0.0681 0.0862 0.0790 0.1159 0.1125 0.0746 0.0899 0.1799 0.1435 0.1163
## 34 0.0557 0.0663 0.0624 0.0728 0.0728 0.0576 0.0944 0.0816 0.0658 0.0523 0.0908
## 35 0.0638 0.0646 0.0793 0.0744 0.1046 0.0990 0.0721 0.0846 0.1483 0.1215 0.1085
## 36 0.0510 0.0608 0.0554 0.0650 0.0622 0.0504 0.0842 0.0708 0.0558 0.0456 0.0751
## 37 0.0655 0.0723 0.0803 0.0845 0.1071 0.0849 0.0926 0.0998 0.1142 0.0833 0.1334
## 38 0.0647 0.0683 0.0803 0.0794 0.1078 0.0922 0.0812 0.0923 0.1328 0.0992 0.1224
## 39 0.0441 0.0516 0.0470 0.0541 0.0516 0.0431 0.0674 0.0578 0.0470 0.0395 0.0601
## 40 0.0532 0.0518 0.0633 0.0576 0.0761 0.0814 0.0545 0.0628 0.1061 0.1172 0.0741
## 41 0.0488 0.0468 0.0568 0.0514 0.0659 0.0730 0.0481 0.0550 0.0888 0.1069 0.0631
## 42 0.0499 0.0584 0.0551 0.0632 0.0631 0.0514 0.0794 0.0696 0.0582 0.0475 0.0762
## 43 0.0597 0.0630 0.0727 0.0724 0.0946 0.0827 0.0747 0.0830 0.1143 0.0904 0.1065
## 44 0.0577 0.0592 0.0700 0.0675 0.0896 0.0835 0.0673 0.0761 0.1161 0.0989 0.0954
## 45 0.0549 0.0590 0.0652 0.0669 0.0822 0.0707 0.0719 0.0762 0.0919 0.0744 0.0948
## 46 0.0441 0.0512 0.0474 0.0542 0.0525 0.0439 0.0669 0.0582 0.0484 0.0407 0.0614
## 47 0.0447 0.0436 0.0515 0.0476 0.0596 0.0635 0.0456 0.0511 0.0768 0.0858 0.0585
## 48 0.0546 0.0575 0.0652 0.0651 0.0822 0.0734 0.0677 0.0737 0.0974 0.0812 0.0915
## 49 0.0513 0.0532 0.0607 0.0597 0.0751 0.0696 0.0611 0.0667 0.0910 0.0801 0.0812
##        12     13     14     15     16     17     18     19     20     21     22
## 1  0.1231 0.1222 0.1110 0.1087 0.0994 0.0729 0.0953 0.1011 0.0689 0.0692 0.0866
## 2  0.1553 0.1670 0.1475 0.1181 0.1172 0.0658 0.1180 0.1295 0.0655 0.0829 0.0846
## 3  0.1745 0.1626 0.1444 0.1594 0.1344 0.0906 0.1229 0.1302 0.0865 0.0820 0.1177
## 4  0.2250 0.2406 0.2007 0.1559 0.1531 0.0740 0.1513 0.1693 0.0748 0.0963 0.1015
## 5  0.2908 0.2292 0.2034 0.3209 0.2173 0.1078 0.1780 0.1850 0.1103 0.1039 0.1771
## 6  0.1363 0.1203 0.1132 0.1661 0.1242 0.1466 0.1075 0.1083 0.1258 0.0762 0.1715
## 7  0.2267 0.3050 0.2725 0.1396 0.1650 0.0636 0.1892 0.2246 0.0673 0.1247 0.0895
## 8  0.3811 0.4112 0.3064 0.2092 0.2121 0.0793 0.2074 0.2404 0.0826 0.1150 0.1179
## 9  0.1584 0.1332 0.1294 0.2525 0.1633 0.1871 0.1323 0.1285 0.1928 0.0921 0.4063
## 10 0.0954 0.0858 0.0839 0.1228 0.0973 0.4573 0.0853 0.0835 0.2176 0.0676 0.1934
## 11 1.3474 0.5256 0.4460 0.4459 0.4476 0.0919 0.3419 0.3764 0.1010 0.1432 0.1611
## 12    Inf 0.8246 0.6654 0.3624 0.4777 0.0864 0.4152 0.4995 0.0954 0.1547 0.1474
## 13 0.8246    Inf 1.2013 0.2531 0.3513 0.0783 0.4019 0.5713 0.0856 0.1596 0.1253
## 14 0.6654 1.2013    Inf 0.2531 0.4136 0.0775 0.5766 1.0629 0.0861 0.1840 0.1259
## 15 0.3624 0.2531 0.2531    Inf 0.4598 0.1113 0.2779 0.2592 0.1294 0.1404 0.2481
## 16 0.4777 0.3513 0.4136 0.4598    Inf 0.0910 0.6855 0.5183 0.1066 0.1969 0.1723
## 17 0.0864 0.0783 0.0775 0.1113 0.0910    Inf 0.0804 0.0780 0.3174 0.0664 0.1885
## 18 0.4152 0.4019 0.5766 0.2779 0.6855 0.0804    Inf 1.1955 0.0929 0.2459 0.1382
## 19 0.4995 0.5713 1.0629 0.2592 0.5183 0.0780 1.1955    Inf 0.0884 0.2193 0.1298
## 20 0.0954 0.0856 0.0861 0.1294 0.1066 0.3174 0.0929 0.0884    Inf 0.0785 0.2702
## 21 0.1547 0.1596 0.1840 0.1404 0.1969 0.0664 0.2459 0.2193 0.0785    Inf 0.1023
## 22 0.1474 0.1253 0.1259 0.2481 0.1723 0.1885 0.1382 0.1298 0.2702 0.1023    Inf
## 23 0.0772 0.0706 0.0704 0.0975 0.0827 0.4802 0.0740 0.0715 0.3363 0.0637 0.1589
## 24 0.2460 0.2294 0.2763 0.2424 0.4490 0.0819 0.5306 0.3699 0.0987 0.3308 0.1448
## 25 0.2542 0.2040 0.2201 0.4889 0.4694 0.1069 0.2964 0.2490 0.1345 0.1717 0.2468
## 26 0.2005 0.1634 0.1683 0.4286 0.2737 0.1322 0.1984 0.1792 0.1744 0.1323 0.4419
## 27 0.1223 0.1072 0.1093 0.1834 0.1468 0.1839 0.1229 0.1144 0.3576 0.1006 0.5158
## 28 0.1495 0.1302 0.1369 0.2296 0.2047 0.1235 0.1673 0.1492 0.1814 0.1380 0.3043
## 29 0.1650 0.1453 0.1569 0.2341 0.2475 0.1036 0.2063 0.1772 0.1404 0.1772 0.2168
## 30 0.1699 0.1542 0.1711 0.2107 0.2636 0.0902 0.2403 0.2001 0.1165 0.2375 0.1679
## 31 0.0899 0.0966 0.1034 0.0786 0.0948 0.0473 0.1091 0.1089 0.0529 0.1622 0.0631
## 32 0.0695 0.0642 0.0646 0.0860 0.0758 0.2083 0.0688 0.0662 0.2546 0.0624 0.1313
## 33 0.1109 0.0988 0.1014 0.1571 0.1339 0.1654 0.1150 0.1068 0.3297 0.0998 0.3179
## 34 0.0962 0.1010 0.1097 0.0875 0.1073 0.0519 0.1231 0.1191 0.0595 0.2306 0.0712
## 35 0.1046 0.0944 0.0976 0.1420 0.1278 0.1391 0.1122 0.1037 0.2452 0.1031 0.2330
## 36 0.0791 0.0838 0.0891 0.0712 0.0842 0.0450 0.0947 0.0938 0.0505 0.1397 0.0591
## 37 0.1352 0.1259 0.1377 0.1606 0.1884 0.0854 0.1804 0.1568 0.1116 0.2207 0.1458
## 38 0.1202 0.1091 0.1156 0.1589 0.1583 0.1059 0.1410 0.1265 0.1540 0.1398 0.1913
## 39 0.0626 0.0658 0.0689 0.0574 0.0655 0.0392 0.0718 0.0714 0.0433 0.0951 0.0493
## 40 0.0716 0.0663 0.0673 0.0888 0.0802 0.1531 0.0731 0.0697 0.2309 0.0686 0.1333
## 41 0.0610 0.0570 0.0576 0.0734 0.0666 0.1394 0.0614 0.0591 0.1639 0.0576 0.1032
## 42 0.0799 0.0832 0.0890 0.0742 0.0878 0.0474 0.0977 0.0950 0.0541 0.1574 0.0628
## 43 0.1053 0.0972 0.1028 0.1322 0.1341 0.0977 0.1233 0.1119 0.1396 0.1316 0.1565
## 44 0.0933 0.0859 0.0894 0.1188 0.1136 0.1120 0.1032 0.0954 0.1730 0.1035 0.1626
## 45 0.0952 0.0903 0.0962 0.1103 0.1189 0.0791 0.1153 0.1052 0.1045 0.1438 0.1160
## 46 0.0640 0.0668 0.0702 0.0593 0.0679 0.0405 0.0742 0.0733 0.0452 0.1019 0.0513
## 47 0.0570 0.0536 0.0544 0.0673 0.0627 0.1052 0.0585 0.0561 0.1272 0.0569 0.0898
## 48 0.0909 0.0852 0.0897 0.1093 0.1118 0.0885 0.1055 0.0969 0.1225 0.1185 0.1272
## 49 0.0803 0.0754 0.0787 0.0961 0.0958 0.0894 0.0902 0.0840 0.1242 0.0982 0.1173
##        23     24     25     26     27     28     29     30     31     32     33
## 1  0.0636 0.0821 0.0893 0.0895 0.0742 0.0746 0.0743 0.0728 0.0559 0.0552 0.0682
## 2  0.0587 0.0967 0.0979 0.0930 0.0734 0.0780 0.0804 0.0812 0.0680 0.0523 0.0681
## 3  0.0770 0.1037 0.1203 0.1228 0.0959 0.0963 0.0949 0.0914 0.0609 0.0655 0.0862
## 4  0.0654 0.1186 0.1226 0.1148 0.0861 0.0930 0.0962 0.0968 0.0731 0.0579 0.0790
## 5  0.0910 0.1466 0.1938 0.2005 0.1332 0.1385 0.1358 0.1275 0.0687 0.0773 0.1159
## 6  0.1130 0.0986 0.1289 0.1498 0.1303 0.1146 0.1049 0.0955 0.0543 0.0883 0.1125
## 7  0.0580 0.1408 0.1226 0.1065 0.0795 0.0914 0.0996 0.1058 0.0987 0.0532 0.0746
## 8  0.0702 0.1510 0.1562 0.1406 0.0986 0.1103 0.1161 0.1175 0.0802 0.0624 0.0899
## 9  0.1432 0.1276 0.1965 0.2767 0.2304 0.1834 0.1548 0.1318 0.0601 0.1114 0.1799
## 10 0.2343 0.0845 0.1114 0.1377 0.1654 0.1194 0.1022 0.0899 0.0482 0.1434 0.1435
## 11 0.0812 0.2277 0.2675 0.2196 0.1300 0.1559 0.1678 0.1676 0.0846 0.0723 0.1163
## 12 0.0772 0.2460 0.2542 0.2005 0.1223 0.1495 0.1650 0.1699 0.0899 0.0695 0.1109
## 13 0.0706 0.2294 0.2040 0.1634 0.1072 0.1302 0.1453 0.1542 0.0966 0.0642 0.0988
## 14 0.0704 0.2763 0.2201 0.1683 0.1093 0.1369 0.1569 0.1711 0.1034 0.0646 0.1014
## 15 0.0975 0.2424 0.4889 0.4286 0.1834 0.2296 0.2341 0.2107 0.0786 0.0860 0.1571
## 16 0.0827 0.4490 0.4694 0.2737 0.1468 0.2047 0.2475 0.2636 0.0948 0.0758 0.1339
## 17 0.4802 0.0819 0.1069 0.1322 0.1839 0.1235 0.1036 0.0902 0.0473 0.2083 0.1654
## 18 0.0740 0.5306 0.2964 0.1984 0.1229 0.1673 0.2063 0.2403 0.1091 0.0688 0.1150
## 19 0.0715 0.3699 0.2490 0.1792 0.1144 0.1492 0.1772 0.2001 0.1089 0.0662 0.1068
## 20 0.3363 0.0987 0.1345 0.1744 0.3576 0.1814 0.1404 0.1165 0.0529 0.2546 0.3297
## 21 0.0637 0.3308 0.1717 0.1323 0.1006 0.1380 0.1772 0.2375 0.1622 0.0624 0.0998
## 22 0.1589 0.1448 0.2468 0.4419 0.5158 0.3043 0.2168 0.1679 0.0631 0.1313 0.3179
## 23    Inf 0.0768 0.0975 0.1177 0.1738 0.1179 0.0991 0.0866 0.0458 0.3590 0.1680
## 24 0.0768    Inf 0.3483 0.2150 0.1358 0.2058 0.2907 0.4123 0.1118 0.0731 0.1301
## 25 0.0975 0.3483    Inf 0.5590 0.2100 0.3598 0.4408 0.3640 0.0846 0.0897 0.1869
## 26 0.1177 0.2150 0.5590    Inf 0.3117 0.4450 0.3484 0.2512 0.0736 0.1048 0.2475
## 27 0.1738 0.1358 0.2100 0.3117    Inf 0.3658 0.2304 0.1725 0.0621 0.1565 0.8202
## 28 0.1179 0.2058 0.3598 0.4450 0.3658    Inf 0.6207 0.3258 0.0746 0.1129 0.3528
## 29 0.0991 0.2907 0.4408 0.3484 0.2304 0.6207    Inf 0.6853 0.0847 0.0960 0.2280
## 30 0.0866 0.4123 0.3640 0.2512 0.1725 0.3258 0.6853    Inf 0.0965 0.0845 0.1721
## 31 0.0458 0.1118 0.0846 0.0736 0.0621 0.0746 0.0847 0.0965    Inf 0.0451 0.0618
## 32 0.3590 0.0731 0.0897 0.1048 0.1565 0.1129 0.0960 0.0845 0.0451    Inf 0.1658
## 33 0.1680 0.1301 0.1869 0.2475 0.8202 0.3528 0.2280 0.1721 0.0618 0.1658    Inf
## 34 0.0505 0.1359 0.0985 0.0843 0.0712 0.0885 0.1031 0.1214 0.3494 0.0504 0.0717
## 35 0.1459 0.1303 0.1753 0.2118 0.4094 0.3396 0.2359 0.1807 0.0634 0.1550 0.7789
## 36 0.0439 0.0990 0.0772 0.0680 0.0587 0.0700 0.0788 0.0891 0.5645 0.0437 0.0589
## 37 0.0839 0.2707 0.2386 0.1940 0.1591 0.2746 0.4355 0.6535 0.0959 0.0845 0.1669
## 38 0.1063 0.1806 0.2257 0.2293 0.2464 0.4679 0.4384 0.3158 0.0761 0.1094 0.2888
## 39 0.0384 0.0742 0.0612 0.0553 0.0492 0.0569 0.0626 0.0689 0.2058 0.0384 0.0495
## 40 0.2056 0.0797 0.0967 0.1114 0.1723 0.1295 0.1095 0.0958 0.0486 0.3861 0.2003
## 41 0.1954 0.0655 0.0774 0.0875 0.1216 0.0961 0.0843 0.0758 0.0428 0.4178 0.1316
## 42 0.0466 0.1067 0.0826 0.0726 0.0635 0.0768 0.0874 0.0999 0.2904 0.0468 0.0643
## 43 0.1004 0.1556 0.1767 0.1770 0.1994 0.2926 0.2911 0.2498 0.0748 0.1071 0.2389
## 44 0.1202 0.1223 0.1474 0.1614 0.2294 0.2456 0.2067 0.1724 0.0645 0.1360 0.3115
## 45 0.0811 0.1469 0.1422 0.1331 0.1353 0.1842 0.2080 0.2166 0.0829 0.0867 0.1515
## 46 0.0398 0.0779 0.0640 0.0577 0.0515 0.0600 0.0663 0.0733 0.2074 0.0400 0.0521
## 47 0.1330 0.0631 0.0723 0.0796 0.1062 0.0899 0.0806 0.0735 0.0427 0.2112 0.1173
## 48 0.0928 0.1296 0.1385 0.1381 0.1579 0.2000 0.2013 0.1879 0.0722 0.1024 0.1870
## 49 0.0965 0.1068 0.1165 0.1201 0.1477 0.1641 0.1562 0.1440 0.0644 0.1119 0.1778
##        34     35     36     37     38     39     40     41     42     43     44
## 1  0.0557 0.0638 0.0510 0.0655 0.0647 0.0441 0.0532 0.0488 0.0499 0.0597 0.0577
## 2  0.0663 0.0646 0.0608 0.0723 0.0683 0.0516 0.0518 0.0468 0.0584 0.0630 0.0592
## 3  0.0624 0.0793 0.0554 0.0803 0.0803 0.0470 0.0633 0.0568 0.0551 0.0727 0.0700
## 4  0.0728 0.0744 0.0650 0.0845 0.0794 0.0541 0.0576 0.0514 0.0632 0.0724 0.0675
## 5  0.0728 0.1046 0.0622 0.1071 0.1078 0.0516 0.0761 0.0659 0.0631 0.0946 0.0896
## 6  0.0576 0.0990 0.0504 0.0849 0.0922 0.0431 0.0814 0.0730 0.0514 0.0827 0.0835
## 7  0.0944 0.0721 0.0842 0.0926 0.0812 0.0674 0.0545 0.0481 0.0794 0.0747 0.0673
## 8  0.0816 0.0846 0.0708 0.0998 0.0923 0.0578 0.0628 0.0550 0.0696 0.0830 0.0761
## 9  0.0658 0.1483 0.0558 0.1142 0.1328 0.0470 0.1061 0.0888 0.0582 0.1143 0.1161
## 10 0.0523 0.1215 0.0456 0.0833 0.0992 0.0395 0.1172 0.1069 0.0475 0.0904 0.0989
## 11 0.0908 0.1085 0.0751 0.1334 0.1224 0.0601 0.0741 0.0631 0.0762 0.1065 0.0954
## 12 0.0962 0.1046 0.0791 0.1352 0.1202 0.0626 0.0716 0.0610 0.0799 0.1053 0.0933
## 13 0.1010 0.0944 0.0838 0.1259 0.1091 0.0658 0.0663 0.0570 0.0832 0.0972 0.0859
## 14 0.1097 0.0976 0.0891 0.1377 0.1156 0.0689 0.0673 0.0576 0.0890 0.1028 0.0894
## 15 0.0875 0.1420 0.0712 0.1606 0.1589 0.0574 0.0888 0.0734 0.0742 0.1322 0.1188
## 16 0.1073 0.1278 0.0842 0.1884 0.1583 0.0655 0.0802 0.0666 0.0878 0.1341 0.1136
## 17 0.0519 0.1391 0.0450 0.0854 0.1059 0.0392 0.1531 0.1394 0.0474 0.0977 0.1120
## 18 0.1231 0.1122 0.0947 0.1804 0.1410 0.0718 0.0731 0.0614 0.0977 0.1233 0.1032
## 19 0.1191 0.1037 0.0938 0.1568 0.1265 0.0714 0.0697 0.0591 0.0950 0.1119 0.0954
## 20 0.0595 0.2452 0.0505 0.1116 0.1540 0.0433 0.2309 0.1639 0.0541 0.1396 0.1730
## 21 0.2306 0.1031 0.1397 0.2207 0.1398 0.0951 0.0686 0.0576 0.1574 0.1316 0.1035
## 22 0.0712 0.2330 0.0591 0.1458 0.1913 0.0493 0.1333 0.1032 0.0628 0.1565 0.1626
## 23 0.0505 0.1459 0.0439 0.0839 0.1063 0.0384 0.2056 0.1954 0.0466 0.1004 0.1202
## 24 0.1359 0.1303 0.0990 0.2707 0.1806 0.0742 0.0797 0.0655 0.1067 0.1556 0.1223
## 25 0.0985 0.1753 0.0772 0.2386 0.2257 0.0612 0.0967 0.0774 0.0826 0.1767 0.1474
## 26 0.0843 0.2118 0.0680 0.1940 0.2293 0.0553 0.1114 0.0875 0.0726 0.1770 0.1614
## 27 0.0712 0.4094 0.0587 0.1591 0.2464 0.0492 0.1723 0.1216 0.0635 0.1994 0.2294
## 28 0.0885 0.3396 0.0700 0.2746 0.4679 0.0569 0.1295 0.0961 0.0768 0.2926 0.2456
## 29 0.1031 0.2359 0.0788 0.4355 0.4384 0.0626 0.1095 0.0843 0.0874 0.2911 0.2067
## 30 0.1214 0.1807 0.0891 0.6535 0.3158 0.0689 0.0958 0.0758 0.0999 0.2498 0.1724
## 31 0.3494 0.0634 0.5645 0.0959 0.0761 0.2058 0.0486 0.0428 0.2904 0.0748 0.0645
## 32 0.0504 0.1550 0.0437 0.0845 0.1094 0.0384 0.3861 0.4178 0.0468 0.1071 0.1360
## 33 0.0717 0.7789 0.0589 0.1669 0.2888 0.0495 0.2003 0.1316 0.0643 0.2389 0.3115
## 34    Inf 0.0746 0.3278 0.1247 0.0932 0.1595 0.0552 0.0478 0.4708 0.0926 0.0773
## 35 0.0746    Inf 0.0608 0.1855 0.3718 0.0510 0.2040 0.1305 0.0671 0.3216 0.5186
## 36 0.3278 0.0608    Inf 0.0904 0.0726 0.2958 0.0472 0.0417 0.4181 0.0723 0.0626
## 37 0.1247 0.1855 0.0904    Inf 0.3676 0.0703 0.0984 0.0772 0.1045 0.3254 0.1947
## 38 0.0932 0.3718 0.0726 0.3676    Inf 0.0591 0.1343 0.0976 0.0818 0.7746 0.3791
## 39 0.1595 0.0510 0.2958 0.0703 0.0591    Inf 0.0413 0.0370 0.2096 0.0593 0.0527
## 40 0.0552 0.2040 0.0472 0.0984 0.1343 0.0413    Inf 0.3568 0.0514 0.1358 0.1906
## 41 0.0478 0.1305 0.0417 0.0772 0.0976 0.0370 0.3568    Inf 0.0449 0.0985 0.1246
## 42 0.4708 0.0671 0.4181 0.1045 0.0818 0.2096 0.0514 0.0449    Inf 0.0826 0.0703
## 43 0.0926 0.3216 0.0723 0.3254 0.7746 0.0593 0.1358 0.0985 0.0826    Inf 0.4656
## 44 0.0773 0.5186 0.0626 0.1947 0.3791 0.0527 0.1906 0.1246 0.0703 0.4656    Inf
## 45 0.1073 0.1817 0.0814 0.3191 0.2943 0.0663 0.1069 0.0828 0.0968 0.4144 0.2396
## 46 0.1825 0.0539 0.3246 0.0756 0.0630 0.6390 0.0433 0.0387 0.2736 0.0636 0.0561
## 47 0.0481 0.1220 0.0420 0.0765 0.0955 0.0375 0.2748 0.3870 0.0456 0.0995 0.1260
## 48 0.0897 0.2428 0.0708 0.2434 0.3466 0.0589 0.1332 0.0980 0.0819 0.6271 0.4059
## 49 0.0782 0.2302 0.0635 0.1719 0.2408 0.0541 0.1541 0.1108 0.0727 0.3353 0.4139
##        45     46     47     48     49
## 1  0.0549 0.0441 0.0447 0.0546 0.0513
## 2  0.0590 0.0512 0.0436 0.0575 0.0532
## 3  0.0652 0.0474 0.0515 0.0652 0.0607
## 4  0.0669 0.0542 0.0476 0.0651 0.0597
## 5  0.0822 0.0525 0.0596 0.0822 0.0751
## 6  0.0707 0.0439 0.0635 0.0734 0.0696
## 7  0.0719 0.0669 0.0456 0.0677 0.0611
## 8  0.0762 0.0582 0.0511 0.0737 0.0667
## 9  0.0919 0.0484 0.0768 0.0974 0.0910
## 10 0.0744 0.0407 0.0858 0.0812 0.0801
## 11 0.0948 0.0614 0.0585 0.0915 0.0812
## 12 0.0952 0.0640 0.0570 0.0909 0.0803
## 13 0.0903 0.0668 0.0536 0.0852 0.0754
## 14 0.0962 0.0702 0.0544 0.0897 0.0787
## 15 0.1103 0.0593 0.0673 0.1093 0.0961
## 16 0.1189 0.0679 0.0627 0.1118 0.0958
## 17 0.0791 0.0405 0.1052 0.0885 0.0894
## 18 0.1153 0.0742 0.0585 0.1055 0.0902
## 19 0.1052 0.0733 0.0561 0.0969 0.0840
## 20 0.1045 0.0452 0.1272 0.1225 0.1242
## 21 0.1438 0.1019 0.0569 0.1185 0.0982
## 22 0.1160 0.0513 0.0898 0.1272 0.1173
## 23 0.0811 0.0398 0.1330 0.0928 0.0965
## 24 0.1469 0.0779 0.0631 0.1296 0.1068
## 25 0.1422 0.0640 0.0723 0.1385 0.1165
## 26 0.1331 0.0577 0.0796 0.1381 0.1201
## 27 0.1353 0.0515 0.1062 0.1579 0.1477
## 28 0.1842 0.0600 0.0899 0.2000 0.1641
## 29 0.2080 0.0663 0.0806 0.2013 0.1562
## 30 0.2166 0.0733 0.0735 0.1879 0.1440
## 31 0.0829 0.2074 0.0427 0.0722 0.0644
## 32 0.0867 0.0400 0.2112 0.1024 0.1119
## 33 0.1515 0.0521 0.1173 0.1870 0.1778
## 34 0.1073 0.1825 0.0481 0.0897 0.0782
## 35 0.1817 0.0539 0.1220 0.2428 0.2302
## 36 0.0814 0.3246 0.0420 0.0708 0.0635
## 37 0.3191 0.0756 0.0765 0.2434 0.1719
## 38 0.2943 0.0630 0.0955 0.3466 0.2408
## 39 0.0663 0.6390 0.0375 0.0589 0.0541
## 40 0.1069 0.0433 0.2748 0.1332 0.1541
## 41 0.0828 0.0387 0.3870 0.0980 0.1108
## 42 0.0968 0.2736 0.0456 0.0819 0.0727
## 43 0.4144 0.0636 0.0995 0.6271 0.3353
## 44 0.2396 0.0561 0.1260 0.4059 0.4139
## 45    Inf 0.0722 0.0863 0.5289 0.2885
## 46 0.0722    Inf 0.0393 0.0635 0.0581
## 47 0.0863 0.0393    Inf 0.1031 0.1216
## 48 0.5289 0.0635 0.1031    Inf 0.5759
## 49 0.2885 0.0581 0.1216 0.5759    Inf
#dinormalisasi 
diag(W1)<-0
rtot<-rowSums(W1,na.rm=TRUE)
rtot
##         1         2         3         4         5         6         7         8 
##  4.490196  5.103564  5.676610  6.310571  7.108957  5.478479  5.691182  7.288011 
##         9        10        11        12        13        14        15        16 
##  6.902367  5.425782  9.581784 10.094120  9.359682  9.797781  8.738324  9.516698 
##        17        18        19        20        21        22        23        24 
##  5.754481  9.593866  9.809223  6.669706  6.244303  7.934210  5.561231  8.322323 
##        25        26        27        28        29        30        31        32 
##  9.180313  8.799460  8.378807  8.987369  9.167168  8.669201  4.845950  5.405748 
##        33        34        35        36        37        38        39        40 
##  8.451071  5.183734  8.165668  4.889638  7.848904  8.697936  3.905338  5.563630 
##        41        42        43        44        45        46        47        48 
##  4.774236  4.809938  8.278231  7.427048  6.518552  4.120513  4.191281  7.232815 
##        49 
##  6.155136
W1<-W1/rtot #row-normalized
rowSums(W1,na.rm=TRUE)
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
## 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
W1
##              1           2           3           4          5          6
## 1  0.000000000 0.061842900 0.072668135 0.052650101 0.03598191 0.03233196
## 2  0.054410363 0.000000000 0.044857714 0.095224946 0.03159669 0.02251949
## 3  0.057480466 0.040329387 0.000000000 0.052042305 0.05529808 0.04035595
## 4  0.037462427 0.077011513 0.046814130 0.000000000 0.03667360 0.02154430
## 5  0.022727083 0.022683456 0.044156352 0.032554894 0.00000000 0.03558525
## 6  0.026499481 0.020978392 0.041815436 0.024816525 0.04617596 0.00000000
## 7  0.022382281 0.038463776 0.024998522 0.046446395 0.02637256 0.01685252
## 8  0.023850198 0.035840017 0.034548855 0.075302368 0.04064912 0.01942672
## 9  0.015448231 0.014283280 0.022689287 0.017400486 0.03611654 0.04293603
## 10 0.015795993 0.013764790 0.020188610 0.015563183 0.02374302 0.03836429
## 11 0.013332465 0.016115468 0.019831266 0.023555020 0.03796811 0.01578921
## 12 0.012195170 0.015384253 0.017287489 0.022288048 0.02880457 0.01350517
## 13 0.013057476 0.017839289 0.017371923 0.025704327 0.02448301 0.01284967
## 14 0.011324556 0.015052032 0.014739889 0.020488809 0.02076286 0.01155474
## 15 0.012444716 0.013512901 0.018241513 0.017840931 0.03672864 0.01901073
## 16 0.010443294 0.012314508 0.014125392 0.016083603 0.02283533 0.01304719
## 17 0.012674015 0.011441454 0.015739792 0.012858310 0.01874147 0.02546720
## 18 0.009936219 0.012296605 0.012813105 0.015770755 0.01855813 0.01120791
## 19 0.010309054 0.013203122 0.013272765 0.017259663 0.01885990 0.01104549
## 20 0.010327827 0.009821231 0.012967566 0.011213153 0.01653235 0.01886010
## 21 0.011088122 0.013280491 0.013131786 0.015419596 0.01664028 0.01221072
## 22 0.010910021 0.010666172 0.014832862 0.012794396 0.02231478 0.02160974
## 23 0.011435130 0.010552028 0.013848216 0.011759759 0.01636164 0.02032160
## 24 0.009864986 0.011624635 0.012460117 0.014252706 0.01761030 0.01185003
## 25 0.009722306 0.010669161 0.013103838 0.013352763 0.02110575 0.01403552
## 26 0.010168888 0.010563466 0.013950772 0.013044255 0.02278615 0.01702362
## 27 0.008852212 0.008765652 0.011450366 0.010276068 0.01589823 0.01555518
## 28 0.008299160 0.008684105 0.010711732 0.010345163 0.01541518 0.01274831
## 29 0.008103490 0.008772172 0.010349148 0.010497538 0.01480983 0.01144210
## 30 0.008401697 0.009360818 0.010546328 0.011170565 0.01471129 0.01102052
## 31 0.011533090 0.014041418 0.012570108 0.015085443 0.01416913 0.01120979
## 32 0.010207708 0.009676618 0.012121663 0.010719604 0.01429523 0.01633509
## 33 0.008070688 0.008061843 0.010201966 0.009349572 0.01371023 0.01331491
## 34 0.010752747 0.012790884 0.012029338 0.014050818 0.01404100 0.01110437
## 35 0.007812430 0.007912825 0.009710362 0.009116899 0.01280899 0.01212500
## 36 0.010430044 0.012434561 0.011331797 0.013292220 0.01272875 0.01030150
## 37 0.008350377 0.009214851 0.010232875 0.010760024 0.01364932 0.01081049
## 38 0.007439866 0.007853004 0.009227207 0.009133821 0.01239252 0.01060208
## 39 0.011296875 0.013214891 0.012038913 0.013859681 0.01320012 0.01103175
## 40 0.009560719 0.009304589 0.011370706 0.010358737 0.01368627 0.01463573
## 41 0.010226981 0.009802724 0.011907136 0.010758177 0.01380663 0.01528072
## 42 0.010375081 0.012141672 0.011448146 0.013141732 0.01311758 0.01068965
## 43 0.007217296 0.007615153 0.008786143 0.008744149 0.01143349 0.00999465
## 44 0.007766856 0.007975324 0.009426780 0.009081820 0.01206000 0.01123777
## 45 0.008416348 0.009056495 0.010001746 0.010269266 0.01260589 0.01084788
## 46 0.010696422 0.012434741 0.011501381 0.013142363 0.01274739 0.01065999
## 47 0.010662239 0.010393636 0.012294098 0.011367250 0.01422826 0.01514743
## 48 0.007543116 0.007944875 0.009011139 0.009001242 0.01137056 0.01015193
## 49 0.008332475 0.008645244 0.009865266 0.009706035 0.01220765 0.01131326
##              7          8          9          10         11         12
## 1  0.028368833 0.03871112 0.02374715 0.019087275 0.02845061 0.02741517
## 2  0.042892448 0.05118040 0.01931757 0.014633842 0.03025630 0.03042785
## 3  0.025062693 0.04435613 0.02758861 0.019296550 0.03347401 0.03074053
## 4  0.041887635 0.08696591 0.01903228 0.013381109 0.03576525 0.03565101
## 5  0.021112944 0.04167295 0.03506698 0.018121424 0.05117520 0.04090007
## 6  0.017506821 0.02584333 0.05409536 0.037995267 0.02761512 0.02488333
## 7  0.000000000 0.05224184 0.01692291 0.012212052 0.03541788 0.03983451
## 8  0.040795470 0.00000000 0.01883379 0.012319280 0.05146672 0.05229434
## 9  0.013953383 0.01988606 0.00000000 0.034495781 0.02585764 0.02294852
## 10 0.012809400 0.01654749 0.04388355 0.000000000 0.01888230 0.01757918
## 11 0.021036747 0.03914616 0.01862690 0.010692293 0.00000000 0.14062364
## 12 0.022459163 0.03775681 0.01569222 0.009449143 0.13348617 0.00000000
## 13 0.032589014 0.04393493 0.01423532 0.009163043 0.05615459 0.08809715
## 14 0.027813627 0.03127178 0.01320938 0.008563673 0.04552214 0.06791444
## 15 0.015975714 0.02394025 0.02889179 0.014056600 0.05102705 0.04147164
## 16 0.017339006 0.02228712 0.01716126 0.010221769 0.04703540 0.05019420
## 17 0.011051592 0.01378322 0.03252231 0.079463266 0.01596249 0.01502005
## 18 0.019717885 0.02161339 0.01378862 0.008886407 0.03563787 0.04327901
## 19 0.022897408 0.02450641 0.01309895 0.008509596 0.03837372 0.05091833
## 20 0.010085337 0.01238131 0.02890569 0.032628947 0.01513562 0.01430296
## 21 0.019962416 0.01841355 0.01475142 0.010820160 0.02292782 0.02477234
## 22 0.011286482 0.01486200 0.05121363 0.024373730 0.02030313 0.01858041
## 23 0.010429785 0.01261648 0.02575071 0.042134693 0.01460329 0.01388175
## 24 0.016918739 0.01814837 0.01532776 0.010156392 0.02736073 0.02956153
## 25 0.013349584 0.01700945 0.02140886 0.012133636 0.02913690 0.02769431
## 26 0.012104396 0.01598213 0.03144111 0.015647238 0.02495155 0.02278323
## 27 0.009483236 0.01176963 0.02749929 0.019746178 0.01551081 0.01459685
## 28 0.010174126 0.01227573 0.02040407 0.013283773 0.01734920 0.01663844
## 29 0.010863907 0.01266504 0.01688921 0.011153174 0.01830003 0.01799716
## 30 0.012208768 0.01355794 0.01520576 0.010371064 0.01933391 0.01959934
## 31 0.020367680 0.01655305 0.01239672 0.009950607 0.01745224 0.01854877
## 32 0.009848548 0.01153925 0.02060404 0.026527219 0.01338039 0.01285619
## 33 0.008831750 0.01064043 0.02128467 0.016980352 0.01376724 0.01312336
## 34 0.018206934 0.01574931 0.01269785 0.010090111 0.01751261 0.01854952
## 35 0.008835579 0.01036190 0.01815623 0.014883181 0.01328958 0.01281460
## 36 0.017215375 0.01448440 0.01141641 0.009323881 0.01535555 0.01617900
## 37 0.011800439 0.01271496 0.01455484 0.010614831 0.01699941 0.01722555
## 38 0.009333906 0.01061293 0.01526303 0.011409775 0.01407455 0.01382435
## 39 0.017249811 0.01479023 0.01202478 0.010118786 0.01537648 0.01604077
## 40 0.009787558 0.01128223 0.01906941 0.021070201 0.01331563 0.01287162
## 41 0.010074426 0.01152766 0.01860289 0.022394355 0.01320659 0.01278716
## 42 0.016498954 0.01447569 0.01210105 0.009884306 0.01583188 0.01660390
## 43 0.009028941 0.01002927 0.01380333 0.010925182 0.01286888 0.01272211
## 44 0.009064723 0.01025242 0.01563333 0.013320125 0.01285147 0.01256503
## 45 0.011034707 0.01169076 0.01409974 0.011420146 0.01453710 0.01460906
## 46 0.016231888 0.01412178 0.01174224 0.009867629 0.01489663 0.01552623
## 47 0.010881625 0.01219916 0.01832253 0.020477746 0.01395373 0.01360132
## 48 0.009361433 0.01018300 0.01346875 0.011227925 0.01265028 0.01256406
## 49 0.009932000 0.01084109 0.01478709 0.013018740 0.01318519 0.01303961
##            13         14         15         16          17         18
## 1  0.02721792 0.02471062 0.02421853 0.02213393 0.016242582 0.02122997
## 2  0.03271637 0.02889677 0.02313679 0.02296306 0.012900717 0.02311561
## 3  0.02864309 0.02544092 0.02808018 0.02368087 0.015955709 0.02165504
## 4  0.03812402 0.03181089 0.02470455 0.02425498 0.011725232 0.02397604
## 5  0.03223442 0.02861600 0.04514681 0.03056945 0.015170644 0.02504506
## 6  0.02195296 0.02066464 0.03032264 0.02266435 0.026750221 0.01962719
## 7  0.05359568 0.04788317 0.02452934 0.02899399 0.011174512 0.03323927
## 8  0.05642375 0.04204083 0.02870436 0.02910257 0.010882978 0.02845165
## 9  0.01930324 0.01875046 0.03657670 0.02366123 0.027113747 0.01916533
## 10 0.01580660 0.01546413 0.02263842 0.01792875 0.084277236 0.01571294
## 11 0.05485295 0.04654832 0.04653527 0.04671590 0.009586507 0.03568281
## 12 0.08168729 0.06592064 0.03590136 0.04732290 0.008562670 0.04113415
## 13 0.00000000 0.12835170 0.02703698 0.03752886 0.008361260 0.04294166
## 14 0.12261257 0.00000000 0.02583425 0.04221709 0.007905540 0.05885506
## 15 0.02895950 0.02896646 0.00000000 0.05262436 0.012741881 0.03179864
## 16 0.03690967 0.04346401 0.04832019 0.00000000 0.009564258 0.07203089
## 17 0.01359961 0.01346025 0.01934887 0.01581726 0.000000000 0.01396733
## 18 0.04189346 0.06010601 0.02896296 0.07145150 0.008377719 0.00000000
## 19 0.05824273 0.10835418 0.02642352 0.05284177 0.007951048 0.12187302
## 20 0.01283915 0.01291190 0.01940558 0.01597679 0.047591346 0.01392222
## 21 0.02555970 0.02947429 0.02248209 0.03153728 0.010639307 0.03938360
## 22 0.01579162 0.01586626 0.03127534 0.02171839 0.023757589 0.01742126
## 23 0.01269406 0.01266329 0.01753929 0.01486719 0.086344557 0.01330024
## 24 0.02756732 0.03320560 0.02913206 0.05395229 0.009839254 0.06376118
## 25 0.02222642 0.02397197 0.05325716 0.05113624 0.011644653 0.03228218
## 26 0.01856778 0.01912210 0.04870939 0.03110945 0.015020193 0.02254509
## 27 0.01279964 0.01304900 0.02189034 0.01751657 0.021951795 0.01467126
## 28 0.01448827 0.01523522 0.02554657 0.02277098 0.013745448 0.01861032
## 29 0.01584598 0.01711959 0.02553835 0.02699590 0.011305989 0.02250093
## 30 0.01778250 0.01973400 0.02429867 0.03040923 0.010410314 0.02771346
## 31 0.01994353 0.02133066 0.01622340 0.01956826 0.009757536 0.02251965
## 32 0.01187615 0.01195469 0.01590653 0.01402840 0.038536389 0.01273627
## 33 0.01169205 0.01199807 0.01859344 0.01584166 0.019571343 0.01360968
## 34 0.01949129 0.02117021 0.01688526 0.02069762 0.010003756 0.02374131
## 35 0.01156191 0.01195714 0.01739555 0.01565170 0.017033083 0.01373746
## 36 0.01713720 0.01821851 0.01456491 0.01721308 0.009209184 0.01937165
## 37 0.01604235 0.01754562 0.02046646 0.02399795 0.010881990 0.02298732
## 38 0.01254629 0.01329199 0.01826488 0.01819570 0.012178978 0.01620553
## 39 0.01684115 0.01763001 0.01469818 0.01678099 0.010025600 0.01838957
## 40 0.01191026 0.01210075 0.01596878 0.01442171 0.027518761 0.01314647
## 41 0.01193991 0.01205871 0.01536607 0.01394872 0.029206722 0.01286294
## 42 0.01729779 0.01850308 0.01543042 0.01824367 0.009858997 0.02031708
## 43 0.01174367 0.01241928 0.01596566 0.01619917 0.011806699 0.01489772
## 44 0.01156143 0.01203686 0.01599446 0.01529147 0.015077592 0.01390080
## 45 0.01385155 0.01476019 0.01692382 0.01824592 0.012132552 0.01769358
## 46 0.01621143 0.01703864 0.01438622 0.01646740 0.009821052 0.01801567
## 47 0.01279441 0.01298803 0.01605852 0.01494787 0.025101662 0.01394790
## 48 0.01177288 0.01240450 0.01510866 0.01546316 0.012240056 0.01457991
## 49 0.01224522 0.01278380 0.01560686 0.01557004 0.014521053 0.01466147
##            19          20         21         22          23         24
## 1  0.02252102 0.015340882 0.01541972 0.01927809 0.014162723 0.01828419
## 2  0.02537685 0.012835094 0.01624892 0.01658207 0.011498292 0.01895616
## 3  0.02293543 0.015236180 0.01444504 0.02073192 0.013566747 0.01826744
## 4  0.02682862 0.011851295 0.01525767 0.01608625 0.010363364 0.01879634
## 5  0.02602364 0.015510840 0.01461634 0.02490523 0.012799471 0.02061604
## 6  0.01977697 0.022961000 0.01391762 0.03129632 0.020628560 0.01800131
## 7  0.03946558 0.011819378 0.02190254 0.01573475 0.010191635 0.02474059
## 8  0.03298415 0.011330893 0.01577656 0.01617975 0.009627202 0.02072398
## 9  0.01861543 0.027931353 0.01334503 0.05886962 0.020747324 0.01848098
## 10 0.01538442 0.040109519 0.01245246 0.03564211 0.043186548 0.01557836
## 11 0.03928458 0.010535627 0.01494171 0.01681203 0.008475692 0.02376435
## 12 0.04948121 0.009450704 0.01532436 0.01460463 0.007647982 0.02437266
## 13 0.06104010 0.009149174 0.01705213 0.01338657 0.007542418 0.02451196
## 14 0.10848072 0.008789599 0.01878450 0.01284844 0.007187697 0.02820513
## 15 0.02966177 0.014811707 0.01606543 0.02839734 0.011162329 0.02774518
## 16 0.05446602 0.011197214 0.02069292 0.01810694 0.008687878 0.04718111
## 17 0.01355354 0.055160539 0.01154492 0.03275668 0.083444890 0.01422986
## 18 0.12460874 0.009678798 0.02563337 0.01440753 0.007709686 0.05531045
## 19 0.00000000 0.009014139 0.02235290 0.01323266 0.007284329 0.03770438
## 20 0.01325721 0.000000000 0.01177093 0.04051895 0.050421740 0.01479842
## 21 0.03511434 0.012572848 0.00000000 0.01638365 0.010207345 0.05297367
## 22 0.01635981 0.034061298 0.01289409 0.00000000 0.020030101 0.01824704
## 23 0.01284852 0.060471892 0.01146109 0.02857695 0.000000000 0.01380860
## 24 0.04444080 0.011859800 0.03974655 0.01739609 0.009227331 0.00000000
## 25 0.02712356 0.014653649 0.01870039 0.02688453 0.010624521 0.03794317
## 26 0.02036261 0.019820976 0.01503912 0.05022378 0.013379020 0.02443890
## 27 0.01365626 0.042683404 0.01200513 0.06155846 0.020739152 0.01620340
## 28 0.01659779 0.020181605 0.01535586 0.03386196 0.013117300 0.02290389
## 29 0.01933145 0.015312073 0.01932661 0.02365000 0.010808852 0.03170629
## 30 0.02308079 0.013439525 0.02739548 0.01936594 0.009985971 0.04755490
## 31 0.02247693 0.010916914 0.03346488 0.01302216 0.009444233 0.02306962
## 32 0.01223814 0.047102065 0.01153429 0.02428384 0.066417142 0.01351783
## 33 0.01263515 0.039017990 0.01180918 0.03761383 0.019881437 0.01539119
## 34 0.02296666 0.011475274 0.04448783 0.01373242 0.009751245 0.02622584
## 35 0.01269387 0.030027047 0.01262569 0.02852841 0.017869095 0.01595994
## 36 0.01918122 0.010324499 0.02856492 0.01207687 0.008978996 0.02023967
## 37 0.01998074 0.014219934 0.02811359 0.01857778 0.010686696 0.03448291
## 38 0.01454815 0.017703806 0.01607833 0.02199145 0.012226555 0.02076007
## 39 0.01828994 0.011095357 0.02435443 0.01262424 0.009829197 0.01899699
## 40 0.01252070 0.041492855 0.01233260 0.02395755 0.036961601 0.01432233
## 41 0.01237057 0.034327062 0.01206632 0.02160706 0.040937001 0.01372987
## 42 0.01975874 0.011241229 0.03272977 0.01306411 0.009685176 0.02218567
## 43 0.01352112 0.016858121 0.01589940 0.01890268 0.012127507 0.01879238
## 44 0.01284802 0.023294076 0.01393231 0.02188750 0.016183329 0.01647321
## 45 0.01614469 0.016026031 0.02206401 0.01779557 0.012437978 0.02253666
## 46 0.01779541 0.010958757 0.02472857 0.01244191 0.009662007 0.01891727
## 47 0.01338679 0.030351376 0.01356398 0.02141581 0.031728556 0.01505591
## 48 0.01340108 0.016942849 0.01637750 0.01758454 0.012830226 0.01791370
## 49 0.01364162 0.020184656 0.01596185 0.01904916 0.015684220 0.01735032
##            25         26         27         28         29         30
## 1  0.01987749 0.01992802 0.01651843 0.01661122 0.01654406 0.01622112
## 2  0.01919173 0.01821331 0.01439106 0.01529270 0.01575683 0.01590081
## 3  0.02119176 0.02162545 0.01690100 0.01695912 0.01671286 0.01610613
## 4  0.01942495 0.01818891 0.01364396 0.01473334 0.01524944 0.01534566
## 5  0.02725539 0.02820468 0.01873808 0.01948836 0.01909763 0.01794007
## 6  0.02351939 0.02734311 0.02379015 0.02091343 0.01914612 0.01743898
## 7  0.02153390 0.01871530 0.01396163 0.01606672 0.01749922 0.01859724
## 8  0.02142588 0.01929664 0.01353119 0.01513809 0.01593063 0.01612738
## 9  0.02847429 0.04008259 0.03338148 0.02656754 0.02243089 0.01909806
## 10 0.02052987 0.02537648 0.03049319 0.02200350 0.01884393 0.01657067
## 11 0.02791608 0.02291433 0.01356345 0.01627293 0.01750817 0.01749252
## 12 0.02518718 0.01986108 0.01211638 0.01481415 0.01634447 0.01683263
## 13 0.02180047 0.01745641 0.01145826 0.01391195 0.01552005 0.01647065
## 14 0.02246123 0.01717370 0.01115916 0.01397506 0.01601772 0.01746089
## 15 0.05595094 0.04905018 0.02098972 0.02627466 0.02679167 0.02410646
## 16 0.04932874 0.02876485 0.01542215 0.02150444 0.02600440 0.02770117
## 17 0.01857710 0.02296812 0.03196289 0.02146769 0.01801099 0.01568327
## 18 0.03089063 0.02067828 0.01281315 0.01743383 0.02150018 0.02504242
## 19 0.02538455 0.01826648 0.01166486 0.01520716 0.01806612 0.02039835
## 20 0.02016957 0.02615016 0.05362095 0.02719453 0.02104566 0.01746853
## 21 0.02749313 0.02119311 0.01610887 0.02210155 0.02837311 0.03803418
## 22 0.03110686 0.05570083 0.06500791 0.03835668 0.02732516 0.02115991
## 23 0.01753864 0.02116944 0.03124656 0.02119855 0.01781738 0.01556676
## 24 0.04185493 0.02584004 0.01631337 0.02473417 0.03492497 0.04953701
## 25 0.00000000 0.06088828 0.02287238 0.03919694 0.04801275 0.03965425
## 26 0.06352360 0.00000000 0.03542149 0.05057064 0.03959410 0.02854523
## 27 0.02506033 0.03719980 0.00000000 0.04365660 0.02750102 0.02058251
## 28 0.04003844 0.04951331 0.04070048 0.00000000 0.06906215 0.03624726
## 29 0.04808160 0.03800592 0.02513598 0.06770761 0.00000000 0.07476133
## 30 0.04199215 0.02897414 0.01989305 0.03757757 0.07905570 0.00000000
## 31 0.01746556 0.01517993 0.01281213 0.01538702 0.01747839 0.01991473
## 32 0.01658681 0.01938423 0.02894841 0.02088962 0.01776067 0.01563961
## 33 0.02211917 0.02928299 0.09704897 0.04174650 0.02697512 0.02036555
## 34 0.01900201 0.01626506 0.01374437 0.01706779 0.01989468 0.02341302
## 35 0.02147314 0.02594104 0.05013206 0.04158974 0.02888751 0.02212510
## 36 0.01577968 0.01390241 0.01201399 0.01430631 0.01612261 0.01821812
## 37 0.03039935 0.02472232 0.02027668 0.03497943 0.05548644 0.08325610
## 38 0.02594759 0.02636362 0.02832336 0.05379653 0.05040794 0.03630694
## 39 0.01568152 0.01417018 0.01261062 0.01457221 0.01603749 0.01764808
## 40 0.01738016 0.02002293 0.03096070 0.02327064 0.01968360 0.01722543
## 41 0.01621119 0.01831944 0.02546416 0.02013504 0.01765354 0.01586959
## 42 0.01717059 0.01509535 0.01319637 0.01595920 0.01816639 0.02077515
## 43 0.02133940 0.02137978 0.02408568 0.03535136 0.03516679 0.03018121
## 44 0.01985164 0.02172823 0.03088238 0.03307223 0.02782867 0.02321252
## 45 0.02182159 0.02042357 0.02075844 0.02826268 0.03191570 0.03323135
## 46 0.01552568 0.01400134 0.01251036 0.01455962 0.01609476 0.01780041
## 47 0.01724979 0.01900125 0.02532750 0.02144233 0.01923062 0.01754760
## 48 0.01914675 0.01909535 0.02183016 0.02764622 0.02782611 0.02597633
## 49 0.01892693 0.01951848 0.02399059 0.02666129 0.02538379 0.02339239
##             31          32         33          34          35          36
## 1  0.012446845 0.012289061 0.01518997 0.012413573 0.014207332 0.011357886
## 2  0.013332646 0.010249575 0.01334973 0.012991811 0.012660466 0.011913342
## 3  0.010730721 0.011543273 0.01518821 0.010984882 0.013968124 0.009760823
## 4  0.011584262 0.009182606 0.01252088 0.011541857 0.011796963 0.010299250
## 5  0.009658646 0.010870285 0.01629861 0.010238466 0.014712984 0.008755010
## 6  0.009915541 0.016118227 0.02053951 0.010506948 0.018072297 0.009194272
## 7  0.017342753 0.009354607 0.01311463 0.016583533 0.012677226 0.014790768
## 8  0.011006470 0.008559027 0.01233849 0.011201993 0.011609734 0.009717802
## 9  0.008703376 0.016136531 0.02606038 0.009536185 0.021479258 0.008087389
## 10 0.008887226 0.026429273 0.02644820 0.009639985 0.022398821 0.008402550
## 11 0.008826401 0.007548803 0.01214262 0.009474302 0.011325477 0.007836025
## 12 0.008904830 0.006884933 0.01098723 0.009525918 0.010366411 0.007837180
## 13 0.010325711 0.006859153 0.01055702 0.010794989 0.010086954 0.008952733
## 14 0.010550074 0.006595785 0.01034893 0.011200571 0.009965319 0.009092050
## 15 0.008996895 0.009840184 0.01798222 0.010016646 0.016255556 0.008149974
## 16 0.009964254 0.007968518 0.01406780 0.011273969 0.013429717 0.008844005
## 17 0.008216993 0.036201007 0.02874261 0.009011552 0.024170119 0.007825132
## 18 0.011374881 0.007176366 0.01198853 0.012827847 0.011692424 0.009873013
## 19 0.011104048 0.006744293 0.01088573 0.012136846 0.010566985 0.009561333
## 20 0.007931807 0.038175880 0.04943903 0.008918649 0.036761874 0.007569008
## 21 0.025970734 0.009985340 0.01598261 0.036931760 0.016510599 0.022367929
## 22 0.007953500 0.016545106 0.04006412 0.008971933 0.029360640 0.007442649
## 23 0.008229523 0.064560224 0.03021263 0.009089328 0.026237552 0.007894662
## 24 0.013433055 0.008780482 0.01562929 0.016335319 0.015659519 0.011891472
## 25 0.009219428 0.009767002 0.02036212 0.010729630 0.019099844 0.008404610
## 26 0.008359740 0.011908264 0.02812361 0.009581697 0.024072606 0.007725219
## 27 0.007409997 0.018676622 0.09788599 0.008503258 0.048856806 0.007011029
## 28 0.008296613 0.012564746 0.03925539 0.009844359 0.037787255 0.007783445
## 29 0.009239428 0.010473213 0.02486795 0.011249791 0.025731590 0.008599570
## 30 0.011132031 0.009752204 0.01985313 0.013999779 0.020840005 0.010275457
## 31 0.000000000 0.009307944 0.01276228 0.072096294 0.013081957 0.116482224
## 32 0.008344050 0.000000000 0.03067827 0.009315241 0.028673977 0.008076969
## 33 0.007318053 0.019623429 0.00000000 0.008485242 0.092163138 0.006972012
## 34 0.067398338 0.009714204 0.01383354 0.000000000 0.014383909 0.063241053
## 35 0.007763543 0.018982440 0.09538439 0.009131201 0.000000000 0.007440723
## 36 0.115441485 0.008929507 0.01205017 0.067044800 0.012425965 0.000000000
## 37 0.012214227 0.010760415 0.02126253 0.015886915 0.023628628 0.011512455
## 38 0.008747191 0.012578588 0.03320556 0.010712199 0.042741183 0.008342151
## 39 0.052707170 0.009825890 0.01268017 0.040840491 0.013058452 0.075736138
## 40 0.008729542 0.069390969 0.03599349 0.009917714 0.036666053 0.008489516
## 41 0.008955003 0.087509758 0.02756507 0.010009893 0.027325616 0.008737045
## 42 0.060371365 0.009737257 0.01336454 0.097871601 0.013945287 0.086933142
## 43 0.009041761 0.012934878 0.02885320 0.011187670 0.038849867 0.008729027
## 44 0.008686904 0.018306594 0.04194302 0.010401234 0.069829753 0.008422897
## 45 0.012717766 0.013306804 0.02324612 0.016465265 0.027881679 0.012493622
## 46 0.050341466 0.009709319 0.01263260 0.044290149 0.013077769 0.078779927
## 47 0.010192507 0.050392005 0.02797675 0.011475937 0.029100809 0.010022290
## 48 0.009985891 0.014163437 0.02585197 0.012407916 0.033573666 0.009784698
## 49 0.010467852 0.018180598 0.02888380 0.012709246 0.037401094 0.010322377
##            37         38          39          40          41          42
## 1  0.01459654 0.01441173 0.009825431 0.011846320 0.010873916 0.011113879
## 2  0.01417176 0.01338377 0.010112270 0.010143360 0.009170163 0.011443120
## 3  0.01414874 0.01413831 0.008282412 0.011144397 0.010014335 0.009700310
## 4  0.01338300 0.01258926 0.008577155 0.009132642 0.008139053 0.010016673
## 5  0.01507003 0.01516247 0.007251547 0.010711186 0.009272264 0.008875388
## 6  0.01548797 0.01683245 0.007863993 0.014863210 0.013316422 0.009385192
## 7  0.01627439 0.01426518 0.011836969 0.009568196 0.008451265 0.013944195
## 8  0.01369352 0.01266609 0.007925460 0.008612794 0.007551547 0.009553661
## 9  0.01655078 0.01923353 0.006803584 0.015370836 0.012867261 0.008432656
## 10 0.01535535 0.01829073 0.007283242 0.021605513 0.019705166 0.008762407
## 11 0.01392504 0.01277628 0.006267138 0.007731673 0.006580338 0.007947407
## 12 0.01339411 0.01191222 0.006206052 0.007094520 0.006047968 0.007911906
## 13 0.01345290 0.01165924 0.007026989 0.007079757 0.006090374 0.008889331
## 14 0.01405562 0.01179991 0.007027220 0.006871360 0.005875937 0.009083557
## 15 0.01838331 0.01818046 0.006568919 0.010167214 0.008395343 0.008493550
## 16 0.01979232 0.01663025 0.006886364 0.008431185 0.006997644 0.009220730
## 17 0.01484264 0.01840860 0.006803977 0.026606081 0.024231510 0.008240737
## 18 0.01880632 0.01469216 0.007485772 0.007623839 0.006401036 0.010186080
## 19 0.01598770 0.01289999 0.007281759 0.007101537 0.006020867 0.009688670
## 20 0.01673400 0.02308746 0.006496706 0.034611852 0.024571620 0.008106747
## 21 0.03533795 0.02239614 0.015231853 0.010988261 0.009225605 0.025211488
## 22 0.01837804 0.02410829 0.006213844 0.016799521 0.013001570 0.007919827
## 23 0.01508278 0.01912271 0.006902489 0.036977541 0.035143816 0.008376760
## 24 0.03252133 0.02169704 0.008914541 0.009574746 0.007876363 0.012822345
## 25 0.02599057 0.02458419 0.006670977 0.010533056 0.008430653 0.008996368
## 26 0.02205171 0.02605945 0.006288945 0.012659889 0.009939399 0.008251381
## 27 0.01899432 0.02940213 0.005877776 0.020558283 0.014509455 0.007575509
## 28 0.03054845 0.05206404 0.006332154 0.014405685 0.010696060 0.008541185
## 29 0.04750733 0.04782775 0.006832190 0.011946136 0.009193914 0.009531755
## 30 0.07537825 0.03642729 0.007950183 0.011054756 0.008739581 0.011526688
## 31 0.01978318 0.01570022 0.042476565 0.010022377 0.008822479 0.059922725
## 32 0.01562364 0.02023915 0.007098633 0.071417618 0.077286657 0.008664037
## 33 0.01974750 0.03417553 0.005859652 0.023695748 0.015572241 0.007606444
## 34 0.02405503 0.01797431 0.030768540 0.010644545 0.009219144 0.090814143
## 35 0.02271202 0.04552721 0.006245377 0.024982199 0.015976517 0.008214389
## 36 0.01847993 0.01483944 0.060490210 0.009659718 0.008530838 0.085516157
## 37 0.00000000 0.04683548 0.008953164 0.012541154 0.009830581 0.013318717
## 38 0.04226373 0.00000000 0.006795074 0.015434974 0.011219881 0.009408582
## 39 0.01799397 0.01513393 0.000000000 0.010571477 0.009479195 0.053667025
## 40 0.01769246 0.02413036 0.007420550 0.000000000 0.064123275 0.009233062
## 41 0.01616160 0.02044093 0.007754008 0.074725711 0.000000000 0.009412358
## 42 0.02173361 0.01701378 0.043573922 0.010679833 0.009342493 0.000000000
## 43 0.03931290 0.09357212 0.007165242 0.016405837 0.011895806 0.009979859
## 44 0.02621072 0.05104730 0.007090159 0.025662123 0.016777995 0.009462751
## 45 0.04895231 0.04515270 0.010163938 0.016399964 0.012700993 0.014856743
## 46 0.01835628 0.01529248 0.155085777 0.010516442 0.009386651 0.066398022
## 47 0.01825502 0.02279497 0.008942865 0.065574084 0.092340440 0.010889071
## 48 0.03365315 0.04792308 0.008143220 0.018410981 0.013543656 0.011324376
## 49 0.02793587 0.03911799 0.008781440 0.025035142 0.017995147 0.011819321
##            43          44          45          46          47          48
## 1  0.01330598 0.012846835 0.012218264 0.009815772 0.009952446 0.012150463
## 2  0.01235215 0.011606225 0.011567453 0.010039554 0.008535730 0.011259546
## 3  0.01281288 0.012333618 0.011485183 0.008348571 0.009077251 0.011481484
## 4  0.01147061 0.010688591 0.010607717 0.008581359 0.007549767 0.010316709
## 5  0.01331406 0.012599621 0.011558956 0.007388676 0.008388660 0.011568670
## 6  0.01510237 0.015234789 0.012907321 0.008017667 0.011588457 0.013402820
## 7  0.01313324 0.011829552 0.012638906 0.011752163 0.008013791 0.011897267
## 8  0.01139195 0.010448012 0.010456465 0.007984203 0.007015647 0.010105877
## 9  0.01655478 0.016821693 0.013315704 0.007009776 0.011125871 0.014113565
## 10 0.01666878 0.018233171 0.013720201 0.007493793 0.015818547 0.014967338
## 11 0.01111813 0.009961451 0.009889684 0.006406089 0.006103666 0.009549075
## 12 0.01043346 0.009245093 0.009434196 0.006337949 0.005647541 0.009002619
## 13 0.01038676 0.009174166 0.009646915 0.007136933 0.005729357 0.009097646
## 14 0.01049316 0.009124344 0.009820085 0.007165696 0.005555999 0.009157121
## 15 0.01512503 0.013594329 0.012624706 0.006783751 0.007702367 0.012505617
## 16 0.01409108 0.011933813 0.012497715 0.007130007 0.006583241 0.011752204
## 17 0.01698478 0.019459964 0.013743493 0.007032392 0.018282814 0.015384543
## 18 0.01285475 0.010761237 0.012021903 0.007737632 0.006093430 0.010991797
## 19 0.01141078 0.009727872 0.010728679 0.007475230 0.005719903 0.009881269
## 20 0.02092377 0.025939106 0.015662837 0.006770267 0.019072974 0.018373298
## 21 0.02107823 0.016571249 0.023033058 0.016317975 0.009104372 0.018970162
## 22 0.01972228 0.020488430 0.014620401 0.006461519 0.011312993 0.016030042
## 23 0.01805253 0.021612902 0.014579074 0.007158922 0.023912560 0.016686710
## 24 0.01869281 0.014701102 0.017652090 0.009366239 0.007582442 0.015568551
## 25 0.01924254 0.016060351 0.015494590 0.006968580 0.007875410 0.015084986
## 26 0.02011336 0.018339378 0.015129574 0.006556388 0.009050505 0.015695637
## 27 0.02379656 0.027374414 0.016149674 0.006152320 0.012669426 0.018844394
## 28 0.03256200 0.027330473 0.020498961 0.006675267 0.009999680 0.022249004
## 29 0.03175667 0.022546204 0.022694486 0.007234369 0.008792346 0.021954554
## 30 0.02882008 0.019886548 0.024987343 0.008460620 0.008483700 0.021672359
## 31 0.01544584 0.013313808 0.017107361 0.042805358 0.008815537 0.014904426
## 32 0.01980816 0.025151735 0.016046084 0.007400894 0.039070823 0.018950480
## 33 0.02826310 0.036860751 0.017930391 0.006159311 0.013874978 0.022125308
## 34 0.01786629 0.014902474 0.020705092 0.035205918 0.009278808 0.017312648
## 35 0.03938541 0.063513347 0.022257600 0.006599229 0.014936887 0.029738184
## 36 0.01477837 0.012793842 0.016655697 0.066388079 0.008590867 0.014473652
## 37 0.04146327 0.024801963 0.040655127 0.009636669 0.009748100 0.031011596
## 38 0.08905694 0.043588582 0.033839086 0.007244575 0.010984228 0.039850694
## 39 0.01518832 0.013483839 0.016965024 0.163630615 0.009597647 0.015081512
## 40 0.02441056 0.034257098 0.019214797 0.007788644 0.049399295 0.023934596
## 41 0.02062660 0.026100716 0.017341432 0.008101362 0.081065268 0.020518209
## 42 0.01717601 0.014611476 0.020134240 0.056880953 0.009488511 0.017028726
## 43 0.00000000 0.056249389 0.050061946 0.007683864 0.012013832 0.075758612
## 44 0.06269590 0.000000000 0.032259935 0.007550670 0.016968747 0.054656657
## 45 0.06357613 0.036756027 0.000000000 0.011075845 0.013240756 0.081140068
## 46 0.01543711 0.013609760 0.017521721 0.000000000 0.009545507 0.015417445
## 47 0.02372861 0.030069018 0.020592884 0.009384335 0.000000000 0.024590693
## 48 0.08670860 0.056124424 0.073127229 0.008783270 0.014249845 0.000000000
## 49 0.05446698 0.067251337 0.046871400 0.009436729 0.019753256 0.093563053
##             49
## 1  0.011422109
## 2  0.010426567
## 3  0.010696885
## 4  0.009466967
## 5  0.010569725
## 6  0.012710579
## 7  0.010741671
## 8  0.009155909
## 9  0.013186279
## 10 0.014768768
## 11 0.008469888
## 12 0.007951219
## 13 0.008052729
## 14 0.008031004
## 15 0.010993225
## 16 0.010070266
## 17 0.015532078
## 18 0.009406356
## 19 0.008559904
## 20 0.018627401
## 21 0.015733920
## 22 0.014777795
## 23 0.017359196
## 24 0.012832187
## 25 0.012689962
## 26 0.013652982
## 27 0.017623671
## 28 0.018259388
## 29 0.017043506
## 30 0.016608604
## 31 0.013295854
## 32 0.020700936
## 33 0.021036826
## 34 0.015090885
## 35 0.028192282
## 36 0.012993933
## 37 0.021907395
## 38 0.027682033
## 39 0.013840275
## 40 0.027696792
## 41 0.023200064
## 42 0.015124835
## 43 0.040497982
## 44 0.055734273
## 45 0.044258268
## 46 0.014096388
## 47 0.029008788
## 48 0.079622283
## 49 0.000000000
W1 = mat2listw(W1,style='W')  
summary(W1)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 49 
## Number of nonzero links: 2352 
## Percentage nonzero weights: 97.95918 
## Average number of links: 48 
## Link number distribution:
## 
## 48 
## 49 
## 49 least connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 with 48 links
## 49 most connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 with 48 links
## 
## Weights style: W 
## Weights constants summary:
##    n   nn S0       S1       S2
## W 49 2401 49 3.256803 197.9015

Power distance weigth dengan alpha=2

###power distance weigth dengan alpha=2
alpha2=2
W2<-1/(D^alpha2)
round(W2,4)
##         1      2      3      4      5      6      7      8      9     10     11
## 1     Inf 0.0771 0.1065 0.0559 0.0261 0.0211 0.0162 0.0302 0.0114 0.0073 0.0163
## 2  0.0771    Inf 0.0524 0.2362 0.0260 0.0132 0.0479 0.0682 0.0097 0.0056 0.0238
## 3  0.1065 0.0524    Inf 0.0873 0.0985 0.0525 0.0202 0.0634 0.0245 0.0120 0.0361
## 4  0.0559 0.2362 0.0873    Inf 0.0536 0.0185 0.0699 0.3012 0.0144 0.0071 0.0509
## 5  0.0261 0.0260 0.0985 0.0536    Inf 0.0640 0.0225 0.0878 0.0621 0.0166 0.1324
## 6  0.0211 0.0132 0.0525 0.0185 0.0640    Inf 0.0092 0.0200 0.0878 0.0433 0.0229
## 7  0.0162 0.0479 0.0202 0.0699 0.0225 0.0092    Inf 0.0884 0.0093 0.0048 0.0406
## 8  0.0302 0.0682 0.0634 0.3012 0.0878 0.0200 0.0884    Inf 0.0188 0.0081 0.1407
## 9  0.0114 0.0097 0.0245 0.0144 0.0621 0.0878 0.0093 0.0188    Inf 0.0567 0.0319
## 10 0.0073 0.0056 0.0120 0.0071 0.0166 0.0433 0.0048 0.0081 0.0567    Inf 0.0105
## 11 0.0163 0.0238 0.0361 0.0509 0.1324 0.0229 0.0406 0.1407 0.0319 0.0105    Inf
## 12 0.0152 0.0241 0.0305 0.0506 0.0845 0.0186 0.0514 0.1453 0.0251 0.0091 1.8156
## 13 0.0149 0.0279 0.0264 0.0579 0.0525 0.0145 0.0930 0.1691 0.0178 0.0074 0.2762
## 14 0.0123 0.0217 0.0209 0.0403 0.0414 0.0128 0.0743 0.0939 0.0168 0.0070 0.1989
## 15 0.0118 0.0139 0.0254 0.0243 0.1030 0.0276 0.0195 0.0438 0.0637 0.0151 0.1988
## 16 0.0099 0.0137 0.0181 0.0234 0.0472 0.0154 0.0272 0.0450 0.0267 0.0095 0.2004
## 17 0.0053 0.0043 0.0082 0.0055 0.0116 0.0215 0.0040 0.0063 0.0350 0.2091 0.0084
## 18 0.0091 0.0139 0.0151 0.0229 0.0317 0.0116 0.0358 0.0430 0.0175 0.0073 0.1169
## 19 0.0102 0.0168 0.0170 0.0287 0.0342 0.0117 0.0504 0.0578 0.0165 0.0070 0.1417
## 20 0.0047 0.0043 0.0075 0.0056 0.0122 0.0158 0.0045 0.0068 0.0372 0.0474 0.0102
## 21 0.0048 0.0069 0.0067 0.0093 0.0108 0.0058 0.0155 0.0132 0.0085 0.0046 0.0205
## 22 0.0075 0.0072 0.0139 0.0103 0.0313 0.0294 0.0080 0.0139 0.1651 0.0374 0.0259
## 23 0.0040 0.0034 0.0059 0.0043 0.0083 0.0128 0.0034 0.0049 0.0205 0.0549 0.0066
## 24 0.0067 0.0094 0.0108 0.0141 0.0215 0.0097 0.0198 0.0228 0.0163 0.0071 0.0518
## 25 0.0080 0.0096 0.0145 0.0150 0.0375 0.0166 0.0150 0.0244 0.0386 0.0124 0.0715
## 26 0.0080 0.0086 0.0151 0.0132 0.0402 0.0224 0.0113 0.0198 0.0765 0.0190 0.0482
## 27 0.0055 0.0054 0.0092 0.0074 0.0177 0.0170 0.0063 0.0097 0.0531 0.0274 0.0169
## 28 0.0056 0.0061 0.0093 0.0086 0.0192 0.0131 0.0084 0.0122 0.0336 0.0143 0.0243
## 29 0.0055 0.0065 0.0090 0.0093 0.0184 0.0110 0.0099 0.0135 0.0240 0.0105 0.0281
## 30 0.0053 0.0066 0.0084 0.0094 0.0163 0.0091 0.0112 0.0138 0.0174 0.0081 0.0281
## 31 0.0031 0.0046 0.0037 0.0053 0.0047 0.0030 0.0097 0.0064 0.0036 0.0023 0.0072
## 32 0.0030 0.0027 0.0043 0.0034 0.0060 0.0078 0.0028 0.0039 0.0124 0.0206 0.0052
## 33 0.0047 0.0046 0.0074 0.0062 0.0134 0.0127 0.0056 0.0081 0.0324 0.0206 0.0135
## 34 0.0031 0.0044 0.0039 0.0053 0.0053 0.0033 0.0089 0.0067 0.0043 0.0027 0.0082
## 35 0.0041 0.0042 0.0063 0.0055 0.0109 0.0098 0.0052 0.0072 0.0220 0.0148 0.0118
## 36 0.0026 0.0037 0.0031 0.0042 0.0039 0.0025 0.0071 0.0050 0.0031 0.0021 0.0056
## 37 0.0043 0.0052 0.0065 0.0071 0.0115 0.0072 0.0086 0.0100 0.0131 0.0069 0.0178
## 38 0.0042 0.0047 0.0064 0.0063 0.0116 0.0085 0.0066 0.0085 0.0176 0.0098 0.0150
## 39 0.0019 0.0027 0.0022 0.0029 0.0027 0.0019 0.0045 0.0033 0.0022 0.0016 0.0036
## 40 0.0028 0.0027 0.0040 0.0033 0.0058 0.0066 0.0030 0.0039 0.0113 0.0137 0.0055
## 41 0.0024 0.0022 0.0032 0.0026 0.0043 0.0053 0.0023 0.0030 0.0079 0.0114 0.0040
## 42 0.0025 0.0034 0.0030 0.0040 0.0040 0.0026 0.0063 0.0048 0.0034 0.0023 0.0058
## 43 0.0036 0.0040 0.0053 0.0052 0.0090 0.0068 0.0056 0.0069 0.0131 0.0082 0.0113
## 44 0.0033 0.0035 0.0049 0.0045 0.0080 0.0070 0.0045 0.0058 0.0135 0.0098 0.0091
## 45 0.0030 0.0035 0.0043 0.0045 0.0068 0.0050 0.0052 0.0058 0.0084 0.0055 0.0090
## 46 0.0019 0.0026 0.0022 0.0029 0.0028 0.0019 0.0045 0.0034 0.0023 0.0017 0.0038
## 47 0.0020 0.0019 0.0027 0.0023 0.0036 0.0040 0.0021 0.0026 0.0059 0.0074 0.0034
## 48 0.0030 0.0033 0.0042 0.0042 0.0068 0.0054 0.0046 0.0054 0.0095 0.0066 0.0084
## 49 0.0026 0.0028 0.0037 0.0036 0.0056 0.0048 0.0037 0.0045 0.0083 0.0064 0.0066
##        12     13     14     15     16     17     18     19     20     21     22
## 1  0.0152 0.0149 0.0123 0.0118 0.0099 0.0053 0.0091 0.0102 0.0047 0.0048 0.0075
## 2  0.0241 0.0279 0.0217 0.0139 0.0137 0.0043 0.0139 0.0168 0.0043 0.0069 0.0072
## 3  0.0305 0.0264 0.0209 0.0254 0.0181 0.0082 0.0151 0.0170 0.0075 0.0067 0.0139
## 4  0.0506 0.0579 0.0403 0.0243 0.0234 0.0055 0.0229 0.0287 0.0056 0.0093 0.0103
## 5  0.0845 0.0525 0.0414 0.1030 0.0472 0.0116 0.0317 0.0342 0.0122 0.0108 0.0313
## 6  0.0186 0.0145 0.0128 0.0276 0.0154 0.0215 0.0116 0.0117 0.0158 0.0058 0.0294
## 7  0.0514 0.0930 0.0743 0.0195 0.0272 0.0040 0.0358 0.0504 0.0045 0.0155 0.0080
## 8  0.1453 0.1691 0.0939 0.0438 0.0450 0.0063 0.0430 0.0578 0.0068 0.0132 0.0139
## 9  0.0251 0.0178 0.0168 0.0637 0.0267 0.0350 0.0175 0.0165 0.0372 0.0085 0.1651
## 10 0.0091 0.0074 0.0070 0.0151 0.0095 0.2091 0.0073 0.0070 0.0474 0.0046 0.0374
## 11 1.8156 0.2762 0.1989 0.1988 0.2004 0.0084 0.1169 0.1417 0.0102 0.0205 0.0259
## 12    Inf 0.6799 0.4428 0.1313 0.2282 0.0075 0.1724 0.2495 0.0091 0.0239 0.0217
## 13 0.6799    Inf 1.4432 0.0640 0.1234 0.0061 0.1615 0.3264 0.0073 0.0255 0.0157
## 14 0.4428 1.4432    Inf 0.0641 0.1711 0.0060 0.3325 1.1297 0.0074 0.0339 0.0158
## 15 0.1313 0.0640 0.0641    Inf 0.2115 0.0124 0.0772 0.0672 0.0168 0.0197 0.0616
## 16 0.2282 0.1234 0.1711 0.2115    Inf 0.0083 0.4699 0.2687 0.0114 0.0388 0.0297
## 17 0.0075 0.0061 0.0060 0.0124 0.0083    Inf 0.0065 0.0061 0.1008 0.0044 0.0355
## 18 0.1724 0.1615 0.3325 0.0772 0.4699 0.0065    Inf 1.4292 0.0086 0.0605 0.0191
## 19 0.2495 0.3264 1.1297 0.0672 0.2687 0.0061 1.4292    Inf 0.0078 0.0481 0.0168
## 20 0.0091 0.0073 0.0074 0.0168 0.0114 0.1008 0.0086 0.0078    Inf 0.0062 0.0730
## 21 0.0239 0.0255 0.0339 0.0197 0.0388 0.0044 0.0605 0.0481 0.0062    Inf 0.0105
## 22 0.0217 0.0157 0.0158 0.0616 0.0297 0.0355 0.0191 0.0168 0.0730 0.0105    Inf
## 23 0.0060 0.0050 0.0050 0.0095 0.0068 0.2306 0.0055 0.0051 0.1131 0.0041 0.0253
## 24 0.0605 0.0526 0.0764 0.0588 0.2016 0.0067 0.2816 0.1368 0.0097 0.1094 0.0210
## 25 0.0646 0.0416 0.0484 0.2390 0.2204 0.0114 0.0878 0.0620 0.0181 0.0295 0.0609
## 26 0.0402 0.0267 0.0283 0.1837 0.0749 0.0175 0.0394 0.0321 0.0304 0.0175 0.1953
## 27 0.0150 0.0115 0.0120 0.0336 0.0215 0.0338 0.0151 0.0131 0.1279 0.0101 0.2660
## 28 0.0224 0.0170 0.0187 0.0527 0.0419 0.0153 0.0280 0.0223 0.0329 0.0190 0.0926
## 29 0.0272 0.0211 0.0246 0.0548 0.0612 0.0107 0.0425 0.0314 0.0197 0.0314 0.0470
## 30 0.0289 0.0238 0.0293 0.0444 0.0695 0.0081 0.0577 0.0400 0.0136 0.0564 0.0282
## 31 0.0081 0.0093 0.0107 0.0062 0.0090 0.0022 0.0119 0.0119 0.0028 0.0263 0.0040
## 32 0.0048 0.0041 0.0042 0.0074 0.0058 0.0434 0.0047 0.0044 0.0648 0.0039 0.0172
## 33 0.0123 0.0098 0.0103 0.0247 0.0179 0.0274 0.0132 0.0114 0.1087 0.0100 0.1010
## 34 0.0092 0.0102 0.0120 0.0077 0.0115 0.0027 0.0151 0.0142 0.0035 0.0532 0.0051
## 35 0.0109 0.0089 0.0095 0.0202 0.0163 0.0193 0.0126 0.0107 0.0601 0.0106 0.0543
## 36 0.0063 0.0070 0.0079 0.0051 0.0071 0.0020 0.0090 0.0088 0.0025 0.0195 0.0035
## 37 0.0183 0.0159 0.0190 0.0258 0.0355 0.0073 0.0326 0.0246 0.0125 0.0487 0.0213
## 38 0.0145 0.0119 0.0134 0.0252 0.0250 0.0112 0.0199 0.0160 0.0237 0.0196 0.0366
## 39 0.0039 0.0043 0.0047 0.0033 0.0043 0.0015 0.0052 0.0051 0.0019 0.0090 0.0024
## 40 0.0051 0.0044 0.0045 0.0079 0.0064 0.0234 0.0053 0.0049 0.0533 0.0047 0.0178
## 41 0.0037 0.0032 0.0033 0.0054 0.0044 0.0194 0.0038 0.0035 0.0269 0.0033 0.0106
## 42 0.0064 0.0069 0.0079 0.0055 0.0077 0.0022 0.0095 0.0090 0.0029 0.0248 0.0039
## 43 0.0111 0.0095 0.0106 0.0175 0.0180 0.0096 0.0152 0.0125 0.0195 0.0173 0.0245
## 44 0.0087 0.0074 0.0080 0.0141 0.0129 0.0125 0.0107 0.0091 0.0299 0.0107 0.0264
## 45 0.0091 0.0082 0.0093 0.0122 0.0141 0.0063 0.0133 0.0111 0.0109 0.0207 0.0135
## 46 0.0041 0.0045 0.0049 0.0035 0.0046 0.0016 0.0055 0.0054 0.0020 0.0104 0.0026
## 47 0.0032 0.0029 0.0030 0.0045 0.0039 0.0111 0.0034 0.0031 0.0162 0.0032 0.0081
## 48 0.0083 0.0073 0.0080 0.0119 0.0125 0.0078 0.0111 0.0094 0.0150 0.0140 0.0162
## 49 0.0064 0.0057 0.0062 0.0092 0.0092 0.0080 0.0081 0.0071 0.0154 0.0097 0.0137
##        23     24     25     26     27     28     29     30     31     32     33
## 1  0.0040 0.0067 0.0080 0.0080 0.0055 0.0056 0.0055 0.0053 0.0031 0.0030 0.0047
## 2  0.0034 0.0094 0.0096 0.0086 0.0054 0.0061 0.0065 0.0066 0.0046 0.0027 0.0046
## 3  0.0059 0.0108 0.0145 0.0151 0.0092 0.0093 0.0090 0.0084 0.0037 0.0043 0.0074
## 4  0.0043 0.0141 0.0150 0.0132 0.0074 0.0086 0.0093 0.0094 0.0053 0.0034 0.0062
## 5  0.0083 0.0215 0.0375 0.0402 0.0177 0.0192 0.0184 0.0163 0.0047 0.0060 0.0134
## 6  0.0128 0.0097 0.0166 0.0224 0.0170 0.0131 0.0110 0.0091 0.0030 0.0078 0.0127
## 7  0.0034 0.0198 0.0150 0.0113 0.0063 0.0084 0.0099 0.0112 0.0097 0.0028 0.0056
## 8  0.0049 0.0228 0.0244 0.0198 0.0097 0.0122 0.0135 0.0138 0.0064 0.0039 0.0081
## 9  0.0205 0.0163 0.0386 0.0765 0.0531 0.0336 0.0240 0.0174 0.0036 0.0124 0.0324
## 10 0.0549 0.0071 0.0124 0.0190 0.0274 0.0143 0.0105 0.0081 0.0023 0.0206 0.0206
## 11 0.0066 0.0518 0.0715 0.0482 0.0169 0.0243 0.0281 0.0281 0.0072 0.0052 0.0135
## 12 0.0060 0.0605 0.0646 0.0402 0.0150 0.0224 0.0272 0.0289 0.0081 0.0048 0.0123
## 13 0.0050 0.0526 0.0416 0.0267 0.0115 0.0170 0.0211 0.0238 0.0093 0.0041 0.0098
## 14 0.0050 0.0764 0.0484 0.0283 0.0120 0.0187 0.0246 0.0293 0.0107 0.0042 0.0103
## 15 0.0095 0.0588 0.2390 0.1837 0.0336 0.0527 0.0548 0.0444 0.0062 0.0074 0.0247
## 16 0.0068 0.2016 0.2204 0.0749 0.0215 0.0419 0.0612 0.0695 0.0090 0.0058 0.0179
## 17 0.2306 0.0067 0.0114 0.0175 0.0338 0.0153 0.0107 0.0081 0.0022 0.0434 0.0274
## 18 0.0055 0.2816 0.0878 0.0394 0.0151 0.0280 0.0425 0.0577 0.0119 0.0047 0.0132
## 19 0.0051 0.1368 0.0620 0.0321 0.0131 0.0223 0.0314 0.0400 0.0119 0.0044 0.0114
## 20 0.1131 0.0097 0.0181 0.0304 0.1279 0.0329 0.0197 0.0136 0.0028 0.0648 0.1087
## 21 0.0041 0.1094 0.0295 0.0175 0.0101 0.0190 0.0314 0.0564 0.0263 0.0039 0.0100
## 22 0.0253 0.0210 0.0609 0.1953 0.2660 0.0926 0.0470 0.0282 0.0040 0.0172 0.1010
## 23    Inf 0.0059 0.0095 0.0139 0.0302 0.0139 0.0098 0.0075 0.0021 0.1289 0.0282
## 24 0.0059    Inf 0.1213 0.0462 0.0184 0.0424 0.0845 0.1700 0.0125 0.0053 0.0169
## 25 0.0095 0.1213    Inf 0.3125 0.0441 0.1295 0.1943 0.1325 0.0072 0.0080 0.0349
## 26 0.0139 0.0462 0.3125    Inf 0.0972 0.1980 0.1214 0.0631 0.0054 0.0110 0.0612
## 27 0.0302 0.0184 0.0441 0.0972    Inf 0.1338 0.0531 0.0297 0.0039 0.0245 0.6727
## 28 0.0139 0.0424 0.1295 0.1980 0.1338    Inf 0.3853 0.1061 0.0056 0.0128 0.1245
## 29 0.0098 0.0845 0.1943 0.1214 0.0531 0.3853    Inf 0.4697 0.0072 0.0092 0.0520
## 30 0.0075 0.1700 0.1325 0.0631 0.0297 0.1061 0.4697    Inf 0.0093 0.0071 0.0296
## 31 0.0021 0.0125 0.0072 0.0054 0.0039 0.0056 0.0072 0.0093    Inf 0.0020 0.0038
## 32 0.1289 0.0053 0.0080 0.0110 0.0245 0.0128 0.0092 0.0071 0.0020    Inf 0.0275
## 33 0.0282 0.0169 0.0349 0.0612 0.6727 0.1245 0.0520 0.0296 0.0038 0.0275    Inf
## 34 0.0026 0.0185 0.0097 0.0071 0.0051 0.0078 0.0106 0.0147 0.1221 0.0025 0.0051
## 35 0.0213 0.0170 0.0307 0.0449 0.1676 0.1153 0.0556 0.0326 0.0040 0.0240 0.6066
## 36 0.0019 0.0098 0.0060 0.0046 0.0035 0.0049 0.0062 0.0079 0.3186 0.0019 0.0035
## 37 0.0070 0.0733 0.0569 0.0377 0.0253 0.0754 0.1897 0.4270 0.0092 0.0071 0.0279
## 38 0.0113 0.0326 0.0509 0.0526 0.0607 0.2189 0.1922 0.0997 0.0058 0.0120 0.0834
## 39 0.0015 0.0055 0.0038 0.0031 0.0024 0.0032 0.0039 0.0048 0.0424 0.0015 0.0025
## 40 0.0423 0.0063 0.0094 0.0124 0.0297 0.0168 0.0120 0.0092 0.0024 0.1490 0.0401
## 41 0.0382 0.0043 0.0060 0.0076 0.0148 0.0092 0.0071 0.0057 0.0018 0.1746 0.0173
## 42 0.0022 0.0114 0.0068 0.0053 0.0040 0.0059 0.0076 0.0100 0.0843 0.0022 0.0041
## 43 0.0101 0.0242 0.0312 0.0313 0.0398 0.0856 0.0848 0.0624 0.0056 0.0115 0.0571
## 44 0.0144 0.0150 0.0217 0.0260 0.0526 0.0603 0.0427 0.0297 0.0042 0.0185 0.0970
## 45 0.0066 0.0216 0.0202 0.0177 0.0183 0.0339 0.0433 0.0469 0.0069 0.0075 0.0230
## 46 0.0016 0.0061 0.0041 0.0033 0.0027 0.0036 0.0044 0.0054 0.0430 0.0016 0.0027
## 47 0.0177 0.0040 0.0052 0.0063 0.0113 0.0081 0.0065 0.0054 0.0018 0.0446 0.0137
## 48 0.0086 0.0168 0.0192 0.0191 0.0249 0.0400 0.0405 0.0353 0.0052 0.0105 0.0350
## 49 0.0093 0.0114 0.0136 0.0144 0.0218 0.0269 0.0244 0.0207 0.0042 0.0125 0.0316
##        34     35     36     37     38     39     40     41     42     43     44
## 1  0.0031 0.0041 0.0026 0.0043 0.0042 0.0019 0.0028 0.0024 0.0025 0.0036 0.0033
## 2  0.0044 0.0042 0.0037 0.0052 0.0047 0.0027 0.0027 0.0022 0.0034 0.0040 0.0035
## 3  0.0039 0.0063 0.0031 0.0065 0.0064 0.0022 0.0040 0.0032 0.0030 0.0053 0.0049
## 4  0.0053 0.0055 0.0042 0.0071 0.0063 0.0029 0.0033 0.0026 0.0040 0.0052 0.0045
## 5  0.0053 0.0109 0.0039 0.0115 0.0116 0.0027 0.0058 0.0043 0.0040 0.0090 0.0080
## 6  0.0033 0.0098 0.0025 0.0072 0.0085 0.0019 0.0066 0.0053 0.0026 0.0068 0.0070
## 7  0.0089 0.0052 0.0071 0.0086 0.0066 0.0045 0.0030 0.0023 0.0063 0.0056 0.0045
## 8  0.0067 0.0072 0.0050 0.0100 0.0085 0.0033 0.0039 0.0030 0.0048 0.0069 0.0058
## 9  0.0043 0.0220 0.0031 0.0131 0.0176 0.0022 0.0113 0.0079 0.0034 0.0131 0.0135
## 10 0.0027 0.0148 0.0021 0.0069 0.0098 0.0016 0.0137 0.0114 0.0023 0.0082 0.0098
## 11 0.0082 0.0118 0.0056 0.0178 0.0150 0.0036 0.0055 0.0040 0.0058 0.0113 0.0091
## 12 0.0092 0.0109 0.0063 0.0183 0.0145 0.0039 0.0051 0.0037 0.0064 0.0111 0.0087
## 13 0.0102 0.0089 0.0070 0.0159 0.0119 0.0043 0.0044 0.0032 0.0069 0.0095 0.0074
## 14 0.0120 0.0095 0.0079 0.0190 0.0134 0.0047 0.0045 0.0033 0.0079 0.0106 0.0080
## 15 0.0077 0.0202 0.0051 0.0258 0.0252 0.0033 0.0079 0.0054 0.0055 0.0175 0.0141
## 16 0.0115 0.0163 0.0071 0.0355 0.0250 0.0043 0.0064 0.0044 0.0077 0.0180 0.0129
## 17 0.0027 0.0193 0.0020 0.0073 0.0112 0.0015 0.0234 0.0194 0.0022 0.0096 0.0125
## 18 0.0151 0.0126 0.0090 0.0326 0.0199 0.0052 0.0053 0.0038 0.0095 0.0152 0.0107
## 19 0.0142 0.0107 0.0088 0.0246 0.0160 0.0051 0.0049 0.0035 0.0090 0.0125 0.0091
## 20 0.0035 0.0601 0.0025 0.0125 0.0237 0.0019 0.0533 0.0269 0.0029 0.0195 0.0299
## 21 0.0532 0.0106 0.0195 0.0487 0.0196 0.0090 0.0047 0.0033 0.0248 0.0173 0.0107
## 22 0.0051 0.0543 0.0035 0.0213 0.0366 0.0024 0.0178 0.0106 0.0039 0.0245 0.0264
## 23 0.0026 0.0213 0.0019 0.0070 0.0113 0.0015 0.0423 0.0382 0.0022 0.0101 0.0144
## 24 0.0185 0.0170 0.0098 0.0733 0.0326 0.0055 0.0063 0.0043 0.0114 0.0242 0.0150
## 25 0.0097 0.0307 0.0060 0.0569 0.0509 0.0038 0.0094 0.0060 0.0068 0.0312 0.0217
## 26 0.0071 0.0449 0.0046 0.0377 0.0526 0.0031 0.0124 0.0076 0.0053 0.0313 0.0260
## 27 0.0051 0.1676 0.0035 0.0253 0.0607 0.0024 0.0297 0.0148 0.0040 0.0398 0.0526
## 28 0.0078 0.1153 0.0049 0.0754 0.2189 0.0032 0.0168 0.0092 0.0059 0.0856 0.0603
## 29 0.0106 0.0556 0.0062 0.1897 0.1922 0.0039 0.0120 0.0071 0.0076 0.0848 0.0427
## 30 0.0147 0.0326 0.0079 0.4270 0.0997 0.0048 0.0092 0.0057 0.0100 0.0624 0.0297
## 31 0.1221 0.0040 0.3186 0.0092 0.0058 0.0424 0.0024 0.0018 0.0843 0.0056 0.0042
## 32 0.0025 0.0240 0.0019 0.0071 0.0120 0.0015 0.1490 0.1746 0.0022 0.0115 0.0185
## 33 0.0051 0.6066 0.0035 0.0279 0.0834 0.0025 0.0401 0.0173 0.0041 0.0571 0.0970
## 34    Inf 0.0056 0.1075 0.0155 0.0087 0.0254 0.0030 0.0023 0.2216 0.0086 0.0060
## 35 0.0056    Inf 0.0037 0.0344 0.1382 0.0026 0.0416 0.0170 0.0045 0.1034 0.2690
## 36 0.1075 0.0037    Inf 0.0082 0.0053 0.0875 0.0022 0.0017 0.1748 0.0052 0.0039
## 37 0.0155 0.0344 0.0082    Inf 0.1351 0.0049 0.0097 0.0060 0.0109 0.1059 0.0379
## 38 0.0087 0.1382 0.0053 0.1351    Inf 0.0035 0.0180 0.0095 0.0067 0.6000 0.1437
## 39 0.0254 0.0026 0.0875 0.0049 0.0035    Inf 0.0017 0.0014 0.0439 0.0035 0.0028
## 40 0.0030 0.0416 0.0022 0.0097 0.0180 0.0017    Inf 0.1273 0.0026 0.0184 0.0363
## 41 0.0023 0.0170 0.0017 0.0060 0.0095 0.0014 0.1273    Inf 0.0020 0.0097 0.0155
## 42 0.2216 0.0045 0.1748 0.0109 0.0067 0.0439 0.0026 0.0020    Inf 0.0068 0.0049
## 43 0.0086 0.1034 0.0052 0.1059 0.6000 0.0035 0.0184 0.0097 0.0068    Inf 0.2168
## 44 0.0060 0.2690 0.0039 0.0379 0.1437 0.0028 0.0363 0.0155 0.0049 0.2168    Inf
## 45 0.0115 0.0330 0.0066 0.1018 0.0866 0.0044 0.0114 0.0069 0.0094 0.1717 0.0574
## 46 0.0333 0.0029 0.1054 0.0057 0.0040 0.4084 0.0019 0.0015 0.0749 0.0040 0.0031
## 47 0.0023 0.0149 0.0018 0.0059 0.0091 0.0014 0.0755 0.1498 0.0021 0.0099 0.0159
## 48 0.0081 0.0590 0.0050 0.0592 0.1201 0.0035 0.0177 0.0096 0.0067 0.3933 0.1648
## 49 0.0061 0.0530 0.0040 0.0296 0.0580 0.0029 0.0237 0.0123 0.0053 0.1124 0.1713
##        45     46     47     48     49
## 1  0.0030 0.0019 0.0020 0.0030 0.0026
## 2  0.0035 0.0026 0.0019 0.0033 0.0028
## 3  0.0043 0.0022 0.0027 0.0042 0.0037
## 4  0.0045 0.0029 0.0023 0.0042 0.0036
## 5  0.0068 0.0028 0.0036 0.0068 0.0056
## 6  0.0050 0.0019 0.0040 0.0054 0.0048
## 7  0.0052 0.0045 0.0021 0.0046 0.0037
## 8  0.0058 0.0034 0.0026 0.0054 0.0045
## 9  0.0084 0.0023 0.0059 0.0095 0.0083
## 10 0.0055 0.0017 0.0074 0.0066 0.0064
## 11 0.0090 0.0038 0.0034 0.0084 0.0066
## 12 0.0091 0.0041 0.0032 0.0083 0.0064
## 13 0.0082 0.0045 0.0029 0.0073 0.0057
## 14 0.0093 0.0049 0.0030 0.0080 0.0062
## 15 0.0122 0.0035 0.0045 0.0119 0.0092
## 16 0.0141 0.0046 0.0039 0.0125 0.0092
## 17 0.0063 0.0016 0.0111 0.0078 0.0080
## 18 0.0133 0.0055 0.0034 0.0111 0.0081
## 19 0.0111 0.0054 0.0031 0.0094 0.0071
## 20 0.0109 0.0020 0.0162 0.0150 0.0154
## 21 0.0207 0.0104 0.0032 0.0140 0.0097
## 22 0.0135 0.0026 0.0081 0.0162 0.0137
## 23 0.0066 0.0016 0.0177 0.0086 0.0093
## 24 0.0216 0.0061 0.0040 0.0168 0.0114
## 25 0.0202 0.0041 0.0052 0.0192 0.0136
## 26 0.0177 0.0033 0.0063 0.0191 0.0144
## 27 0.0183 0.0027 0.0113 0.0249 0.0218
## 28 0.0339 0.0036 0.0081 0.0400 0.0269
## 29 0.0433 0.0044 0.0065 0.0405 0.0244
## 30 0.0469 0.0054 0.0054 0.0353 0.0207
## 31 0.0069 0.0430 0.0018 0.0052 0.0042
## 32 0.0075 0.0016 0.0446 0.0105 0.0125
## 33 0.0230 0.0027 0.0137 0.0350 0.0316
## 34 0.0115 0.0333 0.0023 0.0081 0.0061
## 35 0.0330 0.0029 0.0149 0.0590 0.0530
## 36 0.0066 0.1054 0.0018 0.0050 0.0040
## 37 0.1018 0.0057 0.0059 0.0592 0.0296
## 38 0.0866 0.0040 0.0091 0.1201 0.0580
## 39 0.0044 0.4084 0.0014 0.0035 0.0029
## 40 0.0114 0.0019 0.0755 0.0177 0.0237
## 41 0.0069 0.0015 0.1498 0.0096 0.0123
## 42 0.0094 0.0749 0.0021 0.0067 0.0053
## 43 0.1717 0.0040 0.0099 0.3933 0.1124
## 44 0.0574 0.0031 0.0159 0.1648 0.1713
## 45    Inf 0.0052 0.0074 0.2798 0.0832
## 46 0.0052    Inf 0.0015 0.0040 0.0034
## 47 0.0074 0.0015    Inf 0.0106 0.0148
## 48 0.2798 0.0040 0.0106    Inf 0.3317
## 49 0.0832 0.0034 0.0148 0.3317    Inf
#dinormalisasi 
diag(W2)<-0
rtot<-rowSums(W2,na.rm=TRUE)
rtot
##         1         2         3         4         5         6         7         8 
## 0.5807206 0.8372952 0.9063766 1.3385460 1.3558081 0.7552440 0.8990409 1.6911778 
##         9        10        11        12        13        14        15        16 
## 1.2307118 0.8407320 3.9501602 4.6553325 3.9512268 4.5868775 2.1665503 2.9214462 
##        17        18        19        20        21        22        23        24 
## 1.0661230 3.8299233 4.4663054 1.2426265 0.9749528 1.7684559 0.9913192 2.0062833 
##        25        26        27        28        29        30        31        32 
## 2.4363089 2.1917322 2.3272144 2.3850832 2.6354337 2.3757629 0.8764532 0.9548105 
##        33        34        35        36        37        38        39        40 
## 2.5779029 0.8720104 2.2378504 1.0132783 1.8665719 2.4831230 0.7474567 0.9212769 
##        41        42        43        44        45        46        47        48 
## 0.7954880 0.8501494 2.4574531 1.7561572 1.3118318 0.8169138 0.5480305 1.9111089 
##        49 
## 1.2540298
W2<-W2/rtot #row-normalized
rowSums(W2,na.rm=TRUE)
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
## 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
W2 #matriks bobot power distance dengan alpha=2
##              1           2           3           4           5           6
## 1  0.000000000 0.132783205 0.183337575 0.096241385 0.044950238 0.036293387
## 2  0.092094087 0.000000000 0.062595450 0.282078486 0.031056437 0.015775595
## 3  0.117465419 0.057824610 0.000000000 0.096290294 0.108715009 0.057900801
## 4  0.041753779 0.176447408 0.065201544 0.000000000 0.040013918 0.013809203
## 5  0.019253114 0.019179267 0.072677494 0.039504462 0.000000000 0.047201261
## 6  0.027906634 0.017489488 0.069487386 0.024474546 0.084735339 0.000000000
## 7  0.018048211 0.053300259 0.022514076 0.077719411 0.025057048 0.010231873
## 8  0.017865401 0.040342722 0.037488331 0.178092675 0.051895655 0.011852980
## 9  0.009238410 0.007897609 0.019928814 0.011720941 0.050495431 0.071364727
## 10 0.008736972 0.006634470 0.014271837 0.008481329 0.019739624 0.051537271
## 11 0.004131417 0.006036204 0.009140689 0.012895703 0.033505503 0.005794274
## 12 0.003255082 0.005180110 0.006541089 0.010872521 0.018159718 0.003991962
## 13 0.003780147 0.007055784 0.006690922 0.014648821 0.013289838 0.003660783
## 14 0.002683989 0.004741640 0.004547019 0.008785607 0.009022201 0.002794207
## 15 0.005458301 0.006435536 0.011727603 0.011218183 0.047544150 0.012737529
## 16 0.003381035 0.004701201 0.006185512 0.008019391 0.016165505 0.005277260
## 17 0.004989230 0.004066001 0.007694901 0.005135383 0.010909693 0.020145006
## 18 0.002372682 0.003633856 0.003945536 0.005977261 0.008276864 0.003018882
## 19 0.002289594 0.003755555 0.003795278 0.006417789 0.007663014 0.002628397
## 20 0.003818482 0.003453064 0.006019906 0.004501200 0.009784572 0.012733887
## 21 0.004917001 0.007053628 0.006896550 0.009508900 0.011074032 0.005963025
## 22 0.004237057 0.004049770 0.007831827 0.005827104 0.017725501 0.016623111
## 23 0.004079535 0.003473764 0.005982959 0.004314448 0.008351843 0.012883809
## 24 0.003359617 0.004665041 0.005359707 0.007012800 0.010706073 0.004847703
## 25 0.003269800 0.003937705 0.005939907 0.006167723 0.015409346 0.006814593
## 26 0.003653184 0.003942189 0.006875766 0.006011227 0.018342841 0.010238313
## 27 0.002363914 0.002317909 0.003955184 0.003185532 0.007624751 0.007299245
## 28 0.002332545 0.002553947 0.003885805 0.003624401 0.008047457 0.005503856
## 29 0.002093932 0.002453763 0.003415289 0.003513931 0.006993884 0.004174740
## 30 0.002233001 0.002771932 0.003518500 0.003947347 0.006846313 0.003842013
## 31 0.003563859 0.005282641 0.004233575 0.006097409 0.005379174 0.003366853
## 32 0.003188973 0.002865772 0.004496958 0.003516835 0.006254268 0.008166525
## 33 0.001804588 0.001800635 0.002883531 0.002421812 0.005207707 0.004911719
## 34 0.003562891 0.005041559 0.004459100 0.006083689 0.006075191 0.003799719
## 35 0.001818548 0.001865587 0.002809462 0.002476548 0.004888575 0.004380419
## 36 0.002566829 0.003648259 0.003029858 0.004168883 0.003822930 0.002503952
## 37 0.002301365 0.002802528 0.003455960 0.003821201 0.006148867 0.003857128
## 38 0.001686415 0.001878909 0.002594028 0.002541787 0.004679006 0.003424652
## 39 0.002604041 0.003563349 0.002957371 0.003919564 0.003555389 0.002483248
## 40 0.003071195 0.002908845 0.004344113 0.003605288 0.006293565 0.007197058
## 41 0.002996877 0.002753389 0.004062456 0.003316282 0.005461975 0.006690544
## 42 0.002929320 0.004011814 0.003566598 0.004699904 0.004682645 0.003109647
## 43 0.001452576 0.001617138 0.002152714 0.002132185 0.003645419 0.002785640
## 44 0.001894783 0.001997863 0.002791231 0.002590686 0.004568392 0.003966701
## 45 0.002294412 0.002656712 0.003240230 0.003415883 0.005147198 0.003811659
## 46 0.002377953 0.003213658 0.002749326 0.003589824 0.003377294 0.002361782
## 47 0.003644061 0.003462771 0.004844870 0.004141900 0.006489217 0.007354726
## 48 0.001557510 0.001727840 0.002222740 0.002217860 0.003539103 0.002821155
## 49 0.002097565 0.002257990 0.002940255 0.002846106 0.004502268 0.003866721
##              7           8           9          10          11          12
## 1  0.027941287 0.052027724 0.019578815 0.012648857 0.028102600 0.026094284
## 2  0.057230846 0.081484660 0.011608427 0.006661702 0.028477378 0.028801235
## 3  0.022331862 0.069948228 0.027060086 0.013238196 0.039836849 0.033596349
## 4  0.052200621 0.225010112 0.010776694 0.005327067 0.038056288 0.037813570
## 5  0.016615413 0.064732450 0.045836371 0.012240473 0.097618609 0.062353606
## 6  0.012180001 0.026541751 0.116292771 0.057370909 0.030305851 0.024606500
## 7  0.000000000 0.098324665 0.010317529 0.005372826 0.045192930 0.057166888
## 8  0.052270020 0.000000000 0.011140490 0.004766498 0.083192039 0.085889131
## 9  0.007537005 0.015308661 0.000000000 0.046065068 0.025883175 0.020386801
## 10 0.005745458 0.009588069 0.067432695 0.000000000 0.012484664 0.010820918
## 11 0.010285733 0.035616918 0.008064162 0.002657172 0.000000000 0.459615606
## 12 0.011040108 0.031201594 0.005389578 0.001954209 0.389994759 0.000000000
## 13 0.023546839 0.042796671 0.004492878 0.001861528 0.069913455 0.172073471
## 14 0.016190250 0.020466494 0.003651766 0.001534823 0.043369418 0.096530057
## 15 0.008995143 0.020199701 0.029419582 0.006963829 0.091767409 0.060616376
## 16 0.009320154 0.015398654 0.009130043 0.003239118 0.068584252 0.078105511
## 17 0.003793628 0.005900737 0.032852459 0.196127221 0.007914185 0.007007255
## 18 0.009343678 0.011226465 0.004569186 0.001897796 0.030522550 0.045014434
## 19 0.011295188 0.012938387 0.003696527 0.001560051 0.031724048 0.055855909
## 20 0.003641276 0.005487894 0.029911588 0.038113509 0.008201116 0.007323601
## 21 0.015937144 0.013559989 0.008702654 0.004682218 0.021023741 0.024542469
## 22 0.004534510 0.007862625 0.093365063 0.021147409 0.014673679 0.012289199
## 23 0.003393744 0.004965977 0.020687440 0.055387030 0.006653184 0.006011974
## 24 0.009881726 0.011370302 0.008110620 0.003561031 0.025843555 0.030168277
## 25 0.006164787 0.010008366 0.015855127 0.005092893 0.029367662 0.026531614
## 26 0.005176197 0.009023897 0.034923697 0.008649679 0.021994779 0.018338134
## 27 0.002712946 0.004178822 0.022812394 0.011762349 0.007257667 0.006427559
## 28 0.003505547 0.005103365 0.014099229 0.005975917 0.010193440 0.009375340
## 29 0.003763487 0.005114836 0.009095722 0.003966572 0.010678789 0.010328244
## 30 0.004715184 0.005814902 0.007314279 0.003402528 0.011824822 0.012151726
## 31 0.011115073 0.007341511 0.004117588 0.002652945 0.008160775 0.009218482
## 32 0.002968512 0.004075206 0.012992695 0.021536636 0.005479384 0.005058469
## 33 0.002160979 0.003136718 0.012551366 0.007988226 0.005251105 0.004771412
## 34 0.010214977 0.007643407 0.004968483 0.003137297 0.009450734 0.010603004
## 35 0.002326068 0.003199128 0.009822083 0.006599999 0.005262289 0.004892859
## 36 0.006992905 0.004950231 0.003075275 0.002051248 0.005563597 0.006176292
## 37 0.004595890 0.005335848 0.006991791 0.003718772 0.009537640 0.009793088
## 38 0.002654367 0.003431663 0.007097672 0.003966325 0.006035364 0.005822691
## 39 0.006071555 0.004463556 0.002950432 0.002089239 0.004824422 0.005250270
## 40 0.003218659 0.004276771 0.012218023 0.014916387 0.005957301 0.005566635
## 41 0.002908136 0.003807643 0.009915958 0.014369815 0.004997531 0.004685136
## 42 0.007407926 0.005702463 0.003985013 0.002658742 0.006821007 0.007502463
## 43 0.002273335 0.002804974 0.005313218 0.003328489 0.004618185 0.004513446
## 44 0.002580941 0.003301581 0.007676657 0.005572956 0.005187697 0.004959022
## 45 0.003944080 0.004427002 0.006439413 0.004224423 0.006845094 0.006913031
## 46 0.005476011 0.004144814 0.002865683 0.002023727 0.004612139 0.005010235
## 47 0.003795563 0.004770334 0.010761169 0.013441665 0.006241222 0.005929949
## 48 0.002398910 0.002838446 0.004965742 0.003450868 0.004380563 0.004321049
## 49 0.002980168 0.003550693 0.006605912 0.005120417 0.005252188 0.005136845
##             13          14          15          16          17          18
## 1  0.025720144 0.021199746 0.020363811 0.017009062 0.009159539 0.015648127
## 2  0.033296502 0.025975693 0.016652324 0.016403181 0.005177215 0.016621843
## 3  0.029168175 0.023010984 0.028032985 0.019937233 0.009051107 0.016671990
## 4  0.043241557 0.030106176 0.018157582 0.017502737 0.004090222 0.017102475
## 5  0.038730528 0.030523296 0.075974462 0.034832843 0.008578703 0.023380709
## 6  0.019152203 0.016970259 0.036539844 0.020413576 0.028437241 0.015309075
## 7  0.103486838 0.082602128 0.021676909 0.030285970 0.004498654 0.039804162
## 8  0.099989103 0.055510011 0.025877626 0.026600596 0.003719840 0.025423998
## 9  0.014424482 0.013610175 0.051790356 0.021672765 0.028458947 0.014219115
## 10 0.008748710 0.008373712 0.017945655 0.011255560 0.248706780 0.008645341
## 11 0.069932333 0.050360036 0.050331809 0.050723310 0.002135988 0.029593490
## 12 0.146047854 0.095110618 0.028210322 0.049014984 0.001604740 0.037033194
## 13 0.000000000 0.365252724 0.016207141 0.031226327 0.001550007 0.040883485
## 14 0.314635907 0.000000000 0.013967868 0.037300525 0.001307981 0.072494653
## 15 0.029557630 0.029571849 0.000000000 0.097602537 0.005722089 0.035637280
## 16 0.042233297 0.058564468 0.072382236 0.000000000 0.002835811 0.160846712
## 17 0.005744580 0.005627444 0.011628295 0.007770837 0.000000000 0.006059427
## 18 0.042178369 0.086822651 0.020159662 0.122693059 0.001686742 0.000000000
## 19 0.073080953 0.252936872 0.015041878 0.060155520 0.001361976 0.319989655
## 20 0.005901268 0.005968333 0.013481118 0.009138016 0.081082808 0.006938883
## 21 0.026127374 0.034743294 0.020214243 0.039777058 0.004527005 0.062031918
## 22 0.008877004 0.008961118 0.034819088 0.016790681 0.020091757 0.010803697
## 23 0.005027242 0.005002896 0.009597373 0.006895828 0.232593906 0.005518832
## 24 0.026235288 0.038064441 0.029298078 0.100488557 0.003342114 0.140349052
## 25 0.017089196 0.019878793 0.098115739 0.090456588 0.004690679 0.036050260
## 26 0.012179922 0.012918008 0.083820444 0.034190805 0.007970317 0.017956784
## 27 0.004942236 0.005136677 0.014455499 0.009256062 0.014536774 0.006493258
## 28 0.007108770 0.007860661 0.022101760 0.017560027 0.006398519 0.011729224
## 29 0.008006751 0.009345550 0.020797151 0.023238818 0.004076012 0.016144304
## 30 0.010003236 0.012319278 0.018677557 0.029252684 0.003428330 0.024296105
## 31 0.010656961 0.012190956 0.007052009 0.010259671 0.002550995 0.013587898
## 32 0.004316641 0.004373924 0.007743647 0.006022967 0.045450270 0.004964543
## 33 0.003787374 0.003988227 0.009578038 0.006952777 0.010612024 0.005131601
## 34 0.011706980 0.013810649 0.008785758 0.013200930 0.003083826 0.017368936
## 35 0.003983008 0.004259973 0.009016311 0.007299199 0.008644480 0.005622965
## 36 0.006929544 0.007831598 0.005005414 0.006991040 0.002001092 0.008854376
## 37 0.008493947 0.010160404 0.013824801 0.019007346 0.003908319 0.017440143
## 38 0.004795839 0.005382877 0.010164071 0.010087226 0.004519141 0.008001299
## 39 0.005787283 0.006342150 0.004408168 0.005746012 0.002050936 0.006900403
## 40 0.004766160 0.004919837 0.008567814 0.006988109 0.025443920 0.005806902
## 41 0.004084854 0.004166545 0.006765494 0.005574971 0.024442166 0.004740829
## 42 0.008142638 0.009316914 0.006479471 0.009057492 0.002645144 0.011233271
## 43 0.003845895 0.004301129 0.007108264 0.007317717 0.003887289 0.006189124
## 44 0.004198478 0.004550880 0.008035417 0.007344591 0.007140572 0.006069436
## 45 0.006214710 0.007056800 0.009277281 0.010783398 0.004767915 0.010140412
## 46 0.005462219 0.006033871 0.004301500 0.005636069 0.002004667 0.006745703
## 47 0.005247219 0.005407232 0.008266087 0.007162216 0.020197319 0.006236003
## 48 0.003793978 0.004211996 0.006248577 0.006545243 0.004101060 0.005818878
## 49 0.004530023 0.004937274 0.007358659 0.007323971 0.006370355 0.006494150
##             19          20          21          22          23          24
## 1  0.017609201 0.008170792 0.008254992 0.012903019 0.006963971 0.011606861
## 2  0.020032902 0.005124678 0.008213297 0.008553541 0.004112777 0.011178129
## 3  0.018701798 0.008253186 0.007418342 0.015280891 0.006543663 0.011863823
## 4  0.021414136 0.004178646 0.006925969 0.007698634 0.003195255 0.010511155
## 5  0.025243513 0.008967765 0.007963264 0.023120357 0.006106574 0.015842519
## 6  0.015543615 0.020951461 0.007697735 0.038924162 0.016911049 0.012877780
## 7  0.056112862 0.005032859 0.017282820 0.008919595 0.003742081 0.022051880
## 8  0.034169551 0.004032339 0.007817244 0.008221906 0.002910911 0.013488852
## 9  0.013414855 0.030201165 0.006894122 0.134159754 0.016663411 0.013221781
## 10 0.008287614 0.056332880 0.005429723 0.044482976 0.065307647 0.008497876
## 11 0.035869250 0.002579876 0.005188943 0.006569292 0.001669661 0.013125922
## 12 0.053587912 0.001954855 0.005139858 0.004668390 0.001280206 0.013001458
## 13 0.082607723 0.001855897 0.006446847 0.003973093 0.001261280 0.013321285
## 14 0.246288092 0.001616875 0.007384778 0.003454930 0.001081229 0.016649246
## 15 0.031008568 0.007732105 0.009096458 0.028421229 0.004391341 0.027130802
## 16 0.091965728 0.003886822 0.013274506 0.010164000 0.002339926 0.069009834
## 17 0.005705723 0.094506582 0.004139875 0.033327660 0.216274116 0.006289355
## 18 0.373159301 0.002251335 0.015790967 0.004988576 0.001428468 0.073521044
## 19 0.000000000 0.001750529 0.010764368 0.003772379 0.001143141 0.030627003
## 20 0.006291833 0.000000000 0.004960148 0.058774538 0.091014054 0.007839768
## 21 0.049312084 0.006321959 0.000000000 0.010735087 0.004166870 0.112228831
## 22 0.009527293 0.041298624 0.005918272 0.000000000 0.014281685 0.011852175
## 23 0.005150327 0.114086832 0.004098076 0.025477696 0.000000000 0.005948778
## 24 0.068180574 0.004855697 0.054537567 0.010447203 0.002939335 0.000000000
## 25 0.025449302 0.007428039 0.012097172 0.025002738 0.003904823 0.049802357
## 26 0.014648448 0.013879527 0.007990422 0.089113460 0.006323728 0.021100271
## 27 0.005625896 0.054959917 0.004347721 0.114315054 0.012975078 0.007920276
## 28 0.009329581 0.013793455 0.007985645 0.038831652 0.005827074 0.017765616
## 29 0.011916457 0.007476293 0.011910488 0.017835311 0.003725439 0.032055986
## 30 0.016852191 0.005713771 0.023741758 0.011864023 0.003154537 0.071539457
## 31 0.013536400 0.003193221 0.030005967 0.004543550 0.002389806 0.014259684
## 32 0.004583792 0.067900712 0.004071706 0.018048010 0.135006538 0.005592534
## 33 0.004423011 0.042178076 0.003863640 0.039196939 0.010950968 0.006562981
## 34 0.016253964 0.004057793 0.060988257 0.005811092 0.002930110 0.021194475
## 35 0.004801095 0.026864430 0.004749660 0.024249758 0.009513876 0.007589529
## 36 0.008681151 0.002515143 0.019252657 0.003441389 0.001902305 0.009665662
## 37 0.013176387 0.006673728 0.026085908 0.011390980 0.003769296 0.039244704
## 38 0.006448367 0.009549210 0.007876185 0.014734721 0.004554518 0.013130823
## 39 0.006825835 0.002511966 0.012102840 0.003251936 0.001971366 0.007363783
## 40 0.005267249 0.057845945 0.005110174 0.019284620 0.045901602 0.006892130
## 41 0.004384838 0.033763491 0.004171805 0.013377204 0.048018228 0.005401406
## 42 0.010624349 0.003438835 0.029152084 0.004644549 0.002552694 0.013394570
## 43 0.005098177 0.007925162 0.007049382 0.009964067 0.004101407 0.009848117
## 44 0.005184914 0.017043548 0.006096983 0.015047397 0.008226304 0.008523647
## 45 0.008442743 0.008319095 0.015768593 0.010257649 0.005010992 0.016451413
## 46 0.006581761 0.002496024 0.012709374 0.003217366 0.001940265 0.007437780
## 47 0.005744363 0.029528781 0.005897435 0.014701369 0.032269287 0.007266119
## 48 0.004915970 0.007857822 0.007342171 0.008464305 0.004506070 0.008784155
## 49 0.005622108 0.012308641 0.007697220 0.010962733 0.007431787 0.009094579
##             25          26          27          28          29          30
## 1  0.013717860 0.013787699 0.009473289 0.009580017 0.009502709 0.009135344
## 2  0.011457686 0.010319207 0.006442497 0.007275062 0.007723357 0.007865151
## 3  0.015966265 0.016626463 0.010155339 0.010225297 0.009930496 0.009222570
## 4  0.011225971 0.009842770 0.005538409 0.006458126 0.006918501 0.007006079
## 5  0.027689704 0.029652127 0.013087715 0.014156764 0.013594784 0.011996695
## 6  0.021982900 0.029711776 0.022491946 0.017381341 0.014567810 0.012085780
## 7  0.016705941 0.012618823 0.007022601 0.009299935 0.011032222 0.012460122
## 8  0.014418041 0.011694788 0.005750439 0.007197321 0.007970665 0.008168761
## 9  0.031386703 0.062194406 0.043137093 0.027323889 0.019477486 0.014119465
## 10 0.014758400 0.022549135 0.032559137 0.016953154 0.012433970 0.009614953
## 11 0.018112859 0.012203724 0.004275813 0.006154738 0.007124582 0.007111857
## 12 0.013884982 0.008633600 0.003213156 0.004803301 0.005846930 0.006201409
## 13 0.010537122 0.006756162 0.002910904 0.004291074 0.005340432 0.006014668
## 14 0.010558573 0.006172568 0.002606162 0.004087384 0.005369574 0.006380742
## 15 0.110332194 0.084794693 0.015527470 0.024331092 0.025298056 0.020481152
## 16 0.075435307 0.025650683 0.007373349 0.014336093 0.020963714 0.023788712
## 17 0.010719160 0.016385351 0.031731974 0.014314483 0.010075816 0.007639738
## 18 0.022932461 0.010276044 0.003945563 0.007304370 0.011109163 0.015071264
## 19 0.013882248 0.007188374 0.002931431 0.004982155 0.007031546 0.008964190
## 20 0.014563505 0.024480572 0.102929972 0.026475000 0.015856151 0.010924092
## 21 0.030229616 0.017962782 0.010378020 0.019535743 0.032195714 0.057853865
## 22 0.034444959 0.110442585 0.150433853 0.052371517 0.026578994 0.015938257
## 23 0.009596660 0.013981286 0.030460205 0.014019758 0.009904122 0.007560058
## 24 0.060476964 0.023050654 0.009187227 0.021119884 0.042108422 0.084714250
## 25 0.000000000 0.128247811 0.018096953 0.053148011 0.079743603 0.054395387
## 26 0.142559059 0.000000000 0.044325959 0.090348619 0.055384144 0.028786682
## 27 0.018945297 0.041745459 0.000000000 0.057494707 0.022815268 0.012779814
## 28 0.054289500 0.083024350 0.056099725 0.000000000 0.161525796 0.044495070
## 29 0.073718435 0.046059673 0.020146976 0.146181806 0.000000000 0.178226535
## 30 0.055781646 0.026556816 0.012518660 0.044669627 0.197706689 0.000000000
## 31 0.008173240 0.006174032 0.004398166 0.006343634 0.008185249 0.010626205
## 32 0.008420160 0.011499839 0.025647428 0.013355354 0.009654129 0.007485942
## 33 0.013554844 0.023756791 0.260938930 0.048283320 0.020159690 0.011490779
## 34 0.011126608 0.008152208 0.005821211 0.008976734 0.012196570 0.016891912
## 35 0.013738633 0.020050593 0.074883035 0.051537672 0.024864092 0.014585546
## 36 0.005875182 0.004560421 0.003405643 0.004829255 0.006133313 0.007831261
## 37 0.030500147 0.020172132 0.013569597 0.040383014 0.101612469 0.228773383
## 38 0.020512962 0.021176012 0.024441262 0.088174424 0.077416234 0.040161837
## 39 0.005017736 0.004097148 0.003244923 0.004332934 0.005248126 0.006355158
## 40 0.010149242 0.013470438 0.032206821 0.018194613 0.013017726 0.009969337
## 41 0.007530152 0.009616093 0.018579451 0.011616604 0.008929716 0.007216152
## 42 0.008023320 0.006201120 0.004739066 0.006931165 0.008980923 0.011745512
## 43 0.012698557 0.012746656 0.016177353 0.034849942 0.034486980 0.025401727
## 44 0.012378318 0.014829205 0.029956469 0.034355485 0.024325058 0.016924410
## 45 0.015424000 0.013510994 0.013957696 0.025873234 0.032993847 0.035770095
## 46 0.005009879 0.004074414 0.003252864 0.004405815 0.005383881 0.006585463
## 47 0.009537983 0.011573187 0.020562385 0.014737801 0.011854283 0.009870156
## 48 0.010035045 0.009981241 0.013044975 0.020921887 0.021195038 0.018470771
## 49 0.010822503 0.011509574 0.017387985 0.021474829 0.019466166 0.016531661
##             31           32          33          34          35          36
## 1  0.005378759 0.0052432537 0.008010827 0.005350040 0.007007910 0.004478767
## 2  0.005529696 0.0032679864 0.005543877 0.005250588 0.004986179 0.004415051
## 3  0.004093806 0.0047372619 0.008201298 0.004290029 0.006936584 0.003387212
## 4  0.003992461 0.0025086255 0.004664163 0.003963285 0.004140420 0.003155842
## 5  0.003477332 0.0044044882 0.009901816 0.003907360 0.008068914 0.002857109
## 6  0.003907199 0.0103244573 0.016765355 0.004387185 0.012979544 0.003359444
## 7  0.010835815 0.0031526559 0.006196374 0.009907854 0.005789939 0.007881465
## 8  0.003804739 0.0023007929 0.004781375 0.003941118 0.004233245 0.002965957
## 9  0.002932346 0.0100799894 0.026290640 0.003520376 0.017859870 0.002531957
## 10 0.002765664 0.0244589322 0.024493977 0.003254017 0.017567800 0.002472232
## 11 0.001810695 0.0013244460 0.003426909 0.002086280 0.002981200 0.001427150
## 12 0.001735551 0.0010374941 0.002642182 0.001986094 0.002352031 0.001344330
## 13 0.002363906 0.0010431126 0.002471000 0.002583655 0.002255850 0.001777057
## 14 0.002329428 0.0009104819 0.002241451 0.002625540 0.002078360 0.001730063
## 15 0.002852810 0.0034126673 0.011396575 0.003536162 0.009313033 0.002340992
## 16 0.003077969 0.0019684744 0.006135175 0.003940291 0.005591243 0.002424782
## 17 0.002097157 0.0407048674 0.025660046 0.002522344 0.018145236 0.001901903
## 18 0.003109503 0.0012376744 0.003454056 0.003954620 0.003285537 0.002342592
## 19 0.002656339 0.0009799270 0.002552914 0.003173456 0.002405598 0.001969508
## 20 0.002252252 0.0521736150 0.087500939 0.002847547 0.048380247 0.002050930
## 21 0.026974460 0.0039875858 0.010215970 0.054548687 0.010902095 0.020009482
## 22 0.002251800 0.0097443370 0.057137925 0.002865400 0.030686279 0.001971825
## 23 0.002112894 0.1300344619 0.028477739 0.002577460 0.021477069 0.001944444
## 24 0.006229402 0.0026615433 0.008432871 0.009211961 0.008465520 0.004881666
## 25 0.002940293 0.0032999336 0.014342628 0.003982466 0.012619503 0.002443530
## 26 0.002468937 0.0050098124 0.027942602 0.003243467 0.020472496 0.002108367
## 27 0.001656395 0.0105226381 0.289047382 0.002181216 0.072007562 0.001482831
## 28 0.002331113 0.0053464940 0.052186737 0.003281984 0.048356219 0.002051660
## 29 0.002722128 0.0034976651 0.019719609 0.004035592 0.021113079 0.002358152
## 30 0.003920160 0.0030085731 0.012468463 0.006200081 0.013738859 0.003340084
## 31 0.000000000 0.0023213291 0.004364012 0.139269198 0.004585373 0.363536901
## 32 0.002130827 0.0000000000 0.028804219 0.002655722 0.025163456 0.001996601
## 33 0.001483707 0.0106685834 0.000000000 0.001994736 0.235326847 0.001346707
## 34 0.139978757 0.0029078913 0.005896989 0.000000000 0.006375549 0.123242911
## 35 0.001795859 0.0107363443 0.271085924 0.002484324 0.000000000 0.001649615
## 36 0.314447739 0.0018813937 0.003426187 0.106060792 0.003643216 0.000000000
## 37 0.004923856 0.0038214780 0.014921176 0.008330143 0.018426818 0.004374307
## 38 0.002331156 0.0048205651 0.033593544 0.003496161 0.055657958 0.002120266
## 39 0.056685325 0.0019700401 0.003280810 0.034034012 0.003479482 0.117040873
## 40 0.002560408 0.1617827425 0.043528549 0.003304833 0.045170469 0.002421543
## 41 0.002297765 0.2194254701 0.021771688 0.002870999 0.021395084 0.002187274
## 42 0.099184951 0.0025802218 0.004860620 0.260673671 0.005292230 0.205662228
## 43 0.002279795 0.0046656754 0.023215484 0.003490351 0.042089028 0.002124817
## 44 0.002370277 0.0105265037 0.055257152 0.003398121 0.153161651 0.002228394
## 45 0.005238969 0.0057355046 0.017503500 0.008781356 0.025180361 0.005055928
## 46 0.052671775 0.0019593129 0.003316741 0.040769983 0.003554623 0.128990399
## 47 0.003330050 0.0813976825 0.025089003 0.004221483 0.027145566 0.003219754
## 48 0.002729625 0.0054911918 0.018294339 0.004214315 0.030855093 0.002620742
## 49 0.003310416 0.0099858204 0.025204385 0.004879856 0.042260635 0.003219043
##             37          38           39          40           41          42
## 1  0.007397127 0.007210999 0.0033517121 0.004872259 0.0041052101 0.004288395
## 2  0.006247642 0.005572183 0.0031810158 0.003200606 0.0026159089 0.004073403
## 3  0.007117127 0.007106639 0.0024388392 0.004415528 0.0035654443 0.003345343
## 4  0.005328577 0.004715243 0.0021887214 0.002481400 0.0019708418 0.002985046
## 5  0.008465285 0.008569462 0.0019600851 0.004276502 0.0032046832 0.002936218
## 6  0.009532822 0.011259714 0.0024576439 0.008779260 0.0070470579 0.003500411
## 7  0.009541901 0.007331279 0.0050478507 0.003298266 0.0025731725 0.007005069
## 8  0.005889235 0.005038644 0.0019727757 0.002329791 0.0017910208 0.002866609
## 9  0.010604172 0.014320486 0.0017919062 0.009146075 0.0064093200 0.002752761
## 10 0.008256323 0.011714641 0.0018574475 0.016345426 0.0135965037 0.002688524
## 11 0.004506827 0.003793910 0.0009128861 0.001389393 0.0010064088 0.001468010
## 12 0.003926573 0.003105784 0.0008429795 0.001101621 0.0008005807 0.001370088
## 13 0.004012567 0.003013914 0.0010947849 0.001111289 0.0008223907 0.001751977
## 14 0.004134648 0.002914040 0.0010334880 0.000988152 0.0007225910 0.001726832
## 15 0.011910633 0.011649228 0.0015208114 0.003643270 0.0024840732 0.002542530
## 16 0.012144183 0.008573775 0.0014701264 0.002203697 0.0015180232 0.002635757
## 17 0.006842698 0.010525598 0.0014379068 0.021987045 0.0182375299 0.002109294
## 18 0.008499721 0.005187626 0.0013466986 0.001396833 0.0009846862 0.002493512
## 19 0.005506716 0.003585086 0.0011423349 0.001086490 0.0007809781 0.002022317
## 20 0.010024728 0.019082052 0.0015109818 0.042886685 0.0216142611 0.002352697
## 21 0.049942132 0.020059984 0.0092787561 0.004828834 0.0034038784 0.025420335
## 22 0.012022965 0.020689306 0.0013744655 0.010046320 0.0060173429 0.002232773
## 23 0.007097272 0.011408461 0.0014864140 0.042658391 0.0385324156 0.002189175
## 24 0.036511822 0.016251667 0.0027434357 0.003164837 0.0021416487 0.005675861
## 25 0.023367610 0.020907122 0.0015394356 0.003837880 0.0024586972 0.002799735
## 26 0.017179441 0.023991363 0.0013972697 0.005662189 0.0034901559 0.002405348
## 27 0.010883668 0.026078672 0.0010422071 0.012749749 0.0063508250 0.001731217
## 28 0.031603845 0.091798871 0.0013578900 0.007027963 0.0038744433 0.002470574
## 29 0.071968032 0.072942086 0.0014884635 0.004550648 0.0026953751 0.002897104
## 30 0.179740984 0.041976739 0.0019994442 0.003865924 0.0024162185 0.004203045
## 31 0.010486277 0.006604515 0.0483423734 0.002691353 0.0020855013 0.096208246
## 32 0.007470658 0.012536577 0.0015422114 0.156100808 0.1828114872 0.002297392
## 33 0.010803916 0.032358434 0.0009512630 0.015555995 0.0067182972 0.001602951
## 34 0.017830992 0.009955613 0.0291727609 0.003491548 0.0026190570 0.254138663
## 35 0.015369651 0.061758173 0.0011621699 0.018595750 0.0076053041 0.002010494
## 36 0.008057962 0.005195888 0.0863365823 0.002201677 0.0017171493 0.172552408
## 37 0.000000000 0.072397447 0.0026456136 0.005190968 0.0031895668 0.005854612
## 38 0.054421403 0.000000000 0.0014067682 0.007258485 0.0038354004 0.002697010
## 39 0.006606707 0.004673419 0.0000000000 0.002280356 0.0018334716 0.058768728
## 40 0.010517266 0.019563837 0.0018501138 0.000000000 0.1381521565 0.002864295
## 41 0.007484155 0.011972237 0.0017227672 0.159997863 0.0000000000 0.002538463
## 42 0.012854275 0.007877448 0.0516698381 0.003103936 0.0023752499 0.000000000
## 43 0.043098283 0.244164622 0.0014316985 0.007505621 0.0039461863 0.002777401
## 44 0.021578775 0.081849214 0.0015789960 0.020684937 0.0088419728 0.002812573
## 45 0.077619450 0.066037636 0.0033461708 0.008711840 0.0052251585 0.007149429
## 46 0.007003186 0.004860512 0.4998850918 0.002298603 0.0018312498 0.091629755
## 47 0.010682018 0.016655849 0.0025635521 0.137833005 0.2733207770 0.003800760
## 48 0.031001368 0.062866422 0.0018151881 0.009278616 0.0050211266 0.003510410
## 49 0.023577171 0.046229642 0.0023296941 0.018935097 0.0097831389 0.004220389
##             43          44          45           46           47          48
## 1  0.006146910 0.005730015 0.005183015 0.0033451250 0.0034389281 0.005125652
## 2  0.004746284 0.004190352 0.004162402 0.0031354316 0.0022664695 0.003943758
## 3  0.005836640 0.005408172 0.004689702 0.0024779571 0.0029293966 0.004686682
## 4  0.003914505 0.003398951 0.003347710 0.0021908673 0.0016957859 0.003166550
## 5  0.006607458 0.005917367 0.004980246 0.0020349177 0.0026230029 0.004988620
## 6  0.009064063 0.009223709 0.006620716 0.0025546342 0.0053368371 0.007138798
## 7  0.006213971 0.005041527 0.005754988 0.0049757791 0.0023136704 0.005099410
## 8  0.004075912 0.003428437 0.003433986 0.0020021286 0.0015458388 0.003207575
## 9  0.010609295 0.010954162 0.006863854 0.0019021641 0.0047919003 0.007711044
## 10 0.009729148 0.011641031 0.006591557 0.0019663938 0.0087619387 0.007844336
## 11 0.002873041 0.002306340 0.002273227 0.0009538146 0.0008658838 0.002119340
## 12 0.002382554 0.001870720 0.001948031 0.0008791918 0.0006980796 0.001773879
## 13 0.002391942 0.001866050 0.002063322 0.0011293105 0.0007277830 0.001835052
## 14 0.002304361 0.001742375 0.002018221 0.0010746205 0.0006460448 0.001754916
## 15 0.008062691 0.006513330 0.005617332 0.0016219122 0.0020909128 0.005511855
## 16 0.006155495 0.004415024 0.004842124 0.0015759943 0.0013435512 0.004281671
## 17 0.008960345 0.011762214 0.005866773 0.0015360706 0.0103822411 0.007351471
## 18 0.003971224 0.002783054 0.003473311 0.0014388428 0.0008923206 0.002903585
## 19 0.002805122 0.002038715 0.002479781 0.0012038432 0.0007048524 0.002103518
## 20 0.015673023 0.024087005 0.008782409 0.0016409088 0.0130229578 0.012085011
## 21 0.017768578 0.010982338 0.021217172 0.0106491955 0.0033150060 0.014392173
## 22 0.013846106 0.014942750 0.007609073 0.0014862179 0.0045558378 0.009147080
## 23 0.010167275 0.014573189 0.006631142 0.0015989086 0.0178394123 0.008687001
## 24 0.012062746 0.007460992 0.010756949 0.0030284979 0.0019847919 0.008367451
## 25 0.012808766 0.008922626 0.008305061 0.0016798525 0.0021455020 0.007871770
## 26 0.014292033 0.011882116 0.008086824 0.0015186369 0.0028938113 0.008703270
## 27 0.017082692 0.022605683 0.007867839 0.0011418413 0.0048421899 0.010712536
## 28 0.035907385 0.025296239 0.014230670 0.0015090337 0.0033863658 0.016764198
## 29 0.032157947 0.016209334 0.016423247 0.0016688588 0.0024650623 0.015369776
## 30 0.026275161 0.012510476 0.019751276 0.0022644328 0.0022768040 0.014858240
## 31 0.006392229 0.004749346 0.007841429 0.0490936664 0.0020822207 0.005951956
## 32 0.012008328 0.019361114 0.007880115 0.0016763428 0.0467196469 0.010990940
## 33 0.022130765 0.037643096 0.008907104 0.0010510448 0.0053336139 0.013562371
## 34 0.009836321 0.006843535 0.013210464 0.0381939963 0.0026530662 0.009236145
## 35 0.046219270 0.120193884 0.014760771 0.0012975937 0.0066477175 0.026350038
## 36 0.005153212 0.003862128 0.006545612 0.1039931829 0.0017414006 0.004942890
## 37 0.056741458 0.020302311 0.054551161 0.0030649768 0.0031362692 0.031741072
## 38 0.241640511 0.057886817 0.034887627 0.0015990426 0.0036759810 0.048384466
## 39 0.004707071 0.003709867 0.005872732 0.5463366922 0.0018795800 0.004641101
## 40 0.020020812 0.039430060 0.012405032 0.0020382151 0.0819913008 0.019247684
## 41 0.012190715 0.019519960 0.008616759 0.0018805729 0.1882971358 0.012062934
## 42 0.008028393 0.005809944 0.011032000 0.0880475992 0.0024500778 0.007891291
## 43 0.000000000 0.088231859 0.069888427 0.0016464523 0.0040248801 0.160049323
## 44 0.123465971 0.000000000 0.032688577 0.0017907709 0.0090441670 0.093832906
## 45 0.130921915 0.043760397 0.000000000 0.0039735425 0.0056787099 0.213252856
## 46 0.004952884 0.003849703 0.006380868 0.0000000000 0.0018937569 0.004940274
## 47 0.018048182 0.028981926 0.013593244 0.0028229017 0.0000000000 0.019383416
## 48 0.205803916 0.086224982 0.146381962 0.0021117467 0.0055583973 0.000000000
## 49 0.089625991 0.136637293 0.066371747 0.0026903596 0.0117881262 0.264469849
##             49
## 1  0.004529560
## 2  0.003381825
## 3  0.004068030
## 4  0.002666402
## 5  0.004164290
## 6  0.006420420
## 7  0.004156896
## 8  0.002632884
## 9  0.006731072
## 10 0.007637577
## 11 0.001667376
## 12 0.001383737
## 13 0.001437727
## 14 0.001349827
## 15 0.004259296
## 16 0.003143812
## 17 0.007493145
## 18 0.002126376
## 19 0.001578551
## 20 0.012421595
## 21 0.009900523
## 22 0.007773784
## 23 0.009401293
## 24 0.005684578
## 25 0.005570616
## 26 0.006585361
## 27 0.009369593
## 28 0.011291043
## 29 0.009262670
## 30 0.008726122
## 31 0.004736545
## 32 0.013115184
## 33 0.012260761
## 34 0.007017674
## 35 0.023681697
## 36 0.003983877
## 37 0.015839988
## 38 0.023346950
## 39 0.003908595
## 40 0.025774202
## 41 0.015422417
## 42 0.006225369
## 43 0.045735832
## 44 0.097569419
## 45 0.063447272
## 46 0.004129923
## 47 0.026974159
## 48 0.173539595
## 49 0.000000000
W2 = mat2listw(W2,style='W')  
summary(W2)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 49 
## Number of nonzero links: 2352 
## Percentage nonzero weights: 97.95918 
## Average number of links: 48 
## Link number distribution:
## 
## 48 
## 49 
## 49 least connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 with 48 links
## 49 most connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 with 48 links
## 
## Weights style: W 
## Weights constants summary:
##    n   nn S0       S1     S2
## W 49 2401 49 10.31491 200.14

Exponential distance weights (Bobot Jarak Eksponensial)

matriks bobot Exponential distance dengan alpha=1

alpha=1
W3<-exp((-alpha)*D)
round(W3,4)
##         1      2      3      4      5      6      7      8      9     10     11
## 1  1.0000 0.0273 0.0467 0.0146 0.0021 0.0010 0.0004 0.0032 0.0001 0.0000 0.0004
## 2  0.0273 1.0000 0.0127 0.1278 0.0020 0.0002 0.0104 0.0217 0.0000 0.0000 0.0015
## 3  0.0467 0.0127 1.0000 0.0339 0.0414 0.0127 0.0009 0.0188 0.0017 0.0001 0.0052
## 4  0.0146 0.1278 0.0339 1.0000 0.0133 0.0006 0.0228 0.1617 0.0002 0.0000 0.0119
## 5  0.0021 0.0020 0.0414 0.0133 1.0000 0.0192 0.0013 0.0342 0.0181 0.0004 0.0640
## 6  0.0010 0.0002 0.0127 0.0006 0.0192 1.0000 0.0000 0.0009 0.0342 0.0082 0.0013
## 7  0.0004 0.0104 0.0009 0.0228 0.0013 0.0000 1.0000 0.0346 0.0000 0.0000 0.0070
## 8  0.0032 0.0217 0.0188 0.1617 0.0342 0.0009 0.0346 1.0000 0.0007 0.0000 0.0695
## 9  0.0001 0.0000 0.0017 0.0002 0.0181 0.0342 0.0000 0.0007 1.0000 0.0150 0.0037
## 10 0.0000 0.0000 0.0001 0.0000 0.0004 0.0082 0.0000 0.0000 0.0150 1.0000 0.0001
## 11 0.0004 0.0015 0.0052 0.0119 0.0640 0.0013 0.0070 0.0695 0.0037 0.0001 1.0000
## 12 0.0003 0.0016 0.0032 0.0117 0.0321 0.0007 0.0121 0.0725 0.0018 0.0000 0.4761
## 13 0.0003 0.0025 0.0021 0.0157 0.0127 0.0002 0.0377 0.0879 0.0006 0.0000 0.1492
## 14 0.0001 0.0011 0.0010 0.0069 0.0073 0.0001 0.0255 0.0382 0.0004 0.0000 0.1062
## 15 0.0001 0.0002 0.0019 0.0016 0.0443 0.0024 0.0008 0.0084 0.0190 0.0003 0.1062
## 16 0.0000 0.0002 0.0006 0.0015 0.0100 0.0003 0.0023 0.0090 0.0022 0.0000 0.1071
## 17 0.0000 0.0000 0.0000 0.0000 0.0001 0.0011 0.0000 0.0000 0.0048 0.1123 0.0000
## 18 0.0000 0.0002 0.0003 0.0013 0.0036 0.0001 0.0051 0.0080 0.0005 0.0000 0.0537
## 19 0.0001 0.0004 0.0005 0.0027 0.0045 0.0001 0.0117 0.0156 0.0004 0.0000 0.0702
## 20 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0000 0.0000 0.0056 0.0101 0.0000
## 21 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 0.0002 0.0000 0.0000 0.0009
## 22 0.0000 0.0000 0.0002 0.0001 0.0035 0.0029 0.0000 0.0002 0.0854 0.0057 0.0020
## 23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0009 0.0140 0.0000
## 24 0.0000 0.0000 0.0001 0.0002 0.0011 0.0000 0.0008 0.0013 0.0004 0.0000 0.0124
## 25 0.0000 0.0000 0.0002 0.0003 0.0057 0.0004 0.0003 0.0017 0.0062 0.0001 0.0238
## 26 0.0000 0.0000 0.0003 0.0002 0.0068 0.0013 0.0001 0.0008 0.0269 0.0007 0.0105
## 27 0.0000 0.0000 0.0000 0.0000 0.0005 0.0005 0.0000 0.0000 0.0130 0.0024 0.0005
## 28 0.0000 0.0000 0.0000 0.0000 0.0007 0.0002 0.0000 0.0001 0.0043 0.0002 0.0016
## 29 0.0000 0.0000 0.0000 0.0000 0.0006 0.0001 0.0000 0.0002 0.0016 0.0001 0.0026
## 30 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0001 0.0002 0.0005 0.0000 0.0026
## 31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0009 0.0000
## 33 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0039 0.0009 0.0002
## 34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 35 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0012 0.0003 0.0001
## 36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 37 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0006
## 38 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0005 0.0000 0.0003
## 39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000
## 41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## 42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001
## 44 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000
## 45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 46 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 47 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 48 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
##        12     13     14     15     16     17     18     19     20     21     22
## 1  0.0003 0.0003 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
## 2  0.0016 0.0025 0.0011 0.0002 0.0002 0.0000 0.0002 0.0004 0.0000 0.0000 0.0000
## 3  0.0032 0.0021 0.0010 0.0019 0.0006 0.0000 0.0003 0.0005 0.0000 0.0000 0.0002
## 4  0.0117 0.0157 0.0069 0.0016 0.0015 0.0000 0.0013 0.0027 0.0000 0.0000 0.0001
## 5  0.0321 0.0127 0.0073 0.0443 0.0100 0.0001 0.0036 0.0045 0.0001 0.0001 0.0035
## 6  0.0007 0.0002 0.0001 0.0024 0.0003 0.0011 0.0001 0.0001 0.0004 0.0000 0.0029
## 7  0.0121 0.0377 0.0255 0.0008 0.0023 0.0000 0.0051 0.0117 0.0000 0.0003 0.0000
## 8  0.0725 0.0879 0.0382 0.0084 0.0090 0.0000 0.0080 0.0156 0.0000 0.0002 0.0002
## 9  0.0018 0.0006 0.0004 0.0190 0.0022 0.0048 0.0005 0.0004 0.0056 0.0000 0.0854
## 10 0.0000 0.0000 0.0000 0.0003 0.0000 0.1123 0.0000 0.0000 0.0101 0.0000 0.0057
## 11 0.4761 0.1492 0.1062 0.1062 0.1071 0.0000 0.0537 0.0702 0.0000 0.0009 0.0020
## 12 1.0000 0.2974 0.2225 0.0633 0.1233 0.0000 0.0900 0.1350 0.0000 0.0016 0.0011
## 13 0.2974 1.0000 0.4350 0.0192 0.0580 0.0000 0.0831 0.1737 0.0000 0.0019 0.0003
## 14 0.2225 0.4350 1.0000 0.0192 0.0891 0.0000 0.1765 0.3903 0.0000 0.0044 0.0004
## 15 0.0633 0.0192 0.0192 1.0000 0.1137 0.0001 0.0274 0.0211 0.0004 0.0008 0.0178
## 16 0.1233 0.0580 0.0891 0.1137 1.0000 0.0000 0.2325 0.1453 0.0001 0.0062 0.0030
## 17 0.0000 0.0000 0.0000 0.0001 0.0000 1.0000 0.0000 0.0000 0.0428 0.0000 0.0050
## 18 0.0900 0.0831 0.1765 0.0274 0.2325 0.0000 1.0000 0.4332 0.0000 0.0171 0.0007
## 19 0.1350 0.1737 0.3903 0.0211 0.1453 0.0000 0.4332 1.0000 0.0000 0.0105 0.0005
## 20 0.0000 0.0000 0.0000 0.0004 0.0001 0.0428 0.0000 0.0000 1.0000 0.0000 0.0247
## 21 0.0016 0.0019 0.0044 0.0008 0.0062 0.0000 0.0171 0.0105 0.0000 1.0000 0.0001
## 22 0.0011 0.0003 0.0004 0.0178 0.0030 0.0050 0.0007 0.0005 0.0247 0.0001 1.0000
## 23 0.0000 0.0000 0.0000 0.0000 0.0000 0.1246 0.0000 0.0000 0.0511 0.0000 0.0019
## 24 0.0172 0.0128 0.0268 0.0162 0.1078 0.0000 0.1519 0.0670 0.0000 0.0486 0.0010
## 25 0.0196 0.0074 0.0106 0.1293 0.1188 0.0001 0.0342 0.0180 0.0006 0.0030 0.0174
## 26 0.0068 0.0022 0.0026 0.0970 0.0259 0.0005 0.0065 0.0038 0.0032 0.0005 0.1041
## 27 0.0003 0.0001 0.0001 0.0043 0.0011 0.0044 0.0003 0.0002 0.0610 0.0000 0.1439
## 28 0.0012 0.0005 0.0007 0.0128 0.0075 0.0003 0.0025 0.0012 0.0040 0.0007 0.0374
## 29 0.0023 0.0010 0.0017 0.0140 0.0176 0.0001 0.0078 0.0035 0.0008 0.0035 0.0099
## 30 0.0028 0.0015 0.0029 0.0087 0.0225 0.0000 0.0156 0.0068 0.0002 0.0148 0.0026
## 31 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0021 0.0000
## 32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0082 0.0000 0.0000 0.0197 0.0000 0.0005
## 33 0.0001 0.0000 0.0001 0.0017 0.0006 0.0024 0.0002 0.0001 0.0482 0.0000 0.0430
## 34 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0003 0.0002 0.0000 0.0131 0.0000
## 35 0.0001 0.0000 0.0000 0.0009 0.0004 0.0008 0.0001 0.0001 0.0169 0.0001 0.0137
## 36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000
## 37 0.0006 0.0004 0.0007 0.0020 0.0049 0.0000 0.0039 0.0017 0.0001 0.0108 0.0011
## 38 0.0002 0.0001 0.0002 0.0018 0.0018 0.0001 0.0008 0.0004 0.0015 0.0008 0.0054
## 39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0015 0.0000 0.0000 0.0131 0.0000 0.0006
## 41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0022 0.0000 0.0001
## 42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0000
## 43 0.0001 0.0000 0.0001 0.0005 0.0006 0.0000 0.0003 0.0001 0.0008 0.0005 0.0017
## 44 0.0000 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0031 0.0001 0.0021
## 45 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0002 0.0001 0.0001 0.0010 0.0002
## 46 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## 47 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0004 0.0000 0.0000
## 48 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0003 0.0002 0.0004
## 49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0002
##        23     24     25     26     27     28     29     30     31     32     33
## 1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 2  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 3  0.0000 0.0001 0.0002 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 4  0.0000 0.0002 0.0003 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 5  0.0000 0.0011 0.0057 0.0068 0.0005 0.0007 0.0006 0.0004 0.0000 0.0000 0.0002
## 6  0.0001 0.0000 0.0004 0.0013 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0001
## 7  0.0000 0.0008 0.0003 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
## 8  0.0000 0.0013 0.0017 0.0008 0.0000 0.0001 0.0002 0.0002 0.0000 0.0000 0.0000
## 9  0.0009 0.0004 0.0062 0.0269 0.0130 0.0043 0.0016 0.0005 0.0000 0.0001 0.0039
## 10 0.0140 0.0000 0.0001 0.0007 0.0024 0.0002 0.0001 0.0000 0.0000 0.0009 0.0009
## 11 0.0000 0.0124 0.0238 0.0105 0.0005 0.0016 0.0026 0.0026 0.0000 0.0000 0.0002
## 12 0.0000 0.0172 0.0196 0.0068 0.0003 0.0012 0.0023 0.0028 0.0000 0.0000 0.0001
## 13 0.0000 0.0128 0.0074 0.0022 0.0001 0.0005 0.0010 0.0015 0.0000 0.0000 0.0000
## 14 0.0000 0.0268 0.0106 0.0026 0.0001 0.0007 0.0017 0.0029 0.0001 0.0000 0.0001
## 15 0.0000 0.0162 0.1293 0.0970 0.0043 0.0128 0.0140 0.0087 0.0000 0.0000 0.0017
## 16 0.0000 0.1078 0.1188 0.0259 0.0011 0.0075 0.0176 0.0225 0.0000 0.0000 0.0006
## 17 0.1246 0.0000 0.0001 0.0005 0.0044 0.0003 0.0001 0.0000 0.0000 0.0082 0.0024
## 18 0.0000 0.1519 0.0342 0.0065 0.0003 0.0025 0.0078 0.0156 0.0001 0.0000 0.0002
## 19 0.0000 0.0670 0.0180 0.0038 0.0002 0.0012 0.0035 0.0068 0.0001 0.0000 0.0001
## 20 0.0511 0.0000 0.0006 0.0032 0.0610 0.0040 0.0008 0.0002 0.0000 0.0197 0.0482
## 21 0.0000 0.0486 0.0030 0.0005 0.0000 0.0007 0.0035 0.0148 0.0021 0.0000 0.0000
## 22 0.0019 0.0010 0.0174 0.1041 0.1439 0.0374 0.0099 0.0026 0.0000 0.0005 0.0430
## 23 1.0000 0.0000 0.0000 0.0002 0.0032 0.0002 0.0000 0.0000 0.0000 0.0617 0.0026
## 24 0.0000 1.0000 0.0567 0.0096 0.0006 0.0078 0.0320 0.0884 0.0001 0.0000 0.0005
## 25 0.0000 0.0567 1.0000 0.1671 0.0085 0.0621 0.1034 0.0641 0.0000 0.0000 0.0048
## 26 0.0002 0.0096 0.1671 1.0000 0.0404 0.1057 0.0567 0.0187 0.0000 0.0001 0.0176
## 27 0.0032 0.0006 0.0085 0.0404 1.0000 0.0650 0.0130 0.0030 0.0000 0.0017 0.2954
## 28 0.0002 0.0078 0.0621 0.1057 0.0650 1.0000 0.1997 0.0464 0.0000 0.0001 0.0588
## 29 0.0000 0.0320 0.1034 0.0567 0.0130 0.1997 1.0000 0.2324 0.0000 0.0000 0.0124
## 30 0.0000 0.0884 0.0641 0.0187 0.0030 0.0464 0.2324 1.0000 0.0000 0.0000 0.0030
## 31 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
## 32 0.0617 0.0000 0.0000 0.0001 0.0017 0.0001 0.0000 0.0000 0.0000 1.0000 0.0024
## 33 0.0026 0.0005 0.0048 0.0176 0.2954 0.0588 0.0124 0.0030 0.0000 0.0024 1.0000
## 34 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0571 0.0000 0.0000
## 35 0.0011 0.0005 0.0033 0.0089 0.0869 0.0526 0.0144 0.0039 0.0000 0.0016 0.2770
## 36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1701 0.0000 0.0000
## 37 0.0000 0.0249 0.0151 0.0058 0.0019 0.0262 0.1006 0.2165 0.0000 0.0000 0.0025
## 38 0.0001 0.0039 0.0119 0.0128 0.0173 0.1180 0.1022 0.0421 0.0000 0.0001 0.0314
## 39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0078 0.0000 0.0000
## 40 0.0077 0.0000 0.0000 0.0001 0.0030 0.0004 0.0001 0.0000 0.0000 0.0750 0.0068
## 41 0.0060 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0913 0.0005
## 42 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0319 0.0000 0.0000
## 43 0.0000 0.0016 0.0035 0.0035 0.0066 0.0328 0.0322 0.0183 0.0000 0.0001 0.0152
## 44 0.0002 0.0003 0.0011 0.0020 0.0128 0.0171 0.0079 0.0030 0.0000 0.0006 0.0404
## 45 0.0000 0.0011 0.0009 0.0005 0.0006 0.0044 0.0082 0.0099 0.0000 0.0000 0.0014
## 46 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0081 0.0000 0.0000
## 47 0.0005 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0088 0.0002
## 48 0.0000 0.0004 0.0007 0.0007 0.0018 0.0067 0.0070 0.0049 0.0000 0.0001 0.0048
## 49 0.0000 0.0001 0.0002 0.0002 0.0011 0.0023 0.0017 0.0010 0.0000 0.0001 0.0036
##        34     35     36     37     38     39     40     41     42     43     44
## 1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 2  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 3  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 4  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 5  0.0000 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 7  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 8  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 9  0.0000 0.0012 0.0000 0.0002 0.0005 0.0000 0.0001 0.0000 0.0000 0.0002 0.0002
## 10 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000
## 11 0.0000 0.0001 0.0000 0.0006 0.0003 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## 12 0.0000 0.0001 0.0000 0.0006 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## 13 0.0001 0.0000 0.0000 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 14 0.0001 0.0000 0.0000 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## 15 0.0000 0.0009 0.0000 0.0020 0.0018 0.0000 0.0000 0.0000 0.0000 0.0005 0.0002
## 16 0.0001 0.0004 0.0000 0.0049 0.0018 0.0000 0.0000 0.0000 0.0000 0.0006 0.0001
## 17 0.0000 0.0008 0.0000 0.0000 0.0001 0.0000 0.0015 0.0008 0.0000 0.0000 0.0001
## 18 0.0003 0.0001 0.0000 0.0039 0.0008 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001
## 19 0.0002 0.0001 0.0000 0.0017 0.0004 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## 20 0.0000 0.0169 0.0000 0.0001 0.0015 0.0000 0.0131 0.0022 0.0000 0.0008 0.0031
## 21 0.0131 0.0001 0.0008 0.0108 0.0008 0.0000 0.0000 0.0000 0.0017 0.0005 0.0001
## 22 0.0000 0.0137 0.0000 0.0011 0.0054 0.0000 0.0006 0.0001 0.0000 0.0017 0.0021
## 23 0.0000 0.0011 0.0000 0.0000 0.0001 0.0000 0.0077 0.0060 0.0000 0.0000 0.0002
## 24 0.0006 0.0005 0.0000 0.0249 0.0039 0.0000 0.0000 0.0000 0.0001 0.0016 0.0003
## 25 0.0000 0.0033 0.0000 0.0151 0.0119 0.0000 0.0000 0.0000 0.0000 0.0035 0.0011
## 26 0.0000 0.0089 0.0000 0.0058 0.0128 0.0000 0.0001 0.0000 0.0000 0.0035 0.0020
## 27 0.0000 0.0869 0.0000 0.0019 0.0173 0.0000 0.0030 0.0003 0.0000 0.0066 0.0128
## 28 0.0000 0.0526 0.0000 0.0262 0.1180 0.0000 0.0004 0.0000 0.0000 0.0328 0.0171
## 29 0.0001 0.0144 0.0000 0.1006 0.1022 0.0000 0.0001 0.0000 0.0000 0.0322 0.0079
## 30 0.0003 0.0039 0.0000 0.2165 0.0421 0.0000 0.0000 0.0000 0.0000 0.0183 0.0030
## 31 0.0571 0.0000 0.1701 0.0000 0.0000 0.0078 0.0000 0.0000 0.0319 0.0000 0.0000
## 32 0.0000 0.0016 0.0000 0.0000 0.0001 0.0000 0.0750 0.0913 0.0000 0.0001 0.0006
## 33 0.0000 0.2770 0.0000 0.0025 0.0314 0.0000 0.0068 0.0005 0.0000 0.0152 0.0404
## 34 1.0000 0.0000 0.0473 0.0003 0.0000 0.0019 0.0000 0.0000 0.1195 0.0000 0.0000
## 35 0.0000 1.0000 0.0000 0.0046 0.0679 0.0000 0.0074 0.0005 0.0000 0.0446 0.1454
## 36 0.0473 0.0000 1.0000 0.0000 0.0000 0.0340 0.0000 0.0000 0.0915 0.0000 0.0000
## 37 0.0003 0.0046 0.0000 1.0000 0.0659 0.0000 0.0000 0.0000 0.0001 0.0463 0.0059
## 38 0.0000 0.0679 0.0000 0.0659 1.0000 0.0000 0.0006 0.0000 0.0000 0.2750 0.0715
## 39 0.0019 0.0000 0.0340 0.0000 0.0000 1.0000 0.0000 0.0000 0.0085 0.0000 0.0000
## 40 0.0000 0.0074 0.0000 0.0000 0.0006 0.0000 1.0000 0.0606 0.0000 0.0006 0.0053
## 41 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0606 1.0000 0.0000 0.0000 0.0003
## 42 0.1195 0.0000 0.0915 0.0001 0.0000 0.0085 0.0000 0.0000 1.0000 0.0000 0.0000
## 43 0.0000 0.0446 0.0000 0.0463 0.2750 0.0000 0.0006 0.0000 0.0000 1.0000 0.1168
## 44 0.0000 0.1454 0.0000 0.0059 0.0715 0.0000 0.0053 0.0003 0.0000 0.1168 1.0000
## 45 0.0001 0.0041 0.0000 0.0436 0.0335 0.0000 0.0001 0.0000 0.0000 0.0895 0.0154
## 46 0.0042 0.0000 0.0459 0.0000 0.0000 0.2091 0.0000 0.0000 0.0259 0.0000 0.0000
## 47 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0263 0.0755 0.0000 0.0000 0.0004
## 48 0.0000 0.0163 0.0000 0.0164 0.0559 0.0000 0.0005 0.0000 0.0000 0.2030 0.0851
## 49 0.0000 0.0130 0.0000 0.0030 0.0157 0.0000 0.0015 0.0001 0.0000 0.0506 0.0893
##        45     46     47     48     49
## 1  0.0000 0.0000 0.0000 0.0000 0.0000
## 2  0.0000 0.0000 0.0000 0.0000 0.0000
## 3  0.0000 0.0000 0.0000 0.0000 0.0000
## 4  0.0000 0.0000 0.0000 0.0000 0.0000
## 5  0.0000 0.0000 0.0000 0.0000 0.0000
## 6  0.0000 0.0000 0.0000 0.0000 0.0000
## 7  0.0000 0.0000 0.0000 0.0000 0.0000
## 8  0.0000 0.0000 0.0000 0.0000 0.0000
## 9  0.0000 0.0000 0.0000 0.0000 0.0000
## 10 0.0000 0.0000 0.0000 0.0000 0.0000
## 11 0.0000 0.0000 0.0000 0.0000 0.0000
## 12 0.0000 0.0000 0.0000 0.0000 0.0000
## 13 0.0000 0.0000 0.0000 0.0000 0.0000
## 14 0.0000 0.0000 0.0000 0.0000 0.0000
## 15 0.0001 0.0000 0.0000 0.0001 0.0000
## 16 0.0002 0.0000 0.0000 0.0001 0.0000
## 17 0.0000 0.0000 0.0001 0.0000 0.0000
## 18 0.0002 0.0000 0.0000 0.0001 0.0000
## 19 0.0001 0.0000 0.0000 0.0000 0.0000
## 20 0.0001 0.0000 0.0004 0.0003 0.0003
## 21 0.0010 0.0001 0.0000 0.0002 0.0000
## 22 0.0002 0.0000 0.0000 0.0004 0.0002
## 23 0.0000 0.0000 0.0005 0.0000 0.0000
## 24 0.0011 0.0000 0.0000 0.0004 0.0001
## 25 0.0009 0.0000 0.0000 0.0007 0.0002
## 26 0.0005 0.0000 0.0000 0.0007 0.0002
## 27 0.0006 0.0000 0.0001 0.0018 0.0011
## 28 0.0044 0.0000 0.0000 0.0067 0.0023
## 29 0.0082 0.0000 0.0000 0.0070 0.0017
## 30 0.0099 0.0000 0.0000 0.0049 0.0010
## 31 0.0000 0.0081 0.0000 0.0000 0.0000
## 32 0.0000 0.0000 0.0088 0.0001 0.0001
## 33 0.0014 0.0000 0.0002 0.0048 0.0036
## 34 0.0001 0.0042 0.0000 0.0000 0.0000
## 35 0.0041 0.0000 0.0003 0.0163 0.0130
## 36 0.0000 0.0459 0.0000 0.0000 0.0000
## 37 0.0436 0.0000 0.0000 0.0164 0.0030
## 38 0.0335 0.0000 0.0000 0.0559 0.0157
## 39 0.0000 0.2091 0.0000 0.0000 0.0000
## 40 0.0001 0.0000 0.0263 0.0005 0.0015
## 41 0.0000 0.0000 0.0755 0.0000 0.0001
## 42 0.0000 0.0259 0.0000 0.0000 0.0000
## 43 0.0895 0.0000 0.0000 0.2030 0.0506
## 44 0.0154 0.0000 0.0004 0.0851 0.0893
## 45 1.0000 0.0000 0.0000 0.1510 0.0312
## 46 0.0000 1.0000 0.0000 0.0000 0.0000
## 47 0.0000 0.0000 1.0000 0.0001 0.0003
## 48 0.1510 0.0000 0.0001 1.0000 0.1761
## 49 0.0312 0.0000 0.0003 0.1761 1.0000
#dinormalisasi 
diag(W3)<-0
rtot<-rowSums(W3,na.rm=TRUE)
rtot
##          1          2          3          4          5          6          7 
## 0.09660841 0.21002889 0.18454594 0.42899235 0.33084989 0.08959893 0.17429096 
##          8          9         10         11         12         13         14 
## 0.58983345 0.25469061 0.17232106 1.29154016 1.59786514 1.40373290 1.57119927 
##         15         16         17         18         19         20         21 
## 0.75809237 1.21474683 0.31012719 1.35848425 1.51901609 0.31220470 0.14654515 
##         22         23         24         25         26         27         28 
## 0.54044208 0.27648523 0.69495600 0.90153012 0.75143343 0.79590071 0.88251106 
##         29         30         31         32         33         34         35 
## 0.99176472 0.83830907 0.27769243 0.27328180 0.88271317 0.24552150 0.78889338 
##         36         37         38         39         40         41         42 
## 0.38979228 0.60653846 0.93985438 0.26129238 0.21174786 0.23844345 0.27940689 
##         43         44         45         46         47         48         49 
## 0.94550855 0.62704284 0.39738006 0.29320721 0.11293980 0.73291799 0.39191889
W3<-W3/rtot #row-normalized
rowSums(W3,na.rm=TRUE)
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
## 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
W3 #matriks bobot Exponential distance dengan alpha=1
##               1            2            3            4            5
## 1  0.000000e+00 2.824961e-01 4.830528e-01 1.506400e-01 2.123007e-02
## 2  1.299417e-01 0.000000e+00 6.035225e-02 6.082558e-01 9.649779e-03
## 3  2.528745e-01 6.868597e-02 0.000000e+00 1.835790e-01 2.240661e-01
## 4  3.392388e-02 2.977939e-01 7.897290e-02 0.000000e+00 3.097361e-02
## 5  6.199195e-03 6.125836e-03 1.249826e-01 4.016155e-02 0.000000e+00
## 6  1.138181e-02 1.857431e-03 1.418790e-01 7.134128e-03 2.142604e-01
## 7  2.235263e-03 5.953589e-02 5.083256e-03 1.305432e-01 7.331355e-03
## 8  5.379575e-03 3.686351e-02 3.194914e-02 2.741096e-01 5.798340e-02
## 9  3.319341e-04 1.544761e-04 6.620457e-03 9.506410e-04 7.109826e-02
## 10 4.970269e-05 8.884354e-06 6.293812e-04 4.174247e-05 2.468593e-03
## 11 3.085283e-04 1.192274e-03 4.011983e-03 9.218777e-03 4.955950e-02
## 12 1.855515e-04 9.995426e-04 2.030928e-03 7.346414e-03 2.008125e-02
## 13 1.991373e-04 1.785186e-03 1.519520e-03 1.115707e-02 9.067770e-03
## 14 7.755995e-05 7.226543e-04 6.259913e-04 4.368714e-03 4.665609e-03
## 15 1.338496e-04 2.768937e-04 2.487280e-03 2.160480e-03 5.849395e-02
## 16 3.513377e-05 1.620776e-04 4.839578e-04 1.197161e-03 8.261825e-03
## 17 3.578533e-06 8.169831e-07 5.170885e-05 4.355652e-06 3.030591e-04
## 18 2.046889e-05 1.533239e-04 2.157771e-04 9.921411e-04 2.677288e-03
## 19 3.340080e-05 2.918317e-04 3.038978e-04 1.791680e-03 2.957415e-03
## 20 1.587813e-06 7.509110e-07 3.049482e-05 4.995592e-06 3.689347e-04
## 21 3.643376e-06 3.953523e-05 3.448895e-05 2.106205e-04 4.512126e-04
## 22 1.778790e-05 1.365915e-05 3.775740e-04 9.751095e-05 6.520864e-03
## 23 5.359083e-07 1.437307e-07 8.300454e-06 8.272026e-07 6.100755e-05
## 24 7.382326e-06 4.665850e-05 9.331187e-05 3.138215e-04 1.565886e-03
## 25 1.510717e-05 4.083298e-05 2.721725e-04 3.177941e-04 6.361878e-03
## 26 1.864713e-05 2.830772e-05 3.857766e-04 2.190164e-04 9.080618e-03
## 27 1.753176e-06 1.534634e-06 3.736200e-05 1.135377e-05 6.900384e-04
## 28 1.704793e-06 3.088684e-06 3.492050e-05 2.416746e-05 8.308597e-04
## 29 1.436636e-06 4.008594e-06 2.666374e-05 3.094778e-05 6.378276e-04
## 30 1.300051e-06 5.307614e-06 2.120715e-05 3.907775e-05 4.691413e-04
## 31 6.105824e-08 1.492394e-06 2.671879e-07 4.126707e-06 1.703776e-06
## 32 4.930905e-08 1.823752e-08 8.622573e-07 1.171567e-07 8.777571e-06
## 33 4.861632e-07 4.784059e-07 1.039887e-05 3.612009e-06 2.022727e-04
## 34 6.582494e-08 1.147927e-06 4.418260e-07 4.438654e-06 4.396252e-06
## 35 1.973273e-07 2.407472e-07 4.224738e-06 1.858932e-06 8.928685e-05
## 36 7.824287e-09 1.845970e-07 3.724798e-08 5.334718e-07 2.699693e-07
## 37 3.898261e-07 1.631180e-06 6.454716e-06 1.187919e-05 1.456539e-04
## 38 2.068692e-07 4.664091e-07 4.127493e-06 3.633797e-06 9.950296e-05
## 39 5.482389e-10 1.471360e-08 2.216740e-09 3.624225e-08 1.439804e-08
## 40 3.232730e-08 1.926724e-08 6.444819e-07 1.375803e-07 9.347353e-06
## 41 5.344163e-09 2.202520e-09 9.615461e-08 1.469150e-08 1.081489e-06
## 42 7.097037e-09 1.310092e-07 4.643045e-08 4.821723e-07 4.683302e-07
## 43 5.693440e-08 1.365038e-07 1.130614e-06 1.058372e-06 2.728122e-05
## 44 4.720124e-08 7.425889e-08 9.992184e-07 5.808271e-07 2.259705e-05
## 45 3.052998e-08 1.107297e-07 5.489329e-07 8.185575e-07 1.305010e-05
## 46 4.777872e-10 1.139515e-08 2.338124e-09 3.259100e-08 1.839120e-08
## 47 1.693865e-09 9.500121e-10 3.302444e-08 6.786070e-09 4.619169e-07
## 48 1.495219e-08 3.777814e-08 2.961584e-07 2.912038e-07 7.148292e-06
## 49 8.688866e-09 1.759197e-08 1.797350e-07 1.371826e-07 4.236220e-06
##               6            7            8            9           10
## 1  1.055600e-02 4.032633e-03 3.284448e-02 8.750843e-04 8.865501e-05
## 2  7.923854e-04 4.940543e-02 1.035254e-01 1.873248e-04 7.289289e-06
## 3  6.888372e-02 4.800785e-03 1.021137e-01 9.136847e-03 5.876890e-04
## 4  1.490027e-03 5.303709e-02 3.768808e-01 5.643908e-04 1.676745e-05
## 5  5.802481e-02 3.862141e-03 1.033718e-01 5.473195e-02 1.285751e-03
## 6  0.000000e+00 3.308161e-04 9.555612e-03 3.821816e-01 9.147669e-02
## 7  1.700649e-04 0.000000e+00 1.986174e-01 1.776029e-04 3.235746e-06
## 8  1.451550e-03 5.868983e-02 0.000000e+00 1.162152e-03 2.466699e-05
## 9  1.344496e-01 1.215380e-04 2.691408e-03 0.000000e+00 5.888521e-02
## 10 4.756362e-02 3.272736e-06 8.443202e-05 8.703238e-02 0.000000e+00
## 11 1.042943e-03 5.424109e-03 5.383336e-02 2.854846e-03 4.465358e-05
## 12 4.080187e-04 7.599461e-03 4.538826e-02 1.134191e-03 1.750610e-05
## 13 1.744551e-04 2.684761e-02 6.260303e-02 3.919023e-04 6.149424e-06
## 14 9.281349e-05 1.622171e-02 2.434058e-02 2.806320e-04 4.243672e-06
## 15 3.206021e-03 1.021662e-03 1.107331e-02 2.512274e-02 3.842148e-04
## 16 2.617132e-04 1.921265e-03 7.377676e-03 1.804375e-03 2.825030e-05
## 17 3.507637e-03 4.781018e-07 1.078731e-05 1.541272e-02 3.619969e-01
## 18 6.730022e-05 3.725333e-03 5.922516e-03 3.836659e-04 5.927625e-06
## 19 6.457979e-05 7.671004e-03 1.027553e-02 2.744513e-04 4.126616e-06
## 20 1.129957e-03 1.119976e-06 1.763860e-05 1.790225e-02 3.235607e-02
## 21 1.374580e-05 2.238491e-03 1.139963e-03 1.315806e-04 2.547794e-06
## 22 5.423442e-03 2.614997e-05 3.839162e-04 1.579263e-01 1.050789e-02
## 23 5.193505e-04 1.177086e-07 2.336405e-06 3.354787e-03 5.068851e-02
## 24 5.679600e-05 1.184773e-03 1.916976e-03 5.668674e-04 1.047054e-05
## 25 4.725958e-04 3.171773e-04 1.835659e-03 6.844157e-03 1.400153e-04
## 26 1.678501e-03 1.113505e-04 1.086411e-03 3.583931e-02 9.330388e-04
## 27 5.847511e-04 4.299757e-06 4.957055e-05 1.637850e-02 2.979908e-03
## 28 1.835514e-04 2.017002e-05 1.311700e-04 4.852772e-03 2.609465e-04
## 29 7.297591e-05 4.393619e-05 1.832237e-04 1.579601e-03 5.700631e-05
## 30 3.395229e-05 9.403604e-05 2.407799e-04 6.053952e-04 1.762823e-05
## 31 3.644439e-08 1.433255e-04 1.387792e-05 2.123725e-07 3.547655e-09
## 32 4.417529e-05 2.546268e-08 3.991339e-07 4.615132e-04 3.426298e-03
## 33 1.565494e-04 1.719820e-06 1.677092e-05 4.363157e-03 1.066065e-03
## 34 1.161744e-07 1.019422e-04 1.951184e-05 1.027831e-06 2.026318e-08
## 35 5.206599e-05 1.212051e-06 9.336791e-06 1.491628e-03 3.384205e-04
## 36 6.126147e-09 1.777718e-05 1.892758e-06 4.257911e-08 7.641170e-10
## 37 1.255429e-05 3.374233e-05 7.335487e-05 2.603335e-04 1.010295e-05
## 38 2.076901e-05 4.759311e-06 2.100050e-05 5.696232e-04 4.475084e-05
## 39 3.179755e-10 1.368094e-06 1.158867e-07 2.162016e-09 3.916376e-11
## 40 2.191231e-05 4.997977e-08 5.693430e-07 3.808359e-04 9.320598e-04
## 41 4.673074e-06 3.919123e-09 5.388671e-08 5.403967e-05 3.635767e-04
## 42 1.279905e-08 1.205674e-05 2.071744e-06 1.236906e-07 2.624051e-09
## 43 5.960774e-06 1.636372e-06 6.214756e-06 1.673558e-04 1.668704e-05
## 44 9.983776e-06 5.648111e-07 3.156462e-06 2.899450e-04 6.497563e-05
## 45 1.815932e-06 2.307185e-06 5.033874e-06 4.737761e-05 3.688585e-06
## 46 4.421373e-10 1.095335e-06 1.173021e-07 3.604459e-09 7.105910e-11
## 47 1.277856e-06 2.659559e-09 2.839519e-08 1.958382e-05 7.710737e-05
## 48 1.660760e-06 5.258490e-07 1.731212e-06 4.751684e-05 6.125149e-06
## 49 1.479260e-06 2.007654e-07 7.914260e-07 4.317220e-05 9.706732e-06
##              11           12           13           14           15
## 1  4.124658e-03 3.068949e-03 2.893491e-03 1.261403e-03 1.050326e-03
## 2  7.331705e-03 7.604355e-03 1.193133e-02 5.406084e-03 9.994386e-04
## 3  2.807777e-02 1.758451e-02 1.155810e-02 5.329605e-03 1.021744e-02
## 4  2.775439e-02 2.736314e-02 3.650775e-02 1.600057e-02 3.817885e-03
## 5  1.934657e-01 9.698395e-02 3.847282e-02 2.215688e-02 1.340300e-01
## 6  1.503369e-02 7.276414e-03 2.733162e-03 1.627570e-03 2.712600e-02
## 7  4.019402e-02 6.967036e-02 2.162296e-01 1.462356e-01 4.443801e-03
## 8  1.178772e-01 1.229573e-01 1.489877e-01 6.483848e-02 1.423214e-02
## 9  1.447697e-02 7.115633e-03 2.159978e-03 1.731233e-03 7.477841e-02
## 10 3.346770e-04 1.623271e-04 5.009340e-05 3.869321e-05 1.690277e-03
## 11 0.000000e+00 3.686191e-01 1.155026e-01 8.225691e-02 8.220522e-02
## 12 2.979515e-01 0.000000e+00 1.861068e-01 1.392479e-01 3.963248e-02
## 13 1.062711e-01 2.118448e-01 0.000000e+00 3.098878e-01 1.369388e-02
## 14 6.761594e-02 1.416112e-01 2.768584e-01 0.000000e+00 1.224595e-02
## 15 1.400507e-01 8.353514e-02 2.535647e-02 2.538058e-02 0.000000e+00
## 16 8.816326e-02 1.014718e-01 4.776584e-02 7.337787e-02 9.355890e-02
## 17 6.031972e-05 3.046493e-05 9.098923e-06 7.971339e-06 4.054517e-04
## 18 3.951169e-02 6.622005e-02 6.115002e-02 1.299602e-01 2.013660e-02
## 19 4.620370e-02 8.890490e-02 1.143595e-01 2.569403e-01 1.389572e-02
## 20 1.597681e-04 8.975165e-05 2.716460e-05 2.901199e-05 1.412890e-03
## 21 6.317916e-03 1.062773e-02 1.296963e-02 2.980762e-02 5.500869e-03
## 22 3.726186e-03 2.095562e-03 6.324816e-04 6.566805e-04 3.289182e-02
## 23 1.624354e-05 8.564974e-06 2.549060e-06 2.462801e-06 1.276011e-04
## 24 1.781448e-02 2.470389e-02 1.841052e-02 3.859151e-02 2.326706e-02
## 25 2.638780e-02 2.171847e-02 8.252772e-03 1.179189e-02 1.434637e-01
## 26 1.399874e-02 9.074808e-03 2.924340e-03 3.492055e-03 1.290809e-01
## 27 5.720579e-04 3.533485e-04 1.121020e-04 1.339667e-04 5.386619e-03
## 28 1.857713e-03 1.412525e-03 5.235724e-04 7.629573e-04 1.454535e-02
## 29 2.598955e-03 2.350893e-03 1.032462e-03 1.723034e-03 1.407791e-02
## 30 3.058357e-03 3.315726e-03 1.817312e-03 3.451596e-03 1.034925e-02
## 31 2.637988e-05 5.306940e-05 1.155432e-04 2.264477e-04 1.077236e-05
## 32 3.623469e-06 2.062094e-06 6.289614e-07 6.967345e-07 3.255917e-05
## 33 2.096323e-04 1.375044e-04 4.559812e-05 5.902715e-05 1.951378e-03
## 34 6.697546e-05 1.239760e-04 2.049122e-04 4.492121e-04 4.448076e-05
## 35 1.261658e-04 8.966144e-05 3.183648e-05 4.518305e-05 1.110624e-03
## 36 4.216798e-06 8.305643e-06 1.683949e-05 3.419328e-05 2.046403e-06
## 37 9.166696e-04 1.011451e-03 5.861795e-04 1.157558e-03 3.262898e-03
## 38 3.015430e-04 2.601013e-04 1.114849e-04 1.864174e-04 1.964429e-03
## 39 2.242347e-07 4.468938e-07 9.542915e-07 1.884276e-06 1.039788e-07
## 40 6.485288e-06 4.071091e-06 1.318876e-06 1.672541e-06 6.108321e-05
## 41 5.428357e-07 3.226538e-07 1.009121e-07 1.199501e-07 5.042766e-06
## 42 7.089960e-06 1.305625e-05 2.157544e-05 4.720394e-05 5.038101e-06
## 43 8.864622e-05 7.954805e-05 3.606254e-05 6.310685e-05 5.475105e-04
## 44 4.494298e-05 3.539454e-05 1.396243e-05 2.211729e-05 3.521830e-04
## 45 6.572554e-05 6.923241e-05 3.898592e-05 7.709108e-05 2.911191e-04
## 46 2.867632e-07 5.551747e-07 1.074866e-06 2.223272e-06 1.608789e-07
## 47 3.321133e-07 2.132461e-07 7.053661e-08 9.314202e-08 3.123160e-06
## 48 2.445739e-05 2.269003e-05 1.083085e-05 1.969528e-05 1.447880e-04
## 49 1.136298e-05 9.902528e-06 4.412779e-06 7.717360e-06 7.688470e-05
##              16           17           18           19           20
## 1  4.417694e-04 1.148762e-05 2.878286e-04 5.251754e-04 5.131260e-06
## 2  9.374102e-04 1.206352e-06 9.917114e-04 2.110648e-03 1.116218e-06
## 3  3.185582e-03 8.689609e-05 1.588384e-03 2.501413e-03 5.158946e-05
## 4  3.389916e-03 3.148789e-06 3.141800e-03 6.344146e-03 3.635606e-06
## 5  3.033407e-02 2.840771e-04 1.099306e-02 1.357824e-02 3.481432e-04
## 6  3.548205e-03 1.214092e-02 1.020395e-03 1.094854e-03 3.937300e-03
## 7  1.339054e-02 8.507174e-07 2.903653e-02 6.685589e-02 2.006195e-06
## 8  1.519413e-02 5.671834e-06 1.364054e-02 2.646289e-02 9.336285e-06
## 9  8.605964e-03 1.876749e-02 2.046421e-03 1.636872e-03 2.194493e-02
## 10 1.991455e-04 6.514879e-01 4.673013e-05 3.637626e-05 5.862149e-02
## 11 8.292119e-02 1.448409e-05 4.155969e-02 5.434145e-02 3.862083e-05
## 12 7.714203e-02 5.912892e-06 5.629943e-02 8.451775e-02 1.753645e-05
## 13 4.133507e-02 2.010228e-06 5.917888e-02 1.237514e-01 6.041687e-06
## 14 5.673089e-02 1.573403e-06 1.123657e-01 2.484068e-01 5.764820e-06
## 15 1.499163e-01 1.658658e-04 3.608433e-02 2.784335e-02 5.818696e-04
## 16 0.000000e+00 1.393491e-05 1.914109e-01 1.195783e-01 6.917465e-05
## 17 5.458209e-05 0.000000e+00 1.273761e-05 8.712157e-06 1.381211e-01
## 18 1.711582e-01 2.907858e-06 0.000000e+00 3.189076e-01 1.548551e-05
## 19 9.562598e-02 1.778702e-06 2.852050e-01 0.000000e+00 8.068820e-06
## 20 2.691493e-04 1.372020e-01 6.738150e-05 3.925843e-05 0.000000e+00
## 21 4.252902e-02 1.981070e-06 1.169640e-01 7.134140e-02 2.005514e-05
## 22 5.584010e-03 9.189108e-03 1.334407e-03 8.345109e-04 4.573385e-02
## 23 2.021191e-05 4.507035e-01 4.861407e-06 3.022287e-06 1.848975e-01
## 24 1.551717e-01 7.150879e-06 2.185793e-01 9.633854e-02 5.727225e-05
## 25 1.317953e-01 9.604067e-05 3.798338e-02 1.999329e-02 6.556415e-04
## 26 3.448456e-02 6.890035e-04 8.609057e-03 5.015575e-03 4.306131e-03
## 27 1.380659e-03 5.469464e-03 3.683096e-04 2.012009e-04 7.669964e-02
## 28 8.553813e-03 3.457272e-04 2.868948e-03 1.389576e-03 4.569657e-03
## 29 1.772948e-02 6.506322e-05 7.909036e-03 3.572088e-03 8.121351e-04
## 30 2.686536e-02 1.838318e-05 1.857571e-02 8.056045e-03 2.233902e-04
## 31 9.474694e-05 2.353594e-09 3.773947e-04 3.708796e-04 2.224069e-08
## 32 6.862426e-06 3.010388e-02 1.800822e-06 9.970436e-07 7.206837e-02
## 33 6.460220e-04 2.681879e-03 1.897775e-04 9.705394e-05 5.459012e-02
## 34 3.648298e-04 1.718035e-08 1.205121e-03 9.162265e-04 2.036923e-07
## 35 5.068981e-04 9.561016e-04 1.703808e-04 8.187105e-05 2.146502e-02
## 36 1.774903e-05 5.814562e-10 6.670367e-05 6.006628e-05 6.403102e-09
## 37 8.155490e-03 1.356508e-05 6.457755e-03 2.804667e-03 2.118332e-04
## 38 1.917976e-03 8.456497e-05 8.827658e-04 3.934017e-04 1.609161e-03
## 39 9.036695e-07 3.095529e-11 3.433025e-06 3.182262e-06 3.632293e-10
## 40 1.826156e-05 6.879973e-03 5.451281e-06 2.752599e-06 6.207316e-02
## 41 1.262219e-06 3.221424e-03 3.553412e-07 1.858542e-07 9.389169e-03
## 42 4.023362e-05 2.486121e-09 1.287258e-04 9.640191e-05 3.323745e-08
## 43 6.106046e-04 3.809827e-05 3.183021e-04 1.394158e-04 8.172382e-04
## 44 2.391633e-04 2.110815e-04 9.911275e-05 4.481679e-05 4.925159e-03
## 45 5.614701e-04 8.117461e-06 4.318562e-04 1.879701e-04 1.751999e-04
## 46 1.356474e-06 6.323590e-11 4.813547e-06 4.074288e-06 8.224565e-10
## 47 1.035518e-06 6.594725e-04 3.297461e-07 1.609887e-07 3.413398e-03
## 48 1.785843e-04 1.695621e-05 1.038979e-04 4.511660e-05 3.899159e-04
## 49 7.501468e-05 3.530084e-05 3.929349e-05 1.716084e-05 8.150323e-04
##              21           22           23           24           25
## 1  5.526632e-06 9.950820e-05 1.533725e-06 5.310502e-05 1.409771e-04
## 2  2.758523e-05 3.514744e-05 1.892093e-07 1.543864e-04 1.752719e-04
## 3  2.738716e-05 1.105724e-03 1.243567e-05 3.513902e-04 1.329597e-03
## 4  7.194862e-05 1.228437e-04 5.331314e-07 5.083823e-04 6.678463e-04
## 5  1.998581e-04 1.065181e-02 5.098290e-05 3.289170e-03 1.733543e-02
## 6  2.248219e-05 3.271307e-02 1.602617e-03 4.405267e-04 4.755183e-03
## 7  1.882140e-03 8.108591e-05 1.867262e-07 4.724083e-03 1.640618e-03
## 8  2.832257e-04 3.517679e-04 1.095193e-06 2.258628e-03 2.805711e-03
## 9  7.570951e-05 3.351125e-01 3.641866e-03 1.546770e-03 2.422631e-02
## 10 2.166693e-06 3.295537e-02 8.132856e-02 4.222679e-05 7.325166e-04
## 11 7.168650e-04 1.559214e-03 3.477320e-06 9.585673e-03 1.841940e-02
## 12 9.747018e-04 7.087770e-04 1.482033e-06 1.074441e-02 1.225376e-02
## 13 1.353988e-03 2.435076e-04 5.020737e-07 9.114626e-03 5.300241e-03
## 14 2.780145e-03 2.258770e-04 4.333812e-07 1.706938e-02 6.766005e-03
## 15 1.063361e-03 2.344849e-02 4.653763e-05 2.132930e-02 1.706083e-01
## 16 5.130634e-03 2.484332e-03 4.600377e-06 8.877363e-02 9.781249e-02
## 17 9.361197e-07 1.601337e-02 4.018121e-01 1.602422e-05 2.791872e-04
## 18 1.261737e-02 5.308636e-04 9.894170e-07 1.118180e-01 2.520689e-02
## 19 6.882571e-03 2.969059e-04 5.501045e-07 4.407527e-02 1.186594e-02
## 20 9.413643e-06 7.916761e-02 1.637433e-01 1.274859e-04 1.893247e-03
## 21 0.000000e+00 3.880706e-04 1.047749e-06 3.319727e-01 2.015054e-02
## 22 1.052284e-04 0.000000e+00 3.423861e-03 1.851311e-03 3.218168e-02
## 23 5.553370e-07 6.692577e-03 0.000000e+00 7.996938e-06 1.275525e-04
## 24 7.000298e-02 1.439698e-03 3.181547e-06 0.000000e+00 8.151791e-02
## 25 3.275502e-03 1.929202e-02 3.911837e-05 6.283912e-02 0.000000e+00
## 26 6.955972e-04 1.384886e-01 2.723637e-04 1.272322e-02 2.224126e-01
## 27 6.048005e-05 1.807743e-01 3.979998e-03 7.948327e-04 1.073574e-02
## 28 8.080140e-04 4.238659e-02 2.346306e-04 8.799832e-03 7.036725e-02
## 29 3.567042e-03 1.000969e-02 4.174561e-05 3.231534e-02 1.043007e-01
## 30 1.769961e-02 3.088677e-03 1.147975e-05 1.054764e-01 7.649006e-02
## 31 7.557909e-03 4.724054e-07 1.166911e-09 4.695359e-04 2.661890e-05
## 32 3.963936e-07 1.799046e-03 2.258245e-01 4.170371e-06 5.245898e-05
## 33 5.041302e-05 4.874688e-02 2.947089e-03 5.191622e-04 5.381316e-03
## 34 5.329586e-02 3.228501e-06 1.042707e-08 2.602211e-03 1.588146e-04
## 35 7.771498e-05 1.732546e-02 1.338414e-03 5.895887e-04 4.228117e-03
## 36 1.994257e-03 1.134145e-07 3.290522e-10 1.049029e-04 6.031864e-06
## 37 1.774141e-02 1.732817e-03 1.095221e-05 4.097552e-02 2.494455e-02
## 38 8.345843e-04 5.707914e-03 8.772911e-05 4.186063e-03 1.266623e-02
## 39 1.039321e-04 5.942946e-09 1.858213e-11 5.358387e-06 3.100168e-07
## 40 2.211322e-06 2.605771e-03 3.649820e-02 1.674867e-05 1.523622e-04
## 41 1.212712e-07 2.585760e-04 2.514840e-02 9.935384e-07 1.026330e-05
## 42 6.238488e-03 4.389151e-07 1.702778e-09 3.047685e-04 1.973740e-05
## 43 5.305147e-04 1.773980e-03 4.993979e-05 1.708669e-03 3.680162e-03
## 44 1.013079e-04 3.397033e-03 3.885386e-04 4.497977e-04 1.807658e-03
## 45 2.405462e-03 4.538571e-04 1.107301e-05 2.783089e-03 2.226660e-03
## 46 1.864758e-04 1.152406e-08 4.210252e-11 9.147332e-06 5.548669e-07
## 47 2.031933e-07 1.284513e-04 4.801428e-03 1.161179e-06 8.713801e-06
## 48 2.941937e-04 5.251659e-04 2.850884e-05 6.067930e-04 9.974754e-04
## 49 9.691361e-05 5.044335e-04 8.093528e-05 2.188429e-04 4.774021e-04
##              26           27           28           29           30
## 1  1.450399e-04 1.444340e-05 1.557317e-05 1.474825e-05 1.128105e-05
## 2  1.012783e-04 5.815467e-06 1.297821e-05 1.892874e-05 2.118481e-05
## 3  1.570804e-03 1.611330e-04 1.669922e-04 1.432931e-04 9.633451e-05
## 4  3.836345e-04 2.106443e-05 4.971662e-05 7.154655e-05 7.636321e-05
## 5  2.062409e-02 1.659974e-03 2.216240e-03 1.911969e-03 1.188712e-03
## 6  1.407697e-02 5.194301e-03 1.807903e-03 8.077656e-04 3.176658e-04
## 7  4.800737e-04 1.963487e-05 1.021296e-04 2.500093e-04 4.522969e-04
## 8  1.384061e-03 6.688877e-05 1.962570e-04 3.080781e-04 3.422119e-04
## 9  1.057395e-01 5.118235e-02 1.681501e-02 6.150963e-03 1.992646e-03
## 10 4.068664e-03 1.376333e-02 1.336390e-03 3.280902e-04 8.575799e-05
## 11 8.144636e-03 3.525258e-04 1.269378e-03 1.995719e-03 1.985109e-03
## 12 4.267641e-03 1.760038e-04 7.801465e-04 1.459155e-03 1.739573e-03
## 13 1.565431e-03 6.356055e-05 3.291641e-04 7.294546e-04 1.085298e-03
## 14 1.670092e-03 6.786166e-05 4.285378e-04 1.087605e-03 1.841590e-03
## 15 1.279470e-01 5.655266e-03 1.693254e-02 1.841725e-02 1.144434e-02
## 16 2.133190e-02 9.046062e-04 6.214327e-03 1.447501e-02 1.854006e-02
## 17 1.669445e-03 1.403666e-02 9.838160e-04 2.080676e-04 4.969183e-05
## 18 4.762023e-03 2.157830e-04 1.863752e-03 5.774011e-03 1.146291e-02
## 19 2.481126e-03 1.054208e-04 8.073098e-04 2.332214e-03 4.445941e-03
## 20 1.036426e-02 1.955297e-01 1.291708e-02 2.579868e-03 5.998310e-04
## 21 3.566785e-03 3.284729e-04 4.865950e-03 2.414045e-02 1.012503e-01
## 22 1.925553e-01 2.662235e-01 6.921488e-02 1.836878e-02 4.791014e-03
## 23 7.402319e-04 1.145697e-02 7.489154e-04 1.497433e-04 3.480683e-05
## 24 1.375720e-02 9.102849e-04 1.117473e-02 4.611689e-02 1.272338e-01
## 25 1.853829e-01 9.477871e-03 6.888275e-02 1.147403e-01 7.112609e-02
## 26 0.000000e+00 5.379667e-02 1.406548e-01 7.543859e-02 2.483765e-02
## 27 5.079103e-02 0.000000e+00 8.163262e-02 1.638298e-02 3.809448e-03
## 28 1.197636e-01 7.362113e-02 0.000000e+00 2.262457e-01 5.261835e-02
## 29 5.715779e-02 1.314750e-02 2.013223e-01 0.000000e+00 2.343734e-01
## 30 2.226367e-02 3.616736e-03 5.539279e-02 2.772763e-01 0.000000e+00
## 31 4.493483e-06 3.643292e-07 5.395605e-06 2.685069e-05 1.138272e-04
## 32 2.623106e-04 6.139436e-03 5.217820e-04 1.096342e-04 2.669765e-05
## 33 1.991871e-02 3.347043e-01 6.655738e-02 1.409673e-02 3.394981e-03
## 34 2.877253e-05 3.268178e-06 5.026148e-05 2.504508e-04 1.075351e-03
## 35 1.129118e-02 1.101730e-01 6.670688e-02 1.827511e-02 5.001858e-03
## 36 1.048077e-06 1.037941e-07 1.587686e-06 7.946430e-06 3.418502e-05
## 37 9.528133e-03 3.078216e-03 4.318188e-02 1.659310e-01 3.568974e-01
## 38 1.358354e-02 1.836779e-02 1.255448e-01 1.087442e-01 4.484352e-02
## 39 5.432849e-08 5.814164e-09 8.944226e-08 4.454388e-07 1.912506e-06
## 40 5.965866e-04 1.422114e-02 2.088132e-03 5.110513e-04 1.388461e-04
## 41 4.539996e-05 1.122765e-03 1.272932e-04 2.949517e-05 7.771462e-06
## 42 3.735767e-06 5.148122e-07 7.873094e-06 3.832975e-05 1.613069e-04
## 43 3.719715e-03 7.017520e-03 3.469856e-02 3.408180e-02 1.932383e-02
## 44 3.247260e-03 2.038157e-02 2.720270e-02 1.263173e-02 4.826144e-03
## 45 1.376137e-03 1.553412e-03 1.105266e-02 2.057231e-02 2.488449e-02
## 46 1.011819e-07 1.282196e-08 1.966755e-07 9.643293e-07 4.089935e-06
## 47 3.118188e-05 7.178022e-04 1.302334e-04 3.621975e-05 1.101926e-05
## 48 9.782752e-04 2.423215e-03 9.184128e-03 9.485900e-03 6.659123e-03
## 49 6.192508e-04 2.922342e-03 5.758941e-03 4.237927e-03 2.457652e-03
##              31           32           33           34           35
## 1  1.755066e-07 1.394834e-07 4.442084e-06 1.672881e-07 1.611353e-06
## 2  1.973188e-06 2.372999e-08 2.010653e-06 1.341914e-06 9.042751e-07
## 3  4.020465e-07 1.276859e-06 4.973949e-05 5.878091e-07 1.805983e-05
## 4  2.671272e-06 7.463256e-08 7.432226e-06 2.540336e-06 3.418474e-06
## 5  1.430031e-06 7.250268e-06 5.396669e-04 3.262430e-06 2.128996e-04
## 6  1.129515e-07 1.347371e-04 1.542298e-03 3.183444e-07 4.584264e-04
## 7  2.283561e-04 3.992454e-08 8.710192e-06 1.436046e-04 5.486106e-06
## 8  6.533696e-06 1.849268e-07 2.509846e-05 8.121914e-06 1.248782e-05
## 9  2.315525e-07 4.952015e-04 1.512194e-02 9.908282e-07 4.620255e-03
## 10 5.716985e-09 5.433723e-03 5.460908e-03 2.887080e-08 1.549304e-03
## 11 5.671904e-06 7.667034e-07 1.432748e-04 1.273202e-05 7.706409e-05
## 12 9.222913e-06 3.526785e-07 7.596195e-05 1.904965e-05 4.426739e-05
## 13 2.285725e-05 1.224476e-07 2.867359e-05 3.584040e-05 1.789200e-05
## 14 4.002217e-05 1.211844e-07 3.316196e-05 7.019557e-05 2.268624e-05
## 15 3.945961e-06 1.173713e-05 2.272159e-03 1.440587e-05 1.155748e-03
## 16 2.165925e-05 1.543841e-06 4.694411e-04 7.373846e-05 3.291950e-04
## 17 2.107443e-09 2.652732e-02 7.633415e-03 1.360134e-08 2.432106e-03
## 18 7.714455e-05 3.622654e-07 1.233132e-04 2.178038e-04 9.894286e-05
## 19 6.780076e-05 1.793752e-07 5.639887e-05 1.480915e-04 4.251932e-05
## 20 1.978212e-08 6.308352e-02 1.543456e-01 1.601860e-07 5.423881e-02
## 21 1.432169e-02 7.392068e-07 3.036623e-04 8.929179e-02 4.183614e-04
## 22 2.427335e-07 9.097120e-04 7.961910e-02 1.466700e-06 2.529030e-02
## 23 1.172006e-09 2.232081e-01 9.408945e-03 9.259333e-09 3.818886e-03
## 24 1.876185e-04 1.639941e-06 6.594249e-04 9.193368e-04 6.692836e-04
## 25 8.199244e-06 1.590195e-05 5.268996e-03 4.325135e-05 3.699858e-03
## 26 1.660568e-06 9.539731e-05 2.339862e-02 9.401067e-06 1.185406e-02
## 27 1.271157e-07 2.108047e-03 3.712120e-01 1.008176e-06 1.092030e-01
## 28 1.697790e-06 1.615770e-04 6.657262e-02 1.398314e-05 5.963055e-02
## 29 7.518149e-06 3.020981e-05 1.254670e-02 6.200167e-05 1.453683e-02
## 30 3.770560e-05 8.703213e-06 3.574808e-03 3.149456e-04 4.707014e-03
## 31 0.000000e+00 8.474070e-10 3.421171e-07 2.057667e-01 5.078934e-07
## 32 8.610837e-10 0.000000e+00 8.802732e-03 8.687203e-09 5.775201e-03
## 33 1.076265e-07 2.725264e-03 0.000000e+00 9.951012e-07 3.137545e-01
## 34 2.327285e-01 9.669436e-09 3.577645e-06 0.000000e+00 6.099997e-06
## 35 1.787798e-07 2.000597e-03 3.510680e-01 1.898457e-06 0.000000e+00
## 36 4.362930e-01 2.900295e-10 1.092371e-07 1.214481e-01 1.825086e-07
## 37 4.864363e-05 1.188430e-05 4.119299e-03 5.423555e-04 7.506057e-03
## 38 2.083221e-06 1.141394e-04 3.336207e-02 2.321817e-05 7.223168e-02
## 39 2.971679e-02 1.841996e-11 6.499053e-09 7.243598e-03 1.166558e-08
## 40 5.397366e-09 3.542070e-01 3.202342e-02 6.360049e-08 3.509525e-02
## 41 2.913818e-10 3.829269e-01 2.101637e-03 3.427497e-09 1.966256e-03
## 42 1.143322e-01 1.909946e-09 6.276881e-07 4.277763e-01 1.199768e-06
## 43 1.667708e-06 9.299525e-05 1.607266e-02 2.162938e-05 4.720094e-02
## 44 2.960322e-07 1.019798e-03 6.435117e-02 3.808916e-06 2.319066e-01
## 45 1.452474e-05 2.477442e-05 3.425708e-03 2.261698e-04 1.026252e-02
## 46 2.748908e-02 4.758431e-11 1.546949e-08 1.422673e-02 2.974997e-08
## 47 6.039511e-10 7.778626e-02 1.751520e-03 8.278463e-09 2.434875e-03
## 48 1.324219e-06 7.861522e-05 6.490789e-03 1.975578e-05 2.220696e-02
## 49 4.638209e-07 3.356214e-04 9.204050e-03 7.162956e-06 3.313444e-02
##              36           37           38           39           40
## 1  3.156916e-08 2.447453e-06 2.012526e-06 1.482797e-09 7.085550e-08
## 2  3.425933e-07 4.710655e-06 2.087126e-06 1.830487e-08 1.942494e-08
## 3  7.867404e-08 2.121441e-05 2.102047e-05 3.138607e-09 7.394779e-07
## 4  4.847247e-07 1.679561e-05 7.961074e-06 2.207457e-08 6.790875e-08
## 5  3.180655e-07 2.670235e-04 2.826608e-04 1.137101e-08 5.982417e-06
## 6  2.665127e-08 8.498607e-05 2.178580e-04 9.272942e-10 5.178504e-05
## 7  3.975770e-05 1.174245e-04 2.566432e-05 2.051010e-06 6.072093e-08
## 8  1.250832e-06 7.543240e-05 3.346268e-05 5.133707e-08 2.043919e-07
## 9  6.516537e-08 6.199768e-04 2.102013e-03 2.218058e-09 3.166241e-04
## 10 1.728442e-09 3.556053e-05 2.440751e-04 5.938445e-11 1.145314e-03
## 11 1.272648e-06 4.304902e-04 2.194330e-04 4.536508e-08 1.063262e-06
## 12 2.026126e-06 3.839399e-04 1.529900e-04 7.307872e-08 5.394979e-07
## 13 4.676035e-06 2.532821e-04 7.464352e-05 1.776329e-07 1.989476e-07
## 14 8.482870e-06 4.468582e-04 1.115105e-04 3.133574e-07 2.254055e-07
## 15 1.052210e-06 2.610596e-03 2.435425e-03 3.583846e-08 1.706156e-05
## 16 5.695371e-06 4.072139e-03 1.483946e-03 1.943796e-07 3.183253e-06
## 17 7.308200e-10 2.653023e-05 2.562779e-04 2.608085e-11 4.697490e-03
## 18 1.913940e-05 2.883270e-03 6.107331e-04 6.603118e-07 8.496949e-07
## 19 1.541351e-05 1.119895e-03 2.434078e-04 5.473944e-07 3.837069e-07
## 20 7.994369e-09 4.115408e-04 4.844183e-03 3.039963e-10 4.210013e-02
## 21 5.304481e-03 7.343025e-02 5.352533e-03 1.853127e-04 3.195211e-06
## 22 8.179990e-08 1.944742e-03 9.926334e-03 2.873289e-09 1.020954e-03
## 23 4.639018e-10 2.402638e-05 2.982170e-04 1.756104e-11 2.795236e-02
## 24 5.883877e-05 3.576231e-02 5.661207e-03 2.014668e-06 5.103194e-06
## 25 2.607982e-06 1.678239e-02 1.320467e-02 8.985282e-08 3.578624e-05
## 26 5.436709e-07 7.690873e-03 1.698960e-02 1.889139e-08 1.681133e-04
## 27 5.083317e-08 2.345841e-03 2.168995e-02 1.908777e-09 3.783508e-03
## 28 7.012576e-07 2.967835e-02 1.337023e-01 2.648191e-08 5.010221e-04
## 29 3.123177e-06 1.014792e-01 1.030523e-01 1.173562e-07 1.091126e-04
## 30 1.589516e-05 2.582246e-01 5.027546e-02 5.961085e-07 3.507104e-05
## 31 6.124173e-01 1.062479e-04 7.050693e-06 2.796177e-02 4.115635e-09
## 32 4.136801e-10 2.637674e-05 3.925414e-04 1.761184e-11 2.744514e-01
## 33 4.823738e-08 2.830493e-03 3.552172e-02 1.923788e-09 7.681873e-03
## 34 1.928121e-01 1.339840e-03 8.887899e-05 7.708884e-03 5.485168e-08
## 35 9.017752e-08 5.771011e-03 8.605378e-02 3.863800e-09 9.419959e-03
## 36 0.000000e+00 4.007800e-05 2.653444e-06 8.726512e-02 1.638132e-09
## 37 2.575615e-05 0.000000e+00 1.085757e-01 1.088919e-06 6.384375e-05
## 38 1.100481e-06 7.006970e-02 0.000000e+00 4.773738e-08 6.194829e-04
## 39 1.301809e-01 2.527709e-06 1.717088e-07 0.000000e+00 1.157435e-10
## 40 3.015526e-09 1.828764e-04 2.749609e-03 1.428250e-10 0.000000e+00
## 41 1.625744e-10 9.864387e-06 1.487344e-04 7.782105e-12 2.542604e-01
## 42 3.274435e-01 2.507951e-04 1.765330e-05 3.031290e-02 1.257218e-08
## 43 1.033344e-06 4.896161e-02 2.908530e-01 5.041590e-08 6.707427e-04
## 44 1.821172e-07 9.370353e-03 1.140780e-01 9.023954e-09 8.395834e-03
## 45 1.169830e-05 1.095944e-01 8.418972e-02 7.011594e-07 2.179329e-04
## 46 1.566550e-01 6.180469e-06 4.371878e-07 7.132032e-01 3.240400e-10
## 47 4.058281e-10 1.866312e-05 2.520438e-04 2.293101e-11 2.327970e-01
## 48 9.961416e-07 2.242401e-02 7.620773e-02 5.771973e-08 7.474381e-04
## 49 3.726969e-07 7.604798e-03 4.009403e-02 2.354482e-08 3.876527e-03
##              41           42           43           44           45
## 1  1.319016e-08 2.052576e-08 5.572182e-07 3.063626e-07 1.255792e-07
## 2  2.500496e-09 1.742850e-07 6.145133e-07 2.217005e-07 2.095034e-07
## 3  1.242370e-07 7.029679e-08 5.792625e-06 3.395104e-06 1.182009e-06
## 4  8.165864e-09 3.140435e-07 2.332675e-06 8.489743e-07 7.582383e-07
## 5  7.794291e-07 3.955107e-07 7.796473e-05 4.282703e-05 1.567433e-05
## 6  1.243613e-05 3.991277e-08 6.290212e-05 6.986976e-05 8.053835e-06
## 7  5.361662e-09 1.932824e-05 8.877130e-06 2.032009e-06 5.260337e-06
## 8  2.178400e-08 9.813949e-07 9.962312e-06 3.355586e-06 3.391400e-06
## 9  5.059239e-05 1.356941e-07 6.212886e-04 7.138385e-04 7.392073e-05
## 10 5.030870e-04 4.254721e-09 9.156011e-05 2.364337e-04 8.506042e-06
## 11 1.002180e-07 1.533815e-06 6.489597e-05 2.181982e-05 2.022238e-05
## 12 4.814842e-08 2.283050e-06 4.707116e-05 1.388971e-05 1.721771e-05
## 13 1.714132e-08 4.294496e-06 2.429055e-05 6.236971e-06 1.103645e-05
## 14 1.820349e-08 8.394293e-06 3.797613e-05 8.826688e-06 1.949750e-05
## 15 1.586106e-06 1.856872e-06 6.828664e-04 2.913020e-04 1.526001e-04
## 16 2.477617e-07 9.254233e-06 4.752693e-04 1.234542e-04 1.836737e-04
## 17 2.476814e-03 2.239853e-09 1.161531e-04 4.267834e-04 1.040127e-05
## 18 6.237008e-08 2.647573e-05 2.215391e-04 4.574800e-05 1.263254e-04
## 19 2.917396e-08 1.773211e-05 8.677909e-05 1.850016e-05 4.917364e-05
## 20 7.170891e-03 2.974578e-08 2.474997e-03 9.891861e-03 2.229978e-04
## 21 1.973202e-07 1.189447e-02 3.422878e-03 4.334800e-04 6.522785e-03
## 22 1.140839e-04 2.269178e-07 3.103595e-03 3.941376e-03 3.337153e-04
## 23 2.168822e-02 1.720771e-09 1.707813e-04 8.811695e-04 1.591475e-05
## 24 3.408888e-07 1.225321e-04 2.324696e-03 4.058421e-04 1.591387e-03
## 25 2.714515e-06 6.117118e-06 3.859687e-03 1.257283e-03 9.814760e-04
## 26 1.440623e-05 1.389077e-06 4.680418e-03 2.709716e-03 7.277415e-04
## 27 3.363686e-04 1.807287e-07 8.336624e-03 1.605743e-02 7.755928e-04
## 28 3.439304e-05 2.492656e-06 3.717549e-02 1.932809e-02 4.976828e-03
## 29 7.091329e-06 1.079853e-05 3.249221e-02 7.986404e-03 8.242907e-03
## 30 2.210467e-06 5.376328e-05 2.179488e-02 3.609884e-03 1.179589e-02
## 31 2.501980e-10 1.150381e-01 5.678341e-06 6.684550e-07 2.078501e-05
## 32 3.341108e-01 1.952753e-09 3.217477e-04 2.339919e-03 3.602457e-05
## 33 5.677060e-04 1.986833e-07 1.721605e-02 4.571240e-02 1.542186e-03
## 34 3.328687e-09 4.868154e-01 8.329519e-05 9.727675e-06 3.660591e-04
## 35 5.943018e-04 4.249288e-07 5.657152e-02 1.843283e-01 5.169422e-03
## 36 9.944992e-11 2.347147e-01 2.506555e-06 2.929645e-07 1.192602e-05
## 37 3.877905e-06 1.155308e-04 7.632429e-02 9.687123e-03 7.180190e-02
## 38 3.773430e-05 5.248105e-06 2.926028e-01 7.610948e-02 3.559628e-02
## 39 7.101592e-12 3.241439e-02 1.824342e-07 2.165546e-08 1.066341e-06
## 40 2.863157e-01 1.658932e-08 2.995038e-03 2.486234e-02 4.089874e-04
## 41 0.000000e+00 9.079371e-10 1.631058e-04 1.372183e-03 2.382378e-05
## 42 7.748258e-10 0.000000e+00 1.981306e-05 2.367556e-06 1.173030e-04
## 43 4.113289e-05 5.854950e-06 0.000000e+00 1.234987e-01 9.470833e-02
## 44 5.217953e-04 1.054970e-06 1.862219e-01 0.000000e+00 2.455228e-02
## 45 1.429519e-05 8.247838e-05 2.253448e-01 3.874208e-02 0.000000e+00
## 46 2.015155e-11 8.819749e-02 5.072715e-07 6.144940e-08 3.292601e-06
## 47 6.683695e-01 2.699736e-09 3.804817e-04 3.170507e-03 8.229766e-05
## 48 5.029246e-05 6.802440e-06 2.769827e-01 1.161688e-01 2.059877e-01
## 49 3.060935e-04 2.735781e-06 1.292336e-01 2.278421e-01 7.969836e-02
##              46           47           48           49
## 1  1.450087e-09 1.980208e-09 1.134345e-07 3.524880e-08
## 2  1.590801e-08 5.108544e-10 1.318308e-07 3.282703e-08
## 3  3.714818e-09 2.021054e-08 1.176183e-06 3.817019e-07
## 4  2.227526e-08 1.786553e-09 4.975112e-07 1.253273e-07
## 5  1.629873e-08 1.576812e-07 1.583531e-05 5.018151e-06
## 6  1.446868e-09 1.610743e-06 1.358500e-05 6.470503e-06
## 7  1.842666e-06 1.723383e-09 2.211269e-06 4.514506e-07
## 8  5.831106e-08 5.437038e-09 2.151177e-06 5.258684e-07
## 9  4.149557e-09 8.684234e-06 1.367382e-04 6.643355e-05
## 10 1.209083e-10 5.053643e-05 2.605156e-05 2.207653e-05
## 11 6.510137e-08 2.904192e-08 1.387898e-05 3.448104e-06
## 12 1.018742e-07 1.507259e-08 1.040759e-05 2.428858e-06
## 13 2.245145e-07 5.675147e-09 5.655012e-06 1.232037e-06
## 14 4.148929e-07 6.695167e-09 9.187266e-06 1.925013e-06
## 15 6.222311e-08 4.652851e-07 1.399800e-04 3.974788e-05
## 16 3.274164e-07 9.627622e-08 1.077489e-04 2.420230e-05
## 17 5.978586e-11 2.401617e-04 4.007231e-05 4.461095e-05
## 18 1.038928e-06 2.741398e-08 5.605412e-05 1.133606e-05
## 19 7.864371e-07 1.196961e-08 2.176855e-05 4.427640e-06
## 20 7.724104e-10 1.234794e-03 9.153494e-04 1.023132e-03
## 21 3.731004e-04 1.565975e-07 1.471354e-03 2.591848e-04
## 22 6.252175e-09 2.684333e-05 7.122013e-04 3.658061e-04
## 23 4.464890e-11 1.961307e-03 7.557236e-05 1.147261e-04
## 24 3.859329e-06 1.887073e-07 6.399390e-04 1.234160e-04
## 25 1.804609e-07 1.091627e-06 8.109187e-04 2.075393e-04
## 26 3.948091e-08 4.686610e-06 9.541704e-04 3.229775e-04
## 27 4.723570e-09 1.018575e-04 2.231457e-03 1.439025e-03
## 28 6.534385e-08 1.666669e-05 7.627341e-03 2.557518e-03
## 29 2.850961e-07 4.124619e-06 7.010117e-03 1.674715e-03
## 30 1.430497e-06 1.484552e-06 5.821947e-03 1.148980e-03
## 31 2.902491e-02 2.456319e-10 3.495033e-06 6.546097e-07
## 32 5.105376e-11 3.214691e-02 2.108392e-04 4.813214e-04
## 33 5.138436e-09 2.241003e-04 5.389312e-03 4.086538e-03
## 34 1.698987e-02 3.808090e-09 5.897392e-05 1.143402e-05
## 35 1.105714e-08 3.485823e-04 2.063128e-02 1.646105e-02
## 36 1.178381e-01 1.175861e-10 1.873023e-06 3.747302e-07
## 37 2.987705e-06 3.475146e-06 2.709632e-02 4.913891e-03
## 38 1.363899e-07 3.028744e-05 5.942837e-02 1.671919e-02
## 39 8.003154e-01 9.911594e-12 1.619023e-07 3.531546e-08
## 40 4.486981e-10 1.241668e-01 2.587090e-03 7.174968e-03
## 41 2.477979e-11 3.165762e-01 1.545870e-04 5.031123e-04
## 42 9.255369e-02 1.091267e-09 1.784362e-05 3.837430e-06
## 43 1.573076e-07 4.544805e-05 2.147052e-01 5.356809e-02
## 44 2.873393e-08 5.710558e-04 1.357837e-01 1.424076e-01
## 45 2.429448e-06 2.338990e-05 3.799186e-01 7.860307e-02
## 46 0.000000e+00 3.098652e-11 4.972012e-07 1.137267e-07
## 47 8.044525e-11 0.000000e+00 5.412802e-04 2.372364e-03
## 48 1.989076e-07 8.340916e-05 0.000000e+00 2.403374e-01
## 49 8.508266e-08 6.836475e-04 4.494492e-01 0.000000e+00
W3 = mat2listw(W3,style='W')  
summary(W3)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 49 
## Number of nonzero links: 2352 
## Percentage nonzero weights: 97.95918 
## Average number of links: 48 
## Link number distribution:
## 
## 48 
## 49 
## 49 least connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 with 48 links
## 49 most connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 with 48 links
## 
## Weights style: W 
## Weights constants summary:
##    n   nn S0      S1       S2
## W 49 2401 49 21.3021 200.9931

matriks bobot Exponential distance dengan alpha=2

alpha2=2
W4<-exp((-alpha2)*D)
round(W4,4)
##         1      2      3      4      5      6      7      8      9     10     11
## 1  1.0000 0.0007 0.0022 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 2  0.0007 1.0000 0.0002 0.0163 0.0000 0.0000 0.0001 0.0005 0.0000 0.0000 0.0000
## 3  0.0022 0.0002 1.0000 0.0011 0.0017 0.0002 0.0000 0.0004 0.0000 0.0000 0.0000
## 4  0.0002 0.0163 0.0011 1.0000 0.0002 0.0000 0.0005 0.0261 0.0000 0.0000 0.0001
## 5  0.0000 0.0000 0.0017 0.0002 1.0000 0.0004 0.0000 0.0012 0.0003 0.0000 0.0041
## 6  0.0000 0.0000 0.0002 0.0000 0.0004 1.0000 0.0000 0.0000 0.0012 0.0001 0.0000
## 7  0.0000 0.0001 0.0000 0.0005 0.0000 0.0000 1.0000 0.0012 0.0000 0.0000 0.0000
## 8  0.0000 0.0005 0.0004 0.0261 0.0012 0.0000 0.0012 1.0000 0.0000 0.0000 0.0048
## 9  0.0000 0.0000 0.0000 0.0000 0.0003 0.0012 0.0000 0.0000 1.0000 0.0002 0.0000
## 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0002 1.0000 0.0000
## 11 0.0000 0.0000 0.0000 0.0001 0.0041 0.0000 0.0000 0.0048 0.0000 0.0000 1.0000
## 12 0.0000 0.0000 0.0000 0.0001 0.0010 0.0000 0.0001 0.0053 0.0000 0.0000 0.2267
## 13 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000 0.0014 0.0077 0.0000 0.0000 0.0223
## 14 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0006 0.0015 0.0000 0.0000 0.0113
## 15 0.0000 0.0000 0.0000 0.0000 0.0020 0.0000 0.0000 0.0001 0.0004 0.0000 0.0113
## 16 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0115
## 17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0126 0.0000
## 18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0029
## 19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0000 0.0049
## 20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## 21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0073 0.0000 0.0000
## 23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
## 24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
## 25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006
## 26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000 0.0001
## 27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000
## 28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 44 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 46 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 47 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 48 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
##        12     13     14     15     16     17     18     19     20     21     22
## 1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 2  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 3  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 4  0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 5  0.0010 0.0002 0.0001 0.0020 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 7  0.0001 0.0014 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
## 8  0.0053 0.0077 0.0015 0.0001 0.0001 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000
## 9  0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0073
## 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0126 0.0000 0.0000 0.0001 0.0000 0.0000
## 11 0.2267 0.0223 0.0113 0.0113 0.0115 0.0000 0.0029 0.0049 0.0000 0.0000 0.0000
## 12 1.0000 0.0884 0.0495 0.0040 0.0152 0.0000 0.0081 0.0182 0.0000 0.0000 0.0000
## 13 0.0884 1.0000 0.1892 0.0004 0.0034 0.0000 0.0069 0.0302 0.0000 0.0000 0.0000
## 14 0.0495 0.1892 1.0000 0.0004 0.0079 0.0000 0.0312 0.1523 0.0000 0.0000 0.0000
## 15 0.0040 0.0004 0.0004 1.0000 0.0129 0.0000 0.0007 0.0004 0.0000 0.0000 0.0003
## 16 0.0152 0.0034 0.0079 0.0129 1.0000 0.0000 0.0541 0.0211 0.0000 0.0000 0.0000
## 17 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0018 0.0000 0.0000
## 18 0.0081 0.0069 0.0312 0.0007 0.0541 0.0000 1.0000 0.1877 0.0000 0.0003 0.0000
## 19 0.0182 0.0302 0.1523 0.0004 0.0211 0.0000 0.1877 1.0000 0.0000 0.0001 0.0000
## 20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0018 0.0000 0.0000 1.0000 0.0000 0.0006
## 21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 1.0000 0.0000
## 22 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 1.0000
## 23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0155 0.0000 0.0000 0.0026 0.0000 0.0000
## 24 0.0003 0.0002 0.0007 0.0003 0.0116 0.0000 0.0231 0.0045 0.0000 0.0024 0.0000
## 25 0.0004 0.0001 0.0001 0.0167 0.0141 0.0000 0.0012 0.0003 0.0000 0.0000 0.0003
## 26 0.0000 0.0000 0.0000 0.0094 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0108
## 27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0037 0.0000 0.0207
## 28 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014
## 29 0.0000 0.0000 0.0000 0.0002 0.0003 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001
## 30 0.0000 0.0000 0.0000 0.0001 0.0005 0.0000 0.0002 0.0000 0.0000 0.0002 0.0000
## 31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0004 0.0000 0.0000
## 33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0023 0.0000 0.0019
## 34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
## 35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0002
## 36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## 38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000
## 41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 44 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 46 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 47 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 48 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
##        23     24     25     26     27     28     29     30     31     32     33
## 1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 2  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 3  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 4  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 5  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 7  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 8  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 9  0.0000 0.0000 0.0000 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 10 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 11 0.0000 0.0002 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 12 0.0000 0.0003 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 13 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 14 0.0000 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 15 0.0000 0.0003 0.0167 0.0094 0.0000 0.0002 0.0002 0.0001 0.0000 0.0000 0.0000
## 16 0.0000 0.0116 0.0141 0.0007 0.0000 0.0001 0.0003 0.0005 0.0000 0.0000 0.0000
## 17 0.0155 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## 18 0.0000 0.0231 0.0012 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000
## 19 0.0000 0.0045 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 20 0.0026 0.0000 0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 0.0000 0.0004 0.0023
## 21 0.0000 0.0024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000
## 22 0.0000 0.0000 0.0003 0.0108 0.0207 0.0014 0.0001 0.0000 0.0000 0.0000 0.0019
## 23 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0038 0.0000
## 24 0.0000 1.0000 0.0032 0.0001 0.0000 0.0001 0.0010 0.0078 0.0000 0.0000 0.0000
## 25 0.0000 0.0032 1.0000 0.0279 0.0001 0.0039 0.0107 0.0041 0.0000 0.0000 0.0000
## 26 0.0000 0.0001 0.0279 1.0000 0.0016 0.0112 0.0032 0.0003 0.0000 0.0000 0.0003
## 27 0.0000 0.0000 0.0001 0.0016 1.0000 0.0042 0.0002 0.0000 0.0000 0.0000 0.0873
## 28 0.0000 0.0001 0.0039 0.0112 0.0042 1.0000 0.0399 0.0022 0.0000 0.0000 0.0035
## 29 0.0000 0.0010 0.0107 0.0032 0.0002 0.0399 1.0000 0.0540 0.0000 0.0000 0.0002
## 30 0.0000 0.0078 0.0041 0.0003 0.0000 0.0022 0.0540 1.0000 0.0000 0.0000 0.0000
## 31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
## 32 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
## 33 0.0000 0.0000 0.0000 0.0003 0.0873 0.0035 0.0002 0.0000 0.0000 0.0000 1.0000
## 34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0033 0.0000 0.0000
## 35 0.0000 0.0000 0.0000 0.0001 0.0076 0.0028 0.0002 0.0000 0.0000 0.0000 0.0767
## 36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0289 0.0000 0.0000
## 37 0.0000 0.0006 0.0002 0.0000 0.0000 0.0007 0.0101 0.0469 0.0000 0.0000 0.0000
## 38 0.0000 0.0000 0.0001 0.0002 0.0003 0.0139 0.0104 0.0018 0.0000 0.0000 0.0010
## 39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000
## 40 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0056 0.0000
## 41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0083 0.0000
## 42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000
## 43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0010 0.0003 0.0000 0.0000 0.0002
## 44 0.0000 0.0000 0.0000 0.0000 0.0002 0.0003 0.0001 0.0000 0.0000 0.0000 0.0016
## 45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000
## 46 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000
## 47 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## 48 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
##        34     35     36     37     38     39     40     41     42     43     44
## 1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 2  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 3  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 4  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 5  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 7  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 8  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 9  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 20 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
## 21 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 22 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
## 24 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 25 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 26 0.0000 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 27 0.0000 0.0076 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
## 28 0.0000 0.0028 0.0000 0.0007 0.0139 0.0000 0.0000 0.0000 0.0000 0.0011 0.0003
## 29 0.0000 0.0002 0.0000 0.0101 0.0104 0.0000 0.0000 0.0000 0.0000 0.0010 0.0001
## 30 0.0000 0.0000 0.0000 0.0469 0.0018 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000
## 31 0.0033 0.0000 0.0289 0.0000 0.0000 0.0001 0.0000 0.0000 0.0010 0.0000 0.0000
## 32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0056 0.0083 0.0000 0.0000 0.0000
## 33 0.0000 0.0767 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0002 0.0016
## 34 1.0000 0.0000 0.0022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0143 0.0000 0.0000
## 35 0.0000 1.0000 0.0000 0.0000 0.0046 0.0000 0.0001 0.0000 0.0000 0.0020 0.0211
## 36 0.0022 0.0000 1.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0084 0.0000 0.0000
## 37 0.0000 0.0000 0.0000 1.0000 0.0043 0.0000 0.0000 0.0000 0.0000 0.0021 0.0000
## 38 0.0000 0.0046 0.0000 0.0043 1.0000 0.0000 0.0000 0.0000 0.0000 0.0756 0.0051
## 39 0.0000 0.0000 0.0012 0.0000 0.0000 1.0000 0.0000 0.0000 0.0001 0.0000 0.0000
## 40 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 1.0000 0.0037 0.0000 0.0000 0.0000
## 41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0037 1.0000 0.0000 0.0000 0.0000
## 42 0.0143 0.0000 0.0084 0.0000 0.0000 0.0001 0.0000 0.0000 1.0000 0.0000 0.0000
## 43 0.0000 0.0020 0.0000 0.0021 0.0756 0.0000 0.0000 0.0000 0.0000 1.0000 0.0136
## 44 0.0000 0.0211 0.0000 0.0000 0.0051 0.0000 0.0000 0.0000 0.0000 0.0136 1.0000
## 45 0.0000 0.0000 0.0000 0.0019 0.0011 0.0000 0.0000 0.0000 0.0000 0.0080 0.0002
## 46 0.0000 0.0000 0.0021 0.0000 0.0000 0.0437 0.0000 0.0000 0.0007 0.0000 0.0000
## 47 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0057 0.0000 0.0000 0.0000
## 48 0.0000 0.0003 0.0000 0.0003 0.0031 0.0000 0.0000 0.0000 0.0000 0.0412 0.0072
## 49 0.0000 0.0002 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0026 0.0080
##        45     46     47     48     49
## 1  0.0000 0.0000 0.0000 0.0000 0.0000
## 2  0.0000 0.0000 0.0000 0.0000 0.0000
## 3  0.0000 0.0000 0.0000 0.0000 0.0000
## 4  0.0000 0.0000 0.0000 0.0000 0.0000
## 5  0.0000 0.0000 0.0000 0.0000 0.0000
## 6  0.0000 0.0000 0.0000 0.0000 0.0000
## 7  0.0000 0.0000 0.0000 0.0000 0.0000
## 8  0.0000 0.0000 0.0000 0.0000 0.0000
## 9  0.0000 0.0000 0.0000 0.0000 0.0000
## 10 0.0000 0.0000 0.0000 0.0000 0.0000
## 11 0.0000 0.0000 0.0000 0.0000 0.0000
## 12 0.0000 0.0000 0.0000 0.0000 0.0000
## 13 0.0000 0.0000 0.0000 0.0000 0.0000
## 14 0.0000 0.0000 0.0000 0.0000 0.0000
## 15 0.0000 0.0000 0.0000 0.0000 0.0000
## 16 0.0000 0.0000 0.0000 0.0000 0.0000
## 17 0.0000 0.0000 0.0000 0.0000 0.0000
## 18 0.0000 0.0000 0.0000 0.0000 0.0000
## 19 0.0000 0.0000 0.0000 0.0000 0.0000
## 20 0.0000 0.0000 0.0000 0.0000 0.0000
## 21 0.0000 0.0000 0.0000 0.0000 0.0000
## 22 0.0000 0.0000 0.0000 0.0000 0.0000
## 23 0.0000 0.0000 0.0000 0.0000 0.0000
## 24 0.0000 0.0000 0.0000 0.0000 0.0000
## 25 0.0000 0.0000 0.0000 0.0000 0.0000
## 26 0.0000 0.0000 0.0000 0.0000 0.0000
## 27 0.0000 0.0000 0.0000 0.0000 0.0000
## 28 0.0000 0.0000 0.0000 0.0000 0.0000
## 29 0.0001 0.0000 0.0000 0.0000 0.0000
## 30 0.0001 0.0000 0.0000 0.0000 0.0000
## 31 0.0000 0.0001 0.0000 0.0000 0.0000
## 32 0.0000 0.0000 0.0001 0.0000 0.0000
## 33 0.0000 0.0000 0.0000 0.0000 0.0000
## 34 0.0000 0.0000 0.0000 0.0000 0.0000
## 35 0.0000 0.0000 0.0000 0.0003 0.0002
## 36 0.0000 0.0021 0.0000 0.0000 0.0000
## 37 0.0019 0.0000 0.0000 0.0003 0.0000
## 38 0.0011 0.0000 0.0000 0.0031 0.0002
## 39 0.0000 0.0437 0.0000 0.0000 0.0000
## 40 0.0000 0.0000 0.0007 0.0000 0.0000
## 41 0.0000 0.0000 0.0057 0.0000 0.0000
## 42 0.0000 0.0007 0.0000 0.0000 0.0000
## 43 0.0080 0.0000 0.0000 0.0412 0.0026
## 44 0.0002 0.0000 0.0000 0.0072 0.0080
## 45 1.0000 0.0000 0.0000 0.0228 0.0010
## 46 0.0000 1.0000 0.0000 0.0000 0.0000
## 47 0.0000 0.0000 1.0000 0.0000 0.0000
## 48 0.0228 0.0000 0.0000 1.0000 0.0310
## 49 0.0010 0.0000 0.0000 0.0310 1.0000
#dinormalisasi 
diag(W4)<-0
rtot<-rowSums(W4,na.rm=TRUE)
rtot
##           1           2           3           4           5           6 
## 0.003150253 0.017823292 0.005763766 0.045100893 0.011300088 0.001792430 
##           7           8           9          10          11          12 
## 0.004261037 0.049090821 0.010424809 0.013234614 0.300765245 0.417464829 
##          13          14          15          16          17          18 
## 0.350515673 0.444919714 0.059724386 0.153617820 0.030111304 0.316560932 
##          19          20          21          22          23          24 
## 0.420307425 0.012134291 0.003374524 0.043723238 0.022265122 0.055995129 
##          25          26          27          28          29          30 
## 0.084148018 0.066912227 0.126129961 0.085267602 0.131871874 0.118723352 
##          31          32          33          34          35          36 
## 0.033336811 0.018316285 0.175084301 0.019984866 0.116094481 0.042800517 
##          37          38          39          40          41          42 
## 0.067440873 0.121961269 0.045022278 0.010368792 0.017752766 0.024420349 
##          43          44          45          46          47          48 
## 0.147947913 0.057594408 0.035246053 0.046590528 0.006467291 0.106080820 
##          49 
## 0.042992874
W4<-W4/rtot #row-normalized
rowSums(W4,na.rm=TRUE)
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
## 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
W4 #matriks bobot Exponential distance dengan alpha=2
##               1            2            3            4            5
## 1  0.000000e+00 2.364338e-01 6.913111e-01 6.723026e-02 1.335326e-03
## 2  4.178948e-02 0.000000e+00 9.014821e-03 9.156778e-01 2.304649e-04
## 3  3.778441e-01 2.787653e-02 0.000000e+00 1.991356e-01 2.966573e-01
## 4  4.695968e-03 3.618641e-01 2.544896e-02 0.000000e+00 3.914693e-03
## 5  3.722638e-04 3.635055e-04 1.513142e-01 1.562432e-02 0.000000e+00
## 6  5.802112e-04 1.545214e-05 9.015709e-02 2.279529e-04 2.056114e-01
## 7  3.561983e-05 2.526923e-02 1.842122e-04 1.214908e-01 3.831801e-04
## 8  2.050947e-04 9.630569e-03 7.233973e-03 5.324844e-01 2.382681e-02
## 9  6.855853e-07 1.484842e-07 2.727305e-04 5.623295e-06 3.145399e-02
## 10 5.542748e-09 1.770994e-10 8.887772e-07 3.909505e-09 1.367302e-05
## 11 5.279322e-07 7.883886e-06 8.927019e-05 4.713405e-04 1.362204e-02
## 12 2.105665e-07 6.110306e-06 2.522607e-05 3.300738e-04 2.466277e-03
## 13 2.229291e-07 1.791548e-05 1.298000e-05 6.997804e-04 4.622347e-04
## 14 3.337767e-08 2.897624e-06 2.174290e-06 1.058981e-04 1.207807e-04
## 15 1.723958e-07 7.377660e-07 5.953081e-05 4.491516e-05 3.292414e-02
## 16 1.185713e-08 2.523340e-07 2.249806e-06 1.376687e-05 6.556649e-04
## 17 4.090348e-11 2.131946e-12 8.540434e-09 6.059776e-11 2.933627e-07
## 18 2.442534e-09 1.370476e-07 2.714331e-07 5.738505e-06 4.178709e-05
## 19 6.124512e-09 4.675443e-07 5.070057e-07 1.762294e-05 4.801558e-05
## 20 2.025179e-11 4.529408e-12 7.469931e-09 2.004649e-10 1.093361e-06
## 21 8.447698e-11 9.947154e-09 7.569904e-09 2.823134e-07 1.295665e-06
## 22 2.113661e-09 1.246331e-09 9.523360e-07 6.351741e-08 2.840510e-04
## 23 9.860520e-13 7.092801e-14 2.365497e-10 2.349322e-12 1.277868e-08
## 24 4.700573e-10 1.877699e-08 7.509969e-08 8.494340e-07 2.114874e-05
## 25 2.204362e-09 1.610418e-08 7.154927e-07 9.754572e-07 3.909194e-04
## 26 2.934267e-09 6.762160e-09 1.255878e-06 4.047891e-07 6.958351e-04
## 27 1.543656e-11 1.182793e-11 7.010674e-09 6.474110e-10 2.391366e-06
## 28 2.654603e-11 8.713713e-11 1.113826e-08 5.334802e-09 6.305386e-06
## 29 1.539425e-11 1.198531e-10 5.302824e-09 7.143717e-09 3.034392e-06
## 30 1.000444e-11 1.667520e-10 2.662176e-09 9.039226e-09 1.302805e-06
## 31 8.623679e-15 5.151943e-12 1.651344e-13 3.939229e-11 6.714734e-12
## 32 9.913734e-15 1.356175e-15 3.031501e-12 5.596524e-14 3.141469e-10
## 33 1.051856e-12 1.018556e-12 4.812431e-10 5.806170e-11 1.820818e-07
## 34 1.306950e-14 3.974719e-12 5.888171e-13 5.942653e-11 5.829658e-11
## 35 2.087370e-13 3.107046e-13 9.568075e-11 1.852474e-11 4.273661e-08
## 36 2.173236e-16 1.209670e-13 4.925189e-15 1.010277e-12 2.587296e-13
## 37 8.289634e-13 1.451435e-11 2.272729e-10 7.697812e-10 1.157278e-07
## 38 3.099495e-13 1.575554e-12 1.233877e-10 9.563580e-11 7.170859e-08
## 39 4.557909e-19 3.282946e-16 7.451703e-18 1.991849e-15 3.143640e-16
## 40 4.519067e-15 1.605274e-15 1.796103e-12 8.185070e-14 3.778219e-10
## 41 9.146695e-17 1.553618e-17 2.961045e-14 6.912535e-16 3.745840e-12
## 42 1.610188e-16 5.486887e-14 6.891729e-15 7.432361e-13 7.011754e-13
## 43 1.958717e-14 1.125931e-13 7.724156e-12 6.768600e-12 4.497276e-09
## 44 1.520971e-14 3.764532e-14 6.816085e-12 2.303074e-12 3.485921e-09
## 45 4.175943e-15 5.493255e-14 1.350020e-12 3.001927e-12 7.630087e-10
## 46 4.212313e-19 2.396029e-16 1.008757e-17 1.959959e-15 6.241253e-16
## 47 5.658860e-18 1.780041e-18 2.151010e-15 9.082560e-17 4.208229e-13
## 48 1.132096e-15 7.226952e-15 4.441422e-13 4.294059e-13 2.587488e-10
## 49 2.697256e-16 1.105668e-15 1.154147e-13 6.723481e-14 6.411401e-11
##               6            7            8            9           10
## 1  3.301284e-04 4.817944e-05 3.196019e-03 2.268737e-06 2.328579e-08
## 2  1.553972e-06 6.041147e-03 2.652555e-02 8.684814e-08 1.315044e-10
## 3  2.803728e-02 1.361844e-04 6.161279e-02 4.932822e-04 2.040788e-06
## 4  9.059459e-06 1.147819e-02 5.795915e-01 1.299792e-06 1.147223e-09
## 5  3.261427e-02 1.444895e-04 1.035105e-01 2.901763e-02 1.601378e-05
## 6  0.000000e+00 4.901587e-07 4.089596e-04 6.541884e-01 3.747868e-02
## 7  2.061881e-07 0.000000e+00 2.812349e-01 2.248716e-07 7.464200e-11
## 8  1.493215e-05 2.441092e-02 0.000000e+00 9.571599e-06 4.312119e-09
## 9  1.124804e-01 9.191404e-08 4.507302e-05 0.000000e+00 2.157597e-02
## 10 5.075925e-03 2.403185e-11 1.599483e-08 1.699523e-02 0.000000e+00
## 11 6.032668e-06 1.631718e-04 1.607278e-02 4.520156e-05 1.105861e-08
## 12 1.018171e-06 3.532043e-04 1.259933e-02 7.867434e-06 1.874299e-09
## 13 1.710917e-07 4.052030e-03 2.203191e-02 8.634100e-07 2.125839e-10
## 14 4.779727e-08 1.460072e-03 3.287326e-03 4.369736e-07 9.992280e-11
## 15 9.890661e-05 1.004401e-05 1.179906e-03 6.073327e-03 1.420499e-06
## 16 6.579325e-07 3.545721e-05 5.228404e-04 3.127399e-05 7.666130e-09
## 17 3.929881e-05 7.301142e-13 3.716861e-10 7.587675e-04 4.185621e-01
## 18 2.640492e-08 8.090623e-05 2.044864e-04 8.581405e-07 2.048393e-10
## 19 2.289554e-08 3.230443e-04 5.796504e-04 4.135123e-07 9.348581e-11
## 20 1.025624e-05 1.007585e-11 2.499152e-09 2.574422e-03 8.409612e-03
## 21 1.202459e-09 3.188901e-05 8.270115e-06 1.101829e-07 4.131037e-11
## 22 1.964880e-04 4.568023e-09 9.845980e-07 1.666076e-01 7.375928e-04
## 23 9.260618e-07 4.757020e-14 1.874196e-11 3.864103e-05 8.821406e-03
## 24 2.782274e-08 1.210694e-05 3.169552e-05 2.771579e-06 9.455895e-10
## 25 2.157229e-06 9.716747e-07 3.254624e-05 4.524354e-04 1.893511e-07
## 26 2.377490e-05 1.046309e-07 9.960106e-06 1.083914e-02 7.346406e-06
## 27 1.717282e-06 9.285117e-11 1.234090e-08 1.347249e-03 4.459697e-05
## 28 3.077314e-07 3.715941e-09 1.571539e-07 2.150979e-04 6.219553e-07
## 29 3.972137e-08 1.439826e-08 2.503966e-07 1.861058e-05 2.423879e-08
## 30 6.823549e-09 5.234327e-08 3.431727e-07 2.169453e-06 1.839457e-09
## 31 3.072313e-15 4.751719e-08 4.455050e-10 1.043279e-13 2.911299e-17
## 32 7.956879e-09 2.643579e-15 6.495630e-13 8.684650e-07 4.786679e-05
## 33 1.090674e-07 1.316309e-11 1.251716e-09 8.472150e-05 5.057771e-06
## 34 4.070980e-14 3.134624e-08 1.148350e-09 3.186554e-12 1.238492e-15
## 35 1.453226e-08 7.875289e-12 4.673264e-10 1.192741e-05 6.139574e-07
## 36 1.332270e-16 1.121872e-09 1.271767e-11 6.435919e-15 2.072703e-18
## 37 8.597615e-10 6.210746e-09 2.935293e-08 3.697035e-07 5.567883e-10
## 38 3.124141e-09 1.640542e-10 3.194172e-09 2.350036e-06 1.450446e-08
## 39 1.533251e-19 2.838297e-12 2.036543e-14 7.088331e-18 2.325920e-21
## 40 2.076281e-09 1.080185e-14 1.401709e-12 6.271706e-07 3.756622e-06
## 41 6.993748e-11 4.919065e-17 9.299681e-15 9.352553e-09 4.233474e-07
## 42 5.236940e-16 4.647105e-10 1.372128e-11 4.890981e-14 2.201238e-17
## 43 2.146977e-10 1.618028e-11 2.333835e-10 1.692403e-07 1.682598e-09
## 44 6.804619e-10 2.177813e-12 6.801666e-11 5.739122e-07 2.882140e-08
## 45 1.477409e-11 2.384879e-11 1.135289e-10 1.005652e-08 6.095668e-11
## 46 3.607165e-19 2.213836e-12 2.539002e-14 2.397352e-17 9.317322e-21
## 47 3.220590e-12 1.395054e-17 1.590234e-15 7.564260e-10 1.172636e-08
## 48 1.396651e-11 1.400219e-12 1.517659e-11 1.143323e-08 1.899797e-10
## 49 7.817812e-12 1.440037e-13 2.237776e-12 6.658928e-09 3.366216e-10
##              11           12           13           14           15
## 1  5.040346e-05 2.790383e-05 2.480440e-05 4.714029e-06 3.268384e-06
## 2  1.330393e-04 1.431182e-04 3.523287e-04 7.233288e-05 2.472193e-06
## 3  4.658304e-03 1.827104e-03 7.893611e-04 1.678390e-04 6.168608e-04
## 4  3.143238e-03 3.055244e-03 5.438562e-03 1.044683e-03 5.947844e-05
## 5  3.625667e-01 9.111291e-02 1.433799e-02 4.755513e-03 1.740140e-01
## 6  1.012266e-03 2.371364e-04 3.345756e-05 1.186431e-05 3.295602e-03
## 7  1.151748e-02 3.460434e-02 3.333227e-01 1.524546e-01 1.407809e-04
## 8  9.847329e-02 1.071438e-01 1.573111e-01 2.979368e-02 1.435485e-03
## 9  1.304106e-03 3.150539e-04 2.903063e-05 1.864956e-05 3.479447e-02
## 10 2.513142e-07 5.912178e-08 5.630235e-09 3.359193e-09 6.410342e-06
## 11 0.000000e+00 7.536050e-01 7.398976e-02 3.752606e-02 3.747892e-02
## 12 5.429396e-01 0.000000e+00 2.118287e-01 1.185872e-01 9.606447e-03
## 13 6.348802e-02 2.522884e-01 0.000000e+00 5.398467e-01 1.054179e-03
## 14 2.536758e-02 1.112694e-01 4.253008e-01 0.000000e+00 8.320810e-04
## 15 1.887396e-01 6.714768e-02 6.186859e-03 6.198628e-03 0.000000e+00
## 16 7.466297e-02 9.890558e-02 2.191618e-02 5.172019e-02 8.408144e-02
## 17 1.162168e-08 2.964494e-09 2.644418e-10 2.029611e-10 5.250835e-07
## 18 9.101295e-03 2.556412e-02 2.179943e-02 9.846298e-02 2.363873e-03
## 19 1.171956e-02 4.339194e-02 7.179637e-02 3.624284e-01 1.060035e-03
## 20 2.050428e-07 6.470671e-08 5.927492e-09 6.761135e-09 1.603545e-05
## 21 2.540259e-04 7.188053e-04 1.070498e-03 5.654380e-03 1.925719e-04
## 22 9.275022e-05 2.933507e-05 2.672279e-06 2.880674e-06 7.227060e-03
## 23 9.058994e-10 2.518668e-10 2.230893e-11 2.082464e-11 5.590205e-08
## 24 2.737227e-03 5.263750e-03 2.923455e-03 1.284541e-02 4.669253e-03
## 25 6.725478e-03 4.555910e-03 6.578339e-04 1.343023e-03 1.987928e-01
## 26 1.653688e-03 6.949451e-04 7.216578e-05 1.029053e-04 1.406045e-01
## 27 1.643537e-06 6.270554e-07 6.311404e-08 9.013496e-08 1.457243e-04
## 28 3.152198e-05 1.822420e-05 2.503859e-06 5.316878e-06 1.932434e-03
## 29 5.038051e-05 4.122218e-05 7.950846e-06 2.214385e-05 1.478229e-03
## 30 5.536668e-05 6.507728e-05 1.954929e-05 7.051998e-05 6.340009e-04
## 31 1.609717e-09 6.514671e-09 3.088111e-08 1.186150e-07 2.684267e-10
## 32 5.353443e-11 1.733807e-11 1.612991e-12 1.979332e-12 4.322456e-09
## 33 1.955727e-07 8.414442e-08 9.253072e-09 1.550585e-08 1.694629e-05
## 34 1.353036e-08 4.636104e-08 1.266524e-07 6.086683e-07 5.967908e-09
## 35 8.533129e-08 4.309595e-08 5.433442e-09 1.094400e-08 6.612400e-06
## 36 6.312235e-11 2.448860e-10 1.006643e-09 4.150487e-09 1.486619e-11
## 37 4.583731e-06 5.580634e-06 1.874367e-06 7.309350e-06 5.807650e-05
## 38 6.585635e-07 4.899865e-07 9.001838e-08 2.516936e-07 2.794936e-05
## 39 7.624859e-14 3.028550e-13 1.380982e-12 5.384122e-12 1.639515e-14
## 40 1.818731e-10 7.166903e-11 7.521734e-12 1.209661e-11 1.613443e-08
## 41 9.437167e-13 3.334097e-13 3.261305e-14 4.607929e-14 8.144088e-11
## 42 1.606978e-10 5.449534e-10 1.488132e-09 7.123262e-09 8.114394e-11
## 43 4.748347e-08 3.823677e-08 7.858411e-09 2.406440e-08 1.811369e-06
## 44 1.378916e-08 8.552371e-09 1.330872e-09 3.339472e-09 8.467416e-07
## 45 1.935396e-08 2.147438e-08 6.809533e-09 2.662624e-08 3.797022e-07
## 46 1.517395e-13 5.687363e-13 2.131867e-12 9.120883e-12 4.775842e-14
## 47 2.175425e-13 8.968785e-14 9.812976e-15 1.711051e-14 1.923801e-11
## 48 3.028965e-09 2.607017e-09 5.940173e-10 1.964257e-09 1.061547e-07
## 49 4.612965e-10 3.503387e-10 6.956973e-11 2.127813e-10 2.111912e-08
##              16           17           18           19           20
## 1  5.781968e-07 3.909709e-10 2.454440e-07 8.171338e-07 7.800679e-11
## 2  2.174851e-06 3.601786e-12 2.434113e-06 1.102559e-05 3.083670e-12
## 3  5.996257e-05 4.461729e-08 1.490781e-05 3.697205e-05 1.572623e-08
## 4  4.689125e-05 4.045768e-11 4.027828e-05 1.642329e-04 5.393463e-11
## 5  8.913365e-03 7.817224e-07 1.170625e-03 1.785942e-03 1.174076e-06
## 6  5.638722e-05 6.601865e-04 4.663371e-06 5.368782e-06 6.943211e-05
## 7  1.278294e-03 5.159470e-12 6.010685e-03 3.186499e-02 2.869331e-11
## 8  1.636102e-03 2.279846e-10 1.318625e-03 4.962870e-03 6.177414e-10
## 9  4.608471e-04 2.191645e-03 2.605839e-05 1.667199e-05 2.996582e-03
## 10 8.898288e-08 9.523096e-01 4.899586e-09 2.968940e-09 7.710438e-03
## 11 3.813460e-02 1.163512e-09 9.579279e-03 1.637761e-02 8.272396e-09
## 12 3.639506e-02 2.138258e-10 1.938511e-02 4.368741e-02 1.880805e-09
## 13 9.605035e-03 2.271706e-11 1.968770e-02 8.609186e-02 2.052003e-10
## 14 1.785747e-02 1.373601e-11 7.005653e-02 3.423794e-01 1.843964e-10
## 15 2.162669e-01 2.647319e-07 1.252939e-02 7.459941e-03 3.257946e-06
## 16 0.000000e+00 1.865256e-09 3.519355e-01 1.373520e-01 4.596464e-08
## 17 9.515913e-09 0.000000e+00 5.182342e-10 2.424384e-10 6.093548e-02
## 18 1.707841e-01 4.929449e-11 0.000000e+00 5.929002e-01 1.397986e-09
## 19 5.020066e-02 1.736857e-11 4.465518e-01 0.000000e+00 3.574191e-10
## 20 5.819036e-07 1.512117e-01 3.647084e-08 1.238028e-08 0.000000e+00
## 21 1.151068e-02 2.497641e-11 8.706318e-02 3.239020e-02 2.559657e-09
## 22 2.082948e-04 5.640696e-04 1.189496e-05 4.652111e-06 1.397210e-02
## 23 1.402598e-09 6.974301e-01 8.114146e-11 3.136102e-11 1.173764e-01
## 24 2.076774e-01 4.410453e-10 4.120810e-01 8.005057e-02 2.829130e-08
## 25 1.677708e-01 8.908958e-08 1.393490e-02 3.860871e-03 4.151925e-06
## 26 1.003518e-02 4.006068e-06 6.254416e-04 2.122839e-04 1.564768e-04
## 27 9.573538e-06 1.502412e-04 6.812798e-07 2.033103e-07 2.954515e-02
## 28 6.683066e-04 1.091750e-06 7.517985e-05 1.763686e-05 1.907319e-04
## 29 2.344536e-03 3.157449e-08 4.665650e-04 9.517204e-05 4.919509e-06
## 30 4.272258e-03 2.000385e-09 2.042505e-03 3.841633e-04 2.953932e-07
## 31 2.076512e-08 1.281348e-17 3.294547e-07 3.181778e-07 1.144196e-15
## 32 1.920169e-10 3.695124e-03 1.322287e-11 4.053333e-12 2.117744e-02
## 33 1.857319e-06 3.200886e-05 1.602808e-07 4.191971e-08 1.326234e-02
## 34 4.014750e-07 8.903109e-16 4.380655e-06 2.532115e-06 1.251489e-13
## 35 1.377420e-06 4.900418e-06 1.556204e-07 3.593236e-08 2.469947e-03
## 36 1.118321e-09 1.200194e-18 1.579490e-08 1.280793e-08 1.455453e-16
## 37 3.628220e-04 1.003780e-09 2.274870e-04 4.290977e-05 2.447831e-07
## 38 2.664316e-05 5.179409e-08 5.644042e-06 1.120912e-06 1.875418e-05
## 39 1.238355e-12 1.453101e-21 1.787228e-11 1.535670e-11 2.000727e-19
## 40 1.442068e-09 2.046837e-04 1.285012e-10 3.276392e-11 1.666163e-02
## 41 5.102393e-12 3.323537e-05 4.043857e-13 1.106240e-13 2.823314e-04
## 42 5.174883e-09 1.975909e-17 5.297284e-08 2.970938e-08 3.531650e-15
## 43 2.252902e-06 8.770665e-09 6.122108e-07 1.174481e-07 4.035705e-06
## 44 3.904840e-07 3.041686e-07 6.706148e-08 1.371184e-08 1.655978e-04
## 45 1.412391e-06 2.952175e-10 8.355645e-07 1.582993e-07 1.375212e-07
## 46 3.395274e-12 7.378687e-21 4.275453e-11 3.063057e-11 1.248181e-18
## 47 2.114887e-12 8.577583e-07 2.144524e-13 5.111668e-14 2.297976e-05
## 48 1.614956e-07 1.455900e-09 5.466225e-08 1.030734e-08 7.698672e-07
## 49 2.010428e-08 4.452112e-09 5.516164e-09 1.052138e-09 2.373261e-06
##              21           22           23           24           25
## 1  9.049101e-11 2.933609e-08 6.969145e-12 8.355176e-09 5.888184e-08
## 2  1.883317e-09 3.057438e-09 8.860433e-14 5.899133e-08 7.603168e-08
## 3  4.431967e-09 7.224307e-06 9.137791e-10 7.295954e-07 1.044583e-05
## 4  2.112316e-08 6.157720e-08 1.159798e-12 1.054617e-06 1.819982e-06
## 5  3.869221e-07 1.099074e-03 2.517846e-08 1.047980e-04 2.911048e-03
## 6  2.263814e-09 4.792985e-03 1.150331e-05 8.691763e-07 1.012740e-04
## 7  2.525447e-05 4.687327e-08 2.485677e-13 1.590997e-04 1.918887e-05
## 8  5.684912e-07 8.769422e-07 8.500408e-12 3.615329e-05 5.578846e-05
## 9  3.566635e-08 6.987777e-01 8.252882e-05 1.488708e-05 3.652013e-03
## 10 1.053320e-11 2.436788e-03 1.484061e-02 4.000752e-09 1.203928e-06
## 11 2.850118e-06 1.348341e-05 6.706214e-11 5.096047e-04 1.881652e-03
## 12 5.810371e-06 3.072413e-06 1.343310e-11 7.060339e-04 9.183307e-04
## 13 1.030602e-05 3.333394e-07 1.417087e-12 4.670240e-04 1.579257e-04
## 14 4.288603e-05 2.830902e-07 1.042128e-12 1.616652e-03 2.540069e-04
## 15 1.088062e-05 5.290812e-03 2.084016e-08 4.377700e-03 2.800869e-01
## 16 2.528553e-04 5.928558e-05 2.032904e-10 7.570035e-02 9.190064e-02
## 17 2.799065e-12 8.190594e-04 5.156989e-01 8.201700e-10 2.489667e-07
## 18 9.280892e-04 1.642925e-06 5.707036e-12 7.289127e-02 3.704165e-03
## 19 2.600513e-04 4.839442e-07 1.661300e-12 1.066468e-02 7.729691e-04
## 20 7.118360e-10 5.034537e-02 2.153731e-01 1.305536e-07 2.879247e-05
## 21 0.000000e+00 9.584113e-07 6.986257e-12 7.013506e-01 2.584067e-03
## 22 7.396940e-08 0.000000e+00 7.831020e-05 2.289522e-05 6.918364e-03
## 23 1.058844e-12 1.537820e-04 0.000000e+00 2.195666e-10 5.585949e-08
## 24 4.226661e-02 1.787751e-05 8.730539e-11 0.000000e+00 5.731528e-02
## 25 1.036269e-04 3.594776e-03 1.478013e-08 3.813966e-02 0.000000e+00
## 26 4.083111e-06 1.618467e-01 6.259996e-07 1.366059e-03 4.174401e-01
## 27 1.837062e-08 1.641243e-01 7.955460e-05 3.172861e-06 5.788471e-04
## 28 5.963402e-06 1.641017e-02 5.028349e-07 7.073022e-04 4.522696e-02
## 29 9.490333e-05 7.473202e-04 1.299830e-08 7.789014e-03 8.114093e-02
## 30 1.854384e-03 5.646992e-05 7.800757e-10 6.585415e-02 3.463237e-02
## 31 1.321318e-04 5.162188e-13 3.149776e-18 5.099666e-07 1.639019e-09
## 32 6.406744e-13 1.319680e-05 2.079343e-01 7.091425e-11 1.122080e-08
## 33 1.131039e-08 1.057513e-02 3.865258e-05 1.199494e-06 1.288751e-04
## 34 8.567710e-03 3.143980e-11 3.279458e-16 2.042503e-05 7.607791e-08
## 35 3.237685e-08 1.609143e-03 9.602974e-06 1.863474e-06 9.583388e-05
## 36 1.411821e-05 4.566199e-14 3.843678e-19 3.906545e-08 1.291578e-10
## 37 1.716998e-03 1.637944e-05 6.543307e-10 9.158884e-03 3.394258e-03
## 38 5.044749e-06 2.359685e-04 5.574253e-08 1.269144e-04 1.161967e-03
## 39 1.638045e-08 5.355864e-17 5.236210e-22 4.354057e-11 1.457459e-13
## 40 2.114530e-11 2.936179e-05 5.760402e-03 1.213027e-09 1.003840e-07
## 41 4.709992e-14 2.141319e-07 2.025469e-03 3.161361e-12 3.373487e-10
## 42 1.244174e-04 6.158621e-13 9.269116e-18 2.969358e-07 1.245381e-09
## 43 1.700658e-06 1.901601e-05 1.507008e-08 1.764161e-05 8.183816e-05
## 44 7.006494e-08 7.877958e-05 1.030582e-06 1.381174e-06 2.230728e-05
## 45 2.592379e-05 9.228687e-07 5.493299e-10 3.470211e-05 2.221311e-05
## 46 6.416476e-08 2.450546e-16 3.270904e-21 1.543976e-10 5.681058e-13
## 47 8.143110e-14 3.254233e-08 4.546868e-05 2.659314e-12 1.497569e-10
## 48 4.382688e-07 1.396584e-06 4.115598e-09 1.864468e-06 5.038233e-06
## 49 3.355564e-08 9.090835e-07 2.340301e-08 1.711043e-07 8.142628e-07
##              26           27           28           29           30
## 1  6.232463e-08 6.180497e-10 7.185190e-10 6.444145e-10 3.770367e-10
## 2  2.538651e-08 8.370266e-11 4.168688e-10 8.867753e-10 1.110757e-09
## 3  1.457963e-05 1.534164e-07 1.647764e-07 1.213258e-07 5.483610e-08
## 4  6.005500e-07 1.810561e-09 1.008596e-08 2.088773e-08 2.379481e-08
## 5  4.120311e-03 2.669209e-05 4.757885e-05 3.541131e-05 1.368780e-05
## 6  8.875276e-04 1.208419e-04 1.463907e-05 2.922363e-06 4.519643e-07
## 7  1.643048e-06 2.748466e-09 7.435968e-08 4.456017e-07 1.458417e-06
## 8  1.357592e-05 3.170772e-08 2.729663e-07 6.726363e-07 8.299436e-07
## 9  6.957162e-02 1.630039e-02 1.759349e-03 2.354203e-04 2.470690e-05
## 10 3.714233e-05 4.250229e-04 4.007116e-06 2.415193e-07 1.650116e-08
## 11 3.679015e-04 6.892394e-07 8.936551e-06 2.208956e-05 2.185531e-05
## 12 1.113874e-04 1.894542e-07 3.722311e-06 1.302157e-05 1.850741e-05
## 13 1.377620e-05 2.271103e-08 6.090969e-07 2.991287e-06 6.621552e-06
## 14 1.547610e-05 2.555229e-08 1.018965e-06 6.563320e-06 1.881770e-05
## 15 1.575263e-01 3.077504e-04 2.758907e-03 3.263939e-03 1.260301e-03
## 16 4.371082e-03 7.860481e-06 3.709524e-04 2.012646e-03 3.301809e-03
## 17 8.902137e-06 6.293290e-04 3.091561e-06 1.382798e-07 7.887150e-09
## 18 1.322011e-04 2.714479e-07 2.025015e-05 1.943601e-04 7.660233e-04
## 19 3.379524e-05 6.101133e-08 3.577982e-06 2.986032e-05 1.085138e-04
## 20 8.628614e-04 3.071072e-01 1.340272e-03 5.346376e-05 2.890162e-06
## 21 8.096255e-05 6.866407e-07 1.506835e-04 3.708695e-03 6.524142e-02
## 22 2.476834e-01 4.734550e-01 3.200257e-02 2.253962e-03 1.533349e-04
## 23 1.881284e-06 4.506698e-04 1.925681e-06 7.698636e-08 4.159564e-09
## 24 1.632393e-03 7.146921e-06 1.077057e-03 1.834359e-02 1.396269e-01
## 25 3.319371e-01 8.676373e-04 4.582870e-02 1.271593e-01 4.886236e-02
## 26 0.000000e+00 2.442229e-02 1.669492e-01 4.802447e-02 5.205907e-03
## 27 1.295608e-02 0.000000e+00 3.346779e-02 1.347986e-03 7.288257e-05
## 28 1.310104e-01 4.950639e-02 0.000000e+00 4.675379e-01 2.528895e-02
## 29 2.436778e-02 1.289293e-03 3.023073e-01 0.000000e+00 4.097149e-01
## 30 2.934038e-03 7.742938e-05 1.816263e-02 4.550905e-01 0.000000e+00
## 31 4.670575e-11 3.070379e-13 6.734174e-11 1.667689e-09 2.997064e-08
## 32 2.805536e-07 1.536884e-04 1.110100e-06 4.900901e-08 2.906231e-09
## 33 1.765689e-03 4.985568e-01 1.971444e-02 8.843594e-04 5.129401e-05
## 34 2.497089e-09 3.221731e-11 7.619885e-09 1.892007e-07 3.488013e-06
## 35 6.834457e-04 6.506923e-02 2.385428e-02 1.790380e-03 1.341182e-04
## 36 3.899458e-12 3.824399e-14 8.948421e-12 2.241618e-10 4.148482e-09
## 37 4.952324e-04 5.168824e-05 1.017177e-02 1.501926e-01 6.948327e-01
## 38 1.336365e-03 2.443503e-03 1.141554e-01 8.564678e-02 1.456460e-02
## 39 4.475910e-15 5.126260e-17 1.213142e-14 3.008861e-13 5.546659e-12
## 40 1.539064e-06 8.745384e-04 1.885497e-05 1.129377e-06 8.336378e-08
## 41 6.601092e-09 4.037222e-06 5.189379e-08 2.786163e-09 1.934239e-10
## 42 4.461510e-11 8.472665e-13 1.981587e-10 4.696716e-09 8.318174e-08
## 43 8.360676e-05 2.975702e-04 7.275200e-03 7.018868e-03 2.256361e-03
## 44 7.198601e-05 2.835891e-03 5.051705e-03 1.089280e-03 1.590064e-04
## 45 8.484471e-06 1.081122e-05 5.473121e-04 1.896128e-03 2.774336e-03
## 46 1.889112e-14 3.033617e-16 7.137599e-14 1.715941e-12 3.086630e-11
## 47 1.917680e-09 1.016205e-06 3.345158e-08 2.587393e-09 2.394840e-10
## 48 4.846141e-06 2.973430e-05 4.271199e-04 4.556495e-04 2.245474e-04
## 49 1.370027e-06 3.051112e-05 1.184899e-04 6.416569e-05 2.157927e-05
##              31           32           33           34           35
## 1  9.125805e-14 5.764070e-14 5.845989e-11 8.291147e-14 7.692466e-12
## 2  9.636231e-12 1.393687e-15 1.000563e-11 4.456765e-12 2.023817e-12
## 3  9.551140e-13 9.633605e-12 1.461859e-08 2.041622e-12 1.927214e-09
## 4  2.911724e-11 2.272849e-14 2.253989e-10 2.633276e-11 4.768465e-11
## 5  1.980939e-11 5.091999e-10 2.821187e-06 1.031009e-10 4.390660e-07
## 6  5.714092e-14 8.130886e-08 1.065369e-05 4.538976e-13 9.412448e-07
## 7  3.717573e-07 1.136356e-14 5.408662e-10 1.470183e-07 2.145669e-10
## 8  3.025355e-10 2.423586e-13 4.464293e-09 4.674932e-10 1.105176e-09
## 9  3.336234e-13 1.525884e-06 1.422895e-03 6.108780e-12 1.328280e-04
## 10 7.333302e-17 6.624612e-05 6.691062e-05 1.870178e-15 5.385655e-06
## 11 1.784210e-10 3.260190e-12 1.138486e-07 8.990478e-10 3.293762e-08
## 12 5.202315e-10 7.607085e-13 3.529008e-08 2.219395e-09 1.198473e-08
## 13 2.937037e-09 8.428725e-14 4.621955e-09 7.221163e-09 1.799613e-09
## 14 8.887552e-09 8.148440e-14 6.101846e-09 2.734011e-08 2.855657e-09
## 15 1.498298e-10 1.325612e-09 4.967869e-05 1.996971e-09 1.285343e-05
## 16 4.506267e-09 2.289471e-11 2.116860e-06 5.222977e-08 1.040966e-06
## 17 1.418606e-17 2.247693e-03 1.861178e-04 5.908991e-16 1.889362e-05
## 18 3.469464e-08 7.650779e-13 8.864847e-08 2.765559e-07 5.707170e-08
## 19 2.523637e-08 1.766374e-13 1.746218e-08 1.203976e-07 9.924995e-09
## 20 3.143476e-15 3.196659e-02 1.913608e-01 2.061170e-13 2.363114e-02
## 21 1.305326e-03 3.477461e-12 5.868299e-07 5.074035e-02 1.113868e-06
## 22 3.935913e-13 5.528328e-06 4.234679e-02 1.437039e-11 4.272616e-03
## 23 4.716052e-18 1.710561e-01 3.039489e-04 2.943596e-16 5.007169e-05
## 24 3.036096e-07 2.319640e-11 3.750551e-06 7.289768e-06 3.863534e-06
## 25 6.493282e-10 2.442402e-09 2.681466e-04 1.806824e-08 1.322168e-04
## 26 2.326960e-11 7.679762e-08 4.620149e-03 7.458128e-10 1.185796e-03
## 27 8.115173e-14 2.231825e-05 6.920598e-01 5.104723e-12 5.989202e-02
## 28 2.632839e-11 2.384600e-07 4.048066e-02 1.785935e-09 3.247834e-02
## 29 4.215867e-10 6.807084e-09 1.174151e-03 2.867291e-08 1.576175e-03
## 30 8.415579e-09 4.483647e-10 7.564456e-05 5.871421e-07 1.311484e-04
## 31 0.000000e+00 1.661071e-18 2.707408e-13 9.793865e-02 5.966907e-13
## 32 3.023255e-18 0.000000e+00 3.159504e-04 3.077117e-16 1.359935e-04
## 33 5.155022e-14 3.305287e-05 0.000000e+00 4.406832e-12 4.380987e-01
## 34 1.633717e-01 2.820201e-16 3.860757e-11 0.000000e+00 1.122373e-10
## 35 1.713412e-13 2.145577e-05 6.607050e-01 1.932087e-11 0.000000e+00
## 36 6.757312e-01 2.986082e-19 4.236015e-14 5.235988e-02 1.182454e-13
## 37 1.290760e-08 7.704430e-10 9.256357e-05 1.604581e-06 3.073387e-04
## 38 3.143184e-11 9.435621e-08 8.061301e-03 3.904409e-09 3.778806e-02
## 39 1.339152e-03 5.145213e-22 6.405104e-17 7.956731e-05 2.063662e-16
## 40 1.259719e-16 5.425304e-01 4.434506e-03 1.749165e-14 5.326065e-03
## 41 2.719129e-19 4.696091e-01 1.414556e-05 3.762347e-17 1.238183e-05
## 42 4.178877e-02 1.166177e-17 1.259535e-12 5.849999e-01 4.601687e-12
## 43 1.680592e-11 5.225690e-08 1.560981e-03 2.826898e-09 1.346243e-02
## 44 5.982630e-13 7.099744e-06 2.827008e-02 9.904142e-11 3.671473e-01
## 45 9.451879e-10 2.749847e-09 5.257780e-05 2.291770e-07 4.718566e-04
## 46 1.394351e-03 4.178104e-21 4.415740e-16 3.734751e-04 1.633145e-15
## 47 7.194079e-19 1.193376e-02 6.050645e-06 1.351671e-16 1.169297e-05
## 48 8.879608e-12 3.129588e-08 2.133384e-04 1.976343e-09 2.497192e-03
## 49 7.685931e-13 4.024346e-07 3.026592e-04 1.833076e-10 3.922430e-03
##              36           37           38           39           40
## 1  2.952641e-15 1.774652e-11 1.199962e-11 6.513999e-18 1.487413e-14
## 2  2.904878e-13 5.492029e-11 1.078120e-11 8.292841e-16 9.338762e-16
## 3  3.657342e-14 2.659283e-09 2.610884e-09 5.820720e-17 3.231120e-12
## 4  9.587475e-13 1.151080e-09 2.586171e-10 1.988377e-15 1.881765e-14
## 5  9.799713e-13 6.906835e-07 7.739472e-07 1.252502e-15 3.466838e-10
## 6  3.181259e-15 3.234886e-08 2.125741e-07 3.851221e-18 1.201080e-08
## 7  1.126878e-08 9.829958e-08 4.695631e-09 2.998955e-11 2.628520e-14
## 8  1.108808e-11 4.032499e-08 7.935603e-09 1.867758e-14 2.960641e-13
## 9  2.642357e-14 2.391711e-06 2.749339e-05 3.061282e-17 6.238006e-07
## 10 6.703087e-18 2.837279e-09 1.336633e-07 7.912449e-21 2.943163e-06
## 11 8.982651e-12 1.027814e-06 2.670496e-07 1.141384e-14 6.270020e-12
## 12 2.510690e-11 9.015439e-07 1.431483e-07 3.266196e-14 1.780081e-12
## 13 1.229184e-10 3.606372e-07 3.132173e-08 1.773814e-13 2.225045e-13
## 14 3.992698e-10 1.107950e-06 6.899418e-08 5.448296e-13 2.819097e-13
## 15 1.065362e-11 6.558008e-05 5.707450e-05 1.235922e-14 2.801109e-09
## 16 3.115831e-10 1.592851e-04 2.115271e-05 3.629369e-13 9.733571e-11
## 17 1.705968e-18 2.248185e-09 2.097841e-07 2.172669e-21 7.048260e-05
## 18 2.135544e-09 4.846436e-05 2.174477e-06 2.541850e-12 4.208990e-12
## 19 1.304250e-09 6.885133e-06 3.252569e-07 1.644971e-12 8.082710e-13
## 20 5.133728e-16 1.360474e-06 1.884975e-04 7.423367e-19 1.423742e-02
## 21 1.790672e-04 3.431471e-02 1.823262e-04 2.185450e-07 6.497248e-11
## 22 4.469836e-14 2.526445e-05 6.582089e-04 5.514990e-17 6.963032e-06
## 23 7.388750e-19 1.981962e-09 3.053399e-07 1.058814e-21 2.682600e-03
## 24 2.986012e-08 1.103102e-02 2.764283e-04 3.500833e-11 2.246200e-10
## 25 6.569399e-11 2.720346e-03 1.684115e-03 7.797942e-14 1.236940e-08
## 26 2.494295e-12 4.991451e-04 2.435800e-03 3.011642e-15 2.384951e-07
## 27 1.297759e-14 2.763737e-05 2.362744e-03 1.829826e-17 7.189337e-05
## 28 4.491707e-12 8.045178e-03 1.632805e-01 6.405529e-15 2.292820e-06
## 29 7.275426e-11 7.681029e-02 7.921014e-02 1.027253e-13 8.880039e-08
## 30 1.495554e-09 3.947002e-01 1.496182e-02 2.103404e-12 7.280638e-09
## 31 8.675588e-01 2.611226e-08 1.149920e-10 1.808562e-03 3.918120e-17
## 32 6.977716e-19 2.836784e-09 6.282826e-07 1.264717e-21 3.071248e-01
## 33 1.035522e-14 3.565464e-05 5.615390e-03 1.647049e-17 2.626191e-04
## 34 1.121364e-01 5.414814e-06 2.382736e-08 1.792507e-04 9.075232e-15
## 35 4.359349e-14 1.785372e-04 3.969767e-02 8.003029e-17 4.756889e-04
## 36 0.000000e+00 5.702030e-09 2.499409e-11 2.703329e-02 9.526102e-18
## 37 3.618723e-09 0.000000e+00 6.430704e-02 6.468214e-12 2.223465e-08
## 38 8.771309e-12 3.555984e-02 0.000000e+00 1.650503e-14 2.779444e-06
## 39 2.569925e-02 9.689025e-12 4.471064e-14 0.000000e+00 2.031511e-20
## 40 3.932204e-17 1.446190e-07 3.269277e-05 8.821015e-20 0.000000e+00
## 41 8.464656e-20 3.116341e-10 7.084801e-08 1.939541e-22 2.070439e-01
## 42 3.427639e-01 2.010761e-07 9.962637e-10 2.937496e-03 5.052931e-16
## 43 6.452262e-12 1.448550e-02 5.111745e-01 1.535879e-14 2.718529e-06
## 44 2.264207e-13 5.994128e-04 8.884199e-02 5.559143e-16 4.812180e-04
## 45 6.131227e-10 5.381186e-02 3.175556e-02 2.202598e-12 2.127881e-07
## 46 4.528353e-02 7.048465e-11 3.526856e-13 9.385949e-01 1.937532e-19
## 47 3.248298e-19 6.869740e-10 1.252921e-07 1.037094e-21 1.068874e-01
## 48 5.024768e-12 2.546247e-03 2.940844e-02 1.687029e-14 2.828944e-06
## 49 4.962580e-13 2.066195e-04 5.743217e-03 1.980554e-15 5.368854e-05
##              41           42           43           44           45
## 1  5.154480e-16 1.248197e-15 9.198882e-13 2.780711e-13 4.672181e-14
## 2  1.547471e-17 7.517786e-14 9.346148e-13 1.216476e-13 1.086306e-13
## 3  9.120207e-14 2.919939e-14 1.982684e-10 6.810970e-11 8.255518e-12
## 4  2.720935e-16 4.024330e-13 2.220356e-11 2.941054e-12 2.345986e-12
## 5  5.884823e-12 1.515293e-12 5.888119e-08 1.776708e-08 2.379897e-09
## 6  6.926818e-10 7.134889e-15 1.772123e-08 2.186462e-08 2.905152e-10
## 7  2.049431e-16 2.663294e-09 5.617972e-10 2.943647e-11 1.972702e-10
## 8  3.363053e-15 6.825683e-12 7.033618e-10 7.979861e-11 8.151107e-11
## 9  1.592678e-08 1.145723e-13 2.401843e-06 3.170719e-06 3.400089e-08
## 10 5.678735e-07 4.061698e-17 1.880953e-08 1.254250e-07 1.623381e-10
## 11 5.570318e-14 1.304771e-11 2.335736e-08 2.640526e-09 2.268051e-09
## 12 1.417831e-14 3.187802e-11 1.355096e-08 1.179905e-09 1.813056e-09
## 13 1.651771e-15 1.036778e-10 3.316929e-09 2.186800e-10 6.847316e-10
## 14 1.838612e-15 3.909751e-10 8.002069e-09 4.322913e-10 2.109302e-09
## 15 2.420788e-11 3.317846e-11 4.487083e-06 8.165439e-07 2.240794e-07
## 16 5.896554e-13 8.226419e-10 2.169749e-06 1.464003e-07 3.240588e-07
## 17 1.959463e-05 1.602468e-17 4.309350e-08 5.817884e-07 3.455596e-10
## 18 2.267799e-14 4.086465e-09 2.861228e-07 1.220102e-08 9.303218e-08
## 19 4.672490e-15 1.726149e-09 4.134166e-08 1.878922e-09 1.327463e-08
## 20 4.130577e-04 7.107471e-15 4.920552e-05 7.859962e-04 3.994530e-07
## 21 2.477842e-13 9.003687e-04 7.456127e-05 1.195827e-06 2.707675e-04
## 22 8.694308e-08 3.439719e-13 6.434518e-05 1.037724e-04 7.439403e-07
## 23 1.614978e-03 1.016635e-17 1.001381e-07 2.665862e-06 8.695982e-10
## 24 1.002282e-12 1.294983e-07 4.661190e-05 1.420622e-06 2.184319e-05
## 25 7.117069e-11 3.614184e-10 1.438867e-04 1.526803e-05 9.304134e-06
## 26 1.751364e-09 1.628277e-11 1.848608e-04 6.196165e-05 4.469200e-06
## 27 5.682381e-07 1.640415e-13 3.490438e-04 1.294946e-03 3.021113e-06
## 28 1.080432e-08 5.675198e-11 1.262321e-02 3.412198e-03 2.262359e-04
## 29 3.750769e-10 8.697492e-10 7.874514e-03 4.757378e-04 5.067876e-04
## 30 2.892278e-11 1.710975e-08 2.811779e-03 7.713630e-05 8.236323e-04
## 31 1.448011e-19 3.061169e-02 7.458422e-11 1.033590e-12 9.993201e-10
## 32 4.551611e-01 1.554815e-17 4.220997e-07 2.232470e-05 5.291535e-09
## 33 1.434297e-06 1.756769e-13 1.319044e-03 9.299511e-03 1.058439e-05
## 34 3.342132e-17 7.148360e-01 2.092752e-08 2.854276e-10 4.041851e-07
## 35 1.893386e-06 9.679598e-13 1.715618e-02 1.821416e-01 1.432547e-04
## 36 3.510964e-20 1.955680e-01 2.230344e-11 3.046824e-13 5.049040e-10
## 37 8.203285e-11 7.280968e-08 3.177745e-02 5.118977e-04 2.812324e-02
## 38 1.031268e-08 1.994822e-10 6.200920e-01 4.195432e-02 9.177160e-03
## 39 7.647817e-23 1.593315e-03 5.047060e-14 7.111491e-16 1.724322e-12
## 40 3.544869e-01 1.190055e-15 3.878954e-05 2.672969e-03 7.233188e-07
## 41 0.000000e+00 2.640075e-18 8.520074e-08 6.030160e-06 1.817716e-09
## 42 1.919245e-18 0.000000e+00 1.254947e-09 1.791938e-11 4.398863e-08
## 43 1.022352e-08 2.071421e-10 0.000000e+00 9.216096e-02 5.419989e-02
## 44 1.858722e-06 7.597916e-12 2.367421e-01 0.000000e+00 4.115264e-03
## 45 9.155488e-10 3.047768e-08 2.275080e-01 6.724616e-03 0.000000e+00
## 46 7.493220e-22 1.435371e-02 4.748239e-13 6.967661e-15 2.000459e-11
## 47 8.810588e-01 1.437521e-17 2.855217e-07 1.982573e-05 1.335816e-08
## 48 1.280795e-08 2.343168e-10 3.884893e-01 6.833648e-02 2.148605e-01
## 49 3.347373e-07 2.673983e-11 5.966873e-02 1.854659e-01 2.269315e-02
##              46           47           48           49
## 1  6.229781e-18 1.161732e-17 3.812191e-14 3.681063e-15
## 2  6.263280e-16 6.458987e-19 4.301343e-14 2.667062e-15
## 3  8.154134e-17 2.413563e-15 8.174338e-12 8.608974e-13
## 4  2.024694e-15 1.302404e-17 1.009996e-12 6.409225e-14
## 5  2.573283e-15 2.408463e-13 2.429033e-09 2.439313e-10
## 6  9.376082e-18 1.162025e-11 8.265752e-10 1.875165e-10
## 7  2.420626e-11 2.117376e-17 3.485921e-11 1.452964e-12
## 8  2.409685e-14 2.094996e-16 3.279524e-11 1.959804e-12
## 9  1.071424e-16 4.692678e-10 1.163423e-07 2.746203e-08
## 10 3.280027e-20 5.730262e-09 1.522765e-09 1.093521e-09
## 11 2.350545e-14 4.677769e-15 1.068325e-09 6.594001e-11
## 12 6.347295e-14 1.389428e-15 6.624618e-10 3.607985e-11
## 13 2.833676e-13 1.810572e-16 1.797747e-10 8.533150e-12
## 14 9.551089e-13 2.487160e-16 4.683316e-10 2.056119e-11
## 15 3.725597e-14 2.083199e-12 1.885490e-07 1.520269e-08
## 16 1.029748e-12 8.903649e-14 1.115208e-07 5.626565e-09
## 17 1.141687e-20 1.842289e-07 5.129074e-09 6.356719e-09
## 18 6.292489e-12 4.381229e-15 1.831753e-08 7.491630e-10
## 19 3.395358e-12 7.865349e-16 2.601456e-09 1.076223e-10
## 20 4.792485e-18 1.224767e-05 6.730360e-06 8.408676e-06
## 21 8.858939e-07 1.560631e-13 1.377733e-05 4.275131e-07
## 22 2.611248e-16 4.813476e-09 3.388376e-06 8.938979e-07
## 23 6.844478e-21 1.320717e-05 1.960852e-08 4.519008e-08
## 24 1.284659e-10 3.071439e-13 3.532170e-06 1.313733e-07
## 25 3.145451e-13 1.150974e-11 6.351426e-06 4.160228e-07
## 26 1.315375e-14 1.853502e-10 7.682939e-06 8.802785e-07
## 27 1.120573e-16 5.210572e-08 2.500785e-05 1.040007e-05
## 28 3.900010e-14 2.537202e-09 5.313768e-04 5.974391e-05
## 29 6.062445e-13 1.268916e-10 3.665352e-04 2.091930e-05
## 30 1.211284e-11 1.304556e-11 2.006359e-04 7.814428e-06
## 31 1.948703e-03 1.395641e-19 2.825573e-11 9.912173e-13
## 32 1.062770e-20 4.213689e-03 1.812536e-07 9.446140e-07
## 33 1.175044e-16 2.234997e-07 1.292583e-04 7.431955e-05
## 34 8.706790e-04 4.374135e-17 1.049054e-08 3.943444e-10
## 35 6.554066e-16 6.513819e-07 2.281798e-03 1.452580e-03
## 36 4.929341e-02 4.908279e-20 1.245386e-11 4.984883e-13
## 37 4.869328e-11 6.587787e-11 4.005107e-03 1.317178e-04
## 38 1.347297e-13 6.643918e-09 2.557919e-02 2.024556e-03
## 39 9.712887e-01 1.489749e-22 3.974952e-14 1.891279e-15
## 40 8.705995e-19 6.666850e-02 2.894230e-05 2.226127e-04
## 41 1.966528e-21 3.209677e-01 7.653332e-08 8.106522e-07
## 42 2.738482e-02 3.807016e-18 1.017861e-09 4.707641e-11
## 43 1.495276e-13 1.248109e-08 2.785525e-01 1.733942e-02
## 44 5.636433e-15 2.226236e-06 1.258662e-01 1.384459e-01
## 45 2.644338e-11 2.451086e-09 6.466702e-01 2.768093e-02
## 46 0.000000e+00 1.771729e-21 4.561588e-13 2.386585e-14
## 47 1.276358e-20 0.000000e+00 5.778509e-07 1.110029e-05
## 48 2.003442e-13 3.522909e-08 0.000000e+00 2.924939e-01
## 49 2.586295e-14 1.669784e-06 7.217007e-01 0.000000e+00
W4 = mat2listw(W4,style='W')  
summary(W4)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 49 
## Number of nonzero links: 2352 
## Percentage nonzero weights: 97.95918 
## Average number of links: 48 
## Link number distribution:
## 
## 48 
## 49 
## 49 least connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 with 48 links
## 49 most connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 with 48 links
## 
## Weights style: W 
## Weights constants summary:
##    n   nn S0       S1       S2
## W 49 2401 49 38.80069 206.8219

Spatial contiguity weights (Bobot Kedekatan Spasial)

shpcolumbus<-st_read(system.file("shapes/columbus.shp", package="spData")[1], quiet=TRUE)
class(shpcolumbus) #bentuknya sf; data.frame
## [1] "sf"         "data.frame"
columbus.map<- readOGR(system.file("shapes/columbus.shp", package="spData"))
## OGR data source with driver: ESRI Shapefile 
## Source: "C:\Users\User\Documents\R\win-library\4.1\spData\shapes\columbus.shp", layer: "columbus"
## with 49 features
## It has 20 fields
## Integer64 fields read as strings:  COLUMBUS_ COLUMBUS_I POLYID
class(columbus.map) #bentuknya spatialPolygonDataFrame
## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"
spplot(columbus.map,"CRIME",sub="Map of CRIME")

Spatial Autocorrelation (Responsi Pertemuan 9)

Joint Count Statistics

Joint count merupakan metode paling dasar dalam menentukan autokorelasi spasial antar area. Penjelasan lebih lengkap mengenai metode ini dapat dilihat pada Lizazaro (2016). Ilustrasi berikut ini diadaptasi dari Lizazaro (2016). Untuk melakukan analisis joint count, terlebih dulu kita load beberapa package pada R.

library(raster)
library(sp)
library(spdep)

Sebagai ilustrasi, kita akan membuat data contoh dengan menggunakan syntax berikut.

pri <- rep(1,12)
seg <- rep(0,4)
ter <- rep(1,2)
cua <- rep(0,4)
qui <- rep(1,2)
sex <-  rep(0,12)

A <- matrix(c(pri, seg, ter, cua ,qui, sex), nrow=6, byrow=FALSE)

A
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1    1    0    0    0    0
## [2,]    1    1    0    0    0    0
## [3,]    1    1    0    0    0    0
## [4,]    1    1    0    0    0    0
## [5,]    1    1    1    1    0    0
## [6,]    1    1    1    1    0    0

Selanjutnya matriks A dikonversi menjadi raster menggunakan fungsi raster().

rA <- raster(A)

rA
## class      : RasterLayer 
## dimensions : 6, 6, 36  (nrow, ncol, ncell)
## resolution : 0.1666667, 0.1666667  (x, y)
## extent     : 0, 1, 0, 1  (xmin, xmax, ymin, ymax)
## crs        : NA 
## source     : memory
## names      : layer 
## values     : 0, 1  (min, max)

Berikut ini adalah plot dari area A.

plot(rA)
text(coordinates(rA), labels=rA[], cex=1.5)

Kriteria ketetanggaan selanjutnya digunakan untuk mengkuantifikasi pola kedekatan data tersebut.

pA <- rasterToPolygons(rA, dissolve=FALSE)

pA
## class       : SpatialPolygonsDataFrame 
## features    : 36 
## extent      : 0, 1, 0, 1  (xmin, xmax, ymin, ymax)
## crs         : NA 
## variables   : 1
## names       : layer 
## min values  :     0 
## max values  :     1

Seandainya kita akan menggunakan kriteria Queen Contiguity, maka dapat dilakukan dengan syntax berikut.

#Queen Contiguity
spA <- SpatialPolygons(pA@polygons)

nb1 <- poly2nb(spA, queen = T)

nb1
## Neighbour list object:
## Number of regions: 36 
## Number of nonzero links: 220 
## Percentage nonzero weights: 16.97531 
## Average number of links: 6.111111

Selanjutnya kita dapat memvisualisasikan link dari ketetanggannya.

par(mai=c(0,0,0,0))
plot(spA, col='gray', border='blue')
xy <- coordinates(spA)
plot(nb1, xy, col='red', lwd=2, add=TRUE)

Seandainya kriteria yang digunakan adalah Rook Contiguity.

nb2 <- poly2nb(spA, queen = F)

nb2
## Neighbour list object:
## Number of regions: 36 
## Number of nonzero links: 120 
## Percentage nonzero weights: 9.259259 
## Average number of links: 3.333333

Selanjutnya kita dapat memvisualisasikan link dari ketetanggannya

par(mai=c(0,0,0,0))
plot(spA, col='gray', border='blue')
xy <- coordinates(spA)
plot(nb2, xy, col='green', lwd=2, add=TRUE)

Agar dapat mengidentifikasi pola autokorelasi dengan Joint Count Statistics pada data ini, maka matriks bobot perlu disusun dengan tipe biner.

wl1 <- nb2listw(nb1, style='B')

wl2 <- nb2listw(nb2, style='B')

jc_test1 <- joincount.test(as.factor(pA$layer), wl1)

jc_test1
## 
##  Join count test under nonfree sampling
## 
## data:  as.factor(pA$layer) 
## weights: wl1 
## 
## Std. deviate for 0 = 5.1529, p-value = 1.282e-07
## alternative hypothesis: greater
## sample estimates:
## Same colour statistic           Expectation              Variance 
##              53.00000              33.17460              14.80263 
## 
## 
##  Join count test under nonfree sampling
## 
## data:  as.factor(pA$layer) 
## weights: wl1 
## 
## Std. deviate for 1 = 4.7634, p-value = 9.52e-07
## alternative hypothesis: greater
## sample estimates:
## Same colour statistic           Expectation              Variance 
##              37.00000              20.95238              11.34999
jc_test2 <- joincount.test(as.factor(pA$layer), wl2)

jc_test2
## 
##  Join count test under nonfree sampling
## 
## data:  as.factor(pA$layer) 
## weights: wl2 
## 
## Std. deviate for 0 = 5.4677, p-value = 2.28e-08
## alternative hypothesis: greater
## sample estimates:
## Same colour statistic           Expectation              Variance 
##             30.000000             18.095238              4.740611 
## 
## 
##  Join count test under nonfree sampling
## 
## data:  as.factor(pA$layer) 
## weights: wl2 
## 
## Std. deviate for 1 = 5.1203, p-value = 1.525e-07
## alternative hypothesis: greater
## sample estimates:
## Same colour statistic           Expectation              Variance 
##             22.000000             11.428571              4.262554

Berdasarkan kedua output di atas, dengan p-value yang sangat kecil, artinya kita dapat menolak hipotesis nol yang menyatakan bahwa tidak terdapat autokorelasi. Sesuai dengan output di atas, alternative hypothesis: greater, artinya kita dapat menyimpulkan bahwa terdapat cukup bukti untuk menyatakan bahwa terdapat autokorelasi positif pada taraf nyata 5%.

Keterangan: grater : mengecek apakah ada asosiasi spasial positif (+)

less : mengecek apakah ada asosiasi spasial negatif (-)

two.sided : mengecek apakah ada asosiasi spasial atau tidak.

Pengujian hipotesis dapat pula dilakukan dengan melibatkan algoritma monte carlo seperti di bawah ini.

set.seed(123)
jc_test3 <- joincount.mc(as.factor(pA$layer), wl1, nsim=99)

jc_test3
## 
##  Monte-Carlo simulation of join-count statistic
## 
## data:  as.factor(pA$layer) 
## weights: wl1 
## number of simulations + 1: 100 
## 
## Join-count statistic for 0 = 53, rank of observed statistic = 100,
## p-value = 0.01
## alternative hypothesis: greater
## sample estimates:
##     mean of simulation variance of simulation 
##               33.01010               15.15296 
## 
## 
##  Monte-Carlo simulation of join-count statistic
## 
## data:  as.factor(pA$layer) 
## weights: wl1 
## number of simulations + 1: 100 
## 
## Join-count statistic for 1 = 37, rank of observed statistic = 100,
## p-value = 0.01
## alternative hypothesis: greater
## sample estimates:
##     mean of simulation variance of simulation 
##               20.37374               12.37930

Global Autocorrelation

Global Autocorrelation berarti autokorelasi spasial secara umum (global), bukan untuk masing-masing area (lokal)

Moran’s I (Indeks Moran)

Sebagai ilustrasi, kita masih akan menggunakan data yang sama. Seandainya kita ingin menguji autokorelasi menggunakan pendekatan indeks moran, maka kita dapat menggunakan fungsi moran.test().

#cek normalitas data
moran(pA$layer,wl1,n=length(wl1$neighbours), S0=Szero(wl1))#s0 Grand total matrix bobot
## $I
## [1] 0.6240909
## 
## $K
## [1] 1.05

Diperoleh nilai kurtosisnya 1.05 berarti data tidak normal karena untuk data yang normal biasanya sekitar 3 sehingga kurang tepat jika uji Mohran dengan asumsi kenormalan. Secara umum, data count jarang terpenuhi asumsinya normalnya. Jadi, selanjutnya digunakan uji Mohran dengan asumsi data acak (random).

#Asumsi Data Acak (Random)
I1 <- moran.test(pA$layer,wl1)#jika datanya asumsi normal kita tambahkan randomisation=F, untuk pA$layer adalah peubah yang akan dilihat asosiasi spasialnya, wl1 adalah matriks bobot yang digunakan

I1
## 
##  Moran I test under randomisation
## 
## data:  pA$layer  
## weights: wl1    
## 
## Moran I statistic standard deviate = 7.4654, p-value = 4.151e-14
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##       0.624090909      -0.028571429       0.007643049

Sama halnya seperti yang telah diperlihatkan pada uji dengan metode joint count, uji moran juga dapat dilakukan dengan melibatkan simulasi monte carlo.

set.seed(123)
MC<- moran.mc(pA$layer, wl1, nsim=599)

# View results (including p-value)
MC
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  pA$layer 
## weights: wl1  
## number of simulations + 1: 600 
## 
## statistic = 0.62409, observed rank = 600, p-value = 0.001667
## alternative hypothesis: greater

Global Geary’s C

Geary’s C merupakan alternatif dari indeks Moran, yang memiliki nilai antara 0 s.d 2. Nilai 0 menunjukkan autokorelasi positif, 1 menunjukkan tidak ada autokorelasi, dan 2 menunjukkan autokorelasi negatif.

C1 <- geary.test(pA$layer,wl1) 

C1
## 
##  Geary C test under randomisation
## 
## data:  pA$layer 
## weights: wl1 
## 
## Geary C statistic standard deviate = 7.4869, p-value = 3.526e-14
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic       Expectation          Variance 
##       0.357954545       1.000000000       0.007354046

Dengan monte carlo:

GS1 <- geary.mc(pA$layer, wl1, nsim=599)

GS1
## 
##  Monte-Carlo simulation of Geary C
## 
## data:  pA$layer 
## weights: wl1 
## number of simulations + 1: 600 
## 
## statistic = 0.35795, observed rank = 1, p-value = 0.001667
## alternative hypothesis: greater

Global G

CG <- globalG.test(pA$layer,wl1) 

CG
## 
##  Getis-Ord global G statistic
## 
## data:  pA$layer 
## weights: wl1 
## 
## standard deviate = 4.7634, p-value = 9.52e-07
## alternative hypothesis: greater
## sample estimates:
## Global G statistic        Expectation           Variance 
##       0.3083333333       0.1746031746       0.0007881941

Local Autocorrelation

Local Moran’s I

Pendekatan ini termasuk ke dalam Local Indicators for Spatial Association (LISA), yang mengindentifikasi autokorelasi pada tingkat lokal.

oid <- order(pA$layer)
resI <- localmoran(pA$layer, wl1)
head(resI)
##     Ii        E.Ii   Var.Ii      Z.Ii  Pr(z > 0)
## 1 3.75 -0.08571429 2.817443 2.2851709 0.01115140
## 2 1.75 -0.14285714 4.402701 0.9021074 0.18349991
## 3 0.40 -0.14285714 4.402701 0.2587176 0.39792657
## 4 4.00 -0.14285714 4.402701 1.9744237 0.02416679
## 5 4.00 -0.14285714 4.402701 1.9744237 0.02416679
## 6 2.40 -0.08571429 2.817443 1.4808929 0.06931756
pA$z.li <- resI[,4]
pA$pvalue <- resI[,5]
lm.palette <- colorRampPalette(c("white","orange", "red"), space = "rgb")
spplot(pA, zcol="z.li", col.regions=lm.palette(20), main="Local Moran")

Warna yang lebih pekat berarti memiliki nilai Z_Score yang besar berarti cenderung memiliki korelasi positif dengan tetangganya.

moran.plot(pA$layer,wl1)

Terdapat 4 kuadran dalam Indeks Moran Lokal. Tanda seperti diamond pada moral plot di atas berarti pengamatan tersebut memiliki pengaruh yang besar terhadap autokorelasi spasial pada data tesebut. Tanda seperti diamond pada gambar di atas berada pada Kuadran 4, yaitu memiliki nilai yang kecil sedangkan tetangganya memiliki nilai yang besar (biasa disebut Coldspot).

Getis-Ord Gi

Menurut Mendez (2020), pendekatan Getis-ord Gi dapat membantu mengidentifikasi pola penggerombolan berdasarkan ukuran autokorelasi pada level lokal.

local_g <- localG(pA$layer, wl1)

local_g
##  [1]  2.0615528  0.8246211 -0.2730593 -2.1844747 -2.1844747 -1.6383560
##  [7]  2.7487371  1.2598378 -0.5233637 -2.9126330 -2.9126330 -2.1844747
## [13]  2.7487371  1.2598378 -0.5233637 -2.9126330 -2.9126330 -2.1844747
## [19]  2.7487371  2.0615528  1.0694824 -1.3197868 -2.1162099 -2.1844747
## [25]  2.7487371  2.8632678  2.0615528 -0.3435921 -1.3197868 -2.1844747
## [31]  2.0615528  2.7487371  2.7487371  0.8246211 -0.2730593 -1.6383560
## attr(,"gstari")
## [1] FALSE
## attr(,"call")
## localG(x = pA$layer, listw = wl1)
## attr(,"class")
## [1] "localG"

Output di atas menghasilkan z-score, yang biasanya disajikan secara visual untuk mengidentifikasi cluster maupun hotspot.

pA$localg <- as.numeric(local_g)
lm.palette <- colorRampPalette(c("white","orange", "red"), space = "rgb")
spplot(pA, zcol="localg", col.regions=lm.palette(20), main="Local Gi")

Exercise (Latihan)

Sebagai latihan, Anda dipersilahkan menggunakan data yang tersedia pada: https://github.com/raoy/SpatialReg . Terdapat dua data yang harus Anda download, yaitu:

  • Jabar Data (gabung).xlsx

  • petaJabar2.zip

Data pertama (dengan format Excel) menyimpan data kependudukan yang diperoleh dari BPS. Sedangkan data kedua merupakan data shapefile berisi peta Provinsi Jawa Barat. Silahkan manfaatkan kedua data tersebut untuk mengeksplorasi pola depedensi spasial untuk peubah kemiskinan antar kota/kabupaten di Jawa Barat pada tahun 2015. Data tersebut terdapat pada kolom I dengan nama kolom p.miskin15 pada file Excel.

Input Data

library(readxl)
library(rgdal)
datajabar<-read_excel("Jabar Data (gabung).xlsx", sheet = "data")

View(datajabar)
petajabar<-readOGR(dsn="petaJabar2", layer="Jabar2") #dsn diisi nama folder #layer diisi nama file dalam folder
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\Kuliah S2 IPB\Bahan Kuliah\Semester 2 SSD 2020\STA533 Spasial\PRAKTIKUM\R\petaJabar2", layer: "Jabar2"
## with 26 features
## It has 7 fields
plot(petajabar) #peta kosongan tanpa data
text(petajabar,'KABKOT',cex=0.5) #menambahkan nama wilayah pada peta

Eksplorasi Data

Peta sebaran persentase penduduk miskin di Jabar tahun 2015

library(raster)
colfunc<-colorRampPalette(c("green", "yellow","red")) #menentukan warna peta
petajabar$miskin<-datajabar$p.miskin15
spplot(petajabar, "miskin", col.regions=colfunc(16),
       main="Peta Persentase Penduduk Miskin di Jawa Barat Tahun 2015")

Membuat Matriks Bobot

Distance Matrix (dengan Matriks Jarak)

# Matriks dengan Distance
longlat<-cbind(datajabar$Long ,datajabar$Lat)
plot(longlat)

gjarak<-pointDistance(longlat,lonlat=TRUE) #hitung jarak dengan memperhitungkan bahwa bumi itu bulat
gjarak
##             [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
##  [1,]      0.000        NA        NA        NA        NA        NA        NA
##  [2,]  57149.459      0.00        NA        NA        NA        NA        NA
##  [3,]  76541.152  49887.51      0.00        NA        NA        NA        NA
##  [4,] 110518.410  99543.90  50180.73      0.00        NA        NA        NA
##  [5,] 143197.373 123243.55  74037.50  34802.83      0.00        NA        NA
##  [6,] 183595.699 164797.40 115786.77  73201.61  41760.58      0.00        NA
##  [7,] 210952.313 197960.73 148247.86 101432.73  75218.13  36513.26      0.00
##  [8,] 204023.478 204569.08 155606.85 105436.43  93828.94  71481.73  48691.53
##  [9,] 198161.633 206711.56 159866.78 111083.85 108198.38  94637.38  76758.36
## [10,] 167036.578 173410.51 126531.64  78095.76  79366.74  76407.23  72165.40
## [11,] 137167.994 143118.36  97146.53  50959.47  62803.43  76381.49  86098.07
## [12,] 155349.912 175480.14 135009.16  94826.46 109136.36 115966.42 113856.28
## [13,] 106906.216 130498.91  95869.79  69408.16  97012.55 120773.67 132734.13
## [14,]  73472.772  95832.25  66850.17  59229.32  93289.84 126829.28 147193.51
## [15,]  73214.326 115514.13  99889.25  97983.58 131587.54 162871.48 179468.81
## [16,]  54597.832 105335.61 101666.14 111855.55 146540.73 181154.89 200735.43
## [17,]  80531.057  80327.67  38633.99  31171.16  65745.11 104093.89 130421.77
## [18,]   4940.917  54124.36  71674.07 105721.75 138307.67 178763.01 206283.97
## [19,]  45274.233  27968.49  33542.73  77890.69 106185.56 147852.84 178857.05
## [20,] 103795.763 103808.55  57980.71  20200.74  51533.48  84792.23 107892.68
## [21,] 198363.532 207022.55 160209.54 111453.59 108639.65  95105.87  77186.38
## [22,]  38597.128  92629.71  96509.50 114669.42 149425.35 186276.12 208388.89
## [23,]  19015.650  75958.90  89861.53 117321.15 151315.56 190375.02 215420.27
## [24,]  92919.094  94422.17  50642.21  24748.45  58920.45  94418.90 118548.39
## [25,] 183050.783 169658.38 119885.86  73118.27  47530.87  17397.97  28441.52
## [26,] 218155.155 207719.77 157864.79 109880.96  85871.92  48795.41  12808.60
##            [,8]        [,9]     [,10]     [,11]     [,12]     [,13]     [,14]
##  [1,]        NA          NA        NA        NA        NA        NA        NA
##  [2,]        NA          NA        NA        NA        NA        NA        NA
##  [3,]        NA          NA        NA        NA        NA        NA        NA
##  [4,]        NA          NA        NA        NA        NA        NA        NA
##  [5,]        NA          NA        NA        NA        NA        NA        NA
##  [6,]        NA          NA        NA        NA        NA        NA        NA
##  [7,]        NA          NA        NA        NA        NA        NA        NA
##  [8,]      0.00          NA        NA        NA        NA        NA        NA
##  [9,]  28629.29      0.0000        NA        NA        NA        NA        NA
## [10,]  39390.36  33365.0673      0.00        NA        NA        NA        NA
## [11,]  67028.03  63665.6481  30624.58      0.00        NA        NA        NA
## [12,]  75163.98  53554.1738  41789.16  46520.89      0.00        NA        NA
## [13,] 108114.97  95077.0825  68724.91  46661.40  48443.70      0.00        NA
## [14,] 132659.60 124854.1655  94491.77  65783.99  83052.53  35371.07      0.00
## [15,] 157215.51 143246.8115 117825.16  93942.38  92735.84  49102.89  38909.58
## [16,] 181544.48 168762.1632 142235.73 116624.84 118795.95  73910.18  54335.01
## [17,] 127117.18 126715.9837  93585.25  63052.20  96975.10  57573.27  33456.56
## [18,] 199861.84 194415.9377 163088.59 133094.95 152272.40 103850.97  69958.13
## [19,] 180920.89 181115.0541 148019.95 117466.34 147923.92 102557.16  67875.19
## [20,] 102505.64 102912.6544  69602.17  39450.14  78540.59  49247.53  42372.36
## [21,]  29022.74    468.9937  33696.84  63963.19  53502.71  95188.38 125042.99
## [22,] 192646.13 181707.5267 153672.58 126449.75 133298.47  86680.84  61335.05
## [23,] 204162.54 195676.5332 165976.82 137193.50 149667.41 101730.59  71535.31
## [24,] 113105.44 112474.9097  79325.91  48809.32  84392.00  49134.77  34507.17
## [25,]  54478.87  77243.2948  60353.57  64786.40 100970.96 110839.22 121360.27
## [26,]  41153.43  69779.9485  70742.09  88889.68 111613.28 135033.87 152233.27
##           [,15]     [,16]     [,17]     [,18]     [,19]     [,20]     [,21]
##  [1,]        NA        NA        NA        NA        NA        NA        NA
##  [2,]        NA        NA        NA        NA        NA        NA        NA
##  [3,]        NA        NA        NA        NA        NA        NA        NA
##  [4,]        NA        NA        NA        NA        NA        NA        NA
##  [5,]        NA        NA        NA        NA        NA        NA        NA
##  [6,]        NA        NA        NA        NA        NA        NA        NA
##  [7,]        NA        NA        NA        NA        NA        NA        NA
##  [8,]        NA        NA        NA        NA        NA        NA        NA
##  [9,]        NA        NA        NA        NA        NA        NA        NA
## [10,]        NA        NA        NA        NA        NA        NA        NA
## [11,]        NA        NA        NA        NA        NA        NA        NA
## [12,]        NA        NA        NA        NA        NA        NA        NA
## [13,]        NA        NA        NA        NA        NA        NA        NA
## [14,]        NA        NA        NA        NA        NA        NA        NA
## [15,]      0.00        NA        NA        NA        NA        NA        NA
## [16,]  26127.07      0.00        NA        NA        NA        NA        NA
## [17,]  71654.98  82135.55      0.00        NA        NA        NA        NA
## [18,]  72013.43  54882.88  75868.63      0.00        NA        NA        NA
## [19,]  89687.08  83037.27  54435.69  40715.15      0.00        NA        NA
## [20,]  80128.11  96521.30  24611.92  99294.06  78750.89      0.00        NA
## [21,] 143320.21 168852.14 127011.06 194624.76 181405.14 103227.34      0.00
## [22,]  41967.43  17586.29  83745.56  39740.79  73170.15 101655.53 181828.52
## [23,]  61527.73  39130.55  86281.68  21907.51  61298.60 107530.21 195837.05
## [24,]  73236.93  87747.56  14260.84  88407.00  68696.34  10893.60 112772.33
## [25,] 155480.37 175464.16 102565.59 178339.19 150420.44  80772.87  77711.68
## [26,] 182825.82 205016.76 137797.84 213573.14 187704.44 114485.29  70175.44
##          [,22]     [,23]     [,24]    [,25] [,26]
##  [1,]       NA        NA        NA       NA    NA
##  [2,]       NA        NA        NA       NA    NA
##  [3,]       NA        NA        NA       NA    NA
##  [4,]       NA        NA        NA       NA    NA
##  [5,]       NA        NA        NA       NA    NA
##  [6,]       NA        NA        NA       NA    NA
##  [7,]       NA        NA        NA       NA    NA
##  [8,]       NA        NA        NA       NA    NA
##  [9,]       NA        NA        NA       NA    NA
## [10,]       NA        NA        NA       NA    NA
## [11,]       NA        NA        NA       NA    NA
## [12,]       NA        NA        NA       NA    NA
## [13,]       NA        NA        NA       NA    NA
## [14,]       NA        NA        NA       NA    NA
## [15,]       NA        NA        NA       NA    NA
## [16,]       NA        NA        NA       NA    NA
## [17,]       NA        NA        NA       NA    NA
## [18,]       NA        NA        NA       NA    NA
## [19,]       NA        NA        NA       NA    NA
## [20,]       NA        NA        NA       NA    NA
## [21,]       NA        NA        NA       NA    NA
## [22,]      0.0        NA        NA       NA    NA
## [23,]  21755.4      0.00        NA       NA    NA
## [24,]  91866.8  96953.85      0.00       NA    NA
## [25,] 182111.2 188148.14  91203.51     0.00    NA
## [26,] 213568.3 221687.85 125306.42 38363.13     0
m.gjarak<-as.matrix(gjarak)
m.gjarak
##             [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
##  [1,]      0.000        NA        NA        NA        NA        NA        NA
##  [2,]  57149.459      0.00        NA        NA        NA        NA        NA
##  [3,]  76541.152  49887.51      0.00        NA        NA        NA        NA
##  [4,] 110518.410  99543.90  50180.73      0.00        NA        NA        NA
##  [5,] 143197.373 123243.55  74037.50  34802.83      0.00        NA        NA
##  [6,] 183595.699 164797.40 115786.77  73201.61  41760.58      0.00        NA
##  [7,] 210952.313 197960.73 148247.86 101432.73  75218.13  36513.26      0.00
##  [8,] 204023.478 204569.08 155606.85 105436.43  93828.94  71481.73  48691.53
##  [9,] 198161.633 206711.56 159866.78 111083.85 108198.38  94637.38  76758.36
## [10,] 167036.578 173410.51 126531.64  78095.76  79366.74  76407.23  72165.40
## [11,] 137167.994 143118.36  97146.53  50959.47  62803.43  76381.49  86098.07
## [12,] 155349.912 175480.14 135009.16  94826.46 109136.36 115966.42 113856.28
## [13,] 106906.216 130498.91  95869.79  69408.16  97012.55 120773.67 132734.13
## [14,]  73472.772  95832.25  66850.17  59229.32  93289.84 126829.28 147193.51
## [15,]  73214.326 115514.13  99889.25  97983.58 131587.54 162871.48 179468.81
## [16,]  54597.832 105335.61 101666.14 111855.55 146540.73 181154.89 200735.43
## [17,]  80531.057  80327.67  38633.99  31171.16  65745.11 104093.89 130421.77
## [18,]   4940.917  54124.36  71674.07 105721.75 138307.67 178763.01 206283.97
## [19,]  45274.233  27968.49  33542.73  77890.69 106185.56 147852.84 178857.05
## [20,] 103795.763 103808.55  57980.71  20200.74  51533.48  84792.23 107892.68
## [21,] 198363.532 207022.55 160209.54 111453.59 108639.65  95105.87  77186.38
## [22,]  38597.128  92629.71  96509.50 114669.42 149425.35 186276.12 208388.89
## [23,]  19015.650  75958.90  89861.53 117321.15 151315.56 190375.02 215420.27
## [24,]  92919.094  94422.17  50642.21  24748.45  58920.45  94418.90 118548.39
## [25,] 183050.783 169658.38 119885.86  73118.27  47530.87  17397.97  28441.52
## [26,] 218155.155 207719.77 157864.79 109880.96  85871.92  48795.41  12808.60
##            [,8]        [,9]     [,10]     [,11]     [,12]     [,13]     [,14]
##  [1,]        NA          NA        NA        NA        NA        NA        NA
##  [2,]        NA          NA        NA        NA        NA        NA        NA
##  [3,]        NA          NA        NA        NA        NA        NA        NA
##  [4,]        NA          NA        NA        NA        NA        NA        NA
##  [5,]        NA          NA        NA        NA        NA        NA        NA
##  [6,]        NA          NA        NA        NA        NA        NA        NA
##  [7,]        NA          NA        NA        NA        NA        NA        NA
##  [8,]      0.00          NA        NA        NA        NA        NA        NA
##  [9,]  28629.29      0.0000        NA        NA        NA        NA        NA
## [10,]  39390.36  33365.0673      0.00        NA        NA        NA        NA
## [11,]  67028.03  63665.6481  30624.58      0.00        NA        NA        NA
## [12,]  75163.98  53554.1738  41789.16  46520.89      0.00        NA        NA
## [13,] 108114.97  95077.0825  68724.91  46661.40  48443.70      0.00        NA
## [14,] 132659.60 124854.1655  94491.77  65783.99  83052.53  35371.07      0.00
## [15,] 157215.51 143246.8115 117825.16  93942.38  92735.84  49102.89  38909.58
## [16,] 181544.48 168762.1632 142235.73 116624.84 118795.95  73910.18  54335.01
## [17,] 127117.18 126715.9837  93585.25  63052.20  96975.10  57573.27  33456.56
## [18,] 199861.84 194415.9377 163088.59 133094.95 152272.40 103850.97  69958.13
## [19,] 180920.89 181115.0541 148019.95 117466.34 147923.92 102557.16  67875.19
## [20,] 102505.64 102912.6544  69602.17  39450.14  78540.59  49247.53  42372.36
## [21,]  29022.74    468.9937  33696.84  63963.19  53502.71  95188.38 125042.99
## [22,] 192646.13 181707.5267 153672.58 126449.75 133298.47  86680.84  61335.05
## [23,] 204162.54 195676.5332 165976.82 137193.50 149667.41 101730.59  71535.31
## [24,] 113105.44 112474.9097  79325.91  48809.32  84392.00  49134.77  34507.17
## [25,]  54478.87  77243.2948  60353.57  64786.40 100970.96 110839.22 121360.27
## [26,]  41153.43  69779.9485  70742.09  88889.68 111613.28 135033.87 152233.27
##           [,15]     [,16]     [,17]     [,18]     [,19]     [,20]     [,21]
##  [1,]        NA        NA        NA        NA        NA        NA        NA
##  [2,]        NA        NA        NA        NA        NA        NA        NA
##  [3,]        NA        NA        NA        NA        NA        NA        NA
##  [4,]        NA        NA        NA        NA        NA        NA        NA
##  [5,]        NA        NA        NA        NA        NA        NA        NA
##  [6,]        NA        NA        NA        NA        NA        NA        NA
##  [7,]        NA        NA        NA        NA        NA        NA        NA
##  [8,]        NA        NA        NA        NA        NA        NA        NA
##  [9,]        NA        NA        NA        NA        NA        NA        NA
## [10,]        NA        NA        NA        NA        NA        NA        NA
## [11,]        NA        NA        NA        NA        NA        NA        NA
## [12,]        NA        NA        NA        NA        NA        NA        NA
## [13,]        NA        NA        NA        NA        NA        NA        NA
## [14,]        NA        NA        NA        NA        NA        NA        NA
## [15,]      0.00        NA        NA        NA        NA        NA        NA
## [16,]  26127.07      0.00        NA        NA        NA        NA        NA
## [17,]  71654.98  82135.55      0.00        NA        NA        NA        NA
## [18,]  72013.43  54882.88  75868.63      0.00        NA        NA        NA
## [19,]  89687.08  83037.27  54435.69  40715.15      0.00        NA        NA
## [20,]  80128.11  96521.30  24611.92  99294.06  78750.89      0.00        NA
## [21,] 143320.21 168852.14 127011.06 194624.76 181405.14 103227.34      0.00
## [22,]  41967.43  17586.29  83745.56  39740.79  73170.15 101655.53 181828.52
## [23,]  61527.73  39130.55  86281.68  21907.51  61298.60 107530.21 195837.05
## [24,]  73236.93  87747.56  14260.84  88407.00  68696.34  10893.60 112772.33
## [25,] 155480.37 175464.16 102565.59 178339.19 150420.44  80772.87  77711.68
## [26,] 182825.82 205016.76 137797.84 213573.14 187704.44 114485.29  70175.44
##          [,22]     [,23]     [,24]    [,25] [,26]
##  [1,]       NA        NA        NA       NA    NA
##  [2,]       NA        NA        NA       NA    NA
##  [3,]       NA        NA        NA       NA    NA
##  [4,]       NA        NA        NA       NA    NA
##  [5,]       NA        NA        NA       NA    NA
##  [6,]       NA        NA        NA       NA    NA
##  [7,]       NA        NA        NA       NA    NA
##  [8,]       NA        NA        NA       NA    NA
##  [9,]       NA        NA        NA       NA    NA
## [10,]       NA        NA        NA       NA    NA
## [11,]       NA        NA        NA       NA    NA
## [12,]       NA        NA        NA       NA    NA
## [13,]       NA        NA        NA       NA    NA
## [14,]       NA        NA        NA       NA    NA
## [15,]       NA        NA        NA       NA    NA
## [16,]       NA        NA        NA       NA    NA
## [17,]       NA        NA        NA       NA    NA
## [18,]       NA        NA        NA       NA    NA
## [19,]       NA        NA        NA       NA    NA
## [20,]       NA        NA        NA       NA    NA
## [21,]       NA        NA        NA       NA    NA
## [22,]      0.0        NA        NA       NA    NA
## [23,]  21755.4      0.00        NA       NA    NA
## [24,]  91866.8  96953.85      0.00       NA    NA
## [25,] 182111.2 188148.14  91203.51     0.00    NA
## [26,] 213568.3 221687.85 125306.42 38363.13     0
djarak<-dist(longlat) #hitung jarak tanpa memperhitungkan bahwa bumi itu bulat
djarak
##              1           2           3           4           5           6
## 2  0.516772258                                                            
## 3  0.692234256 0.451582681                                                
## 4  0.999710801 0.901056552 0.454255058                                    
## 5  1.295474351 1.115801663 0.670302784 0.314834237                        
## 6  1.661198429 1.492194541 1.048413676 0.662554238 0.378204571            
## 7  1.908816488 1.792466835 1.342396995 0.918339119 0.681314206 0.330767164
## 8  1.845568470 1.851538493 1.408464171 0.954314221 0.849313673 0.646740976
## 9  1.792104788 1.870382712 1.446562223 1.005077119 0.978948741 0.855962560
## 10 1.510722086 1.569181631 1.145001027 0.706628674 0.717983103 0.690919695
## 11 1.240589598 1.295071942 0.879065743 0.461026756 0.567957420 0.690708574
## 12 1.404516341 1.587251926 1.221164946 0.857602400 0.986950179 1.048610040
## 13 0.966571110 1.180379098 0.867069946 0.627627924 0.877226335 1.092208794
## 14 0.664361990 0.866862898 0.604557539 0.535607592 0.843683694 1.147258964
## 15 0.661854917 1.044596623 0.903253970 0.886027058 1.189943319 1.473006240
## 16 0.493603303 0.952516623 0.919312913 1.011486254 1.325227259 1.638441173
## 17 0.728363707 0.726920938 0.349511624 0.281977527 0.594756430 0.941973947
## 18 0.044677717 0.489422945 0.648219182 0.956349255 1.251269061 1.617516898
## 19 0.409409283 0.253060214 0.303474189 0.704920775 0.961089487 1.338417080
## 20 0.938818049 0.939456635 0.524683865 0.182665201 0.466039026 0.767153988
## 21 1.793924261 1.873189118 1.449657507 1.008417932 0.982937663 0.860199337
## 22 0.348975054 0.837616863 0.872692348 1.036977530 1.351407213 1.684899804
## 23 0.171946726 0.686859256 0.812619830 1.061067742 1.368678132 1.722219171
## 24 0.840414931 0.854467316 0.458212156 0.223801226 0.532904480 0.854300759
## 25 1.656212112 1.536089139 1.085501739 0.661921959 0.430500514 0.157386063
## 26 1.973955976 1.880752822 1.429435243 0.994847937 0.777779650 0.441969442
##              7           8           9          10          11          12
## 2                                                                         
## 3                                                                         
## 4                                                                         
## 5                                                                         
## 6                                                                         
## 7                                                                         
## 8  0.440308634                                                            
## 9  0.694084071 0.258877492                                                
## 10 0.652616943 0.356354814 0.301814172                                    
## 11 0.778872504 0.606469434 0.575921001 0.277052826                        
## 12 1.029594605 0.679730933 0.484268257 0.377879625 0.420672525            
## 13 1.200583164 0.977849769 0.859774335 0.621499004 0.421954275 0.437945587
## 14 1.331700318 1.200028401 1.129173971 0.854628364 0.594974531 0.750904910
## 15 1.623245568 1.421707049 1.295113081 1.065352320 0.849429339 0.838191595
## 16 1.815638985 1.641676496 1.525746136 1.286023376 1.054486978 1.073695509
## 17 1.180462972 1.150303873 1.146360883 0.846701729 0.570460665 0.877006613
## 18 1.866634664 1.807983600 1.758287471 1.475064181 1.203791623 1.376737308
## 19 1.619151866 1.637265506 1.638567914 1.339253518 1.062818883 1.337849109
## 20 0.976480238 0.927611643 0.931032242 0.629725442 0.356919412 0.710278787
## 21 0.697954867 0.262435113 0.004241212 0.304813685 0.578610121 0.483801877
## 22 1.885013502 1.742164187 1.642863892 1.389490623 1.143360056 1.204828034
## 23 1.948882544 1.846514436 1.769343833 1.500893726 1.240620378 1.352920490
## 24 1.072915684 1.023494566 1.017514372 0.717683939 0.441593492 0.763195264
## 25 0.257587087 0.492911378 0.698614091 0.545738653 0.585922550 0.913019773
## 26 0.115971471 0.372120653 0.630973109 0.639832260 0.804231613 1.009357036
##             13          14          15          16          17          18
## 2                                                                         
## 3                                                                         
## 4                                                                         
## 5                                                                         
## 6                                                                         
## 7                                                                         
## 8                                                                         
## 9                                                                         
## 10                                                                        
## 11                                                                        
## 12                                                                        
## 13                                                                        
## 14 0.319814815                                                            
## 15 0.443873350 0.351836337                                                
## 16 0.668069953 0.491254708 0.236094170                                    
## 17 0.520644669 0.302529340 0.647940262 0.742704279                        
## 18 0.938978322 0.632601931 0.651027336 0.496204722 0.686215667            
## 19 0.927547761 0.613912103 0.810999335 0.750863760 0.492564412 0.368179594
## 20 0.445323516 0.383187273 0.724558069 0.872782389 0.222697199 0.898130149
## 21 0.860778053 1.130877751 1.295772169 1.526554194 1.149025665 1.760169755
## 22 0.783513341 0.554510456 0.379251974 0.158936046 0.757269814 0.359331645
## 23 0.919628925 0.646748745 0.556094355 0.353693650 0.780255183 0.198099110
## 24 0.444315265 0.312041612 0.662243300 0.793441782 0.129032921 0.799630923
## 25 1.002416933 1.097847187 1.406166377 1.586946842 0.928228942 1.613632924
## 26 1.221438977 1.377332314 1.653616340 1.854350002 1.247248563 1.932560003
##             19          20          21          22          23          24
## 2                                                                         
## 3                                                                         
## 4                                                                         
## 5                                                                         
## 6                                                                         
## 7                                                                         
## 8                                                                         
## 9                                                                         
## 10                                                                        
## 11                                                                        
## 12                                                                        
## 13                                                                        
## 14                                                                        
## 15                                                                        
## 16                                                                        
## 17                                                                        
## 18                                                                        
## 19                                                                        
## 20 0.712601791                                                            
## 21 1.641185881 0.933875162                                                
## 22 0.661640544 0.919231816 1.643952000                                    
## 23 0.554294202 0.972437946 1.770788938 0.196660364                        
## 24 0.621596006 0.098561502 1.020200849 0.830702382 0.876768803            
## 25 1.361617609 0.730916661 0.702849972 1.647189391 1.702019405 0.825318355
## 26 1.699203338 1.036202526 0.634549179 1.931842715 2.005552824 1.134123145
##             25
## 2             
## 3             
## 4             
## 5             
## 6             
## 7             
## 8             
## 9             
## 10            
## 11            
## 12            
## 13            
## 14            
## 15            
## 16            
## 17            
## 18            
## 19            
## 20            
## 21            
## 22            
## 23            
## 24            
## 25            
## 26 0.347470926
m.djarak<-as.matrix(djarak)
m.djarak
##             1         2         3         4         5         6         7
## 1  0.00000000 0.5167723 0.6922343 0.9997108 1.2954744 1.6611984 1.9088165
## 2  0.51677226 0.0000000 0.4515827 0.9010566 1.1158017 1.4921945 1.7924668
## 3  0.69223426 0.4515827 0.0000000 0.4542551 0.6703028 1.0484137 1.3423970
## 4  0.99971080 0.9010566 0.4542551 0.0000000 0.3148342 0.6625542 0.9183391
## 5  1.29547435 1.1158017 0.6703028 0.3148342 0.0000000 0.3782046 0.6813142
## 6  1.66119843 1.4921945 1.0484137 0.6625542 0.3782046 0.0000000 0.3307672
## 7  1.90881649 1.7924668 1.3423970 0.9183391 0.6813142 0.3307672 0.0000000
## 8  1.84556847 1.8515385 1.4084642 0.9543142 0.8493137 0.6467410 0.4403086
## 9  1.79210479 1.8703827 1.4465622 1.0050771 0.9789487 0.8559626 0.6940841
## 10 1.51072209 1.5691816 1.1450010 0.7066287 0.7179831 0.6909197 0.6526169
## 11 1.24058960 1.2950719 0.8790657 0.4610268 0.5679574 0.6907086 0.7788725
## 12 1.40451634 1.5872519 1.2211649 0.8576024 0.9869502 1.0486100 1.0295946
## 13 0.96657111 1.1803791 0.8670699 0.6276279 0.8772263 1.0922088 1.2005832
## 14 0.66436199 0.8668629 0.6045575 0.5356076 0.8436837 1.1472590 1.3317003
## 15 0.66185492 1.0445966 0.9032540 0.8860271 1.1899433 1.4730062 1.6232456
## 16 0.49360330 0.9525166 0.9193129 1.0114863 1.3252273 1.6384412 1.8156390
## 17 0.72836371 0.7269209 0.3495116 0.2819775 0.5947564 0.9419739 1.1804630
## 18 0.04467772 0.4894229 0.6482192 0.9563493 1.2512691 1.6175169 1.8666347
## 19 0.40940928 0.2530602 0.3034742 0.7049208 0.9610895 1.3384171 1.6191519
## 20 0.93881805 0.9394566 0.5246839 0.1826652 0.4660390 0.7671540 0.9764802
## 21 1.79392426 1.8731891 1.4496575 1.0084179 0.9829377 0.8601993 0.6979549
## 22 0.34897505 0.8376169 0.8726923 1.0369775 1.3514072 1.6848998 1.8850135
## 23 0.17194673 0.6868593 0.8126198 1.0610677 1.3686781 1.7222192 1.9488825
## 24 0.84041493 0.8544673 0.4582122 0.2238012 0.5329045 0.8543008 1.0729157
## 25 1.65621211 1.5360891 1.0855017 0.6619220 0.4305005 0.1573861 0.2575871
## 26 1.97395598 1.8807528 1.4294352 0.9948479 0.7777797 0.4419694 0.1159715
##            8           9        10        11        12        13        14
## 1  1.8455685 1.792104788 1.5107221 1.2405896 1.4045163 0.9665711 0.6643620
## 2  1.8515385 1.870382712 1.5691816 1.2950719 1.5872519 1.1803791 0.8668629
## 3  1.4084642 1.446562223 1.1450010 0.8790657 1.2211649 0.8670699 0.6045575
## 4  0.9543142 1.005077119 0.7066287 0.4610268 0.8576024 0.6276279 0.5356076
## 5  0.8493137 0.978948741 0.7179831 0.5679574 0.9869502 0.8772263 0.8436837
## 6  0.6467410 0.855962560 0.6909197 0.6907086 1.0486100 1.0922088 1.1472590
## 7  0.4403086 0.694084071 0.6526169 0.7788725 1.0295946 1.2005832 1.3317003
## 8  0.0000000 0.258877492 0.3563548 0.6064694 0.6797309 0.9778498 1.2000284
## 9  0.2588775 0.000000000 0.3018142 0.5759210 0.4842683 0.8597743 1.1291740
## 10 0.3563548 0.301814172 0.0000000 0.2770528 0.3778796 0.6214990 0.8546284
## 11 0.6064694 0.575921001 0.2770528 0.0000000 0.4206725 0.4219543 0.5949745
## 12 0.6797309 0.484268257 0.3778796 0.4206725 0.0000000 0.4379456 0.7509049
## 13 0.9778498 0.859774335 0.6214990 0.4219543 0.4379456 0.0000000 0.3198148
## 14 1.2000284 1.129173971 0.8546284 0.5949745 0.7509049 0.3198148 0.0000000
## 15 1.4217070 1.295113081 1.0653523 0.8494293 0.8381916 0.4438733 0.3518363
## 16 1.6416765 1.525746136 1.2860234 1.0544870 1.0736955 0.6680700 0.4912547
## 17 1.1503039 1.146360883 0.8467017 0.5704607 0.8770066 0.5206447 0.3025293
## 18 1.8079836 1.758287471 1.4750642 1.2037916 1.3767373 0.9389783 0.6326019
## 19 1.6372655 1.638567914 1.3392535 1.0628189 1.3378491 0.9275478 0.6139121
## 20 0.9276116 0.931032242 0.6297254 0.3569194 0.7102788 0.4453235 0.3831873
## 21 0.2624351 0.004241212 0.3048137 0.5786101 0.4838019 0.8607781 1.1308778
## 22 1.7421642 1.642863892 1.3894906 1.1433601 1.2048280 0.7835133 0.5545105
## 23 1.8465144 1.769343833 1.5008937 1.2406204 1.3529205 0.9196289 0.6467487
## 24 1.0234946 1.017514372 0.7176839 0.4415935 0.7631953 0.4443153 0.3120416
## 25 0.4929114 0.698614091 0.5457387 0.5859225 0.9130198 1.0024169 1.0978472
## 26 0.3721207 0.630973109 0.6398323 0.8042316 1.0093570 1.2214390 1.3773323
##           15        16        17         18        19        20          21
## 1  0.6618549 0.4936033 0.7283637 0.04467772 0.4094093 0.9388180 1.793924261
## 2  1.0445966 0.9525166 0.7269209 0.48942294 0.2530602 0.9394566 1.873189118
## 3  0.9032540 0.9193129 0.3495116 0.64821918 0.3034742 0.5246839 1.449657507
## 4  0.8860271 1.0114863 0.2819775 0.95634926 0.7049208 0.1826652 1.008417932
## 5  1.1899433 1.3252273 0.5947564 1.25126906 0.9610895 0.4660390 0.982937663
## 6  1.4730062 1.6384412 0.9419739 1.61751690 1.3384171 0.7671540 0.860199337
## 7  1.6232456 1.8156390 1.1804630 1.86663466 1.6191519 0.9764802 0.697954867
## 8  1.4217070 1.6416765 1.1503039 1.80798360 1.6372655 0.9276116 0.262435113
## 9  1.2951131 1.5257461 1.1463609 1.75828747 1.6385679 0.9310322 0.004241212
## 10 1.0653523 1.2860234 0.8467017 1.47506418 1.3392535 0.6297254 0.304813685
## 11 0.8494293 1.0544870 0.5704607 1.20379162 1.0628189 0.3569194 0.578610121
## 12 0.8381916 1.0736955 0.8770066 1.37673731 1.3378491 0.7102788 0.483801877
## 13 0.4438733 0.6680700 0.5206447 0.93897832 0.9275478 0.4453235 0.860778053
## 14 0.3518363 0.4912547 0.3025293 0.63260193 0.6139121 0.3831873 1.130877751
## 15 0.0000000 0.2360942 0.6479403 0.65102734 0.8109993 0.7245581 1.295772169
## 16 0.2360942 0.0000000 0.7427043 0.49620472 0.7508638 0.8727824 1.526554194
## 17 0.6479403 0.7427043 0.0000000 0.68621567 0.4925644 0.2226972 1.149025665
## 18 0.6510273 0.4962047 0.6862157 0.00000000 0.3681796 0.8981301 1.760169755
## 19 0.8109993 0.7508638 0.4925644 0.36817959 0.0000000 0.7126018 1.641185881
## 20 0.7245581 0.8727824 0.2226972 0.89813015 0.7126018 0.0000000 0.933875162
## 21 1.2957722 1.5265542 1.1490257 1.76016975 1.6411859 0.9338752 0.000000000
## 22 0.3792520 0.1589360 0.7572698 0.35933165 0.6616405 0.9192318 1.643952000
## 23 0.5560944 0.3536937 0.7802552 0.19809911 0.5542942 0.9724379 1.770788938
## 24 0.6622433 0.7934418 0.1290329 0.79963092 0.6215960 0.0985615 1.020200849
## 25 1.4061664 1.5869468 0.9282289 1.61363292 1.3616176 0.7309167 0.702849972
## 26 1.6536163 1.8543500 1.2472486 1.93256000 1.6992033 1.0362025 0.634549179
##           22        23        24        25        26
## 1  0.3489751 0.1719467 0.8404149 1.6562121 1.9739560
## 2  0.8376169 0.6868593 0.8544673 1.5360891 1.8807528
## 3  0.8726923 0.8126198 0.4582122 1.0855017 1.4294352
## 4  1.0369775 1.0610677 0.2238012 0.6619220 0.9948479
## 5  1.3514072 1.3686781 0.5329045 0.4305005 0.7777797
## 6  1.6848998 1.7222192 0.8543008 0.1573861 0.4419694
## 7  1.8850135 1.9488825 1.0729157 0.2575871 0.1159715
## 8  1.7421642 1.8465144 1.0234946 0.4929114 0.3721207
## 9  1.6428639 1.7693438 1.0175144 0.6986141 0.6309731
## 10 1.3894906 1.5008937 0.7176839 0.5457387 0.6398323
## 11 1.1433601 1.2406204 0.4415935 0.5859225 0.8042316
## 12 1.2048280 1.3529205 0.7631953 0.9130198 1.0093570
## 13 0.7835133 0.9196289 0.4443153 1.0024169 1.2214390
## 14 0.5545105 0.6467487 0.3120416 1.0978472 1.3773323
## 15 0.3792520 0.5560944 0.6622433 1.4061664 1.6536163
## 16 0.1589360 0.3536937 0.7934418 1.5869468 1.8543500
## 17 0.7572698 0.7802552 0.1290329 0.9282289 1.2472486
## 18 0.3593316 0.1980991 0.7996309 1.6136329 1.9325600
## 19 0.6616405 0.5542942 0.6215960 1.3616176 1.6992033
## 20 0.9192318 0.9724379 0.0985615 0.7309167 1.0362025
## 21 1.6439520 1.7707889 1.0202008 0.7028500 0.6345492
## 22 0.0000000 0.1966604 0.8307024 1.6471894 1.9318427
## 23 0.1966604 0.0000000 0.8767688 1.7020194 2.0055528
## 24 0.8307024 0.8767688 0.0000000 0.8253184 1.1341231
## 25 1.6471894 1.7020194 0.8253184 0.0000000 0.3474709
## 26 1.9318427 2.0055528 1.1341231 0.3474709 0.0000000

K-Nearest Neighbor Weight

#k=5
koord <- coordinates(petajabar)
koord
##        [,1]      [,2]
## 0  106.7687 -6.561184
## 1  106.7101 -7.074623
## 2  107.1578 -7.133713
## 3  107.6108 -7.099969
## 4  107.7889 -7.359586
## 5  108.1413 -7.496892
## 6  108.4661 -7.434347
## 7  108.5603 -7.004233
## 8  108.5513 -6.745512
## 9  108.2578 -6.815865
## 10 107.9809 -6.825066
## 11 108.1687 -6.448640
## 12 107.7322 -6.484194
## 13 107.4322 -6.595016
## 14 107.3539 -6.252003
## 15 107.1207 -6.215149
## 16 107.4150 -6.897056
## 17 106.7996 -6.593453
## 18 106.9243 -6.939872
## 19 107.6366 -6.919135
## 20 108.5535 -6.741886
## 21 106.9757 -6.280231
## 22 106.8168 -6.396102
## 23 107.5436 -6.886495
## 24 108.2194 -7.360251
## 25 108.5665 -7.376302
W1<-knn2nb(knearneigh(longlat,k=5,longlat=TRUE)) #matriks bobot dengan knn k=5 #knearneigh(x, k=1, longlat = NULL, use_kd_tree=TRUE)
W1
## Neighbour list object:
## Number of regions: 26 
## Number of nonzero links: 130 
## Percentage nonzero weights: 19.23077 
## Average number of links: 5 
## Non-symmetric neighbours list
class(W1) #nb
## [1] "nb"

Normalisasi Bobot Spasial dengan standardisasi baris:

W1<- nb2listw(W1,style='W') #W is row standardised (sums over all links to n). Standardisasi Baris
W1
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 26 
## Number of nonzero links: 130 
## Percentage nonzero weights: 19.23077 
## Average number of links: 5 
## Non-symmetric neighbours list
## 
## Weights style: W 
## Weights constants summary:
##    n  nn S0   S1    S2
## W 26 676 26 9.76 105.6
plot(petajabar, col='gray', border='blue', main ="knn, k=5")
plot(W1, longlat, col='red', lwd=2, add=TRUE)

Radial Distance Weigth

#d=50

W2<-dnearneigh(koord,0,50,longlat=TRUE) #dnearneigh(x, d1, d2, row.names = NULL, longlat = NULL, bounds=c("GE", "LE"), use_kd_tree=TRUE, symtest=FALSE)

W2
## Neighbour list object:
## Number of regions: 26 
## Number of nonzero links: 108 
## Percentage nonzero weights: 15.97633 
## Average number of links: 4.153846
class(W2) #nb
## [1] "nb"

Normalisasi Bobot Spasial dengan standardisasi baris:

W2 <- nb2listw(W2,style='W') #W is row standardised (sums over all links to n). Standardisasi Baris
W2
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 26 
## Number of nonzero links: 108 
## Percentage nonzero weights: 15.97633 
## Average number of links: 4.153846 
## 
## Weights style: W 
## Weights constants summary:
##    n  nn S0       S1       S2
## W 26 676 26 13.04833 105.4128
plot(petajabar, col='gray', border='blue', main ="Radial Distance, d=50")
plot(W2, longlat, col='red', lwd=2, add=TRUE)

Power Distance Weigth

Dengan alpha = 1:

#Alpha = 1
alpha1=1
W3a<-1/(m.gjarak^alpha1)
W3a
##               [,1]         [,2]         [,3]         [,4]         [,5]
##  [1,]          Inf           NA           NA           NA           NA
##  [2,] 1.749798e-05          Inf           NA           NA           NA
##  [3,] 1.306487e-05 2.004510e-05          Inf           NA           NA
##  [4,] 9.048266e-06 1.004582e-05 1.992797e-05          Inf           NA
##  [5,] 6.983368e-06 8.114015e-06 1.350667e-05 2.873329e-05          Inf
##  [6,] 5.446751e-06 6.068057e-06 8.636565e-06 1.366090e-05 2.394603e-05
##  [7,] 4.740408e-06 5.051507e-06 6.745460e-06 9.858750e-06 1.329467e-05
##  [8,] 4.901397e-06 4.888324e-06 6.426452e-06 9.484388e-06 1.065769e-05
##  [9,] 5.046386e-06 4.837659e-06 6.255208e-06 9.002208e-06 9.242283e-06
## [10,] 5.986713e-06 5.766663e-06 7.903161e-06 1.280479e-05 1.259974e-05
## [11,] 7.290330e-06 6.987224e-06 1.029373e-05 1.962344e-05 1.592270e-05
## [12,] 6.437081e-06 5.698650e-06 7.406905e-06 1.054558e-05 9.162849e-06
## [13,] 9.353993e-06 7.662899e-06 1.043081e-05 1.440753e-05 1.030794e-05
## [14,] 1.361048e-05 1.043490e-05 1.495883e-05 1.688353e-05 1.071928e-05
## [15,] 1.365853e-05 8.656950e-06 1.001109e-05 1.020579e-05 7.599504e-06
## [16,] 1.831575e-05 9.493465e-06 9.836116e-06 8.940102e-06 6.824041e-06
## [17,] 1.241757e-05 1.244901e-05 2.588394e-05 3.208093e-05 1.521026e-05
## [18,] 2.023916e-04 1.847597e-05 1.395205e-05 9.458792e-06 7.230257e-06
## [19,] 2.208762e-05 3.575452e-05 2.981272e-05 1.283850e-05 9.417477e-06
## [20,] 9.634305e-06 9.633118e-06 1.724712e-05 4.950314e-05 1.940486e-05
## [21,] 5.041249e-06 4.830392e-06 6.241825e-06 8.972344e-06 9.204742e-06
## [22,] 2.590866e-05 1.079567e-05 1.036167e-05 8.720721e-06 6.692305e-06
## [23,] 5.258826e-05 1.316501e-05 1.112823e-05 8.523613e-06 6.608706e-06
## [24,] 1.076205e-05 1.059073e-05 1.974637e-05 4.040658e-05 1.697204e-05
## [25,] 5.462965e-06 5.894198e-06 8.341268e-06 1.367647e-05 2.103896e-05
## [26,] 4.583894e-06 4.814178e-06 6.334535e-06 9.100758e-06 1.164525e-05
##               [,6]         [,7]         [,8]         [,9]        [,10]
##  [1,]           NA           NA           NA           NA           NA
##  [2,]           NA           NA           NA           NA           NA
##  [3,]           NA           NA           NA           NA           NA
##  [4,]           NA           NA           NA           NA           NA
##  [5,]           NA           NA           NA           NA           NA
##  [6,]          Inf           NA           NA           NA           NA
##  [7,] 2.738731e-05          Inf           NA           NA           NA
##  [8,] 1.398959e-05 2.053745e-05          Inf           NA           NA
##  [9,] 1.056665e-05 1.302790e-05 3.492926e-05          Inf           NA
## [10,] 1.308777e-05 1.385706e-05 2.538692e-05 2.997147e-05          Inf
## [11,] 1.309218e-05 1.161466e-05 1.491913e-05 1.570706e-05 3.265351e-05
## [12,] 8.623186e-06 8.783003e-06 1.330425e-05 1.867268e-05 2.392965e-05
## [13,] 8.279950e-06 7.533857e-06 9.249412e-06 1.051778e-05 1.455076e-05
## [14,] 7.884615e-06 6.793778e-06 7.538090e-06 8.009344e-06 1.058293e-05
## [15,] 6.139810e-06 5.571999e-06 6.360696e-06 6.980958e-06 8.487152e-06
## [16,] 5.520138e-06 4.981682e-06 5.508292e-06 5.925499e-06 7.030582e-06
## [17,] 9.606712e-06 7.667432e-06 7.866757e-06 7.891664e-06 1.068544e-05
## [18,] 5.593998e-06 4.847686e-06 5.003457e-06 5.143611e-06 6.131637e-06
## [19,] 6.763482e-06 5.591057e-06 5.527278e-06 5.521352e-06 6.755846e-06
## [20,] 1.179353e-05 9.268470e-06 9.755560e-06 9.716978e-06 1.436737e-05
## [21,] 1.051460e-05 1.295565e-05 3.445575e-05 2.132225e-03 2.967638e-05
## [22,] 5.368375e-06 4.798720e-06 5.190865e-06 5.503349e-06 6.507342e-06
## [23,] 5.252790e-06 4.642089e-06 4.898058e-06 5.110475e-06 6.024938e-06
## [24,] 1.059110e-05 8.435374e-06 8.841308e-06 8.890872e-06 1.260622e-05
## [25,] 5.747798e-05 3.515987e-05 1.835574e-05 1.294611e-05 1.656903e-05
## [26,] 2.049373e-05 7.807252e-05 2.429931e-05 1.433076e-05 1.413586e-05
##              [,11]        [,12]        [,13]        [,14]        [,15]
##  [1,]           NA           NA           NA           NA           NA
##  [2,]           NA           NA           NA           NA           NA
##  [3,]           NA           NA           NA           NA           NA
##  [4,]           NA           NA           NA           NA           NA
##  [5,]           NA           NA           NA           NA           NA
##  [6,]           NA           NA           NA           NA           NA
##  [7,]           NA           NA           NA           NA           NA
##  [8,]           NA           NA           NA           NA           NA
##  [9,]           NA           NA           NA           NA           NA
## [10,]           NA           NA           NA           NA           NA
## [11,]          Inf           NA           NA           NA           NA
## [12,] 2.149572e-05          Inf           NA           NA           NA
## [13,] 2.143099e-05 2.064252e-05          Inf           NA           NA
## [14,] 1.520127e-05 1.204057e-05 2.827169e-05          Inf           NA
## [15,] 1.064482e-05 1.078332e-05 2.036540e-05 2.570061e-05          Inf
## [16,] 8.574503e-06 8.417796e-06 1.352994e-05 1.840434e-05 3.827448e-05
## [17,] 1.585987e-05 1.031193e-05 1.736917e-05 2.988950e-05 1.395576e-05
## [18,] 7.513433e-06 6.567178e-06 9.629183e-06 1.429427e-05 1.388630e-05
## [19,] 8.513077e-06 6.760232e-06 9.750660e-06 1.473292e-05 1.114988e-05
## [20,] 2.534845e-05 1.273227e-05 2.030559e-05 2.360029e-05 1.248002e-05
## [21,] 1.563399e-05 1.869064e-05 1.050548e-05 7.997250e-06 6.977383e-06
## [22,] 7.908280e-06 7.501961e-06 1.153657e-05 1.630389e-05 2.382800e-05
## [23,] 7.288975e-06 6.681481e-06 9.829885e-06 1.397911e-05 1.625284e-05
## [24,] 2.048789e-05 1.184946e-05 2.035219e-05 2.897948e-05 1.365431e-05
## [25,] 1.543534e-05 9.903837e-06 9.022077e-06 8.239929e-06 6.431680e-06
## [26,] 1.124990e-05 8.959507e-06 7.405549e-06 6.568866e-06 5.469687e-06
##              [,16]        [,17]        [,18]        [,19]        [,20]
##  [1,]           NA           NA           NA           NA           NA
##  [2,]           NA           NA           NA           NA           NA
##  [3,]           NA           NA           NA           NA           NA
##  [4,]           NA           NA           NA           NA           NA
##  [5,]           NA           NA           NA           NA           NA
##  [6,]           NA           NA           NA           NA           NA
##  [7,]           NA           NA           NA           NA           NA
##  [8,]           NA           NA           NA           NA           NA
##  [9,]           NA           NA           NA           NA           NA
## [10,]           NA           NA           NA           NA           NA
## [11,]           NA           NA           NA           NA           NA
## [12,]           NA           NA           NA           NA           NA
## [13,]           NA           NA           NA           NA           NA
## [14,]           NA           NA           NA           NA           NA
## [15,]           NA           NA           NA           NA           NA
## [16,]          Inf           NA           NA           NA           NA
## [17,] 1.217500e-05          Inf           NA           NA           NA
## [18,] 1.822062e-05 1.318068e-05          Inf           NA           NA
## [19,] 1.204279e-05 1.837030e-05 2.456088e-05          Inf           NA
## [20,] 1.036041e-05 4.063072e-05 1.007110e-05 1.269827e-05          Inf
## [21,] 5.922341e-06 7.873330e-06 5.138092e-06 5.512523e-06 9.687356e-06
## [22,] 5.686248e-05 1.194093e-05 2.516306e-05 1.366678e-05 9.837143e-06
## [23,] 2.555548e-05 1.158995e-05 4.564644e-05 1.631359e-05 9.299712e-06
## [24,] 1.139633e-05 7.012209e-05 1.131132e-05 1.455682e-05 9.179706e-05
## [25,] 5.699169e-06 9.749859e-06 5.607292e-06 6.648033e-06 1.238039e-05
## [26,] 4.877650e-06 7.257008e-06 4.682237e-06 5.327524e-06 8.734747e-06
##              [,21]        [,22]        [,23]        [,24]       [,25] [,26]
##  [1,]           NA           NA           NA           NA          NA    NA
##  [2,]           NA           NA           NA           NA          NA    NA
##  [3,]           NA           NA           NA           NA          NA    NA
##  [4,]           NA           NA           NA           NA          NA    NA
##  [5,]           NA           NA           NA           NA          NA    NA
##  [6,]           NA           NA           NA           NA          NA    NA
##  [7,]           NA           NA           NA           NA          NA    NA
##  [8,]           NA           NA           NA           NA          NA    NA
##  [9,]           NA           NA           NA           NA          NA    NA
## [10,]           NA           NA           NA           NA          NA    NA
## [11,]           NA           NA           NA           NA          NA    NA
## [12,]           NA           NA           NA           NA          NA    NA
## [13,]           NA           NA           NA           NA          NA    NA
## [14,]           NA           NA           NA           NA          NA    NA
## [15,]           NA           NA           NA           NA          NA    NA
## [16,]           NA           NA           NA           NA          NA    NA
## [17,]           NA           NA           NA           NA          NA    NA
## [18,]           NA           NA           NA           NA          NA    NA
## [19,]           NA           NA           NA           NA          NA    NA
## [20,]           NA           NA           NA           NA          NA    NA
## [21,]          Inf           NA           NA           NA          NA    NA
## [22,] 5.499687e-06          Inf           NA           NA          NA    NA
## [23,] 5.106286e-06 4.596561e-05          Inf           NA          NA    NA
## [24,] 8.867423e-06 1.088533e-05 1.031419e-05          Inf          NA    NA
## [25,] 1.286808e-05 5.491149e-06 5.314961e-06 1.096449e-05         Inf    NA
## [26,] 1.425000e-05 4.682344e-06 4.510847e-06 7.980437e-06 2.60667e-05   Inf
#dinormalisasi 
diag(W3a) <-0
rtot<-rowSums(W3a,na.rm=TRUE)
rtot
##  [1] 0.000000e+00 1.749798e-05 3.310996e-05 3.902205e-05 5.733735e-05
##  [6] 5.775830e-05 6.707810e-05 7.088530e-05 9.290755e-05 1.273643e-04
## [11] 1.481040e-04 1.340596e-04 1.443685e-04 1.629293e-04 1.511666e-04
## [16] 1.695767e-04 2.413210e-04 3.615207e-04 2.459506e-04 3.285516e-04
## [21] 2.348056e-03 2.798965e-04 3.314515e-04 4.724165e-04 3.186789e-04
## [26] 3.158338e-04
W3a<-W3a/rtot #row-normalized
rowSums(W3a,na.rm=TRUE) #baris 1 totalnya nol (0)
##  [1] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
W3a #matriks bobot power distance dengan alpha=1
##              [,1]        [,2]        [,3]       [,4]        [,5]        [,6]
##  [1,]         NaN          NA          NA         NA          NA          NA
##  [2,] 1.000000000 0.000000000          NA         NA          NA          NA
##  [3,] 0.394590205 0.605409795 0.000000000         NA          NA          NA
##  [4,] 0.231875714 0.257439545 0.510684742 0.00000000          NA          NA
##  [5,] 0.121794410 0.141513607 0.235564952 0.50112703 0.000000000          NA
##  [6,] 0.094302472 0.105059474 0.149529415 0.23651841 0.414590226 0.000000000
##  [7,] 0.070669975 0.075307837 0.100561278 0.14697420 0.198196832 0.408289882
##  [8,] 0.069145464 0.068961049 0.090659881 0.13379908 0.150351240 0.197355290
##  [9,] 0.054316204 0.052069598 0.067327229 0.09689426 0.099478274 0.113732938
## [10,] 0.047004646 0.045276929 0.062051634 0.10053677 0.098926773 0.102758542
## [11,] 0.049224414 0.047177835 0.069503402 0.13249773 0.107510282 0.088398564
## [12,] 0.048016580 0.042508351 0.055250855 0.07866340 0.068349097 0.064323545
## [13,] 0.064792498 0.053078762 0.072251343 0.09979693 0.071400256 0.057352904
## [14,] 0.083536131 0.064045567 0.091811752 0.10362487 0.065790994 0.048392856
## [15,] 0.090354131 0.057267600 0.066225513 0.06751353 0.050272364 0.040616177
## [16,] 0.108008612 0.055983308 0.058003933 0.05272010 0.040241618 0.032552453
## [17,] 0.051456657 0.051586942 0.107259410 0.13293886 0.063029159 0.039808859
## [18,] 0.559834003 0.051106257 0.038592666 0.02616390 0.019999567 0.015473523
## [19,] 0.089805107 0.145372779 0.121214246 0.05219953 0.038290117 0.027499352
## [20,] 0.029323570 0.029319957 0.052494397 0.15067086 0.059061847 0.035895534
## [21,] 0.002146988 0.002057187 0.002658295 0.00382118 0.003920154 0.004478001
## [22,] 0.092565166 0.038570232 0.037019665 0.03115695 0.023909929 0.019179858
## [23,] 0.158660494 0.039719274 0.033574238 0.02571602 0.019938679 0.015847838
## [24,] 0.022780851 0.022418209 0.041798653 0.08553167 0.035926001 0.022418986
## [25,] 0.017142539 0.018495728 0.026174523 0.04291616 0.066019308 0.180363325
## [26,] 0.014513626 0.015242758 0.020056544 0.02881502 0.036871452 0.064887710
##              [,7]       [,8]       [,9]      [,10]      [,11]       [,12]
##  [1,]          NA         NA         NA         NA         NA          NA
##  [2,]          NA         NA         NA         NA         NA          NA
##  [3,]          NA         NA         NA         NA         NA          NA
##  [4,]          NA         NA         NA         NA         NA          NA
##  [5,]          NA         NA         NA         NA         NA          NA
##  [6,]          NA         NA         NA         NA         NA          NA
##  [7,] 0.000000000         NA         NA         NA         NA          NA
##  [8,] 0.289727992 0.00000000         NA         NA         NA          NA
##  [9,] 0.140224302 0.37595720 0.00000000         NA         NA          NA
## [10,] 0.108798605 0.19932528 0.23532083 0.00000000         NA          NA
## [11,] 0.078422365 0.10073419 0.10605428 0.22047695 0.00000000          NA
## [12,] 0.065515681 0.09924131 0.13928646 0.17850016 0.16034456 0.000000000
## [13,] 0.052184927 0.06406810 0.07285374 0.10078909 0.14844649 0.142984975
## [14,] 0.041697701 0.04626601 0.04915840 0.06495414 0.09329978 0.073900591
## [15,] 0.036859980 0.04207738 0.04618055 0.05614435 0.07041781 0.071333981
## [16,] 0.029377156 0.03248260 0.03494288 0.04145960 0.05056415 0.049640044
## [17,] 0.031772755 0.03259873 0.03270194 0.04427897 0.06572108 0.042731166
## [18,] 0.013409154 0.01384003 0.01422771 0.01696068 0.02078286 0.018165429
## [19,] 0.022732441 0.02247312 0.02244903 0.02746831 0.03461296 0.027486139
## [20,] 0.028210092 0.02969263 0.02957520 0.04372942 0.07715213 0.038752732
## [21,] 0.005517608 0.01467416 0.90808085 0.01263870 0.00665827 0.007960049
## [22,] 0.017144626 0.01854566 0.01966209 0.02324910 0.02825430 0.026802629
## [23,] 0.014005332 0.01477760 0.01541847 0.01817743 0.02199107 0.020158247
## [24,] 0.017855798 0.01871507 0.01881998 0.02668455 0.04336828 0.025082664
## [25,] 0.110330091 0.05759949 0.04062430 0.05199287 0.04843540 0.031077797
## [26,] 0.247194956 0.07693701 0.04537438 0.04475726 0.03561968 0.028367792
##            [,13]       [,14]       [,15]       [,16]       [,17]       [,18]
##  [1,]         NA          NA          NA          NA          NA          NA
##  [2,]         NA          NA          NA          NA          NA          NA
##  [3,]         NA          NA          NA          NA          NA          NA
##  [4,]         NA          NA          NA          NA          NA          NA
##  [5,]         NA          NA          NA          NA          NA          NA
##  [6,]         NA          NA          NA          NA          NA          NA
##  [7,]         NA          NA          NA          NA          NA          NA
##  [8,]         NA          NA          NA          NA          NA          NA
##  [9,]         NA          NA          NA          NA          NA          NA
## [10,]         NA          NA          NA          NA          NA          NA
## [11,]         NA          NA          NA          NA          NA          NA
## [12,]         NA          NA          NA          NA          NA          NA
## [13,] 0.00000000          NA          NA          NA          NA          NA
## [14,] 0.17352121 0.000000000          NA          NA          NA          NA
## [15,] 0.13472153 0.170015105 0.000000000          NA          NA          NA
## [16,] 0.07978652 0.108531055 0.225705972 0.000000000          NA          NA
## [17,] 0.07197539 0.123857876 0.057830718 0.050451464 0.000000000          NA
## [18,] 0.02663522 0.039539274 0.038410800 0.050399935 0.036458990 0.000000000
## [19,] 0.03964479 0.059901966 0.045333812 0.048964246 0.074691025 0.099861037
## [20,] 0.06180335 0.071831318 0.037984952 0.031533581 0.123666183 0.030653016
## [21,] 0.00447412 0.003405902 0.002971557 0.002522232 0.003353127 0.002188232
## [22,] 0.04121729 0.058249719 0.085131474 0.203155404 0.042661956 0.089901325
## [23,] 0.02965708 0.042175432 0.049035332 0.077101714 0.034967241 0.137716801
## [24,] 0.04308102 0.061343073 0.028903126 0.024123476 0.148432759 0.023943535
## [25,] 0.02831087 0.025856526 0.020182323 0.017883738 0.030594619 0.017595432
## [26,] 0.02344761 0.020798491 0.017318244 0.015443724 0.022977300 0.014825002
##             [,19]       [,20]      [,21]      [,22]      [,23]      [,24]
##  [1,]          NA          NA         NA         NA         NA         NA
##  [2,]          NA          NA         NA         NA         NA         NA
##  [3,]          NA          NA         NA         NA         NA         NA
##  [4,]          NA          NA         NA         NA         NA         NA
##  [5,]          NA          NA         NA         NA         NA         NA
##  [6,]          NA          NA         NA         NA         NA         NA
##  [7,]          NA          NA         NA         NA         NA         NA
##  [8,]          NA          NA         NA         NA         NA         NA
##  [9,]          NA          NA         NA         NA         NA         NA
## [10,]          NA          NA         NA         NA         NA         NA
## [11,]          NA          NA         NA         NA         NA         NA
## [12,]          NA          NA         NA         NA         NA         NA
## [13,]          NA          NA         NA         NA         NA         NA
## [14,]          NA          NA         NA         NA         NA         NA
## [15,]          NA          NA         NA         NA         NA         NA
## [16,]          NA          NA         NA         NA         NA         NA
## [17,]          NA          NA         NA         NA         NA         NA
## [18,]          NA          NA         NA         NA         NA         NA
## [19,] 0.000000000          NA         NA         NA         NA         NA
## [20,] 0.038649242 0.000000000         NA         NA         NA         NA
## [21,] 0.002347696 0.004125692 0.00000000         NA         NA         NA
## [22,] 0.048827967 0.035145647 0.01964901 0.00000000         NA         NA
## [23,] 0.049218616 0.028057533 0.01540583 0.13867972 0.00000000         NA
## [24,] 0.030813519 0.194313811 0.01877035 0.02304180 0.02183282 0.00000000
## [25,] 0.020861228 0.038849123 0.04037945 0.01723098 0.01667811 0.03440608
## [26,] 0.016868126 0.027656150 0.04511867 0.01482534 0.01428234 0.02526784
##            [,25] [,26]
##  [1,]         NA    NA
##  [2,]         NA    NA
##  [3,]         NA    NA
##  [4,]         NA    NA
##  [5,]         NA    NA
##  [6,]         NA    NA
##  [7,]         NA    NA
##  [8,]         NA    NA
##  [9,]         NA    NA
## [10,]         NA    NA
## [11,]         NA    NA
## [12,]         NA    NA
## [13,]         NA    NA
## [14,]         NA    NA
## [15,]         NA    NA
## [16,]         NA    NA
## [17,]         NA    NA
## [18,]         NA    NA
## [19,]         NA    NA
## [20,]         NA    NA
## [21,]         NA    NA
## [22,]         NA    NA
## [23,]         NA    NA
## [24,]         NA    NA
## [25,] 0.00000000    NA
## [26,] 0.08253296     0
##Menggunakan jarak tanpa memperhatikan bentuk bumi
W3a_1<-1/(m.djarak^alpha1)
W3a_1
##             1         2         3         4         5         6         7
## 1         Inf 1.9350884 1.4445977 1.0002893 0.7719180 0.6019750 0.5238848
## 2   1.9350884       Inf 2.2144339 1.1098083 0.8962166 0.6701539 0.5578904
## 3   1.4445977 2.2144339       Inf 2.2014064 1.4918631 0.9538220 0.7449361
## 4   1.0002893 1.1098083 2.2014064       Inf 3.1762746 1.5093104 1.0889224
## 5   0.7719180 0.8962166 1.4918631 3.1762746       Inf 2.6440717 1.4677516
## 6   0.6019750 0.6701539 0.9538220 1.5093104 2.6440717       Inf 3.0232747
## 7   0.5238848 0.5578904 0.7449361 1.0889224 1.4677516 3.0232747       Inf
## 8   0.5418385 0.5400914 0.7099932 1.0478729 1.1774213 1.5462141 2.2711342
## 9   0.5580031 0.5346499 0.6912941 0.9949485 1.0215039 1.1682754 1.4407477
## 10  0.6619351 0.6372749 0.8733617 1.4151704 1.3927904 1.4473462 1.5322924
## 11  0.8060683 0.7721579 1.1375713 2.1690715 1.7606954 1.4477886 1.2839072
## 12  0.7119889 0.6300197 0.8188902 1.1660415 1.0132224 0.9536434 0.9712561
## 13  1.0345850 0.8471855 1.1533095 1.5933007 1.1399567 0.9155759 0.8329286
## 14  1.5052035 1.1535850 1.6541023 1.8670385 1.1852783 0.8716428 0.7509197
## 15  1.5109051 0.9573073 1.1071083 1.1286337 0.8403762 0.6788838 0.6160497
## 16  2.0259184 1.0498504 1.0877689 0.9886442 0.7545876 0.6103362 0.5507703
## 17  1.3729405 1.3756654 2.8611352 3.5463819 1.6813606 1.0616005 0.8471253
## 18 22.3825226 2.0432226 1.5426881 1.0456431 0.7991886 0.6182316 0.5357235
## 19  2.4425435 3.9516287 3.2951732 1.4185991 1.0404858 0.7471513 0.6176073
## 20  1.0651691 1.0644451 1.9059096 5.4744965 2.1457430 1.3035193 1.0240863
## 21  0.5574371 0.5338489 0.6898181 0.9916523 1.0173585 1.1625212 1.4327574
## 22  2.8655343 1.1938633 1.1458792 0.9643410 0.7399694 0.5935071 0.5305002
## 23  5.8157548 1.4559023 1.2305877 0.9424469 0.7306320 0.5806462 0.5131146
## 24  1.1898884 1.1703198 2.1823952 4.4682508 1.8765089 1.1705479 0.9320397
## 25  0.6037874 0.6510039 0.9212330 1.5107521 2.3228776 6.3538027 3.8821822
## 26  0.5065969 0.5317020 0.6995770 1.0051787 1.2857112 2.2625999 8.6228104
##            8           9        10        11        12        13        14
## 1  0.5418385   0.5580031 0.6619351 0.8060683 0.7119889 1.0345850 1.5052035
## 2  0.5400914   0.5346499 0.6372749 0.7721579 0.6300197 0.8471855 1.1535850
## 3  0.7099932   0.6912941 0.8733617 1.1375713 0.8188902 1.1533095 1.6541023
## 4  1.0478729   0.9949485 1.4151704 2.1690715 1.1660415 1.5933007 1.8670385
## 5  1.1774213   1.0215039 1.3927904 1.7606954 1.0132224 1.1399567 1.1852783
## 6  1.5462141   1.1682754 1.4473462 1.4477886 0.9536434 0.9155759 0.8716428
## 7  2.2711342   1.4407477 1.5322924 1.2839072 0.9712561 0.8329286 0.7509197
## 8        Inf   3.8628310 2.8061919 1.6488877 1.4711704 1.0226520 0.8333136
## 9  3.8628310         Inf 3.3132970 1.7363493 2.0649712 1.1630959 0.8856031
## 10 2.8061919   3.3132970       Inf 3.6094200 2.6463454 1.6090130 1.1700992
## 11 1.6488877   1.7363493 3.6094200       Inf 2.3771460 2.3699250 1.6807442
## 12 1.4711704   2.0649712 2.6463454 2.3771460       Inf 2.2833887 1.3317265
## 13 1.0226520   1.1630959 1.6090130 2.3699250 2.2833887       Inf 3.1268095
## 14 0.8333136   0.8856031 1.1700992 1.6807442 1.3317265 3.1268095       Inf
## 15 0.7033798   0.7721333 0.9386566 1.1772610 1.1930447 2.2528949 2.8422306
## 16 0.6091334   0.6554170 0.7775908 0.9483284 0.9313627 1.4968492 2.0356039
## 17 0.8693355   0.8723256 1.1810535 1.7529692 1.1402423 1.9206957 3.3054645
## 18 0.5531024   0.5687352 0.6779366 0.8307086 0.7263550 1.0649873 1.5807729
## 19 0.6107745   0.6102890 0.7466846 0.9408941 0.7474685 1.0781116 1.6288977
## 20 1.0780374   1.0740767 1.5879936 2.8017529 1.4078979 2.2455585 2.6096900
## 21 3.8104657 235.7816798 3.2806926 1.7282795 2.0669618 1.1617397 0.8842689
## 22 0.5739987   0.6086932 0.7196882 0.8746151 0.8299940 1.2763025 1.8033925
## 23 0.5415609   0.5651813 0.6662697 0.8060483 0.7391417 1.0873951 1.5461955
## 24 0.9770448   0.9827871 1.3933710 2.2645261 1.3102807 2.2506542 3.2047008
## 25 2.0287623   1.4314054 1.8323789 1.7067102 1.0952665 0.9975889 0.9108736
## 26 2.6873005   1.5848536 1.5629096 1.2434229 0.9907297 0.8187065 0.7260412
##           15        16        17         18        19         20          21
## 1  1.5109051 2.0259184 1.3729405 22.3825226 2.4425435  1.0651691   0.5574371
## 2  0.9573073 1.0498504 1.3756654  2.0432226 3.9516287  1.0644451   0.5338489
## 3  1.1071083 1.0877689 2.8611352  1.5426881 3.2951732  1.9059096   0.6898181
## 4  1.1286337 0.9886442 3.5463819  1.0456431 1.4185991  5.4744965   0.9916523
## 5  0.8403762 0.7545876 1.6813606  0.7991886 1.0404858  2.1457430   1.0173585
## 6  0.6788838 0.6103362 1.0616005  0.6182316 0.7471513  1.3035193   1.1625212
## 7  0.6160497 0.5507703 0.8471253  0.5357235 0.6176073  1.0240863   1.4327574
## 8  0.7033798 0.6091334 0.8693355  0.5531024 0.6107745  1.0780374   3.8104657
## 9  0.7721333 0.6554170 0.8723256  0.5687352 0.6102890  1.0740767 235.7816798
## 10 0.9386566 0.7775908 1.1810535  0.6779366 0.7466846  1.5879936   3.2806926
## 11 1.1772610 0.9483284 1.7529692  0.8307086 0.9408941  2.8017529   1.7282795
## 12 1.1930447 0.9313627 1.1402423  0.7263550 0.7474685  1.4078979   2.0669618
## 13 2.2528949 1.4968492 1.9206957  1.0649873 1.0781116  2.2455585   1.1617397
## 14 2.8422306 2.0356039 3.3054645  1.5807729 1.6288977  2.6096900   0.8842689
## 15       Inf 4.2355980 1.5433522  1.5360338 1.2330466  1.3801516   0.7717406
## 16 4.2355980       Inf 1.3464309  2.0152972 1.3317995  1.1457610   0.6550701
## 17 1.5433522 1.3464309       Inf  1.4572678 2.0301913  4.4904022   0.8703026
## 18 1.5360338 2.0152972 1.4572678        Inf 2.7160658  1.1134244   0.5681270
## 19 1.2330466 1.3317995 2.0301913  2.7160658       Inf  1.4033083   0.6093155
## 20 1.3801516 1.1457610 4.4904022  1.1134244 1.4033083        Inf   1.0708069
## 21 0.7717406 0.6550701 0.8703026  0.5681270 0.6093155  1.0708069         Inf
## 22 2.6367694 6.2918389 1.3205333  2.7829444 1.5113947  1.0878649   0.6082903
## 23 1.7982560 2.8273055 1.2816320  5.0479783 1.8040961  1.0283433   0.5647200
## 24 1.5100191 1.2603319 7.7499602  1.2505769 1.6087619 10.1459493   0.9801991
## 25 0.7111534 0.6301408 1.0773204  0.6197196 0.7344206  1.3681450   1.4227787
## 26 0.6047352 0.5392725 0.8017648  0.5174484 0.5885111  0.9650623   1.5759220
##           22        23         24        25        26
## 1  2.8655343 5.8157548  1.1898884 0.6037874 0.5065969
## 2  1.1938633 1.4559023  1.1703198 0.6510039 0.5317020
## 3  1.1458792 1.2305877  2.1823952 0.9212330 0.6995770
## 4  0.9643410 0.9424469  4.4682508 1.5107521 1.0051787
## 5  0.7399694 0.7306320  1.8765089 2.3228776 1.2857112
## 6  0.5935071 0.5806462  1.1705479 6.3538027 2.2625999
## 7  0.5305002 0.5131146  0.9320397 3.8821822 8.6228104
## 8  0.5739987 0.5415609  0.9770448 2.0287623 2.6873005
## 9  0.6086932 0.5651813  0.9827871 1.4314054 1.5848536
## 10 0.7196882 0.6662697  1.3933710 1.8323789 1.5629096
## 11 0.8746151 0.8060483  2.2645261 1.7067102 1.2434229
## 12 0.8299940 0.7391417  1.3102807 1.0952665 0.9907297
## 13 1.2763025 1.0873951  2.2506542 0.9975889 0.8187065
## 14 1.8033925 1.5461955  3.2047008 0.9108736 0.7260412
## 15 2.6367694 1.7982560  1.5100191 0.7111534 0.6047352
## 16 6.2918389 2.8273055  1.2603319 0.6301408 0.5392725
## 17 1.3205333 1.2816320  7.7499602 1.0773204 0.8017648
## 18 2.7829444 5.0479783  1.2505769 0.6197196 0.5174484
## 19 1.5113947 1.8040961  1.6087619 0.7344206 0.5885111
## 20 1.0878649 1.0283433 10.1459493 1.3681450 0.9650623
## 21 0.6082903 0.5647200  0.9801991 1.4227787 1.5759220
## 22       Inf 5.0849087  1.2038006 0.6070947 0.5176405
## 23 5.0849087       Inf  1.1405515 0.5875374 0.4986156
## 24 1.2038006 1.1405515        Inf 1.2116537 0.8817385
## 25 0.6070947 0.5875374  1.2116537       Inf 2.8779386
## 26 0.5176405 0.4986156  0.8817385 2.8779386       Inf
#dinormalisasi 
diag(W3a_1) <-0
rtot<-rowSums(W3a_1,na.rm=TRUE)
rtot
##         1         2         3         4         5         6         7         8 
##  54.43637  28.47732  34.75885  43.82448  34.37376  34.89644  36.59461  34.52251 
##         9        10        11        12        13        14        15        16 
## 264.94315  38.47976  39.87525  31.61856  36.74321  41.09420  34.67972  36.80101 
##        17        18        19        20        21        22        23        24 
##  47.75745  54.59470  35.44722  51.98760 264.79675  38.37336  38.88482  54.31686 
##        25        26 
##  38.09653  34.89679
W3a_1<-W3a_1/rtot #row-normalized
rowSums(W3a_1,na.rm=TRUE)
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
W3a_1 #matriks bobot power distance dengan alpha=1 dengan distance tanpa memperhatikan bentuk bumi
##              1           2           3           4           5           6
## 1  0.000000000 0.035547709 0.026537361 0.018375384 0.014180188 0.011058324
## 2  0.067951925 0.000000000 0.077761330 0.038971660 0.031471247 0.023532903
## 3  0.041560566 0.063708483 0.000000000 0.063333686 0.042920376 0.027441122
## 4  0.022824900 0.025323937 0.050232350 0.000000000 0.072477185 0.034439896
## 5  0.022456605 0.026072694 0.043401216 0.092404041 0.000000000 0.076921216
## 6  0.017250327 0.019204076 0.027332929 0.043251126 0.075769092 0.000000000
## 7  0.014315900 0.015245151 0.020356442 0.029756357 0.040108406 0.082615295
## 8  0.015695223 0.015644616 0.020566096 0.030353325 0.034105903 0.044788579
## 9  0.002106124 0.002017980 0.002609217 0.003755328 0.003855559 0.004409532
## 10 0.017202162 0.016561299 0.022696648 0.036777004 0.036195400 0.037613178
## 11 0.020214754 0.019364340 0.028528257 0.054396438 0.044155094 0.036307952
## 12 0.022518071 0.019925632 0.025899039 0.036878393 0.032045182 0.030160877
## 13 0.028157176 0.023056925 0.031388371 0.043363133 0.031024961 0.024918233
## 14 0.036628127 0.028071723 0.040251479 0.045433141 0.028842960 0.021210848
## 15 0.043567396 0.027604240 0.031923796 0.032544486 0.024232495 0.019575814
## 16 0.055050622 0.028527763 0.029558128 0.026864595 0.020504535 0.016584769
## 17 0.028748192 0.028805251 0.059909710 0.074258187 0.035206244 0.022229001
## 18 0.409976095 0.037425290 0.028257102 0.019152831 0.014638575 0.011324021
## 19 0.068906490 0.111479226 0.092959988 0.040020039 0.029353101 0.021077852
## 20 0.020488909 0.020474982 0.036660853 0.105303900 0.041274136 0.025073660
## 21 0.002105151 0.002016071 0.002605085 0.003744957 0.003842035 0.004390240
## 22 0.074675098 0.031111774 0.029861321 0.025130483 0.019283415 0.015466645
## 23 0.149563624 0.037441405 0.031646995 0.024236884 0.018789644 0.014932464
## 24 0.021906430 0.021546161 0.040178966 0.082262688 0.034547449 0.021550362
## 25 0.015848883 0.017088274 0.024181547 0.039655901 0.060973473 0.166781676
## 26 0.014517006 0.015236415 0.020047030 0.028804333 0.036843251 0.064836906
##              7           8          9         10          11          12
## 1  0.009623801 0.009953611 0.01025056 0.01215979 0.014807532 0.013079285
## 2  0.019590694 0.018965671 0.01877459 0.02237833 0.027114841 0.022123564
## 3  0.021431549 0.020426254 0.01988829 0.02512631 0.032727526 0.023559182
## 4  0.024847356 0.023910677 0.02270303 0.03229178 0.049494523 0.026607084
## 5  0.042699764 0.034253488 0.02971755 0.04051900 0.051222072 0.029476620
## 6  0.086635616 0.044308646 0.03347835 0.04147547 0.041488144 0.027327811
## 7  0.000000000 0.062061983 0.03937049 0.04187208 0.035084596 0.026540958
## 8  0.065787058 0.000000000 0.11189312 0.08128587 0.047762686 0.042614817
## 9  0.005437950 0.014579849 0.00000000 0.01250569 0.006553667 0.007794016
## 10 0.039820734 0.072926434 0.08610492 0.00000000 0.093800471 0.068772392
## 11 0.032198098 0.041351158 0.04354454 0.09051780 0.000000000 0.059614574
## 12 0.030717914 0.046528702 0.06530884 0.08369596 0.075181991 0.000000000
## 13 0.022668911 0.027832407 0.03165472 0.04379076 0.064499673 0.062144508
## 14 0.018273132 0.020278133 0.02155056 0.02847359 0.040899793 0.032406680
## 15 0.017763976 0.020282164 0.02226469 0.02706644 0.033946668 0.034401795
## 16 0.014966174 0.016552085 0.01780976 0.02112961 0.025769089 0.025308077
## 17 0.017738074 0.018203138 0.01826575 0.02473024 0.036705668 0.023875692
## 18 0.009812737 0.010131063 0.01041741 0.01241763 0.015215919 0.013304496
## 19 0.017423293 0.017230533 0.01721684 0.02106469 0.026543522 0.021086800
## 20 0.019698666 0.020736434 0.02066025 0.03054563 0.053892720 0.027081420
## 21 0.005410782 0.014390153 0.89042511 0.01238947 0.006526815 0.007805843
## 22 0.013824700 0.014958261 0.01586239 0.01875489 0.022792248 0.021629432
## 23 0.013195754 0.013927308 0.01453475 0.01713444 0.020729125 0.019008490
## 24 0.017159308 0.017987873 0.01809359 0.02565264 0.041691037 0.024122910
## 25 0.101903833 0.053253206 0.03757312 0.04809832 0.044799626 0.028749773
## 26 0.247094661 0.077007097 0.04541546 0.04478663 0.035631441 0.028390282
##             13          14          15          16          17          18
## 1  0.019005399 0.027650694 0.027755433 0.037216262 0.025221012 0.411168507
## 2  0.029749485 0.040508908 0.033616488 0.036866201 0.048307413 0.071749128
## 3  0.033180307 0.047587939 0.031851116 0.031294728 0.082313850 0.044382592
## 4  0.036356412 0.042602643 0.025753501 0.022559179 0.080922403 0.023859797
## 5  0.033163568 0.034482065 0.024448186 0.021952428 0.048914067 0.023249960
## 6  0.026236940 0.024977985 0.019454240 0.017489927 0.030421454 0.017716178
## 7  0.022760961 0.020519952 0.016834438 0.015050584 0.023148906 0.014639408
## 8  0.029622760 0.024138270 0.020374528 0.017644530 0.025181702 0.016021500
## 9  0.004389983 0.003342616 0.002914336 0.002473803 0.003292501 0.002146631
## 10 0.041814525 0.030408171 0.024393513 0.020207786 0.030692846 0.017618003
## 11 0.059433486 0.042150062 0.029523602 0.023782383 0.043961337 0.020832686
## 12 0.072216730 0.042118513 0.037732421 0.029456208 0.036062440 0.022972428
## 13 0.000000000 0.085098975 0.061314591 0.040738118 0.052273488 0.028984602
## 14 0.076088831 0.000000000 0.069163792 0.049535068 0.080436282 0.038467058
## 15 0.064962890 0.081956559 0.000000000 0.122134720 0.044503016 0.044291989
## 16 0.040674137 0.055313808 0.115094620 0.000000000 0.036586794 0.054762012
## 17 0.040217717 0.069213584 0.032316467 0.028193105 0.000000000 0.030513935
## 18 0.019507155 0.028954695 0.028135218 0.036913788 0.026692477 0.000000000
## 19 0.030414560 0.045952762 0.034785425 0.037571339 0.057273640 0.076622815
## 20 0.043194121 0.050198322 0.026547711 0.022039122 0.086374495 0.021417116
## 21 0.004387288 0.003339425 0.002914464 0.002473860 0.003286681 0.002145521
## 22 0.033260118 0.046995951 0.068713542 0.163963726 0.034412763 0.072522826
## 23 0.027964514 0.039763472 0.046245705 0.072709746 0.032959698 0.129818734
## 24 0.041435647 0.059000114 0.027800191 0.023203329 0.142680568 0.023023735
## 25 0.026185822 0.023909622 0.018667145 0.016540637 0.028278704 0.016267090
## 26 0.023460797 0.020805387 0.017329250 0.015453356 0.022975317 0.014827965
##             19          20         21          22          23          24
## 1  0.044869696 0.019567231 0.01024016 0.052640066 0.106835823 0.021858334
## 2  0.138764088 0.037378702 0.01874646 0.041923308 0.051124986 0.041096563
## 3  0.094800970 0.054832346 0.01984582 0.032966540 0.035403575 0.062786740
## 4  0.032370019 0.124918699 0.02262782 0.022004623 0.021505035 0.101957883
## 5  0.030269768 0.062423862 0.02959695 0.021527157 0.021255513 0.054591314
## 6  0.021410528 0.037353931 0.03331346 0.017007668 0.016639123 0.033543476
## 7  0.016877001 0.027984618 0.03915214 0.014496674 0.014021587 0.025469314
## 8  0.017692066 0.031227087 0.11037627 0.016626797 0.015687183 0.028301674
## 9  0.002303472 0.004053989 0.88993311 0.002297448 0.002133217 0.003709426
## 10 0.019404605 0.041268280 0.08525761 0.018703031 0.017314807 0.036210488
## 11 0.023595943 0.070262957 0.04334216 0.021933785 0.020214252 0.056790270
## 12 0.023640183 0.044527584 0.06537180 0.026250218 0.023376834 0.041440244
## 13 0.029341791 0.061114924 0.03161781 0.034735736 0.029594451 0.061253608
## 14 0.039638142 0.063505072 0.02151810 0.043884358 0.037625640 0.077984263
## 15 0.035555264 0.039797080 0.02225337 0.076032025 0.051853243 0.043541846
## 16 0.036189213 0.031133956 0.01780033 0.170969201 0.076826849 0.034247212
## 17 0.042510460 0.094025161 0.01822339 0.027650831 0.026836272 0.162277501
## 18 0.049749622 0.020394367 0.01040627 0.050974625 0.092462787 0.022906563
## 19 0.000000000 0.039588669 0.01718937 0.042637890 0.050895277 0.045384714
## 20 0.026993137 0.000000000 0.02059735 0.020925470 0.019780551 0.195160967
## 21 0.002301069 0.004043882 0.00000000 0.002297197 0.002132655 0.003701704
## 22 0.039386562 0.028349483 0.01585189 0.000000000 0.132511431 0.031370737
## 23 0.046395895 0.026445878 0.01452289 0.130768473 0.000000000 0.029331536
## 24 0.029618097 0.186791904 0.01804595 0.022162559 0.020998113 0.000000000
## 25 0.019277888 0.035912591 0.03734668 0.015935697 0.015422334 0.031804832
## 26 0.016864333 0.027654759 0.04515951 0.014833470 0.014288295 0.025267037
##             25          26
## 1  0.011091617 0.009306221
## 2  0.022860437 0.018671071
## 3  0.026503548 0.020126583
## 4  0.034472794 0.022936469
## 5  0.067577052 0.037403853
## 6  0.182075950 0.064837552
## 7  0.106086168 0.235630597
## 8  0.058766364 0.077841983
## 9  0.005402689 0.005981863
## 10 0.047619287 0.040616404
## 11 0.042801243 0.031182825
## 12 0.034639993 0.031333807
## 13 0.027150292 0.022281844
## 14 0.022165503 0.017667730
## 15 0.020506318 0.017437718
## 16 0.017122923 0.014653743
## 17 0.022558163 0.016788265
## 18 0.011351278 0.009477996
## 19 0.020718707 0.016602461
## 20 0.026316759 0.018563319
## 21 0.005373097 0.005951440
## 22 0.015820735 0.013489580
## 23 0.015109684 0.012822886
## 24 0.022307138 0.016233238
## 25 0.000000000 0.075543332
## 26 0.082470011 0.000000000
class(W3a_1) #matriks array
## [1] "matrix" "array"

summary matriks:

W3a_1 = mat2listw(W3a_1,style='W')  
summary(W3a_1)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 26 
## Number of nonzero links: 650 
## Percentage nonzero weights: 96.15385 
## Average number of links: 25 
## Link number distribution:
## 
## 25 
## 26 
## 26 least connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
## 26 most connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
## 
## Weights style: W 
## Weights constants summary:
##    n  nn S0       S1       S2
## W 26 676 26 6.638168 105.5718
plot(petajabar, col='gray', border='blue', main ="Power Distance Weigth alpha=1, Euclidean")
plot(W3a_1, longlat, col='red', lwd=2, add=TRUE)

Power distance weigth dengan alpha=2

#alpha=2

alpha2=2
W3b<-1/(m.gjarak^alpha2)

#dinormalisasi 
W3b[!is.finite(W3b)]<-NA
rtot<-rowSums(W3b,na.rm=TRUE)
rtot
##  [1] 0.000000e+00 3.061793e-10 5.724966e-10 5.799135e-10 1.122637e-09
##  [6] 9.011112e-10 1.117498e-09 9.102543e-10 1.755890e-09 2.360363e-09
## [11] 2.688392e-09 2.035807e-09 1.987467e-09 2.434491e-09 2.058462e-09
## [16] 2.950101e-09 4.525048e-09 4.287917e-08 4.732606e-09 7.881756e-09
## [21] 4.550046e-06 6.575840e-09 9.331060e-09 1.915577e-08 7.310506e-09
## [26] 9.340007e-09
W3b<-W3b/rtot #row-normalized
rowSums(W3b,na.rm=TRUE)
##  [1] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
W3b #matriks bobot power distance dengan alpha=2
##               [,1]         [,2]         [,3]         [,4]         [,5]
##  [1,]           NA           NA           NA           NA           NA
##  [2,] 1.000000e+00           NA           NA           NA           NA
##  [3,] 2.981515e-01 7.018485e-01           NA           NA           NA
##  [4,] 1.411782e-01 1.740234e-01 6.847985e-01           NA           NA
##  [5,] 4.344007e-02 5.864517e-02 1.625014e-01 7.354133e-01           NA
##  [6,] 3.292279e-02 4.086212e-02 8.277587e-02 2.071001e-01 6.363391e-01
##  [7,] 2.010872e-02 2.283468e-02 4.071704e-02 8.697548e-02 1.581642e-01
##  [8,] 2.639228e-02 2.625169e-02 4.537116e-02 9.882250e-02 1.247853e-01
##  [9,] 1.450319e-02 1.332825e-02 2.228365e-02 4.615310e-02 4.864759e-02
## [10,] 1.518441e-02 1.408868e-02 2.646201e-02 6.946503e-02 6.725802e-02
## [11,] 1.976978e-02 1.816004e-02 3.941421e-02 1.432378e-01 9.430631e-02
## [12,] 2.035361e-02 1.595172e-02 2.694865e-02 5.462663e-02 4.124056e-02
## [13,] 4.402446e-02 2.954515e-02 5.474399e-02 1.044429e-01 5.346187e-02
## [14,] 7.609199e-02 4.472686e-02 9.191508e-02 1.170896e-01 4.719795e-02
## [15,] 9.062854e-02 3.640717e-02 4.868774e-02 5.060000e-02 2.805612e-02
## [16,] 1.137136e-01 3.055010e-02 3.279521e-02 2.709243e-02 1.578506e-02
## [17,] 3.407611e-02 3.424889e-02 1.480600e-01 2.274421e-01 5.112696e-02
## [18,] 9.552971e-01 7.961008e-03 4.539724e-03 2.086532e-03 1.219161e-03
## [19,] 1.030855e-01 2.701230e-01 1.878031e-01 3.482800e-02 1.873997e-02
## [20,] 1.177654e-02 1.177364e-02 3.774070e-02 3.109157e-01 4.777472e-02
## [21,] 5.585481e-06 5.128010e-06 8.562635e-06 1.769278e-05 1.862119e-05
## [22,] 1.020796e-01 1.772345e-02 1.632708e-02 1.156521e-02 6.810833e-03
## [23,] 2.963785e-01 1.857427e-02 1.327154e-02 7.786036e-03 4.680603e-03
## [24,] 6.046312e-03 5.855345e-03 2.035519e-02 8.523237e-02 1.503725e-02
## [25,] 4.082342e-03 4.752279e-03 9.517363e-03 2.558590e-02 6.054817e-02
## [26,] 2.249686e-03 2.481402e-03 4.296178e-03 8.867638e-03 1.451946e-02
##               [,6]         [,7]         [,8]         [,9]        [,10]
##  [1,]           NA           NA           NA           NA           NA
##  [2,]           NA           NA           NA           NA           NA
##  [3,]           NA           NA           NA           NA           NA
##  [4,]           NA           NA           NA           NA           NA
##  [5,]           NA           NA           NA           NA           NA
##  [6,]           NA           NA           NA           NA           NA
##  [7,] 6.711999e-01           NA           NA           NA           NA
##  [8,] 2.150043e-01 4.633727e-01           NA           NA           NA
##  [9,] 6.358832e-02 9.666102e-02 0.6948348804           NA           NA
## [10,] 7.256919e-02 8.135103e-02 0.2730493603 0.3805722656           NA
## [11,] 6.375748e-02 5.017884e-02 0.0827931701 0.0917692324 0.3966131501
## [12,] 3.652574e-02 3.789218e-02 0.0869448735 0.1712682446 0.2812783093
## [13,] 3.449494e-02 2.855846e-02 0.0430455516 0.0556606518 0.1065299262
## [14,] 2.553599e-02 1.895896e-02 0.0233407284 0.0263503090 0.0460048739
## [15,] 1.831332e-02 1.508270e-02 0.0196546961 0.0236748477 0.0349929911
## [16,] 1.032911e-02 8.412305e-03 0.0102848261 0.0119018065 0.0167550474
## [17,] 2.039513e-02 1.299202e-02 0.0136762914 0.0137630297 0.0252325999
## [18,] 7.297906e-04 5.480531e-04 0.0005838400 0.0006170067 0.0008768119
## [19,] 9.665856e-03 6.605224e-03 0.0064553864 0.0064415527 0.0096440438
## [20,] 1.764676e-02 1.089916e-02 0.0120748421 0.0119795211 0.0261897580
## [21,] 2.429795e-05 3.688951e-05 0.0002609201 0.9991948011 0.0001935557
## [22,] 4.382626e-03 3.501867e-03 0.0040975873 0.0046057775 0.0064395571
## [23,] 2.956985e-03 2.309383e-03 0.0025710876 0.0027989267 0.0038902195
## [24,] 5.855751e-03 3.714576e-03 0.0040806889 0.0041265696 0.0082960302
## [25,] 4.519138e-01 1.691013e-01 0.0460888958 0.0229261417 0.0375531697
## [26,] 4.496711e-02 6.526033e-01 0.0632179914 0.0219882937 0.0213942503
##              [,11]        [,12]        [,13]        [,14]        [,15]
##  [1,]           NA           NA           NA           NA           NA
##  [2,]           NA           NA           NA           NA           NA
##  [3,]           NA           NA           NA           NA           NA
##  [4,]           NA           NA           NA           NA           NA
##  [5,]           NA           NA           NA           NA           NA
##  [6,]           NA           NA           NA           NA           NA
##  [7,]           NA           NA           NA           NA           NA
##  [8,]           NA           NA           NA           NA           NA
##  [9,]           NA           NA           NA           NA           NA
## [10,]           NA           NA           NA           NA           NA
## [11,]           NA           NA           NA           NA           NA
## [12,] 2.269695e-01           NA           NA           NA           NA
## [13,] 2.310918e-01 2.144003e-01           NA           NA           NA
## [14,] 9.491862e-02 5.955059e-02 3.283185e-01           NA           NA
## [15,] 5.504704e-02 5.648874e-02 2.014851e-01 3.208810e-01           NA
## [16,] 2.492189e-02 2.401927e-02 6.205182e-02 1.148163e-01 4.965713e-01
## [17,] 5.558740e-02 2.349938e-02 6.667070e-02 1.974305e-01 4.304117e-02
## [18,] 1.316529e-03 1.005799e-03 2.162383e-03 4.765158e-03 4.497038e-03
## [19,] 1.531344e-02 9.656570e-03 2.008943e-02 4.586459e-02 2.626878e-02
## [20,] 8.152295e-02 2.056784e-02 5.231281e-02 7.066620e-02 1.976092e-02
## [21,] 5.371851e-05 7.677726e-05 2.425584e-05 1.405612e-05 1.069964e-05
## [22,] 9.510708e-03 8.558515e-03 2.023963e-02 4.042326e-02 8.634237e-02
## [23,] 5.693796e-03 4.784258e-03 1.035538e-02 2.094248e-02 2.830918e-02
## [24,] 2.191265e-02 7.329898e-03 2.162333e-02 4.384113e-02 9.732855e-03
## [25,] 3.259004e-02 1.341713e-02 1.113437e-02 9.287514e-03 5.658501e-03
## [26,] 1.355034e-02 8.594509e-03 5.871747e-03 4.619912e-03 3.203154e-03
##              [,16]        [,17]        [,18]        [,19]        [,20]
##  [1,]           NA           NA           NA           NA           NA
##  [2,]           NA           NA           NA           NA           NA
##  [3,]           NA           NA           NA           NA           NA
##  [4,]           NA           NA           NA           NA           NA
##  [5,]           NA           NA           NA           NA           NA
##  [6,]           NA           NA           NA           NA           NA
##  [7,]           NA           NA           NA           NA           NA
##  [8,]           NA           NA           NA           NA           NA
##  [9,]           NA           NA           NA           NA           NA
## [10,]           NA           NA           NA           NA           NA
## [11,]           NA           NA           NA           NA           NA
## [12,]           NA           NA           NA           NA           NA
## [13,]           NA           NA           NA           NA           NA
## [14,]           NA           NA           NA           NA           NA
## [15,]           NA           NA           NA           NA           NA
## [16,]           NA           NA           NA           NA           NA
## [17,] 3.275778e-02           NA           NA           NA           NA
## [18,] 7.742476e-03 4.051624e-03           NA           NA           NA
## [19,] 3.064457e-02 7.130701e-02 1.274640e-01           NA           NA
## [20,] 1.361854e-02 2.094527e-01 1.286858e-02 2.045814e-02           NA
## [21,] 7.708521e-06 1.362389e-05 5.802137e-06 6.678594e-06 2.062504e-05
## [22,] 4.917002e-01 2.168329e-02 9.628881e-02 2.840409e-02 1.471590e-02
## [23,] 6.999018e-02 1.439567e-02 2.232970e-01 2.852120e-02 9.268469e-03
## [24,] 6.780011e-03 2.566907e-01 6.679242e-03 1.106199e-02 4.399041e-01
## [25,] 4.442994e-03 1.300317e-02 4.300896e-03 6.045592e-03 2.096629e-02
## [26,] 2.547265e-03 5.638557e-03 2.347251e-03 3.038811e-03 8.168710e-03
##             [,21]       [,22]       [,23]       [,24]      [,25] [,26]
##  [1,]          NA          NA          NA          NA         NA    NA
##  [2,]          NA          NA          NA          NA         NA    NA
##  [3,]          NA          NA          NA          NA         NA    NA
##  [4,]          NA          NA          NA          NA         NA    NA
##  [5,]          NA          NA          NA          NA         NA    NA
##  [6,]          NA          NA          NA          NA         NA    NA
##  [7,]          NA          NA          NA          NA         NA    NA
##  [8,]          NA          NA          NA          NA         NA    NA
##  [9,]          NA          NA          NA          NA         NA    NA
## [10,]          NA          NA          NA          NA         NA    NA
## [11,]          NA          NA          NA          NA         NA    NA
## [12,]          NA          NA          NA          NA         NA    NA
## [13,]          NA          NA          NA          NA         NA    NA
## [14,]          NA          NA          NA          NA         NA    NA
## [15,]          NA          NA          NA          NA         NA    NA
## [16,]          NA          NA          NA          NA         NA    NA
## [17,]          NA          NA          NA          NA         NA    NA
## [18,]          NA          NA          NA          NA         NA    NA
## [19,]          NA          NA          NA          NA         NA    NA
## [20,]          NA          NA          NA          NA         NA    NA
## [21,]          NA          NA          NA          NA         NA    NA
## [22,] 0.004599650          NA          NA          NA         NA    NA
## [23,] 0.002794340 0.226430529          NA          NA         NA    NA
## [24,] 0.004104832 0.006185621 0.005553546          NA         NA    NA
## [25,] 0.022650610 0.004124574 0.003864139 0.016444833         NA    NA
## [26,] 0.021741154 0.002347358 0.002178557 0.006818772 0.07274863    NA
#Matriks jarak tanpa memperhatikan bentuk bumi
W3b_1<-1/(m.djarak^alpha2)
W3b_1
##              1          2          3          4          5          6
## 1          Inf  3.7445671  2.0868625  1.0005786  0.5958574  0.3623740
## 2    3.7445671        Inf  4.9037175  1.2316744  0.8032042  0.4491063
## 3    2.0868625  4.9037175        Inf  4.8461902  2.2256556  0.9097764
## 4    1.0005786  1.2316744  4.8461902        Inf 10.0887205  2.2780179
## 5    0.5958574  0.8032042  2.2256556 10.0887205        Inf  6.9911151
## 6    0.3623740  0.4491063  0.9097764  2.2780179  6.9911151        Inf
## 7    0.2744553  0.3112417  0.5549298  1.1857519  2.1542947  9.1401899
## 8    0.2935889  0.2916987  0.5040904  1.0980376  1.3863209  2.3907780
## 9    0.3113674  0.2858506  0.4778876  0.9899226  1.0434703  1.3648674
## 10   0.4381581  0.4061192  0.7627606  2.0027073  1.9398652  2.0948110
## 11   0.6497462  0.5962278  1.2940686  4.7048712  3.1000482  2.0960918
## 12   0.5069281  0.3969248  0.6705812  1.3596528  1.0266196  0.9094357
## 13   1.0703662  0.7177232  1.3301228  2.5386071  1.2995012  0.8382791
## 14   2.2656376  1.3307583  2.7360543  3.4858328  1.4048847  0.7597611
## 15   2.2828344  0.9164373  1.2256889  1.2738140  0.7062321  0.4608831
## 16   4.1043452  1.1021860  1.1832412  0.9774173  0.5694024  0.3725103
## 17   1.8849655  1.8924554  8.1860944 12.5768247  2.8269733  1.1269956
## 18 500.9773163  4.1747584  2.3798865  1.0933695  0.6387025  0.3822103
## 19   5.9660189 15.6153692 10.8581661  2.0124235  1.0826108  0.5582350
## 20   1.1345853  1.1330433  3.6324913 29.9701118  4.6042132  1.6991625
## 21   0.3107362  0.2849947  0.4758490  0.9833744  1.0350183  1.3514556
## 22   8.2112870  1.4253095  1.3130391  0.9299537  0.5475547  0.3522507
## 23  33.8230039  2.1196516  1.5143462  0.8882062  0.5338231  0.3371500
## 24   1.4158345  1.3696484  4.7628487 19.9652650  3.5212857  1.3701825
## 25   0.3645592  0.4238061  0.8486702  2.2823720  5.3957603 40.3708093
## 26   0.2566404  0.2827070  0.4894080  1.0103843  1.6530533  5.1193581
##             7          8            9         10         11        12        13
## 1   0.2744553  0.2935889 3.113674e-01  0.4381581  0.6497462 0.5069281 1.0703662
## 2   0.3112417  0.2916987 2.858506e-01  0.4061192  0.5962278 0.3969248 0.7177232
## 3   0.5549298  0.5040904 4.778876e-01  0.7627606  1.2940686 0.6705812 1.3301228
## 4   1.1857519  1.0980376 9.899226e-01  2.0027073  4.7048712 1.3596528 2.5386071
## 5   2.1542947  1.3863209 1.043470e+00  1.9398652  3.1000482 1.0266196 1.2995012
## 6   9.1401899  2.3907780 1.364867e+00  2.0948110  2.0960918 0.9094357 0.8382791
## 7         Inf  5.1580506 2.075754e+00  2.3479201  1.6484176 0.9433383 0.6937700
## 8   5.1580506        Inf 1.492146e+01  7.8747131  2.7188307 2.1643422 1.0458171
## 9   2.0757538 14.9214633          Inf 10.9779372  3.0149087 4.2641060 1.3527921
## 10  2.3479201  7.8747131 1.097794e+01        Inf 13.0279124 7.0031439 2.5889230
## 11  1.6484176  2.7188307 3.014909e+00 13.0279124        Inf 5.6508230 5.6165447
## 12  0.9433383  2.1643422 4.264106e+00  7.0031439  5.6508230       Inf 5.2138639
## 13  0.6937700  1.0458171 1.352792e+00  2.5889230  5.6165447 5.2138639       Inf
## 14  0.5638804  0.6944116 7.842929e-01  1.3691322  2.8249011 1.7734956 9.7769376
## 15  0.3795173  0.4947431 5.961899e-01  0.8810762  1.3859434 1.4233555 5.0755354
## 16  0.3033479  0.3710435 4.295715e-01  0.6046475  0.8993268 0.8674366 2.2405576
## 17  0.7176212  0.7557442 7.609520e-01  1.3948873  3.0729012 1.3001524 3.6890721
## 18  0.2869996  0.3059222 3.234597e-01  0.4595980  0.6900767 0.5275916 1.1341980
## 19  0.3814388  0.3730455 3.724527e-01  0.5575379  0.8852817 0.5587091 1.1623246
## 20  1.0487527  1.1621645 1.153641e+00  2.5217238  7.8498193 1.9821764 5.0425329
## 21  2.0527938 14.5196490 5.559300e+04 10.7629439  2.9869500 4.2723311 1.3496390
## 22  0.2814304  0.3294745 3.705074e-01  0.5179511  0.7649516 0.6888900 1.6289480
## 23  0.2632865  0.2932882 3.194299e-01  0.4439153  0.6497139 0.5463305 1.1824281
## 24  0.8686980  0.9546165 9.658705e-01  1.9414828  5.1280786 1.7168354 5.0654442
## 25 15.0713385  4.1158763 2.048921e+00  3.3576125  2.9128598 1.1996088 0.9951836
## 26 74.3528586  7.2215837 2.511761e+00  2.4426865  1.5461005 0.9815454 0.6702803
##            14         15         16         17          18         19
## 1   2.2656376  2.2828344  4.1043452  1.8849655 500.9773163  5.9660189
## 2   1.3307583  0.9164373  1.1021860  1.8924554   4.1747584 15.6153692
## 3   2.7360543  1.2256889  1.1832412  8.1860944   2.3798865 10.8581661
## 4   3.4858328  1.2738140  0.9774173 12.5768247   1.0933695  2.0124235
## 5   1.4048847  0.7062321  0.5694024  2.8269733   0.6387025  1.0826108
## 6   0.7597611  0.4608831  0.3725103  1.1269956   0.3822103  0.5582350
## 7   0.5638804  0.3795173  0.3033479  0.7176212   0.2869996  0.3814388
## 8   0.6944116  0.4947431  0.3710435  0.7557442   0.3059222  0.3730455
## 9   0.7842929  0.5961899  0.4295715  0.7609520   0.3234597  0.3724527
## 10  1.3691322  0.8810762  0.6046475  1.3948873   0.4595980  0.5575379
## 11  2.8249011  1.3859434  0.8993268  3.0729012   0.6900767  0.8852817
## 12  1.7734956  1.4233555  0.8674366  1.3001524   0.5275916  0.5587091
## 13  9.7769376  5.0755354  2.2405576  3.6890721   1.1341980  1.1623246
## 14        Inf  8.0782747  4.1436832 10.9260957   2.4988430  2.6533076
## 15  8.0782747        Inf 17.9402906  2.3819359   2.3593999  1.5204040
## 16  4.1436832 17.9402906        Inf  1.8128762   4.0614229  1.7736900
## 17 10.9260957  2.3819359  1.8128762        Inf   2.1236295  4.1216768
## 18  2.4988430  2.3593999  4.0614229  2.1236295         Inf  7.3770134
## 19  2.6533076  1.5204040  1.7736900  4.1216768   7.3770134        Inf
## 20  6.8104820  1.9048185  1.3127682 20.1637123   1.2397138  1.9692742
## 21  0.7819314  0.5955836  0.4291168  0.7574266   0.3227683  0.3712654
## 22  3.2522245  6.9525529 39.5872370  1.7438082   7.7447797  2.2843139
## 23  2.3907205  3.2337246  7.9936563  1.6425805  25.4820846  3.2547627
## 24 10.2701072  2.2801575  1.5884365 60.0618828   1.5639427  2.5881150
## 25  0.8296907  0.5057392  0.3970775  1.1606193   0.3840524  0.5393736
## 26  0.5271358  0.3657047  0.2908149  0.6428268   0.2677528  0.3463453
##             20           21         22         23          24         25
## 1    1.1345853 3.107362e-01  8.2112870 33.8230039   1.4158345  0.3645592
## 2    1.1330433 2.849947e-01  1.4253095  2.1196516   1.3696484  0.4238061
## 3    3.6324913 4.758490e-01  1.3130391  1.5143462   4.7628487  0.8486702
## 4   29.9701118 9.833744e-01  0.9299537  0.8882062  19.9652650  2.2823720
## 5    4.6042132 1.035018e+00  0.5475547  0.5338231   3.5212857  5.3957603
## 6    1.6991625 1.351456e+00  0.3522507  0.3371500   1.3701825 40.3708093
## 7    1.0487527 2.052794e+00  0.2814304  0.2632865   0.8686980 15.0713385
## 8    1.1621645 1.451965e+01  0.3294745  0.2932882   0.9546165  4.1158763
## 9    1.1536407 5.559300e+04  0.3705074  0.3194299   0.9658705  2.0489215
## 10   2.5217238 1.076294e+01  0.5179511  0.4439153   1.9414828  3.3576125
## 11   7.8498193 2.986950e+00  0.7649516  0.6497139   5.1280786  2.9128598
## 12   1.9821764 4.272331e+00  0.6888900  0.5463305   1.7168354  1.1996088
## 13   5.0425329 1.349639e+00  1.6289480  1.1824281   5.0654442  0.9951836
## 14   6.8104820 7.819314e-01  3.2522245  2.3907205  10.2701072  0.8296907
## 15   1.9048185 5.955836e-01  6.9525529  3.2337246   2.2801575  0.5057392
## 16   1.3127682 4.291168e-01 39.5872370  7.9936563   1.5884365  0.3970775
## 17  20.1637123 7.574266e-01  1.7438082  1.6425805  60.0618828  1.1606193
## 18   1.2397138 3.227683e-01  7.7447797 25.4820846   1.5639427  0.3840524
## 19   1.9692742 3.712654e-01  2.2843139  3.2547627   2.5881150  0.5393736
## 20         Inf 1.146627e+00  1.1834500  1.0574898 102.9402876  1.8718208
## 21   1.1466275          Inf  0.3700170  0.3189087   0.9607904  2.0242994
## 22   1.1834500 3.700170e-01        Inf 25.8562968   1.4491358  0.3685640
## 23   1.0574898 3.189087e-01 25.8562968        Inf   1.3008578  0.3452002
## 24 102.9402876 9.607904e-01  1.4491358  1.3008578         Inf  1.4681046
## 25   1.8718208 2.024299e+00  0.3685640  0.3452002   1.4681046        Inf
## 26   0.9313453 2.483530e+00  0.2679517  0.2486176   0.7774627  8.2825307
##            26
## 1   0.2566404
## 2   0.2827070
## 3   0.4894080
## 4   1.0103843
## 5   1.6530533
## 6   5.1193581
## 7  74.3528586
## 8   7.2215837
## 9   2.5117609
## 10  2.4426865
## 11  1.5461005
## 12  0.9815454
## 13  0.6702803
## 14  0.5271358
## 15  0.3657047
## 16  0.2908149
## 17  0.6428268
## 18  0.2677528
## 19  0.3463453
## 20  0.9313453
## 21  2.4835301
## 22  0.2679517
## 23  0.2486176
## 24  0.7774627
## 25  8.2825307
## 26        Inf
#dinormalisasi 
diag(W3b_1) <-0
rtot<-rowSums(W3b_1,na.rm=TRUE)
rtot
##           1           2           3           4           5           6 
##   574.33261    46.20918    60.17243   110.77408    57.17419    84.08581 
##           7           8           9          10          11          12 
##   123.06008    71.43929 55644.71791    78.72017    75.71540    47.94822 
##          13          14          15          16          17          18 
##    63.31939    82.93248    65.22084    95.35610   147.72471   568.79949 
##          19          20          21          22          23          24 
##    69.18316   205.46621 55643.94853   108.42188   116.03947   236.29537 
##          25          26 
##    97.56445   113.97039
W3b_1<-W3b_1/rtot #row-normalized
rowSums(W3b_1,na.rm=TRUE)
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
W3b_1 #matriks bobot power distance dengan alpha=2 tanpa memperhatikan bentuk bumi
##               1            2            3            4            5
## 1  0.000000e+00 6.519858e-03 3.633543e-03 1.742159e-03 1.037478e-03
## 2  8.103513e-02 0.000000e+00 1.061200e-01 2.665432e-02 1.738192e-02
## 3  3.468137e-02 8.149443e-02 0.000000e+00 8.053839e-02 3.698796e-02
## 4  9.032606e-03 1.111880e-02 4.374841e-02 0.000000e+00 9.107474e-02
## 5  1.042179e-02 1.404837e-02 3.892763e-02 1.764559e-01 0.000000e+00
## 6  4.309573e-03 5.341047e-03 1.081962e-02 2.709159e-02 8.314263e-02
## 7  2.230255e-03 2.529185e-03 4.509422e-03 9.635553e-03 1.750604e-02
## 8  4.109628e-03 4.083169e-03 7.056206e-03 1.537022e-02 1.940558e-02
## 9  5.595633e-06 5.137065e-06 8.588193e-06 1.779005e-05 1.875237e-05
## 10 5.566021e-03 5.159024e-03 9.689520e-03 2.544084e-02 2.464254e-02
## 11 8.581427e-03 7.874591e-03 1.709122e-02 6.213890e-02 4.094343e-02
## 12 1.057241e-02 8.278198e-03 1.398553e-02 2.835669e-02 2.141101e-02
## 13 1.690424e-02 1.133497e-02 2.100656e-02 4.009210e-02 2.052296e-02
## 14 2.731906e-02 1.604629e-02 3.299135e-02 4.203218e-02 1.694010e-02
## 15 3.500161e-02 1.405130e-02 1.879290e-02 1.953078e-02 1.082832e-02
## 16 4.304229e-02 1.155863e-02 1.240866e-02 1.025018e-02 5.971326e-03
## 17 1.275999e-02 1.281069e-02 5.541452e-02 8.513691e-02 1.913677e-02
## 18 8.807626e-01 7.339596e-03 4.184052e-03 1.922241e-03 1.122896e-03
## 19 8.623514e-02 2.257106e-01 1.569481e-01 2.908834e-02 1.564847e-02
## 20 5.522004e-03 5.514500e-03 1.767926e-02 1.458639e-01 2.240862e-02
## 21 5.584366e-06 5.121755e-06 8.551676e-06 1.767262e-05 1.860074e-05
## 22 7.573459e-02 1.314596e-02 1.211046e-02 8.577177e-03 5.050224e-03
## 23 2.914784e-01 1.826664e-02 1.305027e-02 7.654345e-03 4.600358e-03
## 24 5.991799e-03 5.796340e-03 2.015634e-02 8.449283e-02 1.490205e-02
## 25 3.736599e-03 4.343857e-03 8.698560e-03 2.339348e-02 5.530457e-02
## 26 2.251817e-03 2.480530e-03 4.294168e-03 8.865323e-03 1.450424e-02
##               6            7            8            9           10
## 1  6.309479e-04 4.778682e-04 0.0005111828 0.0005421378 0.0007628996
## 2  9.718983e-03 6.735494e-03 0.0063125705 0.0061860122 0.0087887134
## 3  1.511949e-02 9.222327e-03 0.0083774311 0.0079419698 0.0126762478
## 4  2.056454e-02 1.070424e-02 0.0099124053 0.0089364097 0.0180792051
## 5  1.222775e-01 3.767950e-02 0.0242473214 0.0182507239 0.0339290385
## 6  0.000000e+00 1.087007e-01 0.0284325983 0.0162318405 0.0249127781
## 7  7.427421e-02 0.000000e+00 0.0419148979 0.0168678085 0.0190794621
## 8  3.346587e-02 7.220187e-02 0.0000000000 0.2088691308 0.1102294358
## 9  2.452825e-05 3.730370e-05 0.0002681560 0.0000000000 0.0001972862
## 10 2.661086e-02 2.982616e-02 0.1000342538 0.1394552083 0.0000000000
## 11 2.768383e-02 2.177123e-02 0.0359085584 0.0398189657 0.1720642461
## 12 1.896704e-02 1.967411e-02 0.0451391588 0.0889314811 0.1460563958
## 13 1.323890e-02 1.095667e-02 0.0165165369 0.0213645777 0.0408867313
## 14 9.161202e-03 6.799271e-03 0.0083732164 0.0094570056 0.0165089997
## 15 7.066502e-03 5.818957e-03 0.0075856605 0.0091410957 0.0135091220
## 16 3.906518e-03 3.181211e-03 0.0038911354 0.0045049186 0.0063409419
## 17 7.629026e-03 4.857828e-03 0.0051158958 0.0051511493 0.0094424775
## 18 6.719596e-04 5.045708e-04 0.0005378384 0.0005686709 0.0008080141
## 19 8.068944e-03 5.513463e-03 0.0053921431 0.0053835747 0.0080588680
## 20 8.269790e-03 5.104259e-03 0.0056562320 0.0056147465 0.0122731803
## 21 2.428756e-05 3.689159e-05 0.0002609385 0.9990843928 0.0001934252
## 22 3.248889e-03 2.595698e-03 0.0030388195 0.0034172748 0.0047771825
## 23 2.905477e-03 2.268940e-03 0.0025274864 0.0027527691 0.0038255543
## 24 5.798601e-03 3.676322e-03 0.0040399287 0.0040875557 0.0082163386
## 25 4.137861e-01 1.544757e-01 0.0421862296 0.0210006973 0.0344143023
## 26 4.491832e-02 6.523875e-01 0.0633636861 0.0220387157 0.0214326424
##              11           12           13           14           15
## 1  1.131306e-03 8.826386e-04 1.863670e-03 3.944818e-03 3.974760e-03
## 2  1.290280e-02 8.589740e-03 1.553205e-02 2.879857e-02 1.983236e-02
## 3  2.150601e-02 1.114433e-02 2.210519e-02 4.547023e-02 2.036961e-02
## 4  4.247267e-02 1.227411e-02 2.291698e-02 3.146795e-02 1.149921e-02
## 5  5.422112e-02 1.795600e-02 2.272881e-02 2.457201e-02 1.235229e-02
## 6  2.492801e-02 1.081557e-02 9.969330e-03 9.035546e-03 5.481105e-03
## 7  1.339523e-02 7.665673e-03 5.637653e-03 4.582155e-03 3.084000e-03
## 8  3.805792e-02 3.029624e-02 1.463924e-02 9.720303e-03 6.925364e-03
## 9  5.418140e-05 7.663092e-05 2.431124e-05 1.409465e-05 1.071422e-05
## 10 1.654965e-01 8.896251e-02 3.288767e-02 1.739240e-02 1.119251e-02
## 11 0.000000e+00 7.463242e-02 7.417969e-02 3.730947e-02 1.830464e-02
## 12 1.178526e-01 0.000000e+00 1.087395e-01 3.698773e-02 2.968526e-02
## 13 8.870181e-02 8.234229e-02 0.000000e+00 1.544067e-01 8.015768e-02
## 14 3.406266e-02 2.138481e-02 1.178903e-01 0.000000e+00 9.740786e-02
## 15 2.125001e-02 2.182363e-02 7.782076e-02 1.238603e-01 0.000000e+00
## 16 9.431246e-03 9.096812e-03 2.349674e-02 4.345483e-02 1.881399e-01
## 17 2.080154e-02 8.801184e-03 2.497261e-02 7.396255e-02 1.612415e-02
## 18 1.213216e-03 9.275528e-04 1.994021e-03 4.393188e-03 4.148034e-03
## 19 1.279620e-02 8.075796e-03 1.680069e-02 3.835193e-02 2.197651e-02
## 20 3.820492e-02 9.647214e-03 2.454191e-02 3.314648e-02 9.270714e-03
## 21 5.367969e-05 7.677980e-05 2.425491e-05 1.405241e-05 1.070347e-05
## 22 7.055325e-03 6.353791e-03 1.502416e-02 2.999602e-02 6.412500e-02
## 23 5.599077e-03 4.708144e-03 1.018988e-02 2.060265e-02 2.786745e-02
## 24 2.170198e-02 7.265633e-03 2.143692e-02 4.346301e-02 9.649607e-03
## 25 2.985575e-02 1.229555e-02 1.020027e-02 8.504027e-03 5.183642e-03
## 26 1.356581e-02 8.612284e-03 5.881180e-03 4.625200e-03 3.208769e-03
##              16           17           18           19           20
## 1  7.146286e-03 3.282010e-03 8.722773e-01 1.038774e-02 1.975485e-03
## 2  2.385210e-02 4.095410e-02 9.034478e-02 3.379279e-01 2.451988e-02
## 3  1.966418e-02 1.360439e-01 3.955111e-02 1.804509e-01 6.036804e-02
## 4  8.823520e-03 1.135358e-01 9.870265e-03 1.816692e-02 2.705517e-01
## 5  9.959081e-03 4.944492e-02 1.117117e-02 1.893531e-02 8.052958e-02
## 6  4.430121e-03 1.340292e-02 4.545479e-03 6.638873e-03 2.020748e-02
## 7  2.465039e-03 5.831470e-03 2.332191e-03 3.099614e-03 8.522282e-03
## 8  5.193829e-03 1.057883e-02 4.282268e-03 5.221853e-03 1.626786e-02
## 9  7.719897e-06 1.367519e-05 5.812946e-06 6.693406e-06 2.073226e-05
## 10 7.680974e-03 1.771957e-02 5.838377e-03 7.082530e-03 3.203403e-02
## 11 1.187773e-02 4.058489e-02 9.114087e-03 1.169223e-02 1.036753e-01
## 12 1.809111e-02 2.711576e-02 1.100336e-02 1.165234e-02 4.133994e-02
## 13 3.538502e-02 5.826133e-02 1.791233e-02 1.835653e-02 7.963647e-02
## 14 4.996454e-02 1.317469e-01 3.013105e-02 3.199359e-02 8.212081e-02
## 15 2.750699e-01 3.652109e-02 3.617555e-02 2.331163e-02 2.920567e-02
## 16 0.000000e+00 1.901164e-02 4.259216e-02 1.860070e-02 1.376701e-02
## 17 1.227199e-02 0.000000e+00 1.437559e-02 2.790107e-02 1.364952e-01
## 18 7.140342e-03 3.733529e-03 0.000000e+00 1.296944e-02 2.179527e-03
## 19 2.563760e-02 5.957631e-02 1.066302e-01 0.000000e+00 2.846465e-02
## 20 6.389217e-03 9.813639e-02 6.033663e-03 9.584419e-03 0.000000e+00
## 21 7.711833e-06 1.361202e-05 5.800600e-06 6.672161e-06 2.060651e-05
## 22 3.651222e-01 1.608355e-02 7.143189e-02 2.106875e-02 1.091523e-02
## 23 6.888739e-02 1.415536e-02 2.195984e-01 2.804875e-02 9.113191e-03
## 24 6.722250e-03 2.541814e-01 6.618592e-03 1.095288e-02 4.356424e-01
## 25 4.069899e-03 1.189592e-02 3.936397e-03 5.528382e-03 1.918548e-02
## 26 2.551670e-03 5.640297e-03 2.349319e-03 3.038906e-03 8.171818e-03
##              21           22           23           24           25
## 1  0.0005410387 1.429709e-02 5.889097e-02 2.465182e-03 6.347528e-04
## 2  0.0061674904 3.084473e-02 4.587079e-02 2.964018e-02 9.171469e-03
## 3  0.0079080909 2.182128e-02 2.516678e-02 7.915334e-02 1.410397e-02
## 4  0.0088772965 8.395047e-03 8.018177e-03 1.802341e-01 2.060384e-02
## 5  0.0181028956 9.576957e-03 9.336785e-03 6.158873e-02 9.437406e-02
## 6  0.0160723395 4.189181e-03 4.009595e-03 1.629505e-02 4.801144e-01
## 7  0.0166812325 2.286935e-03 2.139496e-03 7.059137e-03 1.224714e-01
## 8  0.2032445747 4.611951e-03 4.105418e-03 1.336262e-02 5.761362e-02
## 9  0.9990705789 6.658446e-06 5.740525e-06 1.735781e-05 3.682149e-05
## 10 0.1367241006 6.579649e-03 5.639156e-03 2.466309e-02 4.265251e-02
## 11 0.0394497043 1.010299e-02 8.581002e-03 6.772835e-02 3.847117e-02
## 12 0.0891030215 1.436737e-02 1.139418e-02 3.580603e-02 2.501884e-02
## 13 0.0213147820 2.572589e-02 1.867403e-02 7.999831e-02 1.571689e-02
## 14 0.0094285313 3.921533e-02 2.882731e-02 1.238370e-01 1.000441e-02
## 15 0.0091317989 1.066002e-01 4.958116e-02 3.496057e-02 7.754257e-03
## 16 0.0045001506 4.151516e-01 8.382952e-02 1.665794e-02 4.164154e-03
## 17 0.0051272843 1.180444e-02 1.111920e-02 4.065798e-01 7.856636e-03
## 18 0.0005674553 1.361601e-02 4.479977e-02 2.749550e-03 6.751982e-04
## 19 0.0053664129 3.301835e-02 4.704559e-02 3.740961e-02 7.796314e-03
## 20 0.0055806135 5.759828e-03 5.146782e-03 5.010084e-01 9.110115e-03
## 21 0.0000000000 6.649727e-06 5.731238e-06 1.726675e-05 3.637951e-05
## 22 0.0034127526 0.000000e+00 2.384786e-01 1.336571e-02 3.399351e-03
## 23 0.0027482779 2.228233e-01 0.000000e+00 1.121048e-02 2.974851e-03
## 24 0.0040660566 6.132730e-03 5.505219e-03 0.000000e+00 6.213006e-03
## 25 0.0207483294 3.777647e-03 3.538176e-03 1.504754e-02 0.000000e+00
## 26 0.0217910125 2.351064e-03 2.181422e-03 6.821621e-03 7.267266e-02
##              26
## 1  4.468498e-04
## 2  6.117983e-03
## 3  8.133426e-03
## 4  9.121126e-03
## 5  2.891258e-02
## 6  6.088255e-02
## 7  6.041997e-01
## 8  1.010870e-01
## 9  4.513925e-05
## 10 3.103000e-02
## 11 2.041990e-02
## 12 2.047095e-02
## 13 1.058570e-02
## 14 6.356205e-03
## 15 5.607175e-03
## 16 3.049777e-03
## 17 4.351518e-03
## 18 4.707332e-04
## 19 5.006208e-03
## 20 4.532839e-03
## 21 4.463253e-05
## 22 2.471380e-03
## 23 2.142526e-03
## 24 3.290216e-03
## 25 8.489292e-02
## 26 0.000000e+00
class(W3b_1) #matriks array
## [1] "matrix" "array"

summary matriks:

W3b_1 = mat2listw(W3b_1,style='W')  
summary(W3b_1)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 26 
## Number of nonzero links: 650 
## Percentage nonzero weights: 96.15385 
## Average number of links: 25 
## Link number distribution:
## 
## 25 
## 26 
## 26 least connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
## 26 most connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
## 
## Weights style: W 
## Weights constants summary:
##    n  nn S0       S1      S2
## W 26 676 26 14.35111 108.236
plot(petajabar, col='gray', border='blue', main ="Power Distance Weigth alpha=2, Euclidean")
plot(W3b_1, longlat, col='red', lwd=2, add=TRUE)

Exponential Distance Weigth

alpha=1
W4<-exp((-alpha)*m.djarak)
W4
##            1         2         3         4         5         6         7
## 1  1.0000000 0.5964426 0.5004567 0.3679858 0.2737680 0.1899112 0.1482557
## 2  0.5964426 1.0000000 0.6366198 0.4061403 0.3276525 0.2248786 0.1665488
## 3  0.5004567 0.6366198 1.0000000 0.6349208 0.5115537 0.3504933 0.2612188
## 4  0.3679858 0.4061403 0.6349208 1.0000000 0.7299099 0.5155329 0.3991815
## 5  0.2737680 0.3276525 0.5115537 0.7299099 1.0000000 0.6850903 0.5059516
## 6  0.1899112 0.2248786 0.3504933 0.5155329 0.6850903 1.0000000 0.7183724
## 7  0.1482557 0.1665488 0.2612188 0.3991815 0.5059516 0.7183724 1.0000000
## 8  0.1579355 0.1569954 0.2445185 0.3850761 0.4277084 0.5237499 0.6438377
## 9  0.1666091 0.1540647 0.2353781 0.3660164 0.3757059 0.4248740 0.4995318
## 10 0.2207505 0.2082155 0.3182236 0.4933045 0.4877350 0.5011150 0.5206814
## 11 0.2892136 0.2738782 0.4151706 0.6306358 0.5666818 0.5012208 0.4589232
## 12 0.2454858 0.2044868 0.2948864 0.4241779 0.3727117 0.3504245 0.3571517
## 13 0.3803851 0.3071623 0.4201809 0.5338566 0.4159350 0.3354747 0.3010186
## 14 0.5146017 0.4202679 0.5463161 0.5853136 0.4301232 0.3175059 0.2640279
## 15 0.5158935 0.3518337 0.4052488 0.4122905 0.3042385 0.2292353 0.1972574
## 16 0.6104229 0.3857690 0.3987930 0.3636781 0.2657426 0.1942827 0.1627339
## 17 0.4826982 0.4833951 0.7050323 0.7542906 0.5516969 0.3898575 0.3071365
## 18 0.9563056 0.6129800 0.5229763 0.3842933 0.2861414 0.1983907 0.1546432
## 19 0.6640424 0.7764211 0.7382489 0.4941477 0.3824760 0.2622605 0.1980666
## 20 0.3910898 0.3908401 0.5917424 0.8330470 0.6274828 0.4643327 0.3766344
## 21 0.1663063 0.1536329 0.2346506 0.3647957 0.3742102 0.4230777 0.4976019
## 22 0.7054107 0.4327406 0.4178251 0.3545246 0.2588757 0.1854630 0.1518270
## 23 0.8420240 0.5031539 0.4436941 0.3460861 0.2544431 0.1786692 0.1424331
## 24 0.4315314 0.4255098 0.6324133 0.7994740 0.5868979 0.4255807 0.3420099
## 25 0.1908606 0.2152212 0.3377323 0.5158589 0.6501836 0.8543742 0.7729143
## 26 0.1389063 0.1524753 0.2394441 0.3697797 0.4594250 0.6427693 0.8905006
##            8         9        10        11        12        13        14
## 1  0.1579355 0.1666091 0.2207505 0.2892136 0.2454858 0.3803851 0.5146017
## 2  0.1569954 0.1540647 0.2082155 0.2738782 0.2044868 0.3071623 0.4202679
## 3  0.2445185 0.2353781 0.3182236 0.4151706 0.2948864 0.4201809 0.5463161
## 4  0.3850761 0.3660164 0.4933045 0.6306358 0.4241779 0.5338566 0.5853136
## 5  0.4277084 0.3757059 0.4877350 0.5666818 0.3727117 0.4159350 0.4301232
## 6  0.5237499 0.4248740 0.5011150 0.5012208 0.3504245 0.3354747 0.3175059
## 7  0.6438377 0.4995318 0.5206814 0.4589232 0.3571517 0.3010186 0.2640279
## 8  1.0000000 0.7719176 0.7002241 0.5452726 0.5067533 0.3761190 0.3011857
## 9  0.7719176 1.0000000 0.7394755 0.5621869 0.6161479 0.4232576 0.3233002
## 10 0.7002241 0.7394755 1.0000000 0.7580145 0.6853130 0.5371387 0.4254413
## 11 0.5452726 0.5621869 0.7580145 1.0000000 0.6566051 0.6557640 0.5515766
## 12 0.5067533 0.6161479 0.6853130 0.6566051 1.0000000 0.6453609 0.4719393
## 13 0.3761190 0.4232576 0.5371387 0.6557640 0.6453609 1.0000000 0.7262835
## 14 0.3011857 0.3233002 0.4254413 0.5515766 0.4719393 0.7262835 1.0000000
## 15 0.2413018 0.2738669 0.3446064 0.4276589 0.4324919 0.6415467 0.7033952
## 16 0.1936551 0.2174587 0.2763676 0.3483711 0.3417433 0.5126972 0.6118582
## 17 0.3165406 0.3177911 0.4288270 0.5652650 0.4160264 0.5941374 0.7389468
## 18 0.1639845 0.1723397 0.2287640 0.3000544 0.2524007 0.3910271 0.5312078
## 19 0.1945112 0.1942580 0.2620412 0.3454806 0.2624095 0.3955224 0.5412294
## 20 0.3954972 0.3941466 0.5327380 0.6998289 0.4915072 0.6406170 0.6816852
## 21 0.7691763 0.9957678 0.7372607 0.5606771 0.6164353 0.4228330 0.3227498
## 22 0.1751410 0.1934253 0.2492022 0.3187462 0.2997435 0.4567983 0.5743534
## 23 0.1577862 0.1704448 0.2229308 0.2892047 0.2584843 0.3986669 0.5237458
## 24 0.3593370 0.3614924 0.4878809 0.6430110 0.4661745 0.6412632 0.7319511
## 25 0.6108454 0.4972740 0.5794136 0.5565921 0.4013105 0.3669914 0.3335885
## 26 0.6892711 0.5320738 0.5273809 0.4474316 0.3644532 0.2948056 0.2522506
##           15        16        17        18        19        20        21
## 1  0.5158935 0.6104229 0.4826982 0.9563056 0.6640424 0.3910898 0.1663063
## 2  0.3518337 0.3857690 0.4833951 0.6129800 0.7764211 0.3908401 0.1536329
## 3  0.4052488 0.3987930 0.7050323 0.5229763 0.7382489 0.5917424 0.2346506
## 4  0.4122905 0.3636781 0.7542906 0.3842933 0.4941477 0.8330470 0.3647957
## 5  0.3042385 0.2657426 0.5516969 0.2861414 0.3824760 0.6274828 0.3742102
## 6  0.2292353 0.1942827 0.3898575 0.1983907 0.2622605 0.4643327 0.4230777
## 7  0.1972574 0.1627339 0.3071365 0.1546432 0.1980666 0.3766344 0.4976019
## 8  0.2413018 0.1936551 0.3165406 0.1639845 0.1945112 0.3954972 0.7691763
## 9  0.2738669 0.2174587 0.3177911 0.1723397 0.1942580 0.3941466 0.9957678
## 10 0.3446064 0.2763676 0.4288270 0.2287640 0.2620412 0.5327380 0.7372607
## 11 0.4276589 0.3483711 0.5652650 0.3000544 0.3454806 0.6998289 0.5606771
## 12 0.4324919 0.3417433 0.4160264 0.2524007 0.2624095 0.4915072 0.6164353
## 13 0.6415467 0.5126972 0.5941374 0.3910271 0.3955224 0.6406170 0.4228330
## 14 0.7033952 0.6118582 0.7389468 0.5312078 0.5412294 0.6816852 0.3227498
## 15 1.0000000 0.7897063 0.5231222 0.5215097 0.4444137 0.4845387 0.2736865
## 16 0.7897063 1.0000000 0.4758254 0.6088370 0.4719587 0.4177875 0.2172831
## 17 0.5231222 0.4758254 1.0000000 0.5034778 0.6110574 0.8003572 0.3169454
## 18 0.5215097 0.6088370 0.5034778 1.0000000 0.6919929 0.4073306 0.1720157
## 19 0.4444137 0.4719587 0.6110574 0.6919929 1.0000000 0.4903667 0.1937501
## 20 0.4845387 0.4177875 0.8003572 0.4073306 0.4903667 1.0000000 0.3930277
## 21 0.2736865 0.2172831 0.3169454 0.1720157 0.1937501 0.3930277 1.0000000
## 22 0.6843731 0.8530509 0.4689450 0.6981428 0.5160041 0.3988253 0.1932149
## 23 0.5734444 0.7020900 0.4582890 0.8202886 0.5744776 0.3781600 0.1701987
## 24 0.5156932 0.4522854 0.8789450 0.4494948 0.5370866 0.9061400 0.3605225
## 25 0.2450810 0.2045492 0.3952531 0.1991628 0.2562459 0.4814674 0.4951721
## 26 0.1913566 0.1565547 0.2872942 0.1447771 0.1828291 0.3547995 0.5301744
##           22        23        24        25        26
## 1  0.7054107 0.8420240 0.4315314 0.1908606 0.1389063
## 2  0.4327406 0.5031539 0.4255098 0.2152212 0.1524753
## 3  0.4178251 0.4436941 0.6324133 0.3377323 0.2394441
## 4  0.3545246 0.3460861 0.7994740 0.5158589 0.3697797
## 5  0.2588757 0.2544431 0.5868979 0.6501836 0.4594250
## 6  0.1854630 0.1786692 0.4255807 0.8543742 0.6427693
## 7  0.1518270 0.1424331 0.3420099 0.7729143 0.8905006
## 8  0.1751410 0.1577862 0.3593370 0.6108454 0.6892711
## 9  0.1934253 0.1704448 0.3614924 0.4972740 0.5320738
## 10 0.2492022 0.2229308 0.4878809 0.5794136 0.5273809
## 11 0.3187462 0.2892047 0.6430110 0.5565921 0.4474316
## 12 0.2997435 0.2584843 0.4661745 0.4013105 0.3644532
## 13 0.4567983 0.3986669 0.6412632 0.3669914 0.2948056
## 14 0.5743534 0.5237458 0.7319511 0.3335885 0.2522506
## 15 0.6843731 0.5734444 0.5156932 0.2450810 0.1913566
## 16 0.8530509 0.7020900 0.4522854 0.2045492 0.1565547
## 17 0.4689450 0.4582890 0.8789450 0.3952531 0.2872942
## 18 0.6981428 0.8202886 0.4494948 0.1991628 0.1447771
## 19 0.5160041 0.5744776 0.5370866 0.2562459 0.1828291
## 20 0.3988253 0.3781600 0.9061400 0.4814674 0.3547995
## 21 0.1932149 0.1701987 0.3605225 0.4951721 0.5301744
## 22 1.0000000 0.8214696 0.4357431 0.1925904 0.1448810
## 23 0.8214696 1.0000000 0.4161253 0.1823150 0.1345859
## 24 0.4357431 0.4161253 1.0000000 0.4380955 0.3217041
## 25 0.1925904 0.1823150 0.4380955 1.0000000 0.7064726
## 26 0.1448810 0.1345859 0.3217041 0.7064726 1.0000000
round(W4,4)
##         1      2      3      4      5      6      7      8      9     10     11
## 1  1.0000 0.5964 0.5005 0.3680 0.2738 0.1899 0.1483 0.1579 0.1666 0.2208 0.2892
## 2  0.5964 1.0000 0.6366 0.4061 0.3277 0.2249 0.1665 0.1570 0.1541 0.2082 0.2739
## 3  0.5005 0.6366 1.0000 0.6349 0.5116 0.3505 0.2612 0.2445 0.2354 0.3182 0.4152
## 4  0.3680 0.4061 0.6349 1.0000 0.7299 0.5155 0.3992 0.3851 0.3660 0.4933 0.6306
## 5  0.2738 0.3277 0.5116 0.7299 1.0000 0.6851 0.5060 0.4277 0.3757 0.4877 0.5667
## 6  0.1899 0.2249 0.3505 0.5155 0.6851 1.0000 0.7184 0.5237 0.4249 0.5011 0.5012
## 7  0.1483 0.1665 0.2612 0.3992 0.5060 0.7184 1.0000 0.6438 0.4995 0.5207 0.4589
## 8  0.1579 0.1570 0.2445 0.3851 0.4277 0.5237 0.6438 1.0000 0.7719 0.7002 0.5453
## 9  0.1666 0.1541 0.2354 0.3660 0.3757 0.4249 0.4995 0.7719 1.0000 0.7395 0.5622
## 10 0.2208 0.2082 0.3182 0.4933 0.4877 0.5011 0.5207 0.7002 0.7395 1.0000 0.7580
## 11 0.2892 0.2739 0.4152 0.6306 0.5667 0.5012 0.4589 0.5453 0.5622 0.7580 1.0000
## 12 0.2455 0.2045 0.2949 0.4242 0.3727 0.3504 0.3572 0.5068 0.6161 0.6853 0.6566
## 13 0.3804 0.3072 0.4202 0.5339 0.4159 0.3355 0.3010 0.3761 0.4233 0.5371 0.6558
## 14 0.5146 0.4203 0.5463 0.5853 0.4301 0.3175 0.2640 0.3012 0.3233 0.4254 0.5516
## 15 0.5159 0.3518 0.4052 0.4123 0.3042 0.2292 0.1973 0.2413 0.2739 0.3446 0.4277
## 16 0.6104 0.3858 0.3988 0.3637 0.2657 0.1943 0.1627 0.1937 0.2175 0.2764 0.3484
## 17 0.4827 0.4834 0.7050 0.7543 0.5517 0.3899 0.3071 0.3165 0.3178 0.4288 0.5653
## 18 0.9563 0.6130 0.5230 0.3843 0.2861 0.1984 0.1546 0.1640 0.1723 0.2288 0.3001
## 19 0.6640 0.7764 0.7382 0.4941 0.3825 0.2623 0.1981 0.1945 0.1943 0.2620 0.3455
## 20 0.3911 0.3908 0.5917 0.8330 0.6275 0.4643 0.3766 0.3955 0.3941 0.5327 0.6998
## 21 0.1663 0.1536 0.2347 0.3648 0.3742 0.4231 0.4976 0.7692 0.9958 0.7373 0.5607
## 22 0.7054 0.4327 0.4178 0.3545 0.2589 0.1855 0.1518 0.1751 0.1934 0.2492 0.3187
## 23 0.8420 0.5032 0.4437 0.3461 0.2544 0.1787 0.1424 0.1578 0.1704 0.2229 0.2892
## 24 0.4315 0.4255 0.6324 0.7995 0.5869 0.4256 0.3420 0.3593 0.3615 0.4879 0.6430
## 25 0.1909 0.2152 0.3377 0.5159 0.6502 0.8544 0.7729 0.6108 0.4973 0.5794 0.5566
## 26 0.1389 0.1525 0.2394 0.3698 0.4594 0.6428 0.8905 0.6893 0.5321 0.5274 0.4474
##        12     13     14     15     16     17     18     19     20     21     22
## 1  0.2455 0.3804 0.5146 0.5159 0.6104 0.4827 0.9563 0.6640 0.3911 0.1663 0.7054
## 2  0.2045 0.3072 0.4203 0.3518 0.3858 0.4834 0.6130 0.7764 0.3908 0.1536 0.4327
## 3  0.2949 0.4202 0.5463 0.4052 0.3988 0.7050 0.5230 0.7382 0.5917 0.2347 0.4178
## 4  0.4242 0.5339 0.5853 0.4123 0.3637 0.7543 0.3843 0.4941 0.8330 0.3648 0.3545
## 5  0.3727 0.4159 0.4301 0.3042 0.2657 0.5517 0.2861 0.3825 0.6275 0.3742 0.2589
## 6  0.3504 0.3355 0.3175 0.2292 0.1943 0.3899 0.1984 0.2623 0.4643 0.4231 0.1855
## 7  0.3572 0.3010 0.2640 0.1973 0.1627 0.3071 0.1546 0.1981 0.3766 0.4976 0.1518
## 8  0.5068 0.3761 0.3012 0.2413 0.1937 0.3165 0.1640 0.1945 0.3955 0.7692 0.1751
## 9  0.6161 0.4233 0.3233 0.2739 0.2175 0.3178 0.1723 0.1943 0.3941 0.9958 0.1934
## 10 0.6853 0.5371 0.4254 0.3446 0.2764 0.4288 0.2288 0.2620 0.5327 0.7373 0.2492
## 11 0.6566 0.6558 0.5516 0.4277 0.3484 0.5653 0.3001 0.3455 0.6998 0.5607 0.3187
## 12 1.0000 0.6454 0.4719 0.4325 0.3417 0.4160 0.2524 0.2624 0.4915 0.6164 0.2997
## 13 0.6454 1.0000 0.7263 0.6415 0.5127 0.5941 0.3910 0.3955 0.6406 0.4228 0.4568
## 14 0.4719 0.7263 1.0000 0.7034 0.6119 0.7389 0.5312 0.5412 0.6817 0.3227 0.5744
## 15 0.4325 0.6415 0.7034 1.0000 0.7897 0.5231 0.5215 0.4444 0.4845 0.2737 0.6844
## 16 0.3417 0.5127 0.6119 0.7897 1.0000 0.4758 0.6088 0.4720 0.4178 0.2173 0.8531
## 17 0.4160 0.5941 0.7389 0.5231 0.4758 1.0000 0.5035 0.6111 0.8004 0.3169 0.4689
## 18 0.2524 0.3910 0.5312 0.5215 0.6088 0.5035 1.0000 0.6920 0.4073 0.1720 0.6981
## 19 0.2624 0.3955 0.5412 0.4444 0.4720 0.6111 0.6920 1.0000 0.4904 0.1938 0.5160
## 20 0.4915 0.6406 0.6817 0.4845 0.4178 0.8004 0.4073 0.4904 1.0000 0.3930 0.3988
## 21 0.6164 0.4228 0.3227 0.2737 0.2173 0.3169 0.1720 0.1938 0.3930 1.0000 0.1932
## 22 0.2997 0.4568 0.5744 0.6844 0.8531 0.4689 0.6981 0.5160 0.3988 0.1932 1.0000
## 23 0.2585 0.3987 0.5237 0.5734 0.7021 0.4583 0.8203 0.5745 0.3782 0.1702 0.8215
## 24 0.4662 0.6413 0.7320 0.5157 0.4523 0.8789 0.4495 0.5371 0.9061 0.3605 0.4357
## 25 0.4013 0.3670 0.3336 0.2451 0.2045 0.3953 0.1992 0.2562 0.4815 0.4952 0.1926
## 26 0.3645 0.2948 0.2523 0.1914 0.1566 0.2873 0.1448 0.1828 0.3548 0.5302 0.1449
##        23     24     25     26
## 1  0.8420 0.4315 0.1909 0.1389
## 2  0.5032 0.4255 0.2152 0.1525
## 3  0.4437 0.6324 0.3377 0.2394
## 4  0.3461 0.7995 0.5159 0.3698
## 5  0.2544 0.5869 0.6502 0.4594
## 6  0.1787 0.4256 0.8544 0.6428
## 7  0.1424 0.3420 0.7729 0.8905
## 8  0.1578 0.3593 0.6108 0.6893
## 9  0.1704 0.3615 0.4973 0.5321
## 10 0.2229 0.4879 0.5794 0.5274
## 11 0.2892 0.6430 0.5566 0.4474
## 12 0.2585 0.4662 0.4013 0.3645
## 13 0.3987 0.6413 0.3670 0.2948
## 14 0.5237 0.7320 0.3336 0.2523
## 15 0.5734 0.5157 0.2451 0.1914
## 16 0.7021 0.4523 0.2045 0.1566
## 17 0.4583 0.8789 0.3953 0.2873
## 18 0.8203 0.4495 0.1992 0.1448
## 19 0.5745 0.5371 0.2562 0.1828
## 20 0.3782 0.9061 0.4815 0.3548
## 21 0.1702 0.3605 0.4952 0.5302
## 22 0.8215 0.4357 0.1926 0.1449
## 23 1.0000 0.4161 0.1823 0.1346
## 24 0.4161 1.0000 0.4381 0.3217
## 25 0.1823 0.4381 1.0000 0.7065
## 26 0.1346 0.3217 0.7065 1.0000
#dinormalisasi 
diag(W4) <-0
rtot<-rowSums(W4,na.rm=TRUE)
rtot
##         1         2         3         4         5         6         7         8 
## 10.147293  8.967326 11.037739 12.464318 11.112340 10.086937  9.438460 10.008341 
##         9        10        11        12        13        14        15        16 
##  9.978805 11.473046 12.367465 10.434625 11.814843 12.424845 10.727791 10.233501 
##        17        18        19        20        21        22        23        24 
## 12.771153 10.372539 10.681298 13.023990  9.955166 10.181317  9.963211 13.046363 
##        25        26 
## 10.679566  9.156396
W4<-W4/rtot #row-normalized
rowSums(W4,na.rm=TRUE)
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
##  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
W4 #matriks bobot Exponential distance dengan alpha=1
##             1          2          3          4          5          6          7
## 1  0.00000000 0.05877849 0.04931923 0.03626443 0.02697941 0.01871546 0.01461037
## 2  0.06651287 0.00000000 0.07099327 0.04529113 0.03653848 0.02507755 0.01857285
## 3  0.04534051 0.05767665 0.00000000 0.05752272 0.04634588 0.03175409 0.02366597
## 4  0.02952314 0.03258424 0.05093907 0.00000000 0.05855995 0.04136069 0.03202594
## 5  0.02463639 0.02948546 0.04603474 0.06568462 0.00000000 0.06165131 0.04553061
## 6  0.01882744 0.02229404 0.03474725 0.05110896 0.06791857 0.00000000 0.07121809
## 7  0.01570762 0.01764576 0.02767600 0.04229307 0.05360532 0.07611119 0.00000000
## 8  0.01578039 0.01568646 0.02443148 0.03847552 0.04273519 0.05233134 0.06433011
## 9  0.01669630 0.01543919 0.02358780 0.03667938 0.03765039 0.04257765 0.05005928
## 10 0.01924079 0.01814823 0.02773663 0.04299682 0.04251138 0.04367759 0.04538301
## 11 0.02338504 0.02214505 0.03356958 0.05099152 0.04582036 0.04052737 0.03710729
## 12 0.02352608 0.01959695 0.02826038 0.04065100 0.03571874 0.03358286 0.03422756
## 13 0.03219553 0.02599800 0.03556382 0.04518525 0.03520444 0.02839434 0.02547800
## 14 0.04141716 0.03382480 0.04396965 0.04710832 0.03461799 0.02555411 0.02125000
## 15 0.04808944 0.03279647 0.03777561 0.03843200 0.02835985 0.02136836 0.01838752
## 16 0.05964947 0.03769667 0.03896936 0.03553799 0.02596790 0.01898496 0.01590207
## 17 0.03779597 0.03785054 0.05520506 0.05906206 0.04319868 0.03052641 0.02404924
## 18 0.09219591 0.05909643 0.05041931 0.03704911 0.02758644 0.01912653 0.01490891
## 19 0.06216870 0.07268977 0.06911603 0.04626289 0.03580800 0.02455324 0.01854331
## 20 0.03002842 0.03000925 0.04543480 0.06396250 0.04817900 0.03565211 0.02891851
## 21 0.01670552 0.01543248 0.02357074 0.03664385 0.03758955 0.04249831 0.04998429
## 22 0.06928482 0.04250340 0.04103841 0.03482109 0.02542654 0.01821601 0.01491232
## 23 0.08451332 0.05050117 0.04453325 0.03473640 0.02553826 0.01793289 0.01429591
## 24 0.03307676 0.03261521 0.04847430 0.06127946 0.04498555 0.03262064 0.02621496
## 25 0.01787157 0.02015261 0.03162416 0.04830336 0.06088109 0.08000083 0.07237320
## 26 0.01517041 0.01665232 0.02615048 0.04038485 0.05017530 0.07019894 0.09725449
##             8          9         10         11         12         13         14
## 1  0.01556430 0.01641907 0.02175462 0.02850156 0.02419224 0.03748636 0.05071320
## 2  0.01750750 0.01718067 0.02321935 0.03054179 0.02280354 0.03425350 0.04686658
## 3  0.02215296 0.02132485 0.02883051 0.03761374 0.02671620 0.03806766 0.04949529
## 4  0.03089428 0.02936514 0.03957733 0.05059529 0.03403137 0.04283079 0.04695913
## 5  0.03848950 0.03380979 0.04389129 0.05099572 0.03354034 0.03743001 0.03870680
## 6  0.05192358 0.04212121 0.04967960 0.04969009 0.03474043 0.03325833 0.03147694
## 7  0.06821427 0.05292513 0.05516593 0.04862267 0.03784004 0.03189277 0.02797363
## 8  0.00000000 0.07712743 0.06996406 0.05448182 0.05063310 0.03758055 0.03009346
## 9  0.07735572 0.00000000 0.07410461 0.05633810 0.06174566 0.04241566 0.03239869
## 10 0.06103210 0.06445328 0.00000000 0.06606916 0.05973244 0.04681744 0.03708181
## 11 0.04408928 0.04545692 0.06129101 0.00000000 0.05309132 0.05302332 0.04459900
## 12 0.04856460 0.05904840 0.06567682 0.06292561 0.00000000 0.06184802 0.04522820
## 13 0.03183444 0.03582422 0.04546304 0.05550341 0.05462289 0.00000000 0.06147213
## 14 0.02424060 0.02602046 0.03424117 0.04439304 0.03798352 0.05845413 0.00000000
## 15 0.02249314 0.02552873 0.03212278 0.03986458 0.04031510 0.05980231 0.06556757
## 16 0.01892364 0.02124969 0.02700616 0.03404222 0.03339456 0.05009988 0.05978972
## 17 0.02478559 0.02488351 0.03357778 0.04426108 0.03257547 0.04652183 0.05786062
## 18 0.01580948 0.01661500 0.02205478 0.02892777 0.02433355 0.03769831 0.05121291
## 19 0.01821045 0.01818674 0.02453271 0.03234444 0.02456719 0.03702943 0.05067075
## 20 0.03036682 0.03026313 0.04090437 0.05373383 0.03773860 0.04918746 0.05234074
## 21 0.07726403 0.10002523 0.07405810 0.05632021 0.06192115 0.04247372 0.03242034
## 22 0.01720219 0.01899806 0.02447642 0.03130697 0.02944055 0.04486633 0.05641248
## 23 0.01583688 0.01710742 0.02237540 0.02902726 0.02594387 0.04001390 0.05256798
## 24 0.02754308 0.02770829 0.03739593 0.04928661 0.03573214 0.04915264 0.05610384
## 25 0.05719759 0.04656313 0.05425442 0.05211749 0.03757742 0.03436389 0.03123615
## 26 0.07527755 0.05810952 0.05759699 0.04886547 0.03980313 0.03219669 0.02754911
##            15         16         17         18         19         20         21
## 1  0.05084050 0.06015623 0.04756916 0.09424244 0.06544035 0.03854129 0.01638922
## 2  0.03923508 0.04301940 0.05390627 0.06835706 0.08658335 0.04358492 0.01713252
## 3  0.03671484 0.03612995 0.06387471 0.04738074 0.06688408 0.05361084 0.02125894
## 4  0.03307766 0.02917753 0.06051600 0.03083147 0.03964499 0.06683454 0.02926720
## 5  0.02737844 0.02391418 0.04964723 0.02574988 0.03441903 0.05646720 0.03367519
## 6  0.02272596 0.01926082 0.03864974 0.01966808 0.02600001 0.04603307 0.04194313
## 7  0.02089933 0.01724157 0.03254096 0.01638437 0.02098506 0.03990422 0.05272067
## 8  0.02411006 0.01934937 0.03162768 0.01638478 0.01943491 0.03951676 0.07685352
## 9  0.02744486 0.02179206 0.03184661 0.01727058 0.01946706 0.03949838 0.09978828
## 10 0.03003618 0.02408843 0.03737691 0.01993926 0.02283972 0.04643388 0.06426024
## 11 0.03457935 0.02816835 0.04570581 0.02426159 0.02793463 0.05658628 0.04533484
## 12 0.04144777 0.03275089 0.03986980 0.02418877 0.02514796 0.04710348 0.05907595
## 13 0.05430006 0.04339433 0.05028737 0.03309626 0.03347674 0.05422137 0.03578828
## 14 0.05661199 0.04924474 0.05947332 0.04275368 0.04356025 0.05486469 0.02597617
## 15 0.00000000 0.07361313 0.04876327 0.04861297 0.04142640 0.04516668 0.02551191
## 16 0.07716873 0.00000000 0.04649683 0.05949449 0.04611899 0.04082547 0.02123253
## 17 0.04096123 0.03725783 0.00000000 0.03942305 0.04784669 0.06266914 0.02481729
## 18 0.05027793 0.05869701 0.04853950 0.00000000 0.06671394 0.03927010 0.01658376
## 19 0.04160671 0.04418552 0.05720816 0.06478547 0.00000000 0.04590890 0.01813919
## 20 0.03720355 0.03207830 0.06145253 0.03127541 0.03765104 0.00000000 0.03017721
## 21 0.02749190 0.02182616 0.03183728 0.01727903 0.01946227 0.03947977 0.00000000
## 22 0.06721853 0.08378591 0.04605936 0.06857097 0.05068147 0.03917227 0.01897740
## 23 0.05755618 0.07046825 0.04599813 0.08233174 0.05765988 0.03795563 0.01708271
## 24 0.03952774 0.03466755 0.06737089 0.03445365 0.04116753 0.06945537 0.02763395
## 25 0.02294860 0.01915332 0.03701022 0.01864896 0.02399404 0.04508306 0.04636631
## 26 0.02089869 0.01709785 0.03137634 0.01581158 0.01996737 0.03874881 0.05790209
##            22         23         24         25         26
## 1  0.06951713 0.08298016 0.04252675 0.01880901 0.01368900
## 2  0.04825748 0.05610969 0.04745113 0.02400059 0.01700343
## 3  0.03785423 0.04019792 0.05729555 0.03059796 0.02169322
## 4  0.02844316 0.02776615 0.06414102 0.04138685 0.02966706
## 5  0.02329624 0.02289734 0.05281496 0.05851005 0.04134367
## 6  0.01838646 0.01771293 0.04219127 0.08470105 0.06372294
## 7  0.01608599 0.01509072 0.03623577 0.08188987 0.09434808
## 8  0.01749950 0.01576547 0.03590375 0.06103363 0.06886966
## 9  0.01938361 0.01708068 0.03622602 0.04983302 0.05332039
## 10 0.02172067 0.01943083 0.04252410 0.05050216 0.04596695
## 11 0.02577296 0.02338432 0.05199214 0.04500455 0.03617812
## 12 0.02872586 0.02477178 0.04467573 0.03845951 0.03492730
## 13 0.03866309 0.03374289 0.05427607 0.03106189 0.02495214
## 14 0.04622620 0.04215311 0.05891028 0.02684850 0.02030211
## 15 0.06379441 0.05345410 0.04807077 0.02284543 0.01783747
## 16 0.08335866 0.06860702 0.04419655 0.01998819 0.01529825
## 17 0.03671908 0.03588470 0.06882268 0.03094890 0.02249556
## 18 0.06730684 0.07908272 0.04333508 0.01920097 0.01395773
## 19 0.04830912 0.05378350 0.05028289 0.02399015 0.01711675
## 20 0.03062236 0.02903565 0.06957468 0.03696774 0.02724200
## 21 0.01940851 0.01709652 0.03621462 0.04974021 0.05325621
## 22 0.00000000 0.08068402 0.04279831 0.01891606 0.01423008
## 23 0.08245028 0.00000000 0.04176619 0.01829882 0.01350828
## 24 0.03339959 0.03189589 0.00000000 0.03357990 0.02465853
## 25 0.01803355 0.01707139 0.04102185 0.00000000 0.06615181
## 26 0.01582293 0.01469856 0.03513436 0.07715618 0.00000000
class(W4) #matriks array
## [1] "matrix" "array"

summary matriks:

W4 = mat2listw(W4,style='W')  
summary(W4)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 26 
## Number of nonzero links: 650 
## Percentage nonzero weights: 96.15385 
## Average number of links: 25 
## Link number distribution:
## 
## 25 
## 26 
## 26 least connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
## 26 most connected regions:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 with 25 links
## 
## Weights style: W 
## Weights constants summary:
##    n  nn S0       S1       S2
## W 26 676 26 2.459963 104.2758
plot(petajabar, col='gray', border='blue', main ="Exponential Alpha=1")
plot(W4, longlat, col='red', lwd=2, add=TRUE)

Spatial Contiguity Weigth

petajabar<-readOGR(dsn="petaJabar2", layer="Jabar2") #dsn diisi nama folder #layer diisi nama file dalam folder
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\Kuliah S2 IPB\Bahan Kuliah\Semester 2 SSD 2020\STA533 Spasial\PRAKTIKUM\R\petaJabar2", layer: "Jabar2"
## with 26 features
## It has 7 fields
plot(petajabar) #peta kosongan tanpa data
text(petajabar,'KABKOT',cex=0.5) #menambahkan nama wilayah pada peta

#peta sebaran persentase penduduk miskin di Jabar tahun 2015
library(raster)
colfunc<-colorRampPalette(c("white", "pink","red")) #menentukan warna peta
petajabar$miskin<-datajabar$p.miskin15
spplot(petajabar, "miskin", col.regions=colfunc(16),
       main="Peta Persentase Penduduk Miskin di Jawa Barat Tahun 2015")

class(petajabar) #spatialPolygonsDataFrame
## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"

Rook

#Rook
W6<-poly2nb(petajabar,queen=FALSE)
W6 #matriks bobot Rook
## Neighbour list object:
## Number of regions: 26 
## Number of nonzero links: 102 
## Percentage nonzero weights: 15.08876 
## Average number of links: 3.923077
class(W6) #nb
## [1] "nb"
par(mfrow=c(1,2))
#memetakan jabar dengan matriks bobot Rook
par(mai=c(0,0,0,0))

plot(petajabar,col='skyblue',border='white',main="Peta Persentase Kemiskinan Jabar \n Tahun 2015 dengan Rook")
xy<-coordinates(petajabar) 
plot(W6,xy,col='red',lwd=2,add=TRUE)

Queen

#Queen
W7<-poly2nb(petajabar,queen=TRUE)
W7 #matriks bobot Queen
## Neighbour list object:
## Number of regions: 26 
## Number of nonzero links: 102 
## Percentage nonzero weights: 15.08876 
## Average number of links: 3.923077
#memetakan jabar dengan matriks bobot Queen
par(mai=c(0,0,0,0))

plot(petajabar,col='skyblue',border='white',main="Peta Persentase Kemiskinan Jabar \n Tahun 2015 dengan Queen")
xy<-coordinates(petajabar) 
plot(W7,xy,col='orange',lwd=2,add=TRUE)

Queen Vs Rook

par(mfrow=c(1,1))


plot(petajabar, col='skyblue',border="white",main="Matriks Kontiguty Queen vs Rook")
plot(W7, xy, add = TRUE, col = "orange")
plot(W6, xy, add = TRUE, col = "red")

Global Autocorrelation

Moran’s I

Digunakan K-Nearest Neighbor Weight dengan k=5:

WL1<-W1

Cek normalitas:

moran(petajabar$miskin,WL1,n=length(WL1$neighbours),S0=Szero(WL1))
## $I
## [1] 0.328805
## 
## $K
## [1] 2.259555

Karena kurtosisnya tidak mendekati 3, maka data tidak mengikuti sebaran normal sehingga Indeks Moran yang digunakan selanjutnya dengan asumsi acak (randomisasi)

Indeks Moran dengan Asumsi Randomisasi:

MI1 <- moran.test(petajabar$miskin,WL1,randomisation=TRUE)  
MI1  
## 
##  Moran I test under randomisation
## 
## data:  petajabar$miskin  
## weights: WL1    
## 
## Moran I statistic standard deviate = 3.4303, p-value = 0.0003015
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##         0.3288050        -0.0400000         0.0115593

Karena p-value = 0.0003015 < 0.05 berarti tolak Ho. alternative hypothesis: greater berarti pada taraf nyata 5%, terdapat autokorelasi spasial positif.

Uji moran juga dapat dilakukan dengan melibatkan simulasi monte carlo.

set.seed(123)
MMC<- moran.mc(petajabar$miskin,WL1, nsim=599)

# View results (including p-value)
MMC
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  petajabar$miskin 
## weights: WL1  
## number of simulations + 1: 600 
## 
## statistic = 0.32881, observed rank = 596, p-value = 0.006667
## alternative hypothesis: greater

Geary

Global Geary’s C

Geary’s C merupakan alternatif dari indeks Moran, yang memiliki nilai antara 0 s.d 2. Nilai 0 menunjukkan autokorelasi positif, 1 menunjukkan tidak ada autokorelasi, dan 2 menunjukkan autokorelasi negatif.

C1 <- geary.test(petajabar$miskin,WL1) 
C1
## 
##  Geary C test under randomisation
## 
## data:  petajabar$miskin 
## weights: WL1 
## 
## Geary C statistic standard deviate = 3.0292, p-value = 0.001226
## alternative hypothesis: Expectation greater than statistic
## sample estimates:
## Geary C statistic       Expectation          Variance 
##        0.67482267        1.00000000        0.01152329

Dengan monte carlo:

GS1 <- geary.mc(petajabar$miskin,WL1, nsim=599)

GS1
## 
##  Monte-Carlo simulation of Geary C
## 
## data:  petajabar$miskin 
## weights: WL1 
## number of simulations + 1: 600 
## 
## statistic = 0.67482, observed rank = 5, p-value = 0.008333
## alternative hypothesis: greater

Local Autocorrelation

Local Moran’s I

Pendekatan ini termasuk ke dalam Local Indicators for Spatial Association (LISA), yang mengindentifikasi autokorelasi pada tingkat lokal.

petajabar
## class       : SpatialPolygonsDataFrame 
## features    : 26 
## extent      : 106.3705, 108.8338, -7.823398, -5.91377  (xmin, xmax, ymin, ymax)
## crs         : NA 
## variables   : 8
## names       : PROVNO, KABKOTNO, KODE2010,   PROVINSI,      KABKOT,                       SUMBER, IDSP2010,           miskin 
## min values  :     32,       01,     3201, JAWA BARAT,     BANDUNG, SP2010_BADAN PUSAT STATISTIK,     3201, 2.39749571489967 
## max values  :     32,       79,     3279, JAWA BARAT, TASIKMALAYA, SP2010_BADAN PUSAT STATISTIK,     3279, 16.2801622356294
oid <- order(petajabar$miskin)
resI <- localmoran(petajabar$miskin,WL1)
head(resI)
##            Ii  E.Ii    Var.Ii       Z.Ii Pr(z > 0)
## 1  0.34018182 -0.04 0.1596824  0.9513994 0.1707008
## 2  0.16607406 -0.04 0.1596824  0.5156973 0.3030329
## 3 -0.20510875 -0.04 0.1596824 -0.4131822 0.6602634
## 4  0.05778174 -0.04 0.1596824  0.2446974 0.4033454
## 5 -0.14671090 -0.04 0.1596824 -0.2670424 0.6052818
## 6  0.30991181 -0.04 0.1596824  0.8756491 0.1906104
petajabar$z.li <- resI[,4]
petajabar$pvalue <- resI[,5]
lm.palette <- colorRampPalette(c("white","orange", "red"), space = "rgb")
spplot(petajabar, zcol="z.li", col.regions=lm.palette(20), main="Local Moran")

Warna yang lebih pekat berarti memiliki nilai Z_Score yang besar berarti cenderung memiliki korelasi positif dengan tetangganya.

moran.plot(petajabar$miskin,WL1)

Terdapat 4 kuadran dalam Indeks Moran Lokal. Tanda seperti diamond pada moral plot di atas berarti pengamatan tersebut memiliki pengaruh yang besar terhadap autokorelasi spasial pada data tesebut.

Getis-Ord Gi

Menurut Mendez (2020), pendekatan Getis-ord Gi dapat membantu mengidentifikasi pola penggerombolan berdasarkan ukuran autokorelasi pada level lokal.

local_g <- localG(petajabar$miskin,WL1)

local_g
##  [1] -2.82707329 -1.39534118 -0.72139195 -0.30142760 -0.36647984  1.36557202
##  [7]  1.87842906  0.92463532  2.25953114  2.30507206  0.30640742  2.00075509
## [13]  0.30583182 -0.59520707 -2.09731098 -2.06698919 -1.32798436 -2.18837784
## [19]  0.03126852 -0.57504181  2.65719825 -2.30058195 -2.33323973 -0.70182887
## [25]  0.95071873  2.15101471
## attr(,"gstari")
## [1] FALSE
## attr(,"call")
## localG(x = petajabar$miskin, listw = WL1)
## attr(,"class")
## [1] "localG"

Output di atas menghasilkan z-score, yang biasanya disajikan secara visual untuk mengidentifikasi cluster maupun hotspot.

petajabar$localg <- as.numeric(local_g)
lm.palette <- colorRampPalette(c("white","orange", "red"), space = "rgb")
spplot(petajabar, zcol="localg", col.regions=lm.palette(20), main="Local Gi")

Spatial Regression (Responsi Pertemuan 10)

Model Spasial Global

Tahapan Regresi Spasial

Tahapan regresi spasial, yaitu:

  • Eksplorasi Data

  • Regresi Klasik & Uji Asumsi

  • Matriks Pembobot Spasial

  • Uji Lagrange Multiplier

  • Regresi Spasial & Uji Asumsi

  • Kebaikan Model

Data Import

Silahkan download files yang ada pada link berikut ini:

https://github.com/raoy/SpatialReg

Data yang Anda download terdiri dari dua jenis data:

  • Data polygon (peta Jawa Barat, dengan extension .shp)

  • Dataframe (data pendidikan dan kemiskinan, diperoleh dari BPS)

library(openxlsx)
library(spdep)
library(rgdal)
library(raster)
data.jabar = read.xlsx("Jabar Data (gabung).xlsx")
head(data.jabar)
##   PROVNO KABKOTNO KODE2010   PROVINSI      KABKOT IDSP2010     Long       Lat
## 1     32        1     3201 JAWA BARAT       BOGOR     3201 106.7687 -6.561184
## 2     32        2     3202 JAWA BARAT    SUKABUMI     3202 106.7101 -7.074623
## 3     32        3     3203 JAWA BARAT     CIANJUR     3203 107.1578 -7.133713
## 4     32        4     3204 JAWA BARAT     BANDUNG     3204 107.6108 -7.099969
## 5     32        5     3205 JAWA BARAT       GARUT     3205 107.7889 -7.359586
## 6     32        6     3206 JAWA BARAT TASIKMALAYA     3206 108.1413 -7.496892
##   p.miskin15 p.miskin16 j.miskin15 j.miskin16 AHH2015 AHH2016 EYS2015 EYS2016
## 1   8.959759   8.834574     487.10     490.80   70.59   70.65   11.83   12.05
## 2   8.960361   8.134848     217.86     198.66   70.03   70.14   12.13   12.18
## 3  12.214160  11.621474     273.90     261.39   69.28   69.39   11.83   11.88
## 4   7.998184   7.613293     281.04     272.65   73.07   73.10   12.13   12.42
## 5  12.805808  11.640370     325.67     298.52   70.69   70.76   11.65   11.69
## 6  11.994455  11.237185     208.12     195.61   68.36   68.54   12.44   12.46
##   MYS2015 MYS2016 EXP2015 EXP2016 APM.SD15 APM.SMP15 APM.SMA15  APM.PT15
## 1    7.75    7.83    9368    9537 96.29364  72.97053  55.10088 11.835186
## 2    6.51    6.74    7849    8077 99.65285  75.76340  43.93547  9.924350
## 3    6.54    6.61    6877    7074 99.88696  78.40315  37.18006  3.862863
## 4    8.41    8.50    9375    9580 98.00367  82.13540  55.49216 17.042698
## 5    6.84    6.88    6875    7079 98.09334  75.28081  44.60243  5.708659
## 6    6.88    6.94    6934    7081 99.08656  76.97621  54.79954 12.158104
##   APK.SD15 APK.SMP15 APK.SMA15  APK.PT15 APS.USIA15 APS.USIA2 APS.USIA3
## 1 108.8195  84.63248  67.93291 12.636548   99.04861  89.24145  62.22669
## 2 113.0554  82.99804  54.93650 10.445696   99.65285  93.29009  53.65847
## 3 109.4963  86.03816  43.86501  4.122956  100.00000  94.00525  46.19371
## 4 110.0396  89.63486  66.20417 19.736955   99.91440  95.00882  60.55318
## 5 111.7212  82.16636  51.52615  6.168872   98.77839  87.05195  51.70852
## 6 107.0913  91.74347  65.10568 13.011988   99.78970  94.22934  72.26013
##   APS.USIA4
## 1 14.643598
## 2 14.866231
## 3  5.850893
## 4 19.991477
## 5  8.091359
## 6 15.309082

Studi Kasus: Kemiskinan di Jawa Barat

Y : Persentase Penduduk Miskin Tahun 2016

X : Angka Melek Huruf Tahun 2016

jabar2 <- readOGR(dsn="petaJabar2", layer="Jabar2")
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\Kuliah S2 IPB\Bahan Kuliah\Semester 2 SSD 2020\STA533 Spasial\PRAKTIKUM\R\petaJabar2", layer: "Jabar2"
## with 26 features
## It has 7 fields
#dsn diisi nama folder #layer diisi nama file dalam folder

Eksplorasi Data

plot(data.jabar$EYS2016, data.jabar$p.miskin16,
  xlab="Angka Melek Huruf Thn.2016", 
  ylab="Persentase Penduduk Miskin Thn.2016",
  pch=20, col="orange", cex=2)
reg.klasik = lm(p.miskin16~EYS2016, data = data.jabar)
library(DescTools)
## Registered S3 method overwritten by 'DescTools':
##   method         from 
##   reorder.factor gdata
lines.lm(reg.klasik, col=2, add=T)

Plot tersebut memperlihatkan adanya pola hubungan linear negatif antara angka melek huruf terhadap persentase penduduk miskin di Jawa Barat pada tahun 2016.

Plot Persentase Penduduk Miskin Tahun 2016

k=16
colfunc <- colorRampPalette(c("green", "yellow","red"))
color <- colfunc(k)
library(sp)
jabar2$miskin2<- data.jabar$p.miskin16
spplot(jabar2, "miskin2", col.regions=color)

Berdasarkan plot di atas, dapat dilihat adanya kecenderungan pola bergerombol pada data persentase kemiskinan di kabupaten/kota di Jawa Barat. Hal ini tampak dari gradasi warna yang cenderung mengumpul, seperti pada warna merah dan oranye.

Moran Test

w<-poly2nb(jabar2)
ww<-nb2listw(w)
moran(data.jabar$p.miskin16, ww, n=length(ww$neighbours), 
      S0=Szero(ww))
## $I
## [1] 0.3932657
## 
## $K
## [1] 2.403804
moran.test(data.jabar$p.miskin16, ww,randomisation=T, 
           alternative="greater")
## 
##  Moran I test under randomisation
## 
## data:  data.jabar$p.miskin16  
## weights: ww    
## 
## Moran I statistic standard deviate = 3.0168, p-value = 0.001277
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##         0.3932657        -0.0400000         0.0206265

p-value = 0.001277 < alpha=0.05 berarti tolak Ho.Ada autokorelasi antar daerah tersebut.

Moran Plot

moran.plot(data.jabar$p.miskin16, ww, labels=data.jabar$KABKOT)

Classical Regression Modelling

OLS Method

reg.klasik = lm(p.miskin16~EYS2016, data = data.jabar)
err.regklasik<-residuals(reg.klasik)
summary(reg.klasik)
## 
## Call:
## lm(formula = p.miskin16 ~ EYS2016, data = data.jabar)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3627 -1.9604 -0.3899  1.5238  8.1125 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  39.5732     9.0973   4.350 0.000217 ***
## EYS2016      -2.3948     0.7209  -3.322 0.002854 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.788 on 24 degrees of freedom
## Multiple R-squared:  0.315,  Adjusted R-squared:  0.2865 
## F-statistic: 11.04 on 1 and 24 DF,  p-value: 0.002854

Model Diagnostics

library(nortest)
library(car)
library(DescTools)
library(lmtest)

Uji Kenormalan Galat

H0: galat model menyebar normal

H1: galat model tidak menyebar normal

ad.test(err.regklasik)
## 
##  Anderson-Darling normality test
## 
## data:  err.regklasik
## A = 0.39412, p-value = 0.3495

P_Value > alpha=0.05 tidak tolak HO. Galat model menyebar normal.

hist(err.regklasik)

qqnorm(err.regklasik,datax=T)
qqline(rnorm(length(err.regklasik),mean(err.regklasik),sd(err.regklasik)),datax=T, col="red")

Tidak persis garis sebaran titik2nya.

Heteroscedastics

H0: ragam galat homogen

H1: ragam galat tidak homogen

bptest(reg.klasik)
## 
##  studentized Breusch-Pagan test
## 
## data:  reg.klasik
## BP = 1.0644, df = 1, p-value = 0.3022

P_Value > alpha=0.05 tidak tolak HO. ragam galat homogen.

Explore for Spatial Autocorrelation

Uji kebebasan sisaan pada data spasial dapat dilakukan dengan uji moran menggunakan fungsi berikut:

w<-poly2nb(jabar2)
ww<-nb2listw(w)
lm.morantest(reg.klasik, ww, alternative="two.sided")
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = p.miskin16 ~ EYS2016, data = data.jabar)
## weights: ww
## 
## Moran I statistic standard deviate = 3.4736, p-value = 0.0005135
## alternative hypothesis: two.sided
## sample estimates:
## Observed Moran I      Expectation         Variance 
##       0.44799554      -0.05028275       0.02057696

Selain menggunakan fungsi lm.morantest, uji moran dapat dilakukan menggunakan fungsi moran.test seperti yang dibahas pada modul pertemuan sebelumnya. Perbedaannya adalah pada fungsi pertama, input yang digunakan adalah objek lm, sedangkan pada fungsi kedua, yang digunakan sebagai input adalah data sisaan model.

moran.test(err.regklasik, ww,randomisation=F, alternative="two.sided")
## 
##  Moran I test under normality
## 
## data:  err.regklasik  
## weights: ww    
## 
## Moran I statistic standard deviate = 3.4266, p-value = 0.0006112
## alternative hypothesis: two.sided
## sample estimates:
## Moran I statistic       Expectation          Variance 
##        0.44799554       -0.04000000        0.02028183

Terlihat pada output bahwa hasil kedua tes menunjukkan kesimpulan yang sama, yaitu tolak H0 yang menyatakan bahwa tidak terdapat autokorelasi pada sisaan model regresi klasik pada taraf nyata 5%. Oleh karenanya, untuk mencari model yang lebih baik, kita dapat melakukan uji LM (lagrange multiplier) untuk mengidentifikasi model dependensi spasial yang dapat digunakan pada kasus ini.

Lagrange Multiplier Test

lm.LMtests tests against various alternative models, which helps determine more/less desirable alternatives:

  1. LMerr: simple LM test for error dependence

  2. LMlag: simple LM test for a missing spatially lagged dependent variable

  3. RLMerr: robust test for error dependence in the possible presence of a missing lagged dependent variable

  4. RLMlag: robust test for a missing lagged dependent variable in the possible presence of error dependence

  5. SARMA: a portmanteau test for seasonal autoregressive moving average (SARMA, in fact LMerr + RLMlag)

LM<-lm.LMtests(reg.klasik, nb2listw(w, style="W"),
               test=c("LMerr", "LMlag","RLMerr","RLMlag","SARMA"))
summary(LM)
##  Lagrange multiplier diagnostics for spatial dependence
## data:  
## model: lm(formula = p.miskin16 ~ EYS2016, data = data.jabar)
## weights: nb2listw(w, style = "W")
##  
##        statistic parameter  p.value   
## LMerr   8.375484         1 0.003803 **
## LMlag   6.642323         1 0.009958 **
## RLMerr  1.822499         1 0.177016   
## RLMlag  0.089338         1 0.765020   
## SARMA   8.464822         2 0.014517 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Output memperlihatkan bahwa hasil uji model SEM dan SAR sama-sama signifikan pada taraf 5%. Selanjutnya, hasil uji robust keduanya ternyata sama-sama tidak signifikan. Berdasarkan skema tersebut, kita dapat mencoba kandidat model SARMA atau GSM. Namun demikian, ada pula pendapat yang menyarankan agar kita mengambil kandidat model dengan p-value terkecil, dalam hal ini adalah model SEM ( p-value = 0.003803 ).

Pada modul ini, untuk kepentingan pembelajaran, kita akan mencoba ketiga model, SEM, SAR, dan SARMA, meskipun pada prakteknya, Anda hanya perlu memodelkan yang menurut Anda terbaik saja.

Spatial Regression Modelling

Model SEM

sem <-errorsarlm(p.miskin16~EYS2016,data=data.jabar,nb2listw(w))
summary(sem)
## 
## Call:errorsarlm(formula = p.miskin16 ~ EYS2016, data = data.jabar, 
##     listw = nb2listw(w))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -4.24699 -1.36122 -0.13809  1.15579  7.03019 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##             Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 36.88515    7.80246  4.7274 2.274e-06
## EYS2016     -2.17498    0.60042 -3.6224 0.0002919
## 
## Lambda: 0.61793, LR test value: 8.7676, p-value: 0.0030663
## Asymptotic standard error: 0.1576
##     z-value: 3.9208, p-value: 8.8267e-05
## Wald statistic: 15.372, p-value: 8.8267e-05
## 
## Log likelihood: -58.12466 for error model
## ML residual variance (sigma squared): 4.5459, (sigma: 2.1321)
## Number of observations: 26 
## Number of parameters estimated: 4 
## AIC: 124.25, (AIC for lm: 131.02)

Output di atas menunjukkan bahwa koefisien Lambda signifikan pada taraf nyata 5% ( p-value = 0.0030663 ). Berarti kita memasukkan komponen error tersebut ke dalam model sudah benar.

AIC model SEM adalah sebesar 124.25. Selanjutnya kita akan coba memeriksa sisaan model SEM ini.

err.sem<-residuals(sem)
ad.test(err.sem)
## 
##  Anderson-Darling normality test
## 
## data:  err.sem
## A = 0.63011, p-value = 0.08968
sem <- errorsarlm(p.miskin16~EYS2016,data=data.jabar,nb2listw(w))
bptest.Sarlm(sem)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 0.38918, df = 1, p-value = 0.5327
moran.test(err.sem, ww, alternative="two.sided")
## 
##  Moran I test under randomisation
## 
## data:  err.sem  
## weights: ww    
## 
## Moran I statistic standard deviate = -0.096995, p-value = 0.9227
## alternative hypothesis: two.sided
## sample estimates:
## Moran I statistic       Expectation          Variance 
##       -0.05288671       -0.04000000        0.01765155

Terlihat pada output di atas bahwa sisaan telah memenuhi asumsi kenormalan, kehomogenan ragam, serta kebebasan.

Model SAR

sar<-lagsarlm(p.miskin16~EYS2016,data=data.jabar,nb2listw(w))
summary(sar)
## 
## Call:
## lagsarlm(formula = p.miskin16 ~ EYS2016, data = data.jabar, listw = nb2listw(w))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -4.17670 -0.93185 -0.11318  0.91353  7.69131 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##             Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 28.22898    7.66250  3.6840 0.0002296
## EYS2016     -1.94997    0.57325 -3.4016 0.0006700
## 
## Rho: 0.59078, LR test value: 7.9343, p-value: 0.0048507
## Asymptotic standard error: 0.1559
##     z-value: 3.7894, p-value: 0.00015101
## Wald statistic: 14.36, p-value: 0.00015101
## 
## Log likelihood: -58.54132 for lag model
## ML residual variance (sigma squared): 4.7513, (sigma: 2.1798)
## Number of observations: 26 
## Number of parameters estimated: 4 
## AIC: 125.08, (AIC for lm: 131.02)
## LM test for residual autocorrelation
## test value: 0.036687, p-value: 0.8481

Output di atas memperlihatkan bahwa koefisien Rho pada model SAR signifikan, dengan nilai AIC sebesar 125.08. Selain itu, terlihat pula hasil uji autokorelasi pada sisaan model memperlihatkan nilai p-value sebesar 0.8481, artinya tidak terdapat autokorelasi pada sisaan.

err.sar<-residuals(sar)
ad.test(err.sar)
## 
##  Anderson-Darling normality test
## 
## data:  err.sar
## A = 0.70904, p-value = 0.05644
sar<-lagsarlm(p.miskin16~EYS2016,data=data.jabar,nb2listw(w))
bptest.Sarlm(sar)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 0.97078, df = 1, p-value = 0.3245

Berdasarkan output di atas, pada taraf 5% dapat disimpulkan bahwa sisaan model telah memenuhi asumsi kenormalan dan kehomogenan ragam.

Model GSM/SARMA

gsm<-sacsarlm(p.miskin16~EYS2016,data=data.jabar,nb2listw(w))
summary(gsm)
## 
## Call:
## sacsarlm(formula = p.miskin16 ~ EYS2016, data = data.jabar, listw = nb2listw(w))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0817 -1.2815 -0.1627  1.1317  6.7128 
## 
## Type: sac 
## Coefficients: (asymptotic standard errors) 
##             Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 38.02312    8.19667  4.6388 3.504e-06
## EYS2016     -2.15311    0.59378 -3.6261 0.0002877
## 
## Rho: -0.14689
## Asymptotic standard error: 0.38983
##     z-value: -0.3768, p-value: 0.70633
## Lambda: 0.69352
## Asymptotic standard error: 0.23014
##     z-value: 3.0135, p-value: 0.0025829
## 
## LR test value: 8.8931, p-value: 0.011719
## 
## Log likelihood: -58.06189 for sac model
## ML residual variance (sigma squared): 4.3254, (sigma: 2.0797)
## Number of observations: 26 
## Number of parameters estimated: 5 
## AIC: 126.12, (AIC for lm: 131.02)

Output di atas memperlihatkan bahwa hanya salah satu koefisien dependensi spasial yang signifikan, yaitu Lambda. AIC model SARMA adalah sebesar 126.12.

err.gsm<-residuals(gsm)
ad.test(err.gsm)
## 
##  Anderson-Darling normality test
## 
## data:  err.gsm
## A = 0.55307, p-value = 0.1388
gsm<-sacsarlm(p.miskin16~EYS2016,data=data.jabar,nb2listw(w))
bptest.Sarlm(gsm)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 0.31097, df = 1, p-value = 0.5771
moran.test(err.gsm, ww, alternative="two.sided")
## 
##  Moran I test under randomisation
## 
## data:  err.gsm  
## weights: ww    
## 
## Moran I statistic standard deviate = -0.0061095, p-value = 0.9951
## alternative hypothesis: two.sided
## sample estimates:
## Moran I statistic       Expectation          Variance 
##       -0.04081914       -0.04000000        0.01797655

Berdasarkan output di atas, terlihat bahwa sisaan model SARMA telah memenuhi asumsi kenormalan, kehomogenan ragam, dan kebebasan.

Mohon diingat bahwa pada ilustrasi yang kita lakukan saat ini, kita hanya menggunakan satu peubah bebas sehingga kita tidak perlu mengkhawatirkan masalah multikolinieritas. Pada saat Anda memiliki lebih dari satu peubah bebas, pastikan Anda juga memperhatikan multikolinieritas pada model. Pemeriksaan dapat dilakukan dengan fungsi vif() pada package car.

Goodness of Fits

Akhirnya, kita akan coba merangkum hasil pemodelan yang telah dilakukan sepanjang ilustrasi pada modul ini.

Ilustrasi pada kasus ini memperlihatkan bahwa ternyata SEM merupakan model terbaik berdasarkan nilai AIC-nya. Hal ini ternyata sejalan dengan p-value nya yang juga terkecil pada uji LM.

Exercise

Sebagai latihan, silahkan Anda mencoba memodelkan dengan peubah lain yang terdapat pada data Jabar ini. Diskusikan hasilnya bersama rekan Anda. Anda juga dapat mencoba memodelkan lebih dari satu peubah penjelas.

Peubah yang saya gunakan:

Y:p.miskin15 (persentase penduduk miskin 2015)

X1: AHH2015(angka harapan hidup tahun 2015)

X2: EXP2015 (pengeluaran per kapita riil tahun 2015)

X3: MYS2015 (rata-rata lama sekolah tahun 2015)

str(data.jabar)
## 'data.frame':    26 obs. of  32 variables:
##  $ PROVNO    : num  32 32 32 32 32 32 32 32 32 32 ...
##  $ KABKOTNO  : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ KODE2010  : num  3201 3202 3203 3204 3205 ...
##  $ PROVINSI  : chr  "JAWA BARAT" "JAWA BARAT" "JAWA BARAT" "JAWA BARAT" ...
##  $ KABKOT    : chr  "BOGOR" "SUKABUMI" "CIANJUR" "BANDUNG" ...
##  $ IDSP2010  : num  3201 3202 3203 3204 3205 ...
##  $ Long      : num  107 107 107 108 108 ...
##  $ Lat       : num  -6.56 -7.07 -7.13 -7.1 -7.36 ...
##  $ p.miskin15: num  8.96 8.96 12.21 8 12.81 ...
##  $ p.miskin16: num  8.83 8.13 11.62 7.61 11.64 ...
##  $ j.miskin15: num  487 218 274 281 326 ...
##  $ j.miskin16: num  491 199 261 273 299 ...
##  $ AHH2015   : num  70.6 70 69.3 73.1 70.7 ...
##  $ AHH2016   : num  70.7 70.1 69.4 73.1 70.8 ...
##  $ EYS2015   : num  11.8 12.1 11.8 12.1 11.6 ...
##  $ EYS2016   : num  12.1 12.2 11.9 12.4 11.7 ...
##  $ MYS2015   : num  7.75 6.51 6.54 8.41 6.84 6.88 7.45 7.2 6.32 6.8 ...
##  $ MYS2016   : num  7.83 6.74 6.61 8.5 6.88 6.94 7.55 7.34 6.41 6.89 ...
##  $ EXP2015   : num  9368 7849 6877 9375 6875 ...
##  $ EXP2016   : num  9537 8077 7074 9580 7079 ...
##  $ APM.SD15  : num  96.3 99.7 99.9 98 98.1 ...
##  $ APM.SMP15 : num  73 75.8 78.4 82.1 75.3 ...
##  $ APM.SMA15 : num  55.1 43.9 37.2 55.5 44.6 ...
##  $ APM.PT15  : num  11.84 9.92 3.86 17.04 5.71 ...
##  $ APK.SD15  : num  109 113 109 110 112 ...
##  $ APK.SMP15 : num  84.6 83 86 89.6 82.2 ...
##  $ APK.SMA15 : num  67.9 54.9 43.9 66.2 51.5 ...
##  $ APK.PT15  : num  12.64 10.45 4.12 19.74 6.17 ...
##  $ APS.USIA15: num  99 99.7 100 99.9 98.8 ...
##  $ APS.USIA2 : num  89.2 93.3 94 95 87.1 ...
##  $ APS.USIA3 : num  62.2 53.7 46.2 60.6 51.7 ...
##  $ APS.USIA4 : num  14.64 14.87 5.85 19.99 8.09 ...

Eksplorasi Data

Persentase Penduduk Miskin Tahun 2015

#Plot Persentase Penduduk Miskin Tahun 2015
k=16
colfunc <- colorRampPalette(c("green", "yellow","red"))
color <- colfunc(k)
library(sp)
jabar2$miskin15<- data.jabar$p.miskin15
spplot(jabar2, "miskin15", col.regions=color)

Berdasarkan plot di atas, dapat dilihat adanya kecenderungan pola bergerombol pada data persentase kemiskinan di kabupaten/kota di Jawa Barat Tahun 2015. Hal ini tampak dari gradasi warna yang cenderung mengumpul, seperti pada warna merah dan oranye.

Keterkaitan Peubah Y dengan Peubah X

#Y:p.miskin15 vs X1: AHH2015
plot(data.jabar$AHH2015, data.jabar$p.miskin15,
     xlab="Angka Harapan Hidup Thn.2015", 
     ylab="Persentase Penduduk Miskin Thn.2015",
     pch=20, col="orange", cex=2)
reg.klasik = lm(p.miskin15~AHH2015, data = data.jabar)
lines.lm(reg.klasik, col=2, add=T)

Plot tersebut memperlihatkan adanya pola hubungan linear negatif antara Angka Harapan Hidup terhadap persentase penduduk miskin di Jawa Barat pada tahun 2015.

#Y:p.miskin15 vs X2: EXP2015
plot(data.jabar$EXP2015, data.jabar$p.miskin15,
     xlab="Pengeluaran per Kapita Riil Tahun 2015", 
     ylab="Persentase Penduduk Miskin Thn.2015",
     pch=20, col="orange", cex=2)
reg.klasik = lm(p.miskin15~EXP2015, data = data.jabar)
lines.lm(reg.klasik, col=2, add=T)

Plot tersebut memperlihatkan adanya pola hubungan linear negatif antara Pengeluaran per Kapita Riil terhadap persentase penduduk miskin di Jawa Barat pada tahun 2015.

#Y:p.miskin15 vs X3: MYS2015
plot(data.jabar$MYS2015, data.jabar$p.miskin15,
     xlab="Rata-rata Lama Sekolah Tahun 2015", 
     ylab="Persentase Penduduk Miskin Thn.2015",
     pch=20, col="orange", cex=2)
reg.klasik = lm(p.miskin15~MYS2015, data = data.jabar)
lines.lm(reg.klasik, col=2, add=T)

Plot tersebut memperlihatkan adanya pola hubungan linear negatif antara Rata-rata Lama Sekolah terhadap persentase penduduk miskin di Jawa Barat pada tahun 2015.

Moran Test

w<-poly2nb(jabar2) #pembobot spasial
ww<-nb2listw(w)
moran(data.jabar$p.miskin15, ww, n=length(ww$neighbours), 
      S0=Szero(ww)) 
## $I
## [1] 0.4218876
## 
## $K
## [1] 2.259555

Nilai Kurtosis kurang dari 3 berarti data tidak menyebar normal. Selanjutnya dilakukan Moran Test dengan asumsi randomisasi.

moran.test(data.jabar$p.miskin15, ww,randomisation=T, 
           alternative="greater") #p.value=0.0006736 tolak Ho berarti ada hubungan 
## 
##  Moran I test under randomisation
## 
## data:  data.jabar$p.miskin15  
## weights: ww    
## 
## Moran I statistic standard deviate = 3.2057, p-value = 0.0006736
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##        0.42188758       -0.04000000        0.02075945

p-value = 0.0006736 < alpha=0.05 berarti tolak Ho.Ada autokorelasi antar daerah tersebut.

Moran Plot

moran.plot(data.jabar$p.miskin15, ww, labels=data.jabar$KABKOT)

Classical Regression Modelling

OLS Method

reg.klasik15 = lm(p.miskin15~AHH2015+MYS2015+EXP2015, data = data.jabar)
err.regklasik15<-residuals(reg.klasik15)
summary(reg.klasik15)
## 
## Call:
## lm(formula = p.miskin15 ~ AHH2015 + MYS2015 + EXP2015, data = data.jabar)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9510 -1.3005 -0.1107  1.1326  6.3622 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 12.2459753 33.7548467   0.363   0.7202  
## AHH2015      0.1810378  0.5165348   0.350   0.7293  
## MYS2015     -1.1587370  0.5224354  -2.218   0.0372 *
## EXP2015     -0.0006044  0.0003615  -1.672   0.1086  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.393 on 22 degrees of freedom
## Multiple R-squared:  0.6069, Adjusted R-squared:  0.5533 
## F-statistic: 11.32 on 3 and 22 DF,  p-value: 0.0001072

Dengan menggunakan regresi linier berganda, pada taraf nyata 5%, peubah yang signifikan mempengaruhi persentase penduduk miskin di Jawa Barat pada tahun 2015 adalah Rata-rata Lama Sekolah Tahun 2015 (pvalue=0.0372 < alpha=0.05). Model yang terbentuk secara bersama-sama signifikan (pvalue=0.0001072 < alpha=0.05) memengaruhi persentase penduduk miskin di Jawa Barat pada tahun 2015

Model Diagnostics

Uji Multikolinieritas

vif(reg.klasik15) 
##  AHH2015  MYS2015  EXP2015 
## 2.912880 2.954451 2.974447

Nilai VIF dibawah 10 berarti tidak mengandung multikolinieritas antar peubah bebas.

Uji Kenormalan Galat

H0: galat model menyebar normal

H1: galat model tidak menyebar normal

ad.test(err.regklasik15) 
## 
##  Anderson-Darling normality test
## 
## data:  err.regklasik15
## A = 0.24013, p-value = 0.7516

Dengan taraf nyata 5% dapat disimpulkan bahwa (p.value=0.7516>alpha=0.05) Terima H0. Maka, Galat menyebar normal.

hist(err.regklasik15)

qqnorm(err.regklasik15,datax=T)
qqline(rnorm(length(err.regklasik15),mean(err.regklasik15),sd(err.regklasik15)),datax=T, col="red")

Tidak persis ada di garis sebaran titik2nya.

Heteroscedastics

H0: ragam galat homogen

H1: ragam galat tidak homogen

bptest(reg.klasik15)
## 
##  studentized Breusch-Pagan test
## 
## data:  reg.klasik15
## BP = 1.0368, df = 3, p-value = 0.7924

pvalue=0.7924>alpha=0.05 berarti terima Ho maka ragam galat homogen.

Explore for Spatial Autocorrelation

Uji kebebasan sisaan pada data spasial dapat dilakukan dengan uji moran.

w<-poly2nb(jabar2)
ww<-nb2listw(w)
lm.morantest(reg.klasik15, ww, alternative="two.sided") 
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = p.miskin15 ~ AHH2015 + MYS2015 + EXP2015, data =
## data.jabar)
## weights: ww
## 
## Moran I statistic standard deviate = 1.2932, p-value = 0.1959
## alternative hypothesis: two.sided
## sample estimates:
## Observed Moran I      Expectation         Variance 
##       0.12395156      -0.06279679       0.02085440
moran.test(err.regklasik15, ww,randomisation=F, alternative="two.sided") 
## 
##  Moran I test under normality
## 
## data:  err.regklasik15  
## weights: ww    
## 
## Moran I statistic standard deviate = 1.1512, p-value = 0.2496
## alternative hypothesis: two.sided
## sample estimates:
## Moran I statistic       Expectation          Variance 
##        0.12395156       -0.04000000        0.02028183

Terlihat pada output bahwa hasil kedua tes menunjukkan kesimpulan yang sama, yaitu tidak tolak H0 yang menyatakan bahwa terdapat autokorelasi pada sisaan model regresi klasik pada taraf nyata 5%. Oleh karenanya, untuk mencari model yang lebih baik, kita dapat melakukan uji LM (lagrange multiplier) untuk mengidentifikasi model dependensi spasial yang dapat digunakan pada kasus ini.

Lagrange Multiplier Test

LM15<-lm.LMtests(reg.klasik15, nb2listw(w, style="W"),
               test=c("LMerr", "LMlag","RLMerr","RLMlag","SARMA"))
summary(LM15)
##  Lagrange multiplier diagnostics for spatial dependence
## data:  
## model: lm(formula = p.miskin15 ~ AHH2015 + MYS2015 + EXP2015, data =
## data.jabar)
## weights: nb2listw(w, style = "W")
##  
##        statistic parameter p.value   
## LMerr    0.64116         1 0.42329   
## LMlag    4.25684         1 0.03909 * 
## RLMerr   3.31348         1 0.06871 . 
## RLMlag   6.92917         1 0.00848 **
## SARMA    7.57033         2 0.02271 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Skema Efek Dependensi Spasial:

Output memperlihatkan bahwa hasil uji model SAR signifikan pada taraf 5% sedangkan SEM tidak nyata. Berdasarkan Skema Efek Dependensi Spasial di atas, kita dapat mencoba kandidat model SAR.

Model SAR

#Model SAR
sar15<-lagsarlm(p.miskin15~AHH2015+MYS2015+EXP2015,data=data.jabar,nb2listw(w))
summary(sar15)  
## 
## Call:lagsarlm(formula = p.miskin15 ~ AHH2015 + MYS2015 + EXP2015, 
##     data = data.jabar, listw = nb2listw(w))
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -3.395063 -1.029469  0.062131  0.965811  6.297157 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##                Estimate  Std. Error z value Pr(>|z|)
## (Intercept) -0.97002945 28.63712456 -0.0339  0.97298
## AHH2015      0.27725828  0.43033901  0.6443  0.51939
## MYS2015     -0.97635839  0.43142970 -2.2631  0.02363
## EXP2015     -0.00054327  0.00029996 -1.8112  0.07012
## 
## Rho: 0.41245, LR test value: 4.4444, p-value: 0.035015
## Asymptotic standard error: 0.17337
##     z-value: 2.379, p-value: 0.017361
## Wald statistic: 5.6595, p-value: 0.017361
## 
## Log likelihood: -55.18792 for lag model
## ML residual variance (sigma squared): 3.8955, (sigma: 1.9737)
## Number of observations: 26 
## Number of parameters estimated: 6 
## AIC: 122.38, (AIC for lm: 124.82)
## LM test for residual autocorrelation
## test value: 4.5189, p-value: 0.033523

Output di atas memperlihatkan bahwa koefisien Rho pada model SAR signifikan (p-value: 0.035015< ALPHA=0.05) Artinya Ada dependensi Spasial, dengan nilai AIC sebesar 122.38.

Uji Normalitas Galat

err.sar15<-residuals(sar15)
ad.test(err.sar15) 
## 
##  Anderson-Darling normality test
## 
## data:  err.sar15
## A = 0.52033, p-value = 0.1689

p-value = 0.1689 > alpha= 0.05 berarti terima H0 berarti sisaan menyebar normal.

Uji Kehomogenan Ragam Galat

bptest.Sarlm(sar15) 
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 1.1533, df = 3, p-value = 0.7642

p-value = 0.7642 > alpha= 0.05 berarti terima H0 berarti ragam sisaan homogen

Berdasarkan output di atas, pada taraf 5% dapat disimpulkan bahwa sisaan model telah memenuhi asumsi kenormalan dan kehomogenan ragam.

Spatial Durbin Model (Responsi Pertemuan 11)

Berikut ini adalah penjelasan tentang Spatial Durbin Model yang dirujuk dari Zhukov (2010):

Application in R

library(rgdal)
library (spdep) 
library(spatialreg)
rm(list=ls())
data(columbus)
col.listw <- nb2listw(col.gal.nb)

OLS Regression

columbus.lm<- lm(CRIME ~ INC + HOVAL,data=columbus)
summary(columbus.lm)
## 
## Call:
## lm(formula = CRIME ~ INC + HOVAL, data = columbus)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -34.418  -6.388  -1.580   9.052  28.649 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  68.6190     4.7355  14.490  < 2e-16 ***
## INC          -1.5973     0.3341  -4.780 1.83e-05 ***
## HOVAL        -0.2739     0.1032  -2.654   0.0109 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.43 on 46 degrees of freedom
## Multiple R-squared:  0.5524, Adjusted R-squared:  0.5329 
## F-statistic: 28.39 on 2 and 46 DF,  p-value: 9.341e-09

Moran Test

col.moran <- lm.morantest(columbus.lm, col.listw)
col.moran
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
## weights: col.listw
## 
## Moran I statistic standard deviate = 2.681, p-value = 0.00367
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I      Expectation         Variance 
##      0.212374153     -0.033268284      0.008394853

LM-Test

columbus.lagrange <- lm.LMtests(columbus.lm, col.listw, test=c("LMerr","RLMerr","LMlag","RLMlag","SARMA"))
summary(columbus.lagrange)
##  Lagrange multiplier diagnostics for spatial dependence
## data:  
## model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
## weights: col.listw
##  
##        statistic parameter  p.value   
## LMerr   4.611126         1 0.031765 * 
## RLMerr  0.033514         1 0.854744   
## LMlag   7.855675         1 0.005066 **
## RLMlag  3.278064         1 0.070212 . 
## SARMA   7.889190         2 0.019359 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Spatial Lag Model

columbus.lag <- lagsarlm(CRIME ~ INC + HOVAL,data=columbus, col.listw)
summary(columbus.lag)
## 
## Call:
## lagsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = col.listw)
## 
## Residuals:
##         Min          1Q      Median          3Q         Max 
## -37.4497093  -5.4565567   0.0016387   6.7159553  24.7107978 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 46.851431   7.314754  6.4051 1.503e-10
## INC         -1.073533   0.310872 -3.4533 0.0005538
## HOVAL       -0.269997   0.090128 -2.9957 0.0027381
## 
## Rho: 0.40389, LR test value: 8.4179, p-value: 0.0037154
## Asymptotic standard error: 0.12071
##     z-value: 3.3459, p-value: 0.00082027
## Wald statistic: 11.195, p-value: 0.00082027
## 
## Log likelihood: -183.1683 for lag model
## ML residual variance (sigma squared): 99.164, (sigma: 9.9581)
## Number of observations: 49 
## Number of parameters estimated: 5 
## AIC: 376.34, (AIC for lm: 382.75)
## LM test for residual autocorrelation
## test value: 0.19184, p-value: 0.66139

Spatial Error Model

columbus.err <- errorsarlm(CRIME ~ INC + HOVAL,data=columbus,col.listw)
summary(columbus.err)
## 
## Call:
## errorsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = col.listw)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -34.45950  -6.21730  -0.69775   7.65256  24.23631 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 61.053618   5.314875 11.4873 < 2.2e-16
## INC         -0.995473   0.337025 -2.9537 0.0031398
## HOVAL       -0.307979   0.092584 -3.3265 0.0008794
## 
## Lambda: 0.52089, LR test value: 6.4441, p-value: 0.011132
## Asymptotic standard error: 0.14129
##     z-value: 3.6868, p-value: 0.00022713
## Wald statistic: 13.592, p-value: 0.00022713
## 
## Log likelihood: -184.1552 for error model
## ML residual variance (sigma squared): 99.98, (sigma: 9.999)
## Number of observations: 49 
## Number of parameters estimated: 5 
## AIC: 378.31, (AIC for lm: 382.75)

SARMA

columbus.sarma <- sacsarlm(CRIME ~ INC + HOVAL, data=columbus,col.listw)
summary(columbus.sarma)
## 
## Call:
## sacsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = col.listw)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -37.1121  -4.6324  -0.3040   7.0306  24.6929 
## 
## Type: sac 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 49.051431  10.054986  4.8783 1.07e-06
## INC         -1.068781   0.332839 -3.2111 0.001322
## HOVAL       -0.283114   0.091526 -3.0933 0.001980
## 
## Rho: 0.35326
## Asymptotic standard error: 0.19669
##     z-value: 1.796, p-value: 0.072494
## Lambda: 0.13199
## Asymptotic standard error: 0.29905
##     z-value: 0.44138, p-value: 0.65894
## 
## LR test value: 8.6082, p-value: 0.013513
## 
## Log likelihood: -183.0731 for sac model
## ML residual variance (sigma squared): 99.423, (sigma: 9.9711)
## Number of observations: 49 
## Number of parameters estimated: 6 
## AIC: 378.15, (AIC for lm: 382.75)

Spatial Durbin Model

Model:

columbus.durbin <- lagsarlm(CRIME ~ INC+HOVAL, data=columbus, col.listw, type="mixed");
summary(columbus.durbin)
## 
## Call:
## lagsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = col.listw, 
##     type = "mixed")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -37.15904  -6.62594  -0.39823   6.57561  23.62757 
## 
## Type: mixed 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 45.592893  13.128679  3.4728 0.0005151
## INC         -0.939088   0.338229 -2.7765 0.0054950
## HOVAL       -0.299605   0.090843 -3.2980 0.0009736
## lag.INC     -0.618375   0.577052 -1.0716 0.2838954
## lag.HOVAL    0.266615   0.183971  1.4492 0.1472760
## 
## Rho: 0.38251, LR test value: 4.1648, p-value: 0.041272
## Asymptotic standard error: 0.16237
##     z-value: 2.3557, p-value: 0.018488
## Wald statistic: 5.5493, p-value: 0.018488
## 
## Log likelihood: -182.0161 for mixed model
## ML residual variance (sigma squared): 95.051, (sigma: 9.7494)
## Number of observations: 49 
## Number of parameters estimated: 7 
## AIC: 378.03, (AIC for lm: 380.2)
## LM test for residual autocorrelation
## test value: 0.101, p-value: 0.75063

SLX Model

Model:

SLX model dapat dilakukan dengan fungsi lmSLX() pada package spatialreg. Perhatikan bahwa model SLX adalah bentuk khusus dari model Spatial Durbin.

columbus.SLX <- lmSLX(CRIME ~ INC+HOVAL, data=columbus, col.listw, Durbin = TRUE);
summary(columbus.SLX)
## 
## Call:
## lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), 
##     data = as.data.frame(x), weights = weights)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -36.245  -7.613   0.188   7.863  25.982 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  74.0290     6.7218  11.013 3.13e-14 ***
## INC          -1.1081     0.3750  -2.955  0.00501 ** 
## HOVAL        -0.2949     0.1014  -2.910  0.00565 ** 
## lag.INC      -1.3834     0.5592  -2.474  0.01729 *  
## lag.HOVAL     0.2262     0.2026   1.116  0.27041    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.94 on 44 degrees of freedom
## Multiple R-squared:  0.6085, Adjusted R-squared:  0.5729 
## F-statistic: 17.09 on 4 and 44 DF,  p-value: 1.581e-08

Dengan mengatur argumen Durbin pada fungsi tersebut, kita dapat memodifikasi model menjadi model SLX.

columbus.SLX <- lmSLX(CRIME ~ INC+HOVAL, data=columbus, col.listw, Durbin = ~INC);
summary(columbus.SLX)
## 
## Call:
## lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), 
##     data = as.data.frame(x), weights = weights)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -36.708  -7.019   1.415   8.467  26.791 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 77.43354    6.00623  12.892  < 2e-16 ***
## INC         -1.18157    0.37018  -3.192  0.00258 ** 
## HOVAL       -0.26925    0.09898  -2.720  0.00924 ** 
## lag.INC     -1.01554    0.45293  -2.242  0.02993 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.97 on 45 degrees of freedom
## Multiple R-squared:  0.5974, Adjusted R-squared:  0.5705 
## F-statistic: 22.26 on 3 and 45 DF,  p-value: 5.495e-09

Spatial Durbin Error Model (SDEM)

columbus.errX <- errorsarlm(CRIME ~ INC+HOVAL, data=columbus, col.listw, etype="mixed");
summary(columbus.errX)
## 
## Call:
## errorsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = col.listw, 
##     etype = "mixed")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -37.02060  -6.68585  -0.15142   6.51557  24.18199 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 73.258655   8.528043  8.5903 < 2.2e-16
## INC         -1.069530   0.324719 -3.2937 0.0009887
## HOVAL       -0.280344   0.091809 -3.0535 0.0022615
## lag.INC     -1.196774   0.568968 -2.1034 0.0354297
## lag.HOVAL    0.146758   0.200872  0.7306 0.4650196
## 
## Lambda: 0.37613, LR test value: 3.7313, p-value: 0.053403
## Asymptotic standard error: 0.16554
##     z-value: 2.2721, p-value: 0.023079
## Wald statistic: 5.1626, p-value: 0.023079
## 
## Log likelihood: -182.2329 for error model
## ML residual variance (sigma squared): 96.022, (sigma: 9.7991)
## Number of observations: 49 
## Number of parameters estimated: 7 
## AIC: 378.47, (AIC for lm: 380.2)

Ilustrasi dan penjelasan tentang SLX dan SDEM dirujuk dari Mendez (2020).

Exercises 1

Lakukan pemodelan untuk memprediksi GRP pada data yang tersedia pada: https://github.com/raoy/Spatial-Statistics .

Data yang digunakan adalah:

China29.zip

Data China (spasial).xlsx

library("openxlsx")
data.china = read.xlsx("Data China (spasial).xlsx")
head(data.china)
##       Region     Long      Lat Gross.Regional.Product Level.of.Urbanization
## 1    Beijing 116.4107 40.18491                  87475                 86.20
## 2    Tianjin 117.3330 39.31040                  93173                 81.55
## 3      Hebei 116.1241 39.54362                  36584                 46.80
## 4     Shanxi 112.2920 37.57590                  33628                 51.26
## 5 Nei Mongol 113.9145 44.08640                  63886                 57.74
## 6   Liaoning 122.6090 41.30373                  56649                 65.65
China <- readOGR(dsn="China29", layer="China29")
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\Kuliah S2 IPB\Bahan Kuliah\Semester 2 SSD 2020\STA533 Spasial\PRAKTIKUM\R\China29", layer: "China29"
## with 29 features
## It has 12 fields

OLS Regression

china.lm<- lm(Gross.Regional.Product ~ Level.of.Urbanization,data=data.china)
summary(china.lm)
## 
## Call:
## lm(formula = Gross.Regional.Product ~ Level.of.Urbanization, 
##     data = data.china)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12050.9  -4410.4   -374.8   2961.6  14948.1 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -31895.5     5197.6  -6.137 1.48e-06 ***
## Level.of.Urbanization   1400.0       92.6  15.118 1.06e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6595 on 27 degrees of freedom
## Multiple R-squared:  0.8944, Adjusted R-squared:  0.8904 
## F-statistic: 228.6 on 1 and 27 DF,  p-value: 1.064e-14

Moran Test

wc<-poly2nb(China)
wwc<-nb2listw(wc)

china.moran <- lm.morantest(china.lm, wwc)
china.moran
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = Gross.Regional.Product ~ Level.of.Urbanization,
## data = data.china)
## weights: wwc
## 
## Moran I statistic standard deviate = -1.2198, p-value = 0.8887
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I      Expectation         Variance 
##      -0.17902561      -0.03179058       0.01456927

LM-Test

china.lagrange <- lm.LMtests(china.lm, wwc, test=c("LMerr","RLMerr","LMlag","RLMlag","SARMA"))
summary(china.lagrange)
##  Lagrange multiplier diagnostics for spatial dependence
## data:  
## model: lm(formula = Gross.Regional.Product ~ Level.of.Urbanization,
## data = data.china)
## weights: wwc
##  
##        statistic parameter p.value
## LMerr   1.849327         1  0.1739
## RLMerr  1.824640         1  0.1768
## LMlag   0.089740         1  0.7645
## RLMlag  0.065053         1  0.7987
## SARMA   1.914380         2  0.3840

Spatial Lag Model

china.lag <- lagsarlm(Gross.Regional.Product ~ Level.of.Urbanization,data=data.china, wwc)
## Warning in lagsarlm(Gross.Regional.Product ~ Level.of.Urbanization, data = data.china, : inversion of asymptotic covariance matrix failed for tol.solve = 2.22044604925031e-16 
##   reciprocal condition number = 5.32741e-18 - using numerical Hessian.
summary(china.lag)
## 
## Call:lagsarlm(formula = Gross.Regional.Product ~ Level.of.Urbanization, 
##     data = data.china, listw = wwc)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -12217.317  -4168.833    -43.335   2630.869  14651.322 
## 
## Type: lag 
## Coefficients: (numerical Hessian approximate standard errors) 
##                         Estimate Std. Error z value  Pr(>|z|)
## (Intercept)           -29848.311   8129.994 -3.6714 0.0002412
## Level.of.Urbanization   1392.795     91.969 15.1441 < 2.2e-16
## 
## Rho: -0.035466, LR test value: 0.10342, p-value: 0.74776
## Approximate (numerical Hessian) standard error: 0.1109
##     z-value: -0.31981, p-value: 0.74911
## Wald statistic: 0.10228, p-value: 0.74911
## 
## Log likelihood: -295.0898 for lag model
## ML residual variance (sigma squared): 40340000, (sigma: 6351.4)
## Number of observations: 29 
## Number of parameters estimated: 4 
## AIC: 598.18, (AIC for lm: 596.28)

Spatial Error Model

china.err <- errorsarlm(Gross.Regional.Product ~ Level.of.Urbanization,data=data.china, wwc)
summary(china.err)
## 
## Call:errorsarlm(formula = Gross.Regional.Product ~ Level.of.Urbanization, 
##     data = data.china, listw = wwc)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -11830.519  -4410.878    -84.567   1889.525  13482.672 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##                         Estimate Std. Error z value  Pr(>|z|)
## (Intercept)           -31812.667   4801.782 -6.6252 3.468e-11
## Level.of.Urbanization   1398.152     86.112 16.2365 < 2.2e-16
## 
## Lambda: -0.46483, LR test value: 2.4782, p-value: 0.11543
## Asymptotic standard error: 0.27434
##     z-value: -1.6944, p-value: 0.090194
## Wald statistic: 2.8709, p-value: 0.090194
## 
## Log likelihood: -293.9024 for error model
## ML residual variance (sigma squared): 35469000, (sigma: 5955.6)
## Number of observations: 29 
## Number of parameters estimated: 4 
## AIC: 595.8, (AIC for lm: 596.28)

SARMA

china.sarma <- sacsarlm(Gross.Regional.Product ~ Level.of.Urbanization,data=data.china, wwc)
## Warning in sacsarlm(Gross.Regional.Product ~ Level.of.Urbanization, data = data.china, : inversion of asymptotic covariance matrix failed for tol.solve = 2.22044604925031e-16 
##   reciprocal condition number = 2.7894e-18 - using numerical Hessian.
summary(china.sarma)
## 
## Call:sacsarlm(formula = Gross.Regional.Product ~ Level.of.Urbanization, 
##     data = data.china, listw = wwc)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -11858.37  -4434.38   -111.84   1872.83  13453.12 
## 
## Type: sac 
## Coefficients: (numerical Hessian approximate standard errors) 
##                         Estimate Std. Error z value  Pr(>|z|)
## (Intercept)           -31678.647   5635.189 -5.6216 1.892e-08
## Level.of.Urbanization   1398.757     87.195 16.0418 < 2.2e-16
## 
## Rho: -0.0035985
## Approximate (numerical Hessian) standard error: 0.078511
##     z-value: -0.045835, p-value: 0.96344
## Lambda: -0.4631
## Approximate (numerical Hessian) standard error: 0.28849
##     z-value: -1.6052, p-value: 0.10844
## 
## LR test value: 2.4796, p-value: 0.28945
## 
## Log likelihood: -293.9017 for sac model
## ML residual variance (sigma squared): 35479000, (sigma: 5956.4)
## Number of observations: 29 
## Number of parameters estimated: 5 
## AIC: 597.8, (AIC for lm: 596.28)

Spatial Durbin Model

Model:

china.durbin <- lagsarlm(Gross.Regional.Product ~ Level.of.Urbanization,data=data.china, wwc, type="mixed");
## Warning in lagsarlm(Gross.Regional.Product ~ Level.of.Urbanization, data = data.china, : inversion of asymptotic covariance matrix failed for tol.solve = 2.22044604925031e-16 
##   reciprocal condition number = 5.8045e-18 - using numerical Hessian.
summary(china.durbin)
## 
## Call:lagsarlm(formula = Gross.Regional.Product ~ Level.of.Urbanization, 
##     data = data.china, listw = wwc, type = "mixed")
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -11831.096  -4411.438    -85.211   1889.050  13481.899 
## 
## Type: mixed 
## Coefficients: (numerical Hessian approximate standard errors) 
##                             Estimate Std. Error z value  Pr(>|z|)
## (Intercept)               -46593.508  12921.002 -3.6060 0.0003109
## Level.of.Urbanization       1398.154     86.285 16.2039 < 2.2e-16
## lag.Level.of.Urbanization    649.823    407.020  1.5965 0.1103685
## 
## Rho: -0.46488, LR test value: 2.4131, p-value: 0.12032
## Approximate (numerical Hessian) standard error: 0.28945
##     z-value: -1.6061, p-value: 0.10826
## Wald statistic: 2.5795, p-value: 0.10826
## 
## Log likelihood: -293.9024 for mixed model
## ML residual variance (sigma squared): 35468000, (sigma: 5955.5)
## Number of observations: 29 
## Number of parameters estimated: 5 
## AIC: 597.8, (AIC for lm: 598.22)

SLX Model

Model:

SLX model dapat dilakukan dengan fungsi lmSLX() pada package spatialreg. Perhatikan bahwa model SLX adalah bentuk khusus dari model Spatial Durbin.

china.SLX <- lmSLX(Gross.Regional.Product ~ Level.of.Urbanization,data=data.china, wwc, Durbin = TRUE);
summary(china.SLX)
## 
## Call:
## lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), 
##     data = as.data.frame(x), weights = weights)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11903.4  -4551.9   -852.3   3092.8  15097.1 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -34448.49   11810.70  -2.917   0.0072 ** 
## Level.of.Urbanization       1405.61      97.12  14.473 5.93e-14 ***
## lag.Level.of.Urbanization     39.94     165.22   0.242   0.8109    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6713 on 26 degrees of freedom
## Multiple R-squared:  0.8946, Adjusted R-squared:  0.8865 
## F-statistic: 110.3 on 2 and 26 DF,  p-value: 1.984e-13

Dengan mengatur argumen Durbin pada fungsi tersebut, kita dapat memodifikasi model menjadi model SLX.

china.SLX <- lmSLX(Gross.Regional.Product ~ Level.of.Urbanization,data=data.china, wwc, Durbin = ~Level.of.Urbanization);
summary(china.SLX)
## 
## Call:
## lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), 
##     data = as.data.frame(x), weights = weights)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11903.4  -4551.9   -852.3   3092.8  15097.1 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -34448.49   11810.70  -2.917   0.0072 ** 
## Level.of.Urbanization       1405.61      97.12  14.473 5.93e-14 ***
## lag.Level.of.Urbanization     39.94     165.22   0.242   0.8109    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6713 on 26 degrees of freedom
## Multiple R-squared:  0.8946, Adjusted R-squared:  0.8865 
## F-statistic: 110.3 on 2 and 26 DF,  p-value: 1.984e-13

Spatial Durbin Error Model (SDEM)

china.errX <- errorsarlm(Gross.Regional.Product ~ Level.of.Urbanization,data=data.china, wwc, etype="mixed");
summary(china.errX)
## 
## Call:errorsarlm(formula = Gross.Regional.Product ~ Level.of.Urbanization, 
##     data = data.china, listw = wwc, etype = "mixed")
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -11801.265  -4386.965    -52.759   1916.147  13523.071 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##                              Estimate  Std. Error z value  Pr(>|z|)
## (Intercept)               -32123.1217   8211.3010 -3.9121 9.151e-05
## Level.of.Urbanization       1397.3594     87.9373 15.8904 < 2.2e-16
## lag.Level.of.Urbanization      6.3185    136.2782  0.0464     0.963
## 
## Lambda: -0.46309, LR test value: 2.4152, p-value: 0.12016
## Asymptotic standard error: 0.27439
##     z-value: -1.6877, p-value: 0.091462
## Wald statistic: 2.8484, p-value: 0.091462
## 
## Log likelihood: -293.9014 for error model
## ML residual variance (sigma squared): 35478000, (sigma: 5956.4)
## Number of observations: 29 
## Number of parameters estimated: 5 
## AIC: 597.8, (AIC for lm: 598.22)

Ilustrasi dan penjelasan tentang SLX dan SDEM dirujuk dari Mendez (2020).

Exercises 2

Silahkan coba lakukan pemodelan dependensi spasial pada data Jawa Barat yang tersedia di modul 10. Atau silahkan akses pada: https://github.com/raoy/SpatialReg

Peubah yang saya gunakan:

Y:p.miskin15 (persentase penduduk miskin 2015)

X1: EXP2015 (pengeluaran per kapita riil tahun 2015)

X2: MYS2015 (rata-rata lama sekolah tahun 2015)

library(openxlsx)
data.jabar3 = read.xlsx("Jabar Data (gabung).xlsx")
head(data.jabar3)
##   PROVNO KABKOTNO KODE2010   PROVINSI      KABKOT IDSP2010     Long       Lat
## 1     32        1     3201 JAWA BARAT       BOGOR     3201 106.7687 -6.561184
## 2     32        2     3202 JAWA BARAT    SUKABUMI     3202 106.7101 -7.074623
## 3     32        3     3203 JAWA BARAT     CIANJUR     3203 107.1578 -7.133713
## 4     32        4     3204 JAWA BARAT     BANDUNG     3204 107.6108 -7.099969
## 5     32        5     3205 JAWA BARAT       GARUT     3205 107.7889 -7.359586
## 6     32        6     3206 JAWA BARAT TASIKMALAYA     3206 108.1413 -7.496892
##   p.miskin15 p.miskin16 j.miskin15 j.miskin16 AHH2015 AHH2016 EYS2015 EYS2016
## 1   8.959759   8.834574     487.10     490.80   70.59   70.65   11.83   12.05
## 2   8.960361   8.134848     217.86     198.66   70.03   70.14   12.13   12.18
## 3  12.214160  11.621474     273.90     261.39   69.28   69.39   11.83   11.88
## 4   7.998184   7.613293     281.04     272.65   73.07   73.10   12.13   12.42
## 5  12.805808  11.640370     325.67     298.52   70.69   70.76   11.65   11.69
## 6  11.994455  11.237185     208.12     195.61   68.36   68.54   12.44   12.46
##   MYS2015 MYS2016 EXP2015 EXP2016 APM.SD15 APM.SMP15 APM.SMA15  APM.PT15
## 1    7.75    7.83    9368    9537 96.29364  72.97053  55.10088 11.835186
## 2    6.51    6.74    7849    8077 99.65285  75.76340  43.93547  9.924350
## 3    6.54    6.61    6877    7074 99.88696  78.40315  37.18006  3.862863
## 4    8.41    8.50    9375    9580 98.00367  82.13540  55.49216 17.042698
## 5    6.84    6.88    6875    7079 98.09334  75.28081  44.60243  5.708659
## 6    6.88    6.94    6934    7081 99.08656  76.97621  54.79954 12.158104
##   APK.SD15 APK.SMP15 APK.SMA15  APK.PT15 APS.USIA15 APS.USIA2 APS.USIA3
## 1 108.8195  84.63248  67.93291 12.636548   99.04861  89.24145  62.22669
## 2 113.0554  82.99804  54.93650 10.445696   99.65285  93.29009  53.65847
## 3 109.4963  86.03816  43.86501  4.122956  100.00000  94.00525  46.19371
## 4 110.0396  89.63486  66.20417 19.736955   99.91440  95.00882  60.55318
## 5 111.7212  82.16636  51.52615  6.168872   98.77839  87.05195  51.70852
## 6 107.0913  91.74347  65.10568 13.011988   99.78970  94.22934  72.26013
##   APS.USIA4
## 1 14.643598
## 2 14.866231
## 3  5.850893
## 4 19.991477
## 5  8.091359
## 6 15.309082
jabar3 <- readOGR(dsn="petaJabar2", layer="Jabar2")
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\Kuliah S2 IPB\Bahan Kuliah\Semester 2 SSD 2020\STA533 Spasial\PRAKTIKUM\R\petaJabar2", layer: "Jabar2"
## with 26 features
## It has 7 fields
w3<-poly2nb(jabar3)
ww3<-nb2listw(w3)

OLS Regression

jabar.lm3 <- lm(p.miskin15~MYS2015+EXP2015, data = data.jabar3)
summary(jabar.lm3)
## 
## Call:
## lm(formula = p.miskin15 ~ MYS2015 + EXP2015, data = data.jabar3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7364 -1.4553 -0.0763  1.2041  6.3209 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 24.0439900  2.4543253   9.797 1.12e-09 ***
## MYS2015     -1.0810720  0.4640032  -2.330   0.0289 *  
## EXP2015     -0.0005499  0.0003200  -1.719   0.0991 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.347 on 23 degrees of freedom
## Multiple R-squared:  0.6047, Adjusted R-squared:  0.5703 
## F-statistic: 17.59 on 2 and 23 DF,  p-value: 2.318e-05

Moran Test

jabar.moran3 <- lm.morantest(jabar.lm3, ww3)
jabar.moran3
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = p.miskin15 ~ MYS2015 + EXP2015, data = data.jabar3)
## weights: ww3
## 
## Moran I statistic standard deviate = 1.3289, p-value = 0.09194
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I      Expectation         Variance 
##       0.12696672      -0.06136791       0.02008556

LM-Test

jabar.lagrange3 <- lm.LMtests(jabar.lm3, ww3, test=c("LMerr","RLMerr","LMlag","RLMlag","SARMA"))
summary(jabar.lagrange3)
##  Lagrange multiplier diagnostics for spatial dependence
## data:  
## model: lm(formula = p.miskin15 ~ MYS2015 + EXP2015, data = data.jabar3)
## weights: ww3
##  
##        statistic parameter p.value  
## LMerr    0.67273         1 0.41210  
## RLMerr   2.52129         1 0.11232  
## LMlag    3.96387         1 0.04649 *
## RLMlag   5.81243         1 0.01591 *
## SARMA    6.48516         2 0.03906 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Spatial Lag Model

jabar.lag3 <- lagsarlm(p.miskin15~MYS2015+EXP2015, data = data.jabar3, ww3)
summary(jabar.lag3)
## 
## Call:lagsarlm(formula = p.miskin15 ~ MYS2015 + EXP2015, data = data.jabar3, 
##     listw = ww3)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -3.157708 -1.404794  0.092556  1.055019  6.236624 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##                Estimate  Std. Error z value  Pr(>|z|)
## (Intercept) 17.31688597  3.46170899  5.0024 5.662e-07
## MYS2015     -0.86444557  0.39636776 -2.1809   0.02919
## EXP2015     -0.00046256  0.00027774 -1.6654   0.09583
## 
## Rho: 0.39948, LR test value: 4.1742, p-value: 0.041044
## Asymptotic standard error: 0.17361
##     z-value: 2.3011, p-value: 0.021387
## Wald statistic: 5.295, p-value: 0.021387
## 
## Log likelihood: -55.39543 for lag model
## ML residual variance (sigma squared): 3.9708, (sigma: 1.9927)
## Number of observations: 26 
## Number of parameters estimated: 5 
## AIC: 120.79, (AIC for lm: 122.97)
## LM test for residual autocorrelation
## test value: 3.6549, p-value: 0.055905

Spatial Error Model

jabar.err3 <- errorsarlm(p.miskin15~MYS2015+EXP2015, data = data.jabar3, ww3)
summary(jabar.err3)
## 
## Call:errorsarlm(formula = p.miskin15 ~ MYS2015 + EXP2015, data = data.jabar3, 
##     listw = ww3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.79715 -1.20385  0.21676  1.36881  6.54281 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##                Estimate  Std. Error z value Pr(>|z|)
## (Intercept) 22.98077283  2.47265221  9.2940  < 2e-16
## MYS2015     -0.94326874  0.43502338 -2.1683  0.03013
## EXP2015     -0.00054627  0.00030131 -1.8130  0.06983
## 
## Lambda: 0.23511, LR test value: 0.79569, p-value: 0.37239
## Asymptotic standard error: 0.22879
##     z-value: 1.0276, p-value: 0.30413
## Wald statistic: 1.056, p-value: 0.30413
## 
## Log likelihood: -57.08469 for error model
## ML residual variance (sigma squared): 4.6587, (sigma: 2.1584)
## Number of observations: 26 
## Number of parameters estimated: 5 
## AIC: 124.17, (AIC for lm: 122.97)

SARMA

jabar.sarma3 <- sacsarlm(p.miskin15~MYS2015+EXP2015, data = data.jabar3, ww3)
summary(jabar.sarma3)
## 
## Call:sacsarlm(formula = p.miskin15 ~ MYS2015 + EXP2015, data = data.jabar3, 
##     listw = ww3)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -3.483347 -0.946984 -0.051623  1.049559  5.228132 
## 
## Type: sac 
## Coefficients: (asymptotic standard errors) 
##                Estimate  Std. Error z value  Pr(>|z|)
## (Intercept) 14.05816462  3.65829263  3.8428 0.0001216
## MYS2015     -0.89515532  0.33550264 -2.6681 0.0076281
## EXP2015     -0.00032724  0.00023650 -1.3837 0.1664561
## 
## Rho: 0.60378
## Asymptotic standard error: 0.17494
##     z-value: 3.4513, p-value: 0.00055793
## Lambda: -0.50797
## Asymptotic standard error: 0.3243
##     z-value: -1.5664, p-value: 0.11726
## 
## LR test value: 6.7768, p-value: 0.033763
## 
## Log likelihood: -54.09413 for sac model
## ML residual variance (sigma squared): 3.1497, (sigma: 1.7747)
## Number of observations: 26 
## Number of parameters estimated: 6 
## AIC: 120.19, (AIC for lm: 122.97)

Spatial Durbin Model

Model:

jabar.durbin3 <- lagsarlm(p.miskin15~MYS2015+EXP2015, data = data.jabar3, ww3, type="mixed");
summary(jabar.durbin3)
## 
## Call:lagsarlm(formula = p.miskin15 ~ MYS2015 + EXP2015, data = data.jabar3, 
##     listw = ww3, type = "mixed")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.807627 -1.205796 -0.088521  0.970854  5.528544 
## 
## Type: mixed 
## Coefficients: (asymptotic standard errors) 
##                Estimate  Std. Error z value  Pr(>|z|)
## (Intercept) 28.32435029  7.21474153  3.9259 8.641e-05
## MYS2015     -0.80456534  0.39042550 -2.0607   0.03933
## EXP2015     -0.00031910  0.00027839 -1.1462   0.25171
## lag.MYS2015 -1.16263589  0.84575833 -1.3747   0.16923
## lag.EXP2015 -0.00018041  0.00053211 -0.3391   0.73457
## 
## Rho: 0.17369, LR test value: 0.58218, p-value: 0.44546
## Asymptotic standard error: 0.22612
##     z-value: 0.76813, p-value: 0.44241
## Wald statistic: 0.59002, p-value: 0.44241
## 
## Log likelihood: -53.67477 for mixed model
## ML residual variance (sigma squared): 3.608, (sigma: 1.8995)
## Number of observations: 26 
## Number of parameters estimated: 7 
## AIC: 121.35, (AIC for lm: 119.93)
## LM test for residual autocorrelation
## test value: 0.6977, p-value: 0.40356

SLX Model

Model:

SLX model dapat dilakukan dengan fungsi lmSLX() pada package spatialreg. Perhatikan bahwa model SLX adalah bentuk khusus dari model Spatial Durbin.

jabar.SLX3 <- lmSLX(p.miskin15~MYS2015+EXP2015, data = data.jabar3, ww3, Durbin = TRUE);
summary(jabar.SLX3)
## 
## Call:
## lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), 
##     data = as.data.frame(x), weights = weights)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1042 -1.0743 -0.0182  1.0916  5.4222 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 33.0202219  4.1695551   7.919 9.68e-08 ***
## MYS2015     -0.8496651  0.4375982  -1.942   0.0657 .  
## EXP2015     -0.0003147  0.0003143  -1.001   0.3281    
## lag.MYS2015 -1.4984529  0.8985287  -1.668   0.1102    
## lag.EXP2015 -0.0001822  0.0005837  -0.312   0.7580    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.146 on 21 degrees of freedom
## Multiple R-squared:  0.6984, Adjusted R-squared:  0.6409 
## F-statistic: 12.16 on 4 and 21 DF,  p-value: 2.853e-05

Dengan mengatur argumen Durbin pada fungsi tersebut, kita dapat memodifikasi model menjadi model SLX.

jabar.SLX3 <- lmSLX(p.miskin15~MYS2015+EXP2015, data = data.jabar3, ww3, Durbin = ~MYS2015);
summary(jabar.SLX3)
## 
## Call:
## lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), 
##     data = as.data.frame(x), weights = weights)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9562 -1.0968 -0.0822  1.0526  5.6161 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 32.8836949  4.0606174   8.098 4.82e-08 ***
## MYS2015     -0.8351395  0.4260995  -1.960   0.0628 .  
## EXP2015     -0.0003397  0.0002977  -1.141   0.2662    
## lag.MYS2015 -1.6869477  0.6516866  -2.589   0.0168 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.101 on 22 degrees of freedom
## Multiple R-squared:  0.697,  Adjusted R-squared:  0.6556 
## F-statistic: 16.87 on 3 and 22 DF,  p-value: 6.504e-06

Spatial Durbin Error Model (SDEM)

jabar.errX3 <- errorsarlm(p.miskin15~MYS2015+EXP2015, data = data.jabar3, ww3, etype="mixed");
summary(jabar.errX3)
## 
## Call:errorsarlm(formula = p.miskin15 ~ MYS2015 + EXP2015, data = data.jabar3, 
##     listw = ww3, etype = "mixed")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.856370 -1.171595 -0.052347  1.032852  5.516811 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##                Estimate  Std. Error z value Pr(>|z|)
## (Intercept) 32.82270348  3.99974306  8.2062 2.22e-16
## MYS2015     -0.85061052  0.38786127 -2.1931   0.0283
## EXP2015     -0.00032669  0.00027865 -1.1724   0.2410
## lag.MYS2015 -1.35683188  0.81684911 -1.6611   0.0967
## lag.EXP2015 -0.00026333  0.00053600 -0.4913   0.6232
## 
## Lambda: 0.13018, LR test value: 0.23852, p-value: 0.62527
## Asymptotic standard error: 0.23959
##     z-value: 0.54332, p-value: 0.58691
## Wald statistic: 0.2952, p-value: 0.58691
## 
## Log likelihood: -53.8466 for error model
## ML residual variance (sigma squared): 3.6687, (sigma: 1.9154)
## Number of observations: 26 
## Number of parameters estimated: 7 
## AIC: 121.69, (AIC for lm: 119.93)

Ilustrasi dan penjelasan tentang SLX dan SDEM dirujuk dari Mendez (2020).

Marginal Effects (Spill-over) on the Spatial Regression Modeling (Responsi Pertemuan 12)

Marginal Effects

Definisi yang diambil dari materi kuliah yang disusun oleh Dr. Anik Djuraidah menyatakan bahwa efek marginal atau limpahan (spill-over) adalah besarnya dampak perubahan pada peubah dependen pada wilayah-i, akibat perubahan prediktor di wilayah-j.

Efek marginal terdapat pada model dependensi spasial SAR, GSM, SDM, SDEM, dan SLX. Efek ini dapat dibedakan menjadi tiga, yaitu efek langsung (direct effect), efek tidak langsung (indirect effect), dan efek total (total effect).

Application in R

library(rgdal)
library (spdep) 
library(spatialreg)
data(columbus)
col.listw <- nb2listw(col.gal.nb)

OLS Regression

columbus.lm<- lm(CRIME ~ INC + HOVAL, data=columbus)
summary(columbus.lm)
## 
## Call:
## lm(formula = CRIME ~ INC + HOVAL, data = columbus)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -34.418  -6.388  -1.580   9.052  28.649 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  68.6190     4.7355  14.490  < 2e-16 ***
## INC          -1.5973     0.3341  -4.780 1.83e-05 ***
## HOVAL        -0.2739     0.1032  -2.654   0.0109 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.43 on 46 degrees of freedom
## Multiple R-squared:  0.5524, Adjusted R-squared:  0.5329 
## F-statistic: 28.39 on 2 and 46 DF,  p-value: 9.341e-09

Moran Test

col.moran <- lm.morantest(columbus.lm, col.listw)
col.moran
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
## weights: col.listw
## 
## Moran I statistic standard deviate = 2.681, p-value = 0.00367
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I      Expectation         Variance 
##      0.212374153     -0.033268284      0.008394853

LM Test

columbus.lagrange <- lm.LMtests(columbus.lm, col.listw, test=c("LMerr","RLMerr","LMlag","RLMlag","SARMA"))
summary(columbus.lagrange)
##  Lagrange multiplier diagnostics for spatial dependence
## data:  
## model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
## weights: col.listw
##  
##        statistic parameter  p.value   
## LMerr   4.611126         1 0.031765 * 
## RLMerr  0.033514         1 0.854744   
## LMlag   7.855675         1 0.005066 **
## RLMlag  3.278064         1 0.070212 . 
## SARMA   7.889190         2 0.019359 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Spatial Lag Model

columbus.lag <- lagsarlm(CRIME ~ INC + HOVAL,data=columbus, col.listw)
summary(columbus.lag)
## 
## Call:
## lagsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = col.listw)
## 
## Residuals:
##         Min          1Q      Median          3Q         Max 
## -37.4497093  -5.4565567   0.0016387   6.7159553  24.7107978 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 46.851431   7.314754  6.4051 1.503e-10
## INC         -1.073533   0.310872 -3.4533 0.0005538
## HOVAL       -0.269997   0.090128 -2.9957 0.0027381
## 
## Rho: 0.40389, LR test value: 8.4179, p-value: 0.0037154
## Asymptotic standard error: 0.12071
##     z-value: 3.3459, p-value: 0.00082027
## Wald statistic: 11.195, p-value: 0.00082027
## 
## Log likelihood: -183.1683 for lag model
## ML residual variance (sigma squared): 99.164, (sigma: 9.9581)
## Number of observations: 49 
## Number of parameters estimated: 5 
## AIC: 376.34, (AIC for lm: 382.75)
## LM test for residual autocorrelation
## test value: 0.19184, p-value: 0.66139

Terlihat pada output di atas bahwa koefisien ρ signifikan pada model SAR. Selanjutnya, marginal effect dapat diperoleh dengan fungsi impacts() seperti pada syntax berikut ini.

Interpretasi Efek Marginal

impacts(columbus.lag, listw = col.listw)
## Impact measures (lag, exact):
##           Direct   Indirect      Total
## INC   -1.1225156 -0.6783818 -1.8008973
## HOVAL -0.2823163 -0.1706152 -0.4529315

Terlihat bahwa pengaruh langsung dari peubah INC adalah sebesar -1.12, artinya jika rata-rata pendapatan rumah tangga di wilayah-i meningkat 1,000 USD, maka rata-rata kejadian kriminal di wilayah tersebut akan berkurang sebesar 11.2 per 100 rumah tangga, jika nilai rumahnya tetap. Sedangkan efek tak langsung dari peubah tersebut bernilai -0.678. Artinya, jika rata-rata pendapatan rumah tangga di wilayah-i meningkat sebesar 1,000 USD, maka rata-rata kejadian kriminal di wilayah-j akan berkurang sebesar 6.78 per 100 rumah tangga, jika nilai rumahnya tetap. Interpretasi serupa juga dapat dilakukan terhadap peubah HOVAL.

Ilustration 2

Ilustrasi ini diambil dari materi workshop yang disusun oleh Sarmiento-Barbieri (2016). Data yang digunakan terdapat pada http://www.econ.uiuc.edu/~lab/workshop/foreclosures/. Silahkan download semua data yang terdapat pada link tersebut.

Data Import

Impor data shapefile menggunakan fungsi readOGR() pada package rgdal. Setelah itu, kita dapat menggunakan fungsi str() untuk melihat struktur datanya.

chi.poly<-readOGR(dsn="foreclosures", layer="foreclosures")
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\Kuliah S2 IPB\Bahan Kuliah\Semester 2 SSD 2020\STA533 Spasial\PRAKTIKUM\R\foreclosures", layer: "foreclosures"
## with 897 features
## It has 16 fields
str(slot(chi.poly,"data"))
## 'data.frame':    897 obs. of  16 variables:
##  $ SP_ID     : chr  "1" "2" "3" "4" ...
##  $ fips      : chr  "17031010100" "17031010200" "17031010300" "17031010400" ...
##  $ est_fcs   : int  43 129 55 21 64 56 107 43 7 51 ...
##  $ est_mtgs  : int  904 2122 1151 574 1427 1241 1959 830 208 928 ...
##  $ est_fcs_rt: num  4.76 6.08 4.78 3.66 4.48 4.51 5.46 5.18 3.37 5.5 ...
##  $ res_addr  : int  2530 3947 3204 2306 5485 2994 3701 1694 443 1552 ...
##  $ est_90d_va: num  12.61 12.36 10.46 5.03 8.44 ...
##  $ bls_unemp : num  8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16 ...
##  $ county    : chr  "Cook County" "Cook County" "Cook County" "Cook County" ...
##  $ fips_num  : num  1.7e+10 1.7e+10 1.7e+10 1.7e+10 1.7e+10 ...
##  $ totpop    : int  5391 10706 6649 5325 10944 7178 10799 5403 1089 3634 ...
##  $ tothu     : int  2557 3981 3281 2464 5843 3136 3875 1768 453 1555 ...
##  $ huage     : int  61 53 56 60 54 58 48 57 61 48 ...
##  $ oomedval  : int  169900 147000 119800 151500 143600 145900 153400 170500 215900 114700 ...
##  $ property  : num  646 914 478 509 641 612 678 332 147 351 ...
##  $ violent   : num  433 421 235 159 240 266 272 146 78 84 ...

Berikut adalah penjelasan mengenai peubah yang ada pada data tersebut:

est_fcs: estimated count of foreclosure starts from Jan. 2007 through June 2008

est_mtgs: estimated number of active mortgages from Jan. 2007 through June 2008

est_fcs_rt: number of foreclosure starts divided by number of mortgages times 100

bls_unemp: June 2008 place or county unemployment rate

totpop: total population from 2000 Census

violent: number of violent crimes reported between Jan. 2007 through December 2008

property: number of property crimes reported between Jan. 2007 through December 2008

(Sarmiento-Barbieri, 2016)

Visualisasi Data

plot(chi.poly)

library(leaflet)
## Warning: package 'leaflet' was built under R version 4.1.2
leaflet(chi.poly) %>%
  addPolygons(stroke = FALSE, fillOpacity = 0.5, smoothFactor = 0.5) %>%
  addTiles()
require(RColorBrewer)
## Loading required package: RColorBrewer
qpal<-colorQuantile("OrRd", chi.poly@data$violent, n=9) 

leaflet(chi.poly) %>%
  addPolygons(stroke = FALSE, fillOpacity = .8, smoothFactor = 0.2, color = ~qpal(violent)
  ) %>%
  addTiles()

OLS

chi.ols<-lm(violent~est_fcs_rt+bls_unemp, data=chi.poly@data)
summary(chi.ols)
## 
## Call:
## lm(formula = violent ~ est_fcs_rt + bls_unemp, data = chi.poly@data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -892.02  -77.02  -23.73   41.90 1238.22 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -18.627     45.366  -0.411    0.681    
## est_fcs_rt    28.298      1.435  19.720   <2e-16 ***
## bls_unemp     -0.308      5.770  -0.053    0.957    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 157.3 on 894 degrees of freedom
## Multiple R-squared:  0.3141, Adjusted R-squared:  0.3126 
## F-statistic: 204.7 on 2 and 894 DF,  p-value: < 2.2e-16

Modeling Spatial Dependence

list.queen<-poly2nb(chi.poly, queen=TRUE)
W<-nb2listw(list.queen, style="W", zero.policy=TRUE)
W
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 897 
## Number of nonzero links: 6140 
## Percentage nonzero weights: 0.7631036 
## Average number of links: 6.845039 
## 
## Weights style: W 
## Weights constants summary:
##     n     nn  S0       S1       S2
## W 897 804609 897 274.4893 3640.864
coords<-coordinates(chi.poly)
W_dist<-dnearneigh(coords,0,1,longlat = TRUE)

Checking the Spatial Autocorrelation

moran.lm<-lm.morantest(chi.ols, W, alternative="two.sided")
print(moran.lm)
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = violent ~ est_fcs_rt + bls_unemp, data =
## chi.poly@data)
## weights: W
## 
## Moran I statistic standard deviate = 11.785, p-value < 2.2e-16
## alternative hypothesis: two.sided
## sample estimates:
## Observed Moran I      Expectation         Variance 
##     0.2142252370    -0.0020099108     0.0003366648

LM Test

LM<-lm.LMtests(chi.ols, W, test="all")
summary(LM)
##  Lagrange multiplier diagnostics for spatial dependence
## data:  
## model: lm(formula = violent ~ est_fcs_rt + bls_unemp, data =
## chi.poly@data)
## weights: W
##  
##         statistic parameter   p.value    
## LMerr  1.3452e+02         1 < 2.2e-16 ***
## LMlag  1.8218e+02         1 < 2.2e-16 ***
## RLMerr 6.6762e-04         1    0.9794    
## RLMlag 4.7653e+01         1 5.089e-12 ***
## SARMA  1.8218e+02         2 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fitting Spatial Regressions

SAR

sar.chi<-lagsarlm(violent~est_fcs_rt+bls_unemp, data=chi.poly@data, W)
summary(sar.chi)
## 
## Call:
## lagsarlm(formula = violent ~ est_fcs_rt + bls_unemp, data = chi.poly@data, 
##     listw = W)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -519.127  -65.003  -15.226   36.423 1184.193 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -93.7885    41.3162  -2.270  0.02321
## est_fcs_rt   15.6822     1.5600  10.053  < 2e-16
## bls_unemp     8.8949     5.2447   1.696  0.08989
## 
## Rho: 0.49037, LR test value: 141.33, p-value: < 2.22e-16
## Asymptotic standard error: 0.039524
##     z-value: 12.407, p-value: < 2.22e-16
## Wald statistic: 153.93, p-value: < 2.22e-16
## 
## Log likelihood: -5738.047 for lag model
## ML residual variance (sigma squared): 20200, (sigma: 142.13)
## Number of observations: 897 
## Number of parameters estimated: 5 
## AIC: 11486, (AIC for lm: 11625)
## LM test for residual autocorrelation
## test value: 8.1464, p-value: 0.0043146
impacts(sar.chi, listw=W)
## Impact measures (lag, exact):
##               Direct  Indirect    Total
## est_fcs_rt 16.434479 14.336896 30.77137
## bls_unemp   9.321585  8.131842 17.45343

SEM

errorsalm.chi<-errorsarlm(violent~est_fcs_rt+bls_unemp, data=chi.poly@data, W)
summary(errorsalm.chi)
## 
## Call:
## errorsarlm(formula = violent ~ est_fcs_rt + bls_unemp, data = chi.poly@data, 
##     listw = W)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -650.506  -64.355  -22.646   35.461 1206.346 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -1.2624    43.0509 -0.0293   0.9766
## est_fcs_rt   19.4620     1.9450 10.0062   <2e-16
## bls_unemp     4.0380     5.5134  0.7324   0.4639
## 
## Lambda: 0.52056, LR test value: 109.68, p-value: < 2.22e-16
## Asymptotic standard error: 0.042291
##     z-value: 12.309, p-value: < 2.22e-16
## Wald statistic: 151.51, p-value: < 2.22e-16
## 
## Log likelihood: -5753.875 for error model
## ML residual variance (sigma squared): 20796, (sigma: 144.21)
## Number of observations: 897 
## Number of parameters estimated: 5 
## AIC: 11518, (AIC for lm: 11625)

Excercise (1)

Lakukan pemodelan menggunakan data chi.poly:

  • periksa multikolineritas antar peubah bebas yang digunakan berdasarkan VIF
hi.ols<-lm(violent~est_fcs_rt+bls_unemp, data=chi.poly@data)
summary(chi.ols)
## 
## Call:
## lm(formula = violent ~ est_fcs_rt + bls_unemp, data = chi.poly@data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -892.02  -77.02  -23.73   41.90 1238.22 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -18.627     45.366  -0.411    0.681    
## est_fcs_rt    28.298      1.435  19.720   <2e-16 ***
## bls_unemp     -0.308      5.770  -0.053    0.957    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 157.3 on 894 degrees of freedom
## Multiple R-squared:  0.3141, Adjusted R-squared:  0.3126 
## F-statistic: 204.7 on 2 and 894 DF,  p-value: < 2.2e-16
vif(chi.ols)
## est_fcs_rt  bls_unemp 
##   1.054007   1.054007

nilai VIF < 5 berarti tidak ada multikolinieritas.

  • eksplorasi autokorelasi spasial pada model menggunakan jarak W_dist
coords<-coordinates(chi.poly)
W_dist<-dnearneigh(coords,0,1,longlat = TRUE)
summary(W_dist)
## Neighbour list object:
## Number of regions: 897 
## Number of nonzero links: 5446 
## Percentage nonzero weights: 0.6768505 
## Average number of links: 6.071349 
## 55 regions with no links:
## 141 142 143 145 153 154 155 158 462 631 637 638 642 643 644 645 655 656 657 658 659 758 759 769 820 821 822 823 824 855 856 857 861 862 864 865 866 867 868 870 871 872 873 876 877 880 885 886 887 888 889 890 892 896 897
## Link number distribution:
## 
##  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
## 55 56 76 82 89 85 79 54 71 65 42 47 33 29 22  6  4  2 
## 56 least connected regions:
## 11 15 17 41 138 139 140 144 146 148 156 157 174 198 199 343 344 456 463 477 485 605 607 621 630 632 633 639 641 646 647 648 649 650 651 654 667 668 751 752 753 754 757 764 770 841 846 854 860 869 875 879 884 891 893 895 with 1 link
## 2 most connected regions:
## 364 381 with 17 links

Dari output di atas terlihat bahwa ada wilayah yang tidak memiliki tetangga sehingga akan dilakukan modifikasi terlebih dahulu nilai dmax nya.

#dmax=2
W_dist2<-dnearneigh(coords,0,2,longlat = TRUE)
summary(W_dist2)
## Neighbour list object:
## Number of regions: 897 
## Number of nonzero links: 21762 
## Percentage nonzero weights: 2.704668 
## Average number of links: 24.26087 
## 5 regions with no links:
## 643 658 659 865 866
## Link number distribution:
## 
##  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
##  5  5  5 11  7 20 20 16 20 16 22 15 27 21 17 26 32 25 18 19 34 21 12 21 18 19 
## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 51 52 
## 24 34 24 15 28 12 29 12 27 17 18 15 18 21 19 29 19 12 13 22  6  3  2  3  2  1 
## 5 least connected regions:
## 657 867 886 892 896 with 1 link
## 1 most connected region:
## 418 with 52 links

Dari output di atas terlihat bahwa ada wilayah yang tidak memiliki tetangga sehingga akan dilakukan modifikasi terlebih dahulu nilai dmax nya.

#dmax=3
W_dist3<-dnearneigh(coords,0,3,longlat = TRUE)
summary(W_dist3)
## Neighbour list object:
## Number of regions: 897 
## Number of nonzero links: 45734 
## Percentage nonzero weights: 5.684003 
## Average number of links: 50.98551 
## 2 regions with no links:
## 865 866
## Link number distribution:
## 
##  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
##  2  2  1  1  4  1  4  5  9  8  2  4  8  5  9  9 12 11  6  9  9 11  9 14  8 16 
## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 
##  5  8  8 12 10 12 10 10 10  7 11 10 11 12 11 12 11 13 10  8  8 12  7 10 14  7 
## 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 
## 10  8 15 12 12 12 11 16  7 15 14 13 16  9 17 12 11  8  9 16 11 11  9 10 10 16 
## 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 
## 11 10  7  7  9  9  5  8 13  9 11 11  7  9  6  5  6  2  3  1 
## 2 least connected regions:
## 659 867 with 1 link
## 1 most connected region:
## 373 with 97 links

Dari output di atas terlihat bahwa ada wilayah yang tidak memiliki tetangga sehingga akan dilakukan modifikasi terlebih dahulu nilai dmax nya.

#dmax=4
W_dist4<-dnearneigh(coords,0,4,longlat = TRUE)
summary(W_dist4)
## Neighbour list object:
## Number of regions: 897 
## Number of nonzero links: 76556 
## Percentage nonzero weights: 9.514684 
## Average number of links: 85.34671 
## 1 region with no links:
## 866
## Link number distribution:
## 
##   0   1   3   4   6   8   9  10  12  13  14  15  16  17  18  19  20  21  22  23 
##   1   1   1   1   1   1   1   6   2   4   9   3   2   3   2   4   4   2   4   7 
##  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43 
##   4   8   7   7   2   7   1   8   3  12   3   1   5   3   9   3   8   8   4   6 
##  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63 
##   4   8   6   5   6   6   5   6   6   4   7   8   3   8   3   7   9   4   2   2 
##  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83 
##   7   3   4   6   7   2   7  11   4   8   4  10   6   8   8   2  15   5   5   8 
##  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 
##   3   8  18  12   9  12   5   8   6   9   6   7   5   9   6  13  10  12   5   8 
## 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 
##   8   6   8  13   8   6   4  10   6   4  11   7   9   6  10   6   2   7  11   6 
## 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 
##   5   5   8   7   7   6   6   2   5   6   5   4   6   5   4   6   2   7   5   6 
## 144 145 146 147 148 149 150 151 152 153 154 155 156 158 159 
##   3   6   6   5   7   4   1   7   4   5   2   6   4   2   2 
## 1 least connected region:
## 865 with 1 link
## 2 most connected regions:
## 355 380 with 159 links

Dari output di atas terlihat bahwa ada wilayah yang tidak memiliki tetangga sehingga akan dilakukan modifikasi terlebih dahulu nilai dmax nya.

#dmax=5
W_dist5<-dnearneigh(coords,0,5,longlat = TRUE)
summary(W_dist5)
## Neighbour list object:
## Number of regions: 897 
## Number of nonzero links: 114028 
## Percentage nonzero weights: 14.17185 
## Average number of links: 127.1215 
## Link number distribution:
## 
##   1   2   5   7  12  15  16  17  19  20  21  22  23  24  25  26  27  28  29  30 
##   1   1   1   1   2   3   2   1   2   3   4   3   3   1   6   2   2   2   3   1 
##  31  32  33  34  35  36  37  38  39  40  42  43  44  45  46  47  48  49  50  51 
##   2   2   4   2   7   3   3   4   2   7   3   2   2   4   5   4   2   9   4   5 
##  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71 
##   1   1   4   4   3   4   2   4   3   3   5   3   1   1   2   5   4   8   2   1 
##  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91 
##   4   8   5   1   1   4   3   4   2   2   4   4   5   3   4   1   5   2   5   5 
##  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108 109 110 111 
##   5   2   2   2   7   2   3   2   2   6   5   1   3   5   6   3   6   5   5   2 
## 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 
##   4   3   8   5   5   8   5   7   6   8   6   4   4   9   6   8   5   8   5   8 
## 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 
##   3   4   4   7   8   7   6   7   8   4   8   6   7   6   5   5   6   2   4   7 
## 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 
##   4   6   5   4   8   9   8   7   6  11   9   2   3   7   7   2   6   8   4   5 
## 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 
##   3   1   6   6   7   3   5   7   8   3   4   6   4   2   7   4   5   3   3   3 
## 192 193 194 195 197 198 199 200 201 202 203 204 205 206 207 208 210 211 212 213 
##   3   1   3   7   3   5   2   4   2   3   7   5   2   2   2   3   7   3   1   4 
## 214 215 216 217 218 219 220 221 222 223 224 225 226 228 229 230 233 
##   1   5   2   5   9   2   1   6   5   3   2   3   2   3   3   1   1 
## 1 least connected region:
## 866 with 1 link
## 1 most connected region:
## 313 with 233 links

Dari output di atas terlihat bahwa sudah tidak ada wilayah yang tidak memiliki tetangga sehingga nilai dmax yang digunakan adalah 5.

W_dist5.s <- nb2listw(W_dist5,style='W') #W is row standardised (sums over all links to n). Standardisasi Baris
W_dist5.s
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 897 
## Number of nonzero links: 114028 
## Percentage nonzero weights: 14.17185 
## Average number of links: 127.1215 
## 
## Weights style: W 
## Weights constants summary:
##     n     nn  S0       S1       S2
## W 897 804609 897 22.16899 3612.328
moran.lmC<-lm.morantest(chi.ols,W_dist5.s, alternative="two.sided")
print(moran.lm)
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = violent ~ est_fcs_rt + bls_unemp, data =
## chi.poly@data)
## weights: W
## 
## Moran I statistic standard deviate = 11.785, p-value < 2.2e-16
## alternative hypothesis: two.sided
## sample estimates:
## Observed Moran I      Expectation         Variance 
##     0.2142252370    -0.0020099108     0.0003366648

Dari output di atas telihat p_value < alpha sehingga tolak Ho. Berarti ada autokorelasi spasial pada data.

  • lakukan pemodelan yang menurut Anda paling tepat, interpretasikan.

Lagrange Multiplier Test

LM<-lm.LMtests(chi.ols, W_dist5.s,
               test=c("LMerr", "LMlag","RLMerr","RLMlag","SARMA"))
summary(LM)
##  Lagrange multiplier diagnostics for spatial dependence
## data:  
## model: lm(formula = violent ~ est_fcs_rt + bls_unemp, data =
## chi.poly@data)
## weights: W_dist5.s
##  
##        statistic parameter   p.value    
## LMerr     189.13         1 < 2.2e-16 ***
## LMlag     120.52         1 < 2.2e-16 ***
## RLMerr     92.15         1 < 2.2e-16 ***
## RLMlag     23.54         1 1.224e-06 ***
## SARMA     212.67         2 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Output memperlihatkan bahwa hasil uji model SEM dan SAR sama-sama signifikan pada taraf 5%. Selanjutnya, hasil uji robust ternyata keduanya juga signifikan. Berdasarkan skema tersebut, kita dapat mencoba kandidat model SARMA/GSM,model SEM, dan Model SAR. Namun demikian, ada pula pendapat yang menyarankan agar kita mengambil kandidat model dengan p-value terkecil,namun karena ada beberapa model yang memiliki p_value terkecil, tetap akan dilakukan pemodelan untuk SAR,SEM,GSM. Lalu, dipilih model terbaik dengan melihat nilai AIC dan Pseudo-Rsquare nya.

Model SEM

W.opt <- W_dist5.s

sem <-errorsarlm(chi.ols,data=chi.poly@data,W.opt)
summary(sem,Nagelkerke=T)
## 
## Call:errorsarlm(formula = chi.ols, data = chi.poly@data, listw = W.opt)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -639.622  -70.323  -24.571   41.019 1169.084 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  17.2975    69.2263  0.2499   0.8027
## est_fcs_rt   20.3372     2.0567  9.8884   <2e-16
## bls_unemp     3.3716     5.6850  0.5931   0.5531
## 
## Lambda: 0.9091, LR test value: 78.606, p-value: < 2.22e-16
## Asymptotic standard error: 0.044869
##     z-value: 20.261, p-value: < 2.22e-16
## Wald statistic: 410.52, p-value: < 2.22e-16
## 
## Log likelihood: -5769.412 for error model
## ML residual variance (sigma squared): 22195, (sigma: 148.98)
## Nagelkerke pseudo-R-squared: 0.37165 
## Number of observations: 897 
## Number of parameters estimated: 5 
## AIC: 11549, (AIC for lm: 11625)

Output di atas menunjukkan bahwa koefisien Lambda signifikan pada taraf nyata 5% ( p-value < alpha). Berarti kita memasukkan komponen error tersebut ke dalam model sudah benar.

AIC model SEM adalah sebesar 11549. Selanjutnya kita akan coba memeriksa sisaan model SEM ini.

Uji Asumsi Normal

Ho: Sisaan menyebar normal H1: Sisaan tidak menyebar normal

err.sem<-residuals(sem)
ad.test(err.sem)
## 
##  Anderson-Darling normality test
## 
## data:  err.sem
## A = 37.053, p-value < 2.2e-16

Hasil uji asumsi normal menunjukkan bahwa sisaan tidak menyebar normal (tolak Ho karena p_value < alpha=5%)

Uji Asumsi Kehomogenan Ragam Sisaan

Ho: Ragam Sisaan homogen H1: Ragam Sisaan tidak homogen

bptest.Sarlm(sem)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 43.42, df = 2, p-value = 3.728e-10

Hasil uji asumsi kehomogenan ragam dengan Breusch-Pagan test menunjukkan bahwa sisaan memiliki ragam yang tidak homogen (tolak Ho karena p_value < alpha=5%)

Uji Kebebasan Sisaan

Ho: tidak terdapat autokorelasi spasial pada galat (galat bebas) H1: terdapat autokorelasi spasial positif pada galat (galat tidak bebas)

moran.test(err.sem, W.opt, randomisation=F,alternative="greater")
## 
##  Moran I test under normality
## 
## data:  err.sem  
## weights: W.opt    
## 
## Moran I statistic standard deviate = 2.9593, p-value = 0.001542
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      1.368933e-02     -1.116071e-03      2.503038e-05

Hasil uji asumsi kebebasan sisaan dengan Moran I test menunjukkan bahwa sisaan bersifat tidak bebas (tolak Ho karena p_value < alpha=5%)

Terlihat pada ketiga output di atas bahwa sisaan tidak memenuhi asumsi kenormalan, kehomogenan ragam, serta kebebasan.

Spatial Durbin Error Model (SDEM)

sdem <- errorsarlm(chi.ols, data=chi.poly@data, W.opt, etype="mixed");
summary(sdem, Nagelkerke=T)
## 
## Call:errorsarlm(formula = chi.ols, data = chi.poly@data, listw = W.opt, 
##     etype = "mixed")
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -540.830  -72.362  -16.830   45.385 1147.050 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)     38.6552   446.9228  0.0865   0.9311
## est_fcs_rt      17.3184     2.1596  8.0193 1.11e-15
## bls_unemp        6.1884     5.7097  1.0838   0.2784
## lag.est_fcs_rt  30.8778     7.2693  4.2477 2.16e-05
## lag.bls_unemp  -28.8953    56.3539 -0.5127   0.6081
## 
## Lambda: 0.88674, LR test value: 64.05, p-value: 1.2212e-15
## Asymptotic standard error: 0.052655
##     z-value: 16.841, p-value: < 2.22e-16
## Wald statistic: 283.6, p-value: < 2.22e-16
## 
## Log likelihood: -5760.29 for error model
## ML residual variance (sigma squared): 21782, (sigma: 147.59)
## Nagelkerke pseudo-R-squared: 0.3843 
## Number of observations: 897 
## Number of parameters estimated: 7 
## AIC: 11535, (AIC for lm: 11597)

Output di atas menunjukkan bahwa koefisien Lambda signifikan pada taraf nyata 5% ( p-value < alpha). Berarti kita memasukkan komponen error tersebut ke dalam model sudah benar.Namun, untuk lag.x nya hanya lag.x3 yang signifikan.

AIC model SDEM adalah sebesar 11535. Selanjutnya kita akan coba memeriksa sisaan model SDEM ini.

Uji Asumsi Normal

Ho: Sisaan menyebar normal H1: Sisaan tidak menyebar normal

err.sdem<-residuals(sdem)
ad.test(err.sdem)
## 
##  Anderson-Darling normality test
## 
## data:  err.sdem
## A = 28.572, p-value < 2.2e-16

Hasil uji asumsi normal menunjukkan bahwa sisaan tidak menyebar normal (tolak Ho karena p_value < alpha=5%)

Uji Asumsi Kehomogenan Ragam Sisaan

Ho: Ragam Sisaan homogen H1: Ragam Sisaan tidak homogen

bptest.Sarlm(sdem)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 71.222, df = 4, p-value = 1.255e-14

Hasil uji asumsi kehomogenan ragam dengan Breusch-Pagan test menunjukkan bahwa sisaan memiliki ragam yang tidak homogen (tolak Ho karena p_value < alpha=5%)

Uji Kebebasan Sisaan

Ho: tidak terdapat autokorelasi spasial pada galat (galat bebas) H1: terdapat autokorelasi spasial positif pada galat (galat tidak bebas)

moran.test(err.sdem, W.opt, randomisation=F,alternative="greater")
## 
##  Moran I test under normality
## 
## data:  err.sdem  
## weights: W.opt    
## 
## Moran I statistic standard deviate = 1.7305, p-value = 0.04177
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      7.541435e-03     -1.116071e-03      2.503038e-05

Hasil uji asumsi kebebasan sisaan dengan Moran I test menunjukkan bahwa sisaan bersifat tidak bebas (tolak Ho karena p_value < alpha=5%)

Terlihat pada ketiga output di atas bahwa sisaan tidak memenuhi asumsi kenormalan, kehomogenan ragam, serta kebebasan.

Likelihood Ratio Test (Model SEM VS SDEM)

Untuk mengecek apakah lag x signifikan atau tidak dilakukan Uji Likelihood Rasio.

LR.Sarlm(sdem,sem)
## 
##  Likelihood ratio for spatial linear models
## 
## data:  
## Likelihood ratio = 18.243, df = 2, p-value = 0.0001093
## sample estimates:
## Log likelihood of sdem  Log likelihood of sem 
##              -5760.290              -5769.412

Dari hasil likelihood ratio test diperoleh P_value < alpha=0.05 berarti lag x signifikan. Ada dependensi spasial di lax x sehingga model SDEM lebih mencerminkan data dibandingkan model SEM.

Model SAR

sar <-lagsarlm(chi.ols,data=chi.poly@data,W.opt)
summary(sar,Nagelkerke=T)
## 
## Call:lagsarlm(formula = chi.ols, data = chi.poly@data, listw = W.opt)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -537.721  -75.361  -17.774   46.656 1153.634 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error z value  Pr(>|z|)
## (Intercept) -122.8671    44.2691 -2.7755  0.005512
## est_fcs_rt    16.3168     1.7844  9.1440 < 2.2e-16
## bls_unemp      8.1010     5.5765  1.4527  0.146307
## 
## Rho: 0.69401, LR test value: 78.457, p-value: < 2.22e-16
## Asymptotic standard error: 0.056085
##     z-value: 12.374, p-value: < 2.22e-16
## Wald statistic: 153.12, p-value: < 2.22e-16
## 
## Log likelihood: -5769.486 for lag model
## ML residual variance (sigma squared): 22426, (sigma: 149.75)
## Nagelkerke pseudo-R-squared: 0.37154 
## Number of observations: 897 
## Number of parameters estimated: 5 
## AIC: 11549, (AIC for lm: 11625)
## LM test for residual autocorrelation
## test value: 40.747, p-value: 1.7324e-10

Output di atas memperlihatkan bahwa koefisien Rho pada model SAR signifikan, dengan nilai AIC sebesar 11549. Selain itu, terlihat pula hasil uji autokorelasi pada sisaan model dengan Ho: tidak terdapat autokorelasi spasial pada galat (galat bebas) dan H1: terdapat autokorelasi spasial positif pada galat (galat tidak bebas) memperlihatkan nilai p-value lebih kecil dari galat (tolak Ho), artinya terdapat autokorelasi pada sisaan.

Uji Asumsi Normal

Ho: Sisaan menyebar normal H1: Sisaan tidak menyebar normal

err.sar<-residuals(sar)
ad.test(err.sar)
## 
##  Anderson-Darling normality test
## 
## data:  err.sar
## A = 29.673, p-value < 2.2e-16

Hasil uji asumsi normal menunjukkan bahwa sisaan tidak menyebar normal (tolak Ho karena p_value < alpha=5%)

Uji Asumsi Kehomogenan Ragam Sisaan

Ho: Ragam Sisaan homogen H1: Ragam Sisaan tidak homogen

bptest.Sarlm(sar)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 71.349, df = 2, p-value = 3.331e-16

Hasil uji asumsi kehomogenan ragam dengan Breusch-Pagan test menunjukkan bahwa sisaan memiliki ragam yang tidak homogen (tolak Ho karena p_value < alpha=5%)

Terlihat pada ketiga output di atas bahwa sisaan tidak memenuhi asumsi kenormalan, kehomogenan ragam, serta kebebasan.

Spatial Durbin Model (SDM)

Berikut ini adalah penjelasan tentang Spatial Durbin Model yang dirujuk dari Zhukov (2010):

Model:

sdm <- lagsarlm(chi.ols,data=chi.poly@data, W.opt, type="mixed");
summary(sdm,Nagelkerke=T)
## 
## Call:lagsarlm(formula = chi.ols, data = chi.poly@data, listw = W.opt, 
##     type = "mixed")
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -607.785  -71.287  -20.416   42.880 1153.426 
## 
## Type: mixed 
## Coefficients: (asymptotic standard errors) 
##                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)    -263.6752   222.6254 -1.1844   0.2363
## est_fcs_rt       19.1791     2.1336  8.9892   <2e-16
## bls_unemp         4.5850     5.7072  0.8034   0.4218
## lag.est_fcs_rt  -10.3202     4.2595 -2.4229   0.0154
## lag.bls_unemp    24.4867    28.0252  0.8737   0.3823
## 
## Rho: 0.83036, LR test value: 52.459, p-value: 4.3943e-13
## Asymptotic standard error: 0.065907
##     z-value: 12.599, p-value: < 2.22e-16
## Wald statistic: 158.73, p-value: < 2.22e-16
## 
## Log likelihood: -5766.086 for mixed model
## ML residual variance (sigma squared): 22137, (sigma: 148.79)
## Nagelkerke pseudo-R-squared: 0.37629 
## Number of observations: 897 
## Number of parameters estimated: 7 
## AIC: 11546, (AIC for lm: 11597)
## LM test for residual autocorrelation
## test value: 24.755, p-value: 6.5101e-07

Output di atas memperlihatkan bahwa koefisien Rho pada model SDM signifikan, dengan nilai AIC sebesar 11546. Namun, lag.x1,lag.x3 tidak nyata. Selain itu, terlihat pula hasil uji autokorelasi pada sisaan model dengan Ho: tidak terdapat autokorelasi spasial pada galat (galat bebas) dan H1: terdapat autokorelasi spasial positif pada galat (galat tidak bebas) memperlihatkan nilai p-value lebih kecil dari alpha (tolak Ho), artinya terdapat autokorelasi pada sisaan.

Uji Asumsi Normal

Ho: Sisaan menyebar normal H1: Sisaan tidak menyebar normal

err.sdm<-residuals(sdm)
ad.test(err.sdm)
## 
##  Anderson-Darling normality test
## 
## data:  err.sdm
## A = 32.265, p-value < 2.2e-16

Hasil uji asumsi normal menunjukkan bahwa sisaan tidak menyebar normal (tolak Ho karena p_value < alpha=5%)

Uji Asumsi Kehomogenan Ragam Sisaan

Ho: Ragam Sisaan homogen H1: Ragam Sisaan tidak homogen

bptest.Sarlm(sdm)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 78.954, df = 4, p-value = 3.331e-16

Hasil uji asumsi kehomogenan ragam dengan Breusch-Pagan test menunjukkan bahwa sisaan memiliki ragam yang tidak homogen (tolak Ho karena p_value < alpha=5%)

Terlihat pada ketiga output di atas bahwa sisaan tidak memenuhi asumsi kenormalan, kehomogenan ragam, serta kebebasan.

Likelihood Ratio Test (Model SAR vs SDM)

Untuk mengecek apakah lag x signifikan atau tidak dilakukan Uji Likelihood Rasio.

LR.Sarlm(sdm,sar)
## 
##  Likelihood ratio for spatial linear models
## 
## data:  
## Likelihood ratio = 6.8003, df = 2, p-value = 0.03337
## sample estimates:
## Log likelihood of sdm Log likelihood of sar 
##             -5766.086             -5769.486

Dari hasil likelihood ratio test diperoleh P_value < alpha=0.05 berarti lag x signifikan. Ada dependensi spasial di lag x sehingga model SDM lebih mencerminkan data dibandingkan model SAR.

Model GSM/SARMA

gsm<-sacsarlm(chi.ols,data=chi.poly@data,W.opt)
summary(gsm,Nagelkerke=T)
## 
## Call:sacsarlm(formula = chi.ols, data = chi.poly@data, listw = W.opt)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -573.305  -70.769  -18.829   41.325 1147.976 
## 
## Type: sac 
## Coefficients: (asymptotic standard errors) 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -97.8309    51.1284 -1.9134  0.05569
## est_fcs_rt   18.1773     2.1221  8.5659  < 2e-16
## bls_unemp     5.8036     5.6720  1.0232  0.30621
## 
## Rho: 0.59331
## Asymptotic standard error: 0.13706
##     z-value: 4.3288, p-value: 1.4991e-05
## Lambda: 0.62838
## Asymptotic standard error: 0.1744
##     z-value: 3.6031, p-value: 0.00031447
## 
## LR test value: 96.184, p-value: < 2.22e-16
## 
## Log likelihood: -5760.623 for sac model
## ML residual variance (sigma squared): 21907, (sigma: 148.01)
## Nagelkerke pseudo-R-squared: 0.38384 
## Number of observations: 897 
## Number of parameters estimated: 6 
## AIC: 11533, (AIC for lm: 11625)

Output di atas memperlihatkan bahwa KEDUA koefisien dependensi spasial tidak signifikan.AIC model SARMA adalah sebesar 11533.

Uji Asumsi Normal

Ho: Sisaan menyebar normal H1: Sisaan tidak menyebar normal

err.gsm<-residuals(gsm)
ad.test(err.gsm)
## 
##  Anderson-Darling normality test
## 
## data:  err.gsm
## A = 30.976, p-value < 2.2e-16

Hasil uji asumsi normal menunjukkan bahwa sisaan tidak menyebar normal (tolak Ho karena p_value < alpha=5%)

Uji Asumsi Kehomogenan Ragam Sisaan

Ho: Ragam Sisaan homogen H1: Ragam Sisaan tidak homogen

bptest.Sarlm(gsm)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 56.487, df = 2, p-value = 5.421e-13

Hasil uji asumsi kehomogenan ragam dengan Breusch-Pagan test menunjukkan bahwa sisaan memiliki ragam yang tidak homogen (tolak Ho karena p_value < alpha=5%)

Uji Kebebasan Sisaan

Ho: tidak terdapat autokorelasi spasial pada galat (galat bebas) H1: terdapat autokorelasi spasial positif pada galat (galat tidak bebas)

moran.test(err.gsm, W.opt, randomisation=F,alternative="greater")
## 
##  Moran I test under normality
## 
## data:  err.gsm  
## weights: W.opt    
## 
## Moran I statistic standard deviate = 0.6849, p-value = 0.2467
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      2.310519e-03     -1.116071e-03      2.503038e-05

Hasil uji asumsi kebebasan sisaan dengan Moran I test menunjukkan bahwa sisaan bersifat bebas (tolak Ho karena p_value >alpha=5%)

Terlihat pada ketiga output di atas bahwa sisaan tidak memenuhi asumsi kenormalan dan kehomogenan ragam. Namun memenuhi asumsi kebebasan.

GNS Model

Model GNS memasukkan komponen lag x pada model GSM/SARMA.

gns <-sacsarlm(chi.ols,data=chi.poly@data,W.opt,type="mixed")
summary(gns,Nagelkerke=T)
## 
## Call:sacsarlm(formula = chi.ols, data = chi.poly@data, listw = W.opt, 
##     type = "mixed")
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -542.770  -71.703  -16.357   43.224 1143.992 
## 
## Type: sacmixed 
## Coefficients: (asymptotic standard errors) 
##                  Estimate Std. Error z value  Pr(>|z|)
## (Intercept)    -152.11733  415.45639 -0.3661    0.7143
## est_fcs_rt       17.28594    2.16217  7.9947 1.332e-15
## bls_unemp         6.57363    5.69907  1.1535    0.2487
## lag.est_fcs_rt   16.59626   14.89837  1.1140    0.2653
## lag.bls_unemp    -0.72957   52.58518 -0.0139    0.9889
## 
## Rho: 0.30708
## Asymptotic standard error: 0.37477
##     z-value: 0.81939, p-value: 0.41257
## Lambda: 0.79695
## Asymptotic standard error: 0.17773
##     z-value: 4.4839, p-value: 7.3282e-06
## 
## LR test value: 98.266, p-value: < 2.22e-16
## 
## Log likelihood: -5759.582 for sacmixed model
## ML residual variance (sigma squared): 21826, (sigma: 147.74)
## Nagelkerke pseudo-R-squared: 0.38527 
## Number of observations: 897 
## Number of parameters estimated: 8 
## AIC: 11535, (AIC for lm: 11625)

Output di atas memperlihatkan bahwa kedua koefisien dependensi spasial tidak signifikan, yaitu Rho dan lambda. AIC model GNS adalah sebesar 11535.

Uji Asumsi Normal

Ho: Sisaan menyebar normal H1: Sisaan tidak menyebar normal

err.gns<-residuals(gns)
ad.test(err.gns)
## 
##  Anderson-Darling normality test
## 
## data:  err.gns
## A = 28.928, p-value < 2.2e-16

Hasil uji asumsi normal menunjukkan bahwa sisaan tidak menyebar normal (tolak Ho karena p_value < alpha=5%)

Uji Asumsi Kehomogenan Ragam Sisaan

Ho: Ragam Sisaan homogen H1: Ragam Sisaan tidak homogen

bptest.Sarlm(gns)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 76.368, df = 4, p-value = 9.992e-16

Hasil uji asumsi kehomogenan ragam dengan Breusch-Pagan test menunjukkan bahwa sisaan memiliki ragam yang tidak homogen (tolak Ho karena p_value < alpha=5%)

Uji Kebebasan Sisaan

Ho: tidak terdapat autokorelasi spasial pada galat (galat bebas) H1: terdapat autokorelasi spasial positif pada galat (galat tidak bebas)

moran.test(err.gns, W.opt, randomisation=F,alternative="greater")
## 
##  Moran I test under normality
## 
## data:  err.gns  
## weights: W.opt    
## 
## Moran I statistic standard deviate = 1.0539, p-value = 0.146
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      4.156482e-03     -1.116071e-03      2.503038e-05

Hasil uji asumsi kebebasan sisaan dengan Moran I test menunjukkan bahwa sisaan bersifat bebas (tidak tolak Ho karena p_value > alpha=5%)

Terlihat pada ketiga output di atas bahwa sisaan telah memenuhi asumsi kebebasan namun tidak asumsi kenormalan dan kehomogenan ragam.

Likelihood Ratio Test (Model GSM vs GNS)

Untuk mengecek apakah lag x signifikan atau tidak dilakukan Uji Likelihood Rasio.

LR.Sarlm(gns,gsm)
## 
##  Likelihood ratio for spatial linear models
## 
## data:  
## Likelihood ratio = 2.0826, df = 2, p-value = 0.353
## sample estimates:
## Log likelihood of gns Log likelihood of gsm 
##             -5759.582             -5760.623

Dari hasil likelihood ratio test diperoleh P_value > alpha=0.05 berarti lag x tidak signifikan. Tidak Ada dependensi spasial di laxg x sehingga model GSM lebih mencerminkan data dibandingkan model GSN.

SLX Model

Model:

SLX model dapat dilakukan dengan fungsi lmSLX() pada package spatialreg. Perhatikan bahwa model SLX adalah bentuk khusus dari model Spatial Durbin.

slx <- lmSLX(chi.ols, data=chi.poly@data, W.opt, Durbin = TRUE);
summary(slx,Nagelkerke=T)
## 
## Call:
## lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), 
##     data = as.data.frame(x), weights = weights)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -663.82  -83.88  -22.20   42.81 1198.81 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -801.026    230.063  -3.482 0.000522 ***
## est_fcs_rt       20.192      2.211   9.134  < 2e-16 ***
## bls_unemp         4.062      5.928   0.685 0.493421    
## lag.est_fcs_rt   15.588      3.347   4.658 3.68e-06 ***
## lag.bls_unemp    86.698     29.056   2.984 0.002925 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 154.7 on 892 degrees of freedom
## Multiple R-squared:  0.3387, Adjusted R-squared:  0.3358 
## F-statistic: 114.2 on 4 and 892 DF,  p-value: < 2.2e-16
AIC(slx)
## [1] 11596.63

Output di atas memperlihatkan bahwa hanya lag.x2 dan lag.x3 yang signifikan, sedangkan lag.x1 tidak signifikan. AIC model SLX adalah sebesar 11596.63.

Uji Asumsi Normal

Ho: Sisaan menyebar normal H1: Sisaan tidak menyebar normal

err.slx<-residuals(slx)
ad.test(err.slx)
## 
##  Anderson-Darling normality test
## 
## data:  err.slx
## A = 31.562, p-value < 2.2e-16

Hasil uji asumsi normal menunjukkan bahwa sisaan tidak menyebar normal (tolak Ho karena p_value < alpha=5%)

Uji Asumsi Kehomogenan Ragam Sisaan

Ho: Ragam Sisaan homogen H1: Ragam Sisaan tidak homogen

bptest(slx)
## 
##  studentized Breusch-Pagan test
## 
## data:  slx
## BP = 77.974, df = 4, p-value = 4.678e-16

Hasil uji asumsi kehomogenan ragam dengan Breusch-Pagan test menunjukkan bahwa sisaan memiliki ragam yang tidak homogen (tolak Ho karena p_value < alpha=5%)

Uji Kebebasan Sisaan

Ho: tidak terdapat autokorelasi spasial pada galat (galat bebas) H1: terdapat autokorelasi spasial positif pada galat (galat tidak bebas)

moran.test(err.slx, W.opt, randomisation=F,alternative="greater")
## 
##  Moran I test under normality
## 
## data:  err.slx  
## weights: W.opt    
## 
## Moran I statistic standard deviate = 13.095, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      6.439811e-02     -1.116071e-03      2.503038e-05

Hasil uji asumsi kebebasan sisaan dengan Moran I test menunjukkan bahwa sisaan bersifat tidak bebas (tolak Ho karena p_value < alpha=5%)

Terlihat pada ketiga output di atas bahwa sisaan tidak memenuhi asumsi kenormalan dan kehomogenan ragam namun tidak memenuhi asumsi kebebasan.

Likelihood Ratio Test (Model SLX vs Regresi Linier Klasik)

Untuk mengecek apakah lag x signifikan atau tidak dilakukan Uji Likelihood Rasio.

LR.Sarlm(slx,chi.ols)
## 
##  Likelihood ratio for spatial linear models
## 
## data:  
## Likelihood ratio = 32.799, df = 2, p-value = 7.547e-08
## sample estimates:
##     Log likelihood of slx Log likelihood of chi.ols 
##                 -5792.315                 -5808.715

Dari hasil likelihood ratio test diperoleh P_value < alpha=0.05 berarti lag x signifikan. Ada dependensi spasial di laxg x sehingga model SLX lebih mencerminkan data dibandingkan model Regresi Linier Klasik.

Goodness of Fits

Dari model yang digunakan, model terbaik adalah model SAR dengan nilai AIC terendah. selanjutnya model terbaik ini yang akan ditafsirkan hasil dan nilai spillover nya.

AIC(sem)
## [1] 11548.82
AIC(sdem)
## [1] 11534.58
AIC(sar)
## [1] 11548.97
AIC(sdm)
## [1] 11546.17
AIC(gsm)
## [1] 11533.25
AIC(gns)
## [1] 11535.16
AIC(chi.ols)
## [1] 11625.43
AIC(slx)
## [1] 11596.63

Model terbaik jika dilihat dari AIC adalah model GSM (AIC terendah) dengan R-Square sekitar 38% .Namun sisaan model ini tidak memenuhi asumsi kenormalan dan kehomogenan ragam. Namun memenuhi asumsi kebebasan. Penulis rekomendasikan lebih baik mencoba menggunakan model GWR atau Regresi Terboboti Geografis yang akan dibahas pada pertemuan 13.

Marginal Effects (Spill-over) on the Spatial Regression Modeling

  • Marginal Effects*

Definisi yang diambil dari materi kuliah yang disusun oleh Dr. Anik Djuraidah menyatakan bahwa efek marginal atau limpahan (spill-over) adalah besarnya dampak perubahan pada peubah dependen pada wilayah-i, akibat perubahan prediktor di wilayah-j.

Efek marginal terdapat pada model dependensi spasial SAR, GSM, SDM, SDEM, dan SLX. Efek ini dapat dibedakan menjadi tiga, yaitu efek langsung (direct effect), efek tidak langsung (indirect effect), dan efek total (total effect).

marginal effect dapat diperoleh dengan fungsi impacts() seperti pada syntax berikut ini.

Interpretasi Efek Marginal

impacts(gsm, listw = W.opt)
## Impact measures (sac, exact):
##               Direct  Indirect    Total
## est_fcs_rt 18.298542 26.396766 44.69531
## bls_unemp   5.842272  8.427835 14.27011

Terlihat bahwa pengaruh langsung dari peubah est_fcs_rt adalah sebesar 18.298542, artinya jika nilai est_fcs_rt di wilayah-i meningkat 1 satuan, maka nilai violent di wilayah tersebut akan bertambah sebesar 18.298542 satuan, jika peubah bls_unemp tetap. Sedangkan efek tak langsung dari peubah tersebut bernilai 1.435. Artinya, jika nilai est_fcs_rt di wilayah-i meningkat sebesar satu satuan, maka nilai violent di wilayah-j akan berkurang sebesar 1.435 satuan, jika nilai bls_unemp nya tetap. Interpretasi serupa juga dapat dilakukan terhadap peubah bls_unemp.

Exercise (2)

Pelajari artikel yang ditulis oleh Guliyev (2020), yang tersedia pada link berikut: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139267/. Jika memungkinkan, silahkan lakukan pemodelan regresi spasial dan interpretasikan efek marjinal pada kasus ini, berdasarkan data yang tersedia pada artikel tersebut. Catatan: peta China dapat diakses pada https://data.humdata.org/dataset/china-administrative-boundaries.

Jawab

These data are up to 10 March 2020. The rates are multiplied by 100,000. the rate of confirmed cases (Rc) of COVID-19, the rate of deaths (Rd), the rate of recovered cases (Rr) due to treatment

Data Import

Impor data shapefile menggunakan fungsi readOGR() pada package rgdal. Setelah itu, kita dapat menggunakan fungsi str() untuk melihat struktur datanya.

covid <- read_xlsx("CovidChina.xlsx")
covid
## # A tibble: 34 x 12
##    ADM1_EN    ADM1_ZH ADM1_PCODE ADM0_EN ADM0_ZH ADM0_PCODE     Rc     Rr     Rd
##    <chr>      <chr>   <chr>      <chr>   <chr>   <chr>       <dbl>  <dbl>  <dbl>
##  1 Shaanxi P~ <U+9655><U+897F><U+7701>  CN061      China   <U+4E2D><U+56FD>    CN         0.0387 0.0359 0.0359
##  2 Shanghai ~ <U+4E0A><U+6D77><U+5E02>  CN031      China   <U+4E2D><U+56FD>    CN         0.0544 0.0504 0.0504
##  3 Chongqing~ <U+91CD><U+5E86><U+5E02>  CN050      China   <U+4E2D><U+56FD>    CN         0.0911 0.0865 0.0865
##  4 Zhejiang ~ <U+6D59><U+6C5F><U+7701>  CN033      China   <U+4E2D><U+56FD>    CN         0.192  0.188  0.188 
##  5 Jiangxi P~ <U+6C5F><U+897F><U+7701>  CN036      China   <U+4E2D><U+56FD>    CN         0.148  0.147  0.147 
##  6 Yunnan Pr~ <U+4E91><U+5357><U+7701>  CN053      China   <U+4E2D><U+56FD>    CN         0.0275 0.0269 0.0269
##  7 Shandong ~ <U+5C71><U+4E1C><U+7701>  CN037      China   <U+4E2D><U+56FD>    CN         0.120  0.114  0.114 
##  8 Liaoning ~ <U+8FBD><U+5B81><U+7701>  CN021      China   <U+4E2D><U+56FD>    CN         0.0198 0.0176 0.0176
##  9 Tibet Aut~ <U+897F><U+85CF><U+81EA>~ CN054      China   <U+4E2D><U+56FD>    CN         0.0002 0.0002 0.0002
## 10 Gansu pro~ <U+7518><U+8083><U+7701>  CN062      China   <U+4E2D><U+56FD>    CN         0.0198 0.0139 0.0139
## # ... with 24 more rows, and 3 more variables: Avg.Rc <dbl>, Avg.Rr <dbl>,
## #   Avg.Rd <dbl>
covid.map <-readOGR(dsn="chn_adm_ocha_2020_shp", layer="chn_admbnda_adm1_ocha_2020")
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\Kuliah S2 IPB\Bahan Kuliah\Semester 2 SSD 2020\STA533 Spasial\PRAKTIKUM\R\chn_adm_ocha_2020_shp", layer: "chn_admbnda_adm1_ocha_2020"
## with 34 features
## It has 6 fields
covid.map@data
##                                    ADM1_EN                  ADM1_ZH ADM1_PCODE
## 0                         Shaanxi Province                é\231•西çœ\201      CN061
## 1                    Shanghai Municipality                上海市      CN031
## 2                   Chongqing Municipality                é‡\215庆市      CN050
## 3                        Zhejiang Province                æµ\231江çœ\201      CN033
## 4                         Jiangxi Province                江西çœ\201      CN036
## 5                          Yunnan Province                云å\215—çœ\201      CN053
## 6                        Shandong Province                山东çœ\201      CN037
## 7                        Liaoning Province                è¾½å®\201çœ\201      CN021
## 8                  Tibet Autonomous Region          西è—\217自治区      CN054
## 9                           Gansu province                ç”\230肃çœ\201      CN062
## 10 Hong Kong Special Administrative Region    é¦\231港特å\210«è¡Œæ”¿åŒº      CN081
## 11                        Qinghai Province                é\235’æµ·çœ\201      CN063
## 12                    Beijing Municipality                北京市      CN011
## 13     Macao Special Administrative Region    澳门特å\210«è¡Œæ”¿åŒº      CN082
## 14        Inner Mongolia Autonomous Region       内è’\231å\217¤è‡ªæ²»åŒº      CN015
## 15                          Hubei Province                湖北çœ\201      CN042
## 16                          Anhui Province                安徽çœ\201      CN034
## 17                        Guizhou Province                贵州çœ\201      CN052
## 18           Ningxia Hui Autonomous Region    å®\201å¤\217回æ—\217自治区      CN064
## 19                        Jiangsu Province                江è‹\217çœ\201      CN032
## 20        Xinjiang Uygur Autonomous Region 新疆维å\220¾å°”自治区      CN065
## 21                         Shanxi Province                山西çœ\201      CN014
## 22                          Hunan Province                æ¹–å\215—çœ\201      CN043
## 23                        Sichuan Province                å››å·\235çœ\201      CN051
## 24        Guangxi Zhuang Autonomous Region    广西壮æ—\217自治区      CN045
## 25                          Jilin Province                å\220‰æž—çœ\201      CN022
## 26                         Taiwan Province                å\217°æ¹¾çœ\201      CN071
## 27                          Hebei Province                河北çœ\201      CN013
## 28                    Tianjin Municipality                天津市      CN012
## 29                      Guangdong Province                广东çœ\201      CN044
## 30                         Fujian Province                ç¦\217建çœ\201      CN035
## 31                   Heilongjiang Province             黑é¾\231江çœ\201      CN023
## 32                          Henan Province                æ²³å\215—çœ\201      CN041
## 33                         Hainan Province                æµ·å\215—çœ\201      CN046
##    ADM0_EN ADM0_ZH ADM0_PCODE
## 0    China  中国         CN
## 1    China  中国         CN
## 2    China  中国         CN
## 3    China  中国         CN
## 4    China  中国         CN
## 5    China  中国         CN
## 6    China  中国         CN
## 7    China  中国         CN
## 8    China  中国         CN
## 9    China  中国         CN
## 10   China  中国         CN
## 11   China  中国         CN
## 12   China  中国         CN
## 13   China  中国         CN
## 14   China  中国         CN
## 15   China  中国         CN
## 16   China  中国         CN
## 17   China  中国         CN
## 18   China  中国         CN
## 19   China  中国         CN
## 20   China  中国         CN
## 21   China  中国         CN
## 22   China  中国         CN
## 23   China  中国         CN
## 24   China  中国         CN
## 25   China  中国         CN
## 26   China  中国         CN
## 27   China  中国         CN
## 28   China  中国         CN
## 29   China  中国         CN
## 30   China  中国         CN
## 31   China  中国         CN
## 32   China  中国         CN
## 33   China  中国         CN

Dari data covid di Cina di atas yang bersumber dari Tabel A.1 pada link website https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139267/ terlihat bahwa data Rr dan Rd sama persis sedangkan pada rata-ratanya tidak sama persis.Diasumsikan terdapat kekeliruan input data diantara kedua peubah tersebut pada data sumber. Oleh karena itu, dalam analisis selanjutnya kami akan menggunakan data rata2nya.

str(slot(covid.map,"data"))
## 'data.frame':    34 obs. of  6 variables:
##  $ ADM1_EN   : chr  "Shaanxi Province" "Shanghai Municipality" "Chongqing Municipality" "Zhejiang Province" ...
##  $ ADM1_ZH   : chr  "é\231•西çœ\201" "上海市" "é‡\215庆市" "æµ\231江çœ\201" ...
##  $ ADM1_PCODE: chr  "CN061" "CN031" "CN050" "CN033" ...
##  $ ADM0_EN   : chr  "China" "China" "China" "China" ...
##  $ ADM0_ZH   : chr  "中国" "中国" "中国" "中国" ...
##  $ ADM0_PCODE: chr  "CN" "CN" "CN" "CN" ...

Visualisasi Data

plot(covid.map)

library(leaflet)
leaflet(covid.map) %>%
  addPolygons(stroke = FALSE, fillOpacity = 0.5, smoothFactor = 0.5) %>%
  addTiles()
covid.map@data$Avg.Rc <- covid$Avg.Rc

require(RColorBrewer)
qpal<-colorQuantile("OrRd", covid$Avg.Rc, n=9) 

leaflet(covid.map) %>%
  addPolygons(stroke = FALSE, fillOpacity = .8, smoothFactor = 0.2, color = ~qpal(Avg.Rc)
  ) %>%
  addTiles()

OLS

covid.ols<-lm(Avg.Rc~Avg.Rr+Avg.Rd, data=covid)
summary(covid.ols)
## 
## Call:
## lm(formula = Avg.Rc ~ Avg.Rr + Avg.Rd, data = covid)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0228528 -0.0017805 -0.0000281  0.0021846  0.0141642 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2.808e-05  1.420e-03    0.02    0.984    
## Avg.Rr      1.769e+00  4.482e-02   39.48   <2e-16 ***
## Avg.Rd      1.137e+01  3.930e-01   28.94   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.006091 on 31 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 5.456e+05 on 2 and 31 DF,  p-value: < 2.2e-16
vif(covid.ols)
##   Avg.Rr   Avg.Rd 
## 233.3868 233.3868

VIF > 5 berarti ada multikolinieritas sehingga akan dipilih salah satu peubah.

covid.cor <- cor(covid[,10:12])
covid.cor
##           Avg.Rc    Avg.Rr    Avg.Rd
## Avg.Rc 1.0000000 0.9996020 0.9992715
## Avg.Rr 0.9996020 1.0000000 0.9978553
## Avg.Rd 0.9992715 0.9978553 1.0000000
corrplot(covid.cor)

Rr memiliki korelasi yang lebih tinggi dengan Rc sehingga Rr yang akan digunakan dalam pemodelan

covid.ols1<-lm(Avg.Rc~Avg.Rr, data=covid)
summary(covid.ols1)
## 
## Call:
## lm(formula = Avg.Rc ~ Avg.Rr, data = covid)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.084108 -0.003953  0.013792  0.019576  0.026831 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.026831   0.005596  -4.795 3.61e-05 ***
## Avg.Rr       3.063637   0.015284 200.452  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03173 on 32 degrees of freedom
## Multiple R-squared:  0.9992, Adjusted R-squared:  0.9992 
## F-statistic: 4.018e+04 on 1 and 32 DF,  p-value: < 2.2e-16

Modeling Spatial Dependence

Bobot Rook:

list.queen<-poly2nb(covid.map, queen=FALSE)
summary(list.queen)
## Neighbour list object:
## Number of regions: 34 
## Number of nonzero links: 140 
## Percentage nonzero weights: 12.11073 
## Average number of links: 4.117647 
## 2 regions with no links:
## 26 33
## Link number distribution:
## 
## 0 1 2 3 4 5 6 7 8 
## 2 2 4 5 7 3 7 2 2 
## 2 least connected regions:
## 10 13 with 1 link
## 2 most connected regions:
## 0 14 with 8 links

Dari output dengan menggunakan Rook di atas, terlihat dua wilayah tidak ada tetangganya sehingga akan dicoba penimbang lainnya.

Bobot Queen:

list.queen2<-poly2nb(covid.map, queen=T)
summary(list.queen2)
## Neighbour list object:
## Number of regions: 34 
## Number of nonzero links: 140 
## Percentage nonzero weights: 12.11073 
## Average number of links: 4.117647 
## 2 regions with no links:
## 26 33
## Link number distribution:
## 
## 0 1 2 3 4 5 6 7 8 
## 2 2 4 5 7 3 7 2 2 
## 2 least connected regions:
## 10 13 with 1 link
## 2 most connected regions:
## 0 14 with 8 links

Dari output dengan menggunakan Rook di atas, terlihat dua wilayah tidak ada tetangganya sehingga akan dicoba penimbang lainnya.

menggunakan Bobot Jarak Ambang d=5

coords2<-coordinates(covid.map)
dmax11<-dnearneigh(coords2,0,1100,longlat = TRUE)
summary(dmax11)
## Neighbour list object:
## Number of regions: 34 
## Number of nonzero links: 404 
## Percentage nonzero weights: 34.9481 
## Average number of links: 11.88235 
## Link number distribution:
## 
##  1  2  4  6  7  9 10 11 12 13 14 16 17 18 19 22 
##  1  2  1  2  2  2  1  1  3  6  4  2  3  2  1  1 
## 1 least connected region:
## 21 with 1 link
## 1 most connected region:
## 16 with 22 links

Normalisasi Bobot Spasial dengan standardisasi baris:

W.dmax.s1 <- nb2listw(dmax11,style='W') #W is row standardised (sums over all links to n). Standardisasi Baris
W.dmax.s1
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 34 
## Number of nonzero links: 404 
## Percentage nonzero weights: 34.9481 
## Average number of links: 11.88235 
## 
## Weights style: W 
## Weights constants summary:
##    n   nn S0       S1       S2
## W 34 1156 34 8.704045 138.7575
plot(covid.map, col='gray', border='blue', main ="dmax=1100")
plot(W.dmax.s1, coords2, col='red', lwd=2, add=TRUE)

Checking the Spatial Autocorrelation

moran.lm11<-lm.morantest(covid.ols1, W.dmax.s1, alternative="two.sided")
print(moran.lm11)
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = Avg.Rc ~ Avg.Rr, data = covid)
## weights: W.dmax.s1
## 
## Moran I statistic standard deviate = 2.4096, p-value = 0.01597
## alternative hypothesis: two.sided
## sample estimates:
## Observed Moran I      Expectation         Variance 
##      0.155478475     -0.030056786      0.005928619

P-value < alpha=0.05 berarti tolak Ho.Tidak Autokorelasi Spasial antar lokasi. Nilai indeks Moran dengan Matriks Bobot Jarak ambang batas dmax=1100 adalah 0.155478475 .

LM Test

LM1<-lm.LMtests(covid.ols1, W.dmax.s1, test="all")
summary(LM1)
##  Lagrange multiplier diagnostics for spatial dependence
## data:  
## model: lm(formula = Avg.Rc ~ Avg.Rr, data = covid)
## weights: W.dmax.s1
##  
##        statistic parameter p.value  
## LMerr     3.2105         1 0.07317 .
## LMlag     3.9829         1 0.04596 *
## RLMerr    3.7056         1 0.05423 .
## RLMlag    4.4780         1 0.03433 *
## SARMA     7.6885         2 0.02140 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Jika berdasarkan skema dan output di atas, karena pada tahap awal LMlag signifikan sedangkan LMerr tidak signifikan, maka selanjutnya akan digunakan model SAR.

Fitting Spatial Regressions

SAR

sar.covid<-lagsarlm(covid.ols1, W.dmax.s1, data=covid)
summary(sar.covid,Nagelkerke=T)
## 
## Call:lagsarlm(formula = covid.ols1, data = covid, listw = W.dmax.s1)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0806893 -0.0043123  0.0077386  0.0163550  0.0384004 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error  z value Pr(>|z|)
## (Intercept) -0.0101181  0.0089637  -1.1288    0.259
## Avg.Rr       3.0579033  0.0140826 217.1401   <2e-16
## 
## Rho: -0.047153, LR test value: 4.5856, p-value: 0.032241
## Asymptotic standard error: 0.020766
##     z-value: -2.2708, p-value: 0.023162
## Wald statistic: 5.1563, p-value: 0.023162
## 
## Log likelihood: 72.39553 for lag model
## ML residual variance (sigma squared): 0.00082784, (sigma: 0.028772)
## Nagelkerke pseudo-R-squared: 0.9993 
## Number of observations: 34 
## Number of parameters estimated: 4 
## AIC: -136.79, (AIC for lm: -134.21)
## LM test for residual autocorrelation
## test value: 0.12541, p-value: 0.72324

Output di atas memperlihatkan bahwa koefisien Rho pada model SAR signifikan, dengan nilai AIC sebesar -136.79. Selain itu, terlihat pula hasil uji autokorelasi pada sisaan model dengan Ho: tidak terdapat autokorelasi spasial pada galat (galat bebas) dan H1: terdapat autokorelasi spasial positif pada galat (galat tidak bebas) memperlihatkan nilai p-value lebih besar dari galat (tidak tolak Ho), artinya tidak terdapat autokorelasi pada sisaan.Kebebasan galat terpenuhi.

Uji Asumsi Normal

Ho: Sisaan menyebar normal H1: Sisaan tidak menyebar normal

err.sar.covid<-residuals(sar.covid)
ad.test(err.sar.covid)
## 
##  Anderson-Darling normality test
## 
## data:  err.sar.covid
## A = 1.8689, p-value = 7.023e-05

Hasil uji asumsi normal menunjukkan bahwa sisaan tidak menyebar normal (tolak Ho karena p_value < alpha=5%)

Uji Asumsi Kehomogenan Ragam Sisaan

Ho: Ragam Sisaan homogen H1: Ragam Sisaan tidak homogen

bptest.Sarlm(sar.covid)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 0.050387, df = 1, p-value = 0.8224

Hasil uji asumsi kehomogenan ragam dengan Breusch-Pagan test menunjukkan bahwa sisaan memiliki ragam yang homogen (tidak tolak Ho karena p_value > alpha=5%)

Terlihat pada ketiga output di atas bahwa sisaan tidak memenuhi asumsi kenormalan namun memenuhi asumsi kehomogenan ragam dan kebebasan galat.

Spatial Durbin Model (SDM)

Berikut ini adalah penjelasan tentang Spatial Durbin Model yang dirujuk dari Zhukov (2010):

Model:

sdm.covid <- lagsarlm(covid.ols1,data=covid, W.dmax.s1, type="mixed");
summary(sdm.covid,Nagelkerke=T)
## 
## Call:lagsarlm(formula = covid.ols1, data = covid, listw = W.dmax.s1, 
##     type = "mixed")
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0797613 -0.0038850  0.0052392  0.0204098  0.0381009 
## 
## Type: mixed 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.0046494  0.0111230  -0.418   0.6759
## Avg.Rr       3.0606285  0.0138927 220.305   <2e-16
## lag.Avg.Rr  -0.9571317  0.8492776  -1.127   0.2597
## 
## Rho: 0.27582, LR test value: 0.6009, p-value: 0.43824
## Asymptotic standard error: 0.2801
##     z-value: 0.9847, p-value: 0.32477
## Wald statistic: 0.96963, p-value: 0.32477
## 
## Log likelihood: 72.80399 for mixed model
## ML residual variance (sigma squared): 0.00080071, (sigma: 0.028297)
## Nagelkerke pseudo-R-squared: 0.99932 
## Number of observations: 34 
## Number of parameters estimated: 5 
## AIC: -135.61, (AIC for lm: -137.01)
## LM test for residual autocorrelation
## test value: 0.00423, p-value: 0.94814

Output di atas memperlihatkan bahwa koefisien Rho pada model SDM tidak signifikan, dengan nilai AIC sebesar -135.61. lag.x1 tidak nyata. Selain itu, terlihat pula hasil uji autokorelasi pada sisaan model dengan Ho: tidak terdapat autokorelasi spasial pada galat (galat bebas) dan H1: terdapat autokorelasi spasial positif pada galat (galat tidak bebas) memperlihatkan nilai p-value lebih besar dari alpha (tidak tolak Ho), artinya tidak terdapat autokorelasi pada sisaan.

Uji Asumsi Normal

Ho: Sisaan menyebar normal H1: Sisaan tidak menyebar normal

err.sdm.covid <-residuals(sdm.covid)
ad.test(err.sdm.covid)
## 
##  Anderson-Darling normality test
## 
## data:  err.sdm.covid
## A = 1.7731, p-value = 0.0001221

Hasil uji asumsi normal menunjukkan bahwa sisaan tidak menyebar normal (tolak Ho karena p_value < alpha=5%)

Uji Asumsi Kehomogenan Ragam Sisaan

Ho: Ragam Sisaan homogen H1: Ragam Sisaan tidak homogen

bptest.Sarlm(sdm.covid)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 3.6685, df = 2, p-value = 0.1597

Hasil uji asumsi kehomogenan ragam dengan Breusch-Pagan test menunjukkan bahwa sisaan memiliki ragam yang homogen (tidak tolak Ho karena p_value > alpha=5%)

Terlihat pada ketiga output di atas bahwa sisaan tidak memenuhi asumsi kenormalan namun memenuhi asumsi kehomogenan ragam dan kebebasan galat.

Likelihood Ratio Test (Model SAR vs SDM)

Untuk mengecek apakah lag x signifikan atau tidak dilakukan Uji Likelihood Rasio.

LR.Sarlm(sdm.covid,sar.covid)
## 
##  Likelihood ratio for spatial linear models
## 
## data:  
## Likelihood ratio = 0.81693, df = 1, p-value = 0.3661
## sample estimates:
## Log likelihood of sdm.covid Log likelihood of sar.covid 
##                    72.80399                    72.39553

Dari hasil likelihood ratio test diperoleh P_value < alpha=0.05 berarti lag x tidak signifikan. Tidak Ada dependensi spasial di lag x sehingga model SAR lebih mencerminkan data dibandingkan model SDM.

AIC(sar.covid)
## [1] -136.7911
AIC(sdm.covid)
## [1] -135.608
AIC(covid.ols1)
## [1] -134.2054

Model terbaik jika dilihat dari AIC adalah model SAR (AIC terendah) dengan R-Square sekitar 99.93%.Namun sisaan model ini tidak memenuhi asumsi kenormalan . Namun memenuhi asumsi kebebasan dan kehomogenan ragam. Penulis rekomendasikan untuk pengujian pada penelitian selanjutnya mungkin bisa ditangani dahulu masalah asumsi kenormalan ini.Selanjutnya penulis akan memaparkan terkait efek marginal model SAR.

Marginal Effects (Spill-over) on the Spatial Regression Modeling

  • Marginal Effects*

Definisi yang diambil dari materi kuliah yang disusun oleh Dr. Anik Djuraidah menyatakan bahwa efek marginal atau limpahan (spill-over) adalah besarnya dampak perubahan pada peubah dependen pada wilayah-i, akibat perubahan prediktor di wilayah-j.

Efek marginal terdapat pada model dependensi spasial SAR, GSM, SDM, SDEM, dan SLX. Efek ini dapat dibedakan menjadi tiga, yaitu efek langsung (direct effect), efek tidak langsung (indirect effect), dan efek total (total effect).

marginal effect dapat diperoleh dengan fungsi impacts() seperti pada syntax berikut ini.

Interpretasi Efek Marginal

impacts(sar.covid, listw = W.dmax.s1)
## Impact measures (lag, exact):
##          Direct   Indirect    Total
## Avg.Rr 3.058674 -0.1384683 2.920205

Terlihat bahwa pengaruh langsung dari peubah Avg.Rr adalah sebesar 3.058674, artinya jika nilai rata-rata Rr di wilayah-i meningkat sebesar 1 persen, maka nilai rata-rata Rc di wilayah tersebut akan bertambah sebesar 3.058674 persen. Sedangkan efek tak langsung dari peubah tersebut bernilai -0.1384683. Artinya, jika nilai rata-rata Rr di wilayah-i meningkat sebesar satu persen, maka nilai rata-rata Rc di wilayah-j akan berkurang sebesar 0.1384683 persen.

Geographically Weighted Regression (GWR) (Responsi Pertemuan 13)

Introduction

Suatu pemodelan dapat bersifat global maupun lokal. Regresi linier klasik merupakan salah satu model global. Dikatakan global karena terdapat satu model yang berlaku umum untuk semua pengamatan.

Suatu model lokal bersifat lebih fleksibel, yang dalam konteks spasial, artinya setiap daerah/lokasi dapat memiliki model masing-masing.

Geographically Weighted Regression (GWR) merupakan salah satu model yang bersifat lokal. Beberapa keuntungan dengan menggunakan model ini, diantaranya adalah kita dapat:

  • menduga galat baku lokal

  • menghitung ukuran leverage lokal

  • melakukan pengujian terhadap signifikansi keragaman spasial pada penduga parameter lokal

  • menguji apakah model lokal lebih baik daripada model global

Terdapat salah satu stand-alone software untuk melakukan GWR, yaitu software GWR yang dapat diakses melalui http://ncg.nuim.ie/ncg/GWR/. Selain itu, pada R software, terdapat beberapa package yang dapat digunakan untuk membangun model GWR, yaitu:

  • GWmodel

  • spgwr

  • gwrr

Pada modul ini akan dibahas pemodelan GWR menggunakan package spgwr.

Ilustrasi menggunakan Data Columbus

library(spgwr)
data(columbus)
attach(columbus)

Standard Regression

colex0 <- lm(CRIME ~ (INC + HOVAL))
summary(colex0)
## 
## Call:
## lm(formula = CRIME ~ (INC + HOVAL))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -34.418  -6.388  -1.580   9.052  28.649 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  68.6190     4.7355  14.490  < 2e-16 ***
## INC          -1.5973     0.3341  -4.780 1.83e-05 ***
## HOVAL        -0.2739     0.1032  -2.654   0.0109 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.43 on 46 degrees of freedom
## Multiple R-squared:  0.5524, Adjusted R-squared:  0.5329 
## F-statistic: 28.39 on 2 and 46 DF,  p-value: 9.341e-09

Diagnostik Model

Berikut ini apabila pemeriksaan sisaan dilakukan secara visual.

resid<-residuals(colex0)
par(mfrow=c(2,2))
qqnorm(resid); qqline(resid, col="red"); 
plot(resid~fitted(colex0),xlab = "Predicted Values",ylab = "Residuals")
    abline(h=0, col="red")
hist(resid) #histogram utk residual
plot(1:nrow(columbus), resid, pch=20,type="b")
    abline(h=0, col="red")

Berikut ini salah satu contoh untuk memeriksa asumsi pada sisaan menggunakan uji formal.

shapiro.test(resid)
## 
##  Shapiro-Wilk normality test
## 
## data:  resid
## W = 0.97708, p-value = 0.4497
lmtest::bptest(colex0)
## 
##  studentized Breusch-Pagan test
## 
## data:  colex0
## BP = 7.2166, df = 2, p-value = 0.0271
library(spdep)
coords<-columbus[c("X","Y")]
jarak<-as.matrix(1/dist(coords))
lm.morantest(colex0,listw=mat2listw(jarak), alternative="two.sided")
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = CRIME ~ (INC + HOVAL))
## weights: mat2listw(jarak)
## 
## Moran I statistic standard deviate = 5.3215, p-value = 1.029e-07
## alternative hypothesis: two.sided
## sample estimates:
## Observed Moran I      Expectation         Variance 
##      0.090950110     -0.024788597      0.000473023

Spatially Dissagregated Model

colex <- lm(CRIME ~ (INC + HOVAL)*(X + Y))
summary(colex)
## 
## Call:
## lm(formula = CRIME ~ (INC + HOVAL) * (X + Y))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -18.5556  -7.6351  -0.6181   7.8363  30.1948 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 108.97559   69.36676   1.571   0.1241  
## INC          -5.82949    3.84408  -1.516   0.1373  
## HOVAL         0.27337    0.82049   0.333   0.7407  
## X            -0.76287    1.13692  -0.671   0.5061  
## Y            -0.26332    1.21420  -0.217   0.8294  
## INC:X        -0.01854    0.05396  -0.344   0.7329  
## INC:Y         0.13949    0.08004   1.743   0.0891 .
## HOVAL:X       0.03159    0.01549   2.040   0.0480 *
## HOVAL:Y      -0.05034    0.02196  -2.293   0.0272 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.04 on 40 degrees of freedom
## Multiple R-squared:  0.6375, Adjusted R-squared:  0.5649 
## F-statistic: 8.791 on 8 and 40 DF,  p-value: 7.663e-07

Perhatikan bahwa R-square pada model ini sudah lebih baik dibandingkan dengan model regresi klasik, namun perhatikan pula bahwa peubah yang signifikan hanyalah sedikit.

Selanjutnya, misalkan kita ingin mengekstrak koefisien pada model tersebut.

b <- colex$coefficients
b[3]
##     HOVAL 
## 0.2733714
b[8]
##    HOVAL:X 
## 0.03159375
b[9]
##     HOVAL:Y 
## -0.05034417

Koefisien pada setiap titik lokasi.

bihoval <- b[3] + b[8] * X + b[9] * Y
bihoval
##  [1] -0.71945869 -0.73484522 -0.54173838 -0.61340248 -0.37564117 -0.32192096
##  [7] -0.60638062 -0.51564482 -0.16255859 -0.05598467 -0.35829853 -0.37198398
## [13] -0.42336113 -0.39035215 -0.23271508 -0.25443306  0.07333582 -0.29218860
## [19] -0.34176508  0.14326490 -0.18138317 -0.04092354  0.19700015 -0.18584181
## [25] -0.13841490 -0.09558335  0.07053751  0.02287442 -0.01427011 -0.04484941
## [31] -0.34667265  0.35074015  0.13619297 -0.19143232  0.18497546 -0.28527600
## [37]  0.03312495  0.12107370 -0.30416609  0.39765999  0.49266738 -0.14792599
## [43]  0.18759738  0.26427001  0.21424089 -0.21628436  0.61049050  0.27143584
## [49]  0.36488625
summary(bihoval)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -0.7348 -0.3418 -0.1479 -0.1096  0.1362  0.6105

Berikut ini kita akan coba memvisualisasikan koefisien tersebut. Sebelumnya Anda harus mendownload data peta columbus melalui link berikut: https://github.com/raoy/Spatial-Statistics/blob/master/columbus.rar. Silahkan simpan pada directory yang Anda inginkan, dan impor data shp tersebut dengan fungsi berikut:

library(rgdal)
col.shp <- readOGR( dsn="columbus", layer="columbus")
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\Kuliah S2 IPB\Bahan Kuliah\Semester 2 SSD 2020\STA533 Spasial\PRAKTIKUM\R\columbus", layer: "columbus"
## with 49 features
## It has 20 fields
## Integer64 fields read as strings:  COLUMBUS_ COLUMBUS_I POLYID
col.shp@data$bi<-bihoval

spplot(col.shp, zcol="bi")

Basic GWR

library(spgwr)
colg1 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
    coords=cbind(X,Y),bandwidth=20)
colg1
## Call:
## gwr(formula = CRIME ~ INC + HOVAL, data = columbus, coords = cbind(X, 
##     Y), bandwidth = 20)
## Kernel function: gwr.Gauss 
## Fixed bandwidth: 20 
## Summary of GWR coefficient estimates at data points:
##                  Min.  1st Qu.   Median  3rd Qu.     Max.  Global
## X.Intercept. 68.41172 68.84934 69.06064 69.24627 69.95574 68.6190
## INC          -1.65427 -1.62266 -1.60883 -1.58070 -1.52803 -1.5973
## HOVAL        -0.30704 -0.29166 -0.27768 -0.26118 -0.23198 -0.2739

Using Different Bandwidth

colg2 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
    coords=cbind(X,Y),bandwidth=3)
colg2
## Call:
## gwr(formula = CRIME ~ INC + HOVAL, data = columbus, coords = cbind(X, 
##     Y), bandwidth = 3)
## Kernel function: gwr.Gauss 
## Fixed bandwidth: 3 
## Summary of GWR coefficient estimates at data points:
##                   Min.   1st Qu.    Median   3rd Qu.      Max.  Global
## X.Intercept. 24.823915 58.337575 66.888807 70.734368 77.517040 68.6190
## INC          -2.910848 -2.055262 -1.370336 -0.489550  0.605579 -1.5973
## HOVAL        -0.938862 -0.370668 -0.072330 -0.016077  0.417796 -0.2739
colg3 <- gwr(CRIME ~ INC + HOVAL, data=columbus,
    coords=cbind(X,Y),bandwidth=2)
colg3
## Call:
## gwr(formula = CRIME ~ INC + HOVAL, data = columbus, coords = cbind(X, 
##     Y), bandwidth = 2)
## Kernel function: gwr.Gauss 
## Fixed bandwidth: 2 
## Summary of GWR coefficient estimates at data points:
##                   Min.   1st Qu.    Median   3rd Qu.      Max.  Global
## X.Intercept. 22.991392 51.964036 62.876904 69.090317 81.631781 68.6190
## INC          -3.386156 -1.956824 -0.702189 -0.325575  1.339862 -1.5973
## HOVAL        -1.209784 -0.372961 -0.115808  0.038842  0.879194 -0.2739

Membandingkan antar Model Lokal

hovg3 <- colg2$SDF$HOVAL
hovg20 <- colg1$SDF$HOVAL
hovg2 <- colg3$SDF$HOVAL
boxplot(bihoval,hovg20,hovg3,hovg2,
    names=c("Expansion","bw=20","bw=3","bw=2"))

Perhatikan bahwa sebaran pada bandwidth 20 terkonsentrasi di sekitar median, sedangkan pada bandwidth 2 menunjukkan beberapa pencilan. Sebaran pada model linear expansion mirip dengan bandwidth 3, namun median-nya lebih rendah.

Menentukan Bandwidth Optimal

bw1 <- gwr.sel(CRIME ~ INC + HOVAL,data=columbus,
    coords=cbind(X,Y))
## Bandwidth: 12.65221 CV score: 7432.209 
## Bandwidth: 20.45127 CV score: 7462.704 
## Bandwidth: 7.83213 CV score: 7323.545 
## Bandwidth: 4.853154 CV score: 7307.57 
## Bandwidth: 5.125504 CV score: 7322.796 
## Bandwidth: 3.012046 CV score: 6461.764 
## Bandwidth: 1.874179 CV score: 6473.378 
## Bandwidth: 2.475485 CV score: 6109.995 
## Bandwidth: 2.447721 CV score: 6098.372 
## Bandwidth: 2.228647 CV score: 6064.1 
## Bandwidth: 2.264538 CV score: 6060.774 
## Bandwidth: 2.280666 CV score: 6060.649 
## Bandwidth: 2.274969 CV score: 6060.601 
## Bandwidth: 2.2751 CV score: 6060.601 
## Bandwidth: 2.27506 CV score: 6060.601 
## Bandwidth: 2.275019 CV score: 6060.601 
## Bandwidth: 2.27506 CV score: 6060.601
colg4 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
    coords=cbind(X,Y),bandwidth=bw1)

bw2 <- gwr.sel(CRIME ~ INC + HOVAL,data=columbus,
    coords=cbind(X,Y),method="aic")
## Bandwidth: 12.65221 AIC: 383.2507 
## Bandwidth: 20.45127 AIC: 383.5182 
## Bandwidth: 7.83213 AIC: 382.7555 
## Bandwidth: 4.853154 AIC: 381.4751 
## Bandwidth: 3.012046 AIC: 384.5411 
## Bandwidth: 5.991021 AIC: 382.3503 
## Bandwidth: 4.149913 AIC: 380.7132 
## Bandwidth: 3.715287 AIC: 380.7565 
## Bandwidth: 3.980563 AIC: 380.6324 
## Bandwidth: 3.955538 AIC: 380.6289 
## Bandwidth: 3.927578 AIC: 380.6281 
## Bandwidth: 3.934794 AIC: 380.628 
## Bandwidth: 3.935053 AIC: 380.628 
## Bandwidth: 3.934987 AIC: 380.628 
## Bandwidth: 3.934946 AIC: 380.628 
## Bandwidth: 3.934987 AIC: 380.628
colg5 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
    coords=cbind(X,Y),bandwidth=bw2)

bwbs1 <- gwr.sel(CRIME ~ INC + HOVAL,data=columbus,
    coords=cbind(X,Y),gweight=gwr.bisquare)
## Bandwidth: 12.65221 CV score: 8180.619 
## Bandwidth: 20.45127 CV score: 7552.85 
## Bandwidth: 25.27136 CV score: 7508.227 
## Bandwidth: 23.68132 CV score: 7519.864 
## Bandwidth: 28.25033 CV score: 7491.85 
## Bandwidth: 30.09144 CV score: 7486.673 
## Bandwidth: 31.69353 CV score: 7483.663 
## Bandwidth: 31.08159 CV score: 7484.706 
## Bandwidth: 32.21945 CV score: 7482.846 
## Bandwidth: 32.54449 CV score: 7482.371 
## Bandwidth: 32.74538 CV score: 7482.088 
## Bandwidth: 32.86953 CV score: 7481.916 
## Bandwidth: 32.94626 CV score: 7481.812 
## Bandwidth: 32.99368 CV score: 7481.748 
## Bandwidth: 33.02299 CV score: 7481.708 
## Bandwidth: 33.04111 CV score: 7481.684 
## Bandwidth: 33.0523 CV score: 7481.669 
## Bandwidth: 33.05922 CV score: 7481.659 
## Bandwidth: 33.0635 CV score: 7481.654 
## Bandwidth: 33.06614 CV score: 7481.65 
## Bandwidth: 33.06777 CV score: 7481.648 
## Bandwidth: 33.06878 CV score: 7481.647 
## Bandwidth: 33.06941 CV score: 7481.646 
## Bandwidth: 33.06979 CV score: 7481.645 
## Bandwidth: 33.07003 CV score: 7481.645 
## Bandwidth: 33.07018 CV score: 7481.645 
## Bandwidth: 33.07027 CV score: 7481.645 
## Bandwidth: 33.07032 CV score: 7481.645 
## Bandwidth: 33.07037 CV score: 7481.645 
## Bandwidth: 33.07037 CV score: 7481.645
## Warning in gwr.sel(CRIME ~ INC + HOVAL, data = columbus, coords = cbind(X, :
## Bandwidth converged to upper bound:33.0704149683672
colg6 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
    coords=cbind(X,Y),gweight=gwr.bisquare,
    bandwidth=bwbs1)

bwbs2 <- gwr.sel(CRIME ~ INC + HOVAL,data=columbus,
    coords=cbind(X,Y),gweight=gwr.bisquare,method="aic")
## Bandwidth: 12.65221 AIC: 382.7242 
## Bandwidth: 20.45127 AIC: 384.3786 
## Bandwidth: 7.83213 AIC: 386.7498 
## Bandwidth: 15.27372 AIC: 384.0654 
## Bandwidth: 10.81111 AIC: 381.6533 
## Bandwidth: 9.673238 AIC: 383.0491 
## Bandwidth: 11.25258 AIC: 381.6384 
## Bandwidth: 11.07023 AIC: 381.6049 
## Bandwidth: 11.05193 AIC: 381.6044 
## Bandwidth: 11.04548 AIC: 381.6044 
## Bandwidth: 11.04647 AIC: 381.6044 
## Bandwidth: 11.04651 AIC: 381.6044 
## Bandwidth: 11.04655 AIC: 381.6044 
## Bandwidth: 11.04651 AIC: 381.6044
colg7 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
    coords=cbind(X,Y),gweight=gwr.bisquare,
    bandwidth=bwbs2)

Selanjutnya, kita dapat memperoleh penduga koefisien dan prediksi dengan syntax berikut.

bihoval<-colg7$SDF$HOVAL
prediction<-colg7$SDF$pred
col.shp@data$bi7<-bihoval

spplot(col.shp, zcol="bi7")

Practice

To practice, plot or map the coefficient vector for the other coefficients in the model. Alternatively, check for continuous spatial heterogeneity in the BOSTON or BALTIMORE data sets. Compare the insights provided by the expansion method to those from GWR, and carry out sensitivity analysis for the choice of bandwidth and kernel function.

Jawab:

Practice 1 plot or map the coefficient vector for the other coefficients in the model

Penduga koefisien INC:

inc.<-colg7$SDF$INC
col.shp@data$binc<-inc.

spplot(col.shp, zcol="binc")

Interpretasi terhadap penduga parameter untuk peubah penjelas INC pada mode RTG:

Warna biru pada peta sebaran penduga parameter untuk peubah penjelas INC di atas menunjukkan nilai yang rendah, warna merah muda untuk nilai sedang, hingga warna kuning menunjukkan nilai tinggi.

Tidak ada penduga parameter untuk peubah penjelas INC yang memiliki nilai positif atau nol. Peubah penjelas INC berkontribusi negatif terhadap peubah respon CRIME di semua lokasi amatan.

Peta sebaran penduga parameter untuk peubah penjelas INC menunjukkan kemiripan antarwilayah yang berdekatan. Kemiripan ini ditunjukkan dengan pola kecenderungan warna-warna yang sama untuk mengelompok dengan wilayah tetangganya.

Practice 2 Check for continuous spatial heterogeneity in the BOSTON or BALTIMORE data sets.

Exercise kali ini dengan boston.c dataset

library(spdep)
library (MASS)
library(spData)
head(boston.c)
##         TOWN TOWNNO TRACT      LON     LAT MEDV CMEDV    CRIM ZN INDUS CHAS
## 1     Nahant      0  2011 -70.9550 42.2550 24.0  24.0 0.00632 18  2.31    0
## 2 Swampscott      1  2021 -70.9500 42.2875 21.6  21.6 0.02731  0  7.07    0
## 3 Swampscott      1  2022 -70.9360 42.2830 34.7  34.7 0.02729  0  7.07    0
## 4 Marblehead      2  2031 -70.9280 42.2930 33.4  33.4 0.03237  0  2.18    0
## 5 Marblehead      2  2032 -70.9220 42.2980 36.2  36.2 0.06905  0  2.18    0
## 6 Marblehead      2  2033 -70.9165 42.3040 28.7  28.7 0.02985  0  2.18    0
##     NOX    RM  AGE    DIS RAD TAX PTRATIO      B LSTAT
## 1 0.538 6.575 65.2 4.0900   1 296    15.3 396.90  4.98
## 2 0.469 6.421 78.9 4.9671   2 242    17.8 396.90  9.14
## 3 0.469 7.185 61.1 4.9671   2 242    17.8 392.83  4.03
## 4 0.458 6.998 45.8 6.0622   3 222    18.7 394.63  2.94
## 5 0.458 7.147 54.2 6.0622   3 222    18.7 396.90  5.33
## 6 0.458 6.430 58.7 6.0622   3 222    18.7 394.12  5.21
attach(boston.c)

Corrected Boston Housing Data

Description

The boston.c data frame has 506 rows and 20 columns. It contains the Harrison and Rubinfeld (1978) data corrected for a few minor errors and augmented with the latitude and longitude of the observations. Gilley and Pace also point out that MEDV is censored, in that median values at or over USD 50,000 are set to USD 50,000. The original data set without the corrections is also included in package mlbench as BostonHousing. In addition, a matrix of tract point coordinates projected to UTM zone 19 is included as boston.utm, and a sphere of influence neighbours list as boston.soi.

Format

This data frame contains the following columns:

TOWN a factor with levels given by town names

TOWNNO a numeric vector corresponding to TOWN

TRACT a numeric vector of tract ID numbers

LON a numeric vector of tract point longitudes in decimal degrees

LAT a numeric vector of tract point latitudes in decimal degrees

MEDV a numeric vector of median values of owner-occupied housing in USD 1000

CMEDV a numeric vector of corrected median values of owner-occupied housing in USD 1000

CRIM a numeric vector of per capita crime

ZN a numeric vector of proportions of residential land zoned for lots over 25000 sq. ft per town (constant for all Boston tracts)

INDUS a numeric vector of proportions of non-retail business acres per town (constant for all Boston tracts)

CHAS a factor with levels 1 if tract borders Charles River; 0 otherwise

NOX a numeric vector of nitric oxides concentration (parts per 10 million) per town

RM a numeric vector of average numbers of rooms per dwelling

AGE a numeric vector of proportions of owner-occupied units built prior to 1940

DIS a numeric vector of weighted distances to five Boston employment centres

RAD a numeric vector of an index of accessibility to radial highways per town (constant for all Boston tracts)

TAX a numeric vector full-value property-tax rate per USD 10,000 per town (constant for all Boston tracts)

PTRATIO a numeric vector of pupil-teacher ratios per town (constant for all Boston tracts)

B a numeric vector of 1000*(Bk - 0.63)^2 where Bk is the proportion of blacks

LSTAT a numeric vector of percentage values of lower status population

Note Details of the creation of the tract shapefile given in final don’t run block; tract boundaries for 1990: http://www.census.gov/geo/cob/bdy/tr/tr90shp/tr25_d90_shp.zip, counties in the BOSTON SMSA http://www.census.gov/population/metro/files/lists/historical/63mfips.txt; tract conversion table 1980/1970: https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/7913?q=07913&permit[0]=AVAILABLE, http://www.icpsr.umich.edu/cgi-bin/bob/zipcart2?path=ICPSR&study=7913&bundle=all&ds=1&dups=yes. The shapefile contains corrections and extra variables (tract 3592 is corrected to 3593; the extra columns are:

unitsnumber of single family houses

cu5kcount of units under USD 5,000

c5_7_5counts USD 5,000 to 7,500

C*_*interval counts

co50kcount of units over USD 50,000

medianrecomputed median values

BBrecomputed black population proportion

censoredwhether censored or not

NOXIDNOX model zone ID

POPtract population

Pada latihan kali ini akan digunakan peubah tak bebas nya adalah CRIM a numeric vector of per capita crime.

Sedangkan peubah penjelasnya adalah INDUS a numeric vector of proportions of non-retail business acres per town (constant for all Boston tracts) dan LSTAT a numeric vector of percentage values of lower status population.

Standard Regression

boston.ols <- lm(CRIM ~ (INDUS+ LSTAT))
summary(boston.ols)
## 
## Call:
## lm(formula = CRIM ~ (INDUS + LSTAT))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.496  -2.652  -0.544   1.370  81.741 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4.31565    0.72109  -5.985 4.12e-09 ***
## INDUS        0.25943    0.06135   4.229 2.79e-05 ***
## LSTAT        0.39832    0.05894   6.758 3.87e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.539 on 503 degrees of freedom
## Multiple R-squared:  0.2348, Adjusted R-squared:  0.2318 
## F-statistic: 77.17 on 2 and 503 DF,  p-value: < 2.2e-16
vif(boston.ols)
##    INDUS    LSTAT 
## 1.573748 1.573748

Diagnostik Model

Berikut ini apabila pemeriksaan sisaan dilakukan secara visual.

residb<-residuals(boston.ols)
par(mfrow=c(2,2))
qqnorm(residb); qqline(residb, col="red"); 
plot(residb~fitted(boston.ols),xlab = "Predicted Values",ylab = "Residuals")
    abline(h=0, col="red")
hist(residb) #histogram utk residual
plot(1:nrow(boston.c), residb, pch=20,type="b")
    abline(h=0, col="red")

Berikut ini salah satu contoh untuk memeriksa asumsi pada sisaan menggunakan uji formal.

shapiro.test(residb)
## 
##  Shapiro-Wilk normality test
## 
## data:  residb
## W = 0.55776, p-value < 2.2e-16

Hasil uji asumsi normal menunjukkan bahwa sisaan tidak menyebar normal (tolak Ho karena p_value < alpha=5%)

coordsb<-boston.c[c("LAT","LON")]
jarakb<-as.matrix(1/dist(coordsb))
lm.morantest(boston.ols,listw=mat2listw(jarakb), alternative="two.sided")
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = CRIM ~ (INDUS + LSTAT))
## weights: mat2listw(jarakb)
## 
## Moran I statistic standard deviate = 28.291, p-value < 2.2e-16
## alternative hypothesis: two.sided
## sample estimates:
## Observed Moran I      Expectation         Variance 
##     9.926142e-02    -2.881082e-03     1.303558e-05

Terlihat pada output bahwa hasil tes menunjukkan kesimpulan tolak H0 yang menyatakan bahwa terdapat autokorelasi pada sisaan model regresi klasik pada taraf nyata 5%.

lmtest::bptest(boston.ols)
## 
##  studentized Breusch-Pagan test
## 
## data:  boston.ols
## BP = 12.852, df = 2, p-value = 0.001619

Hasil uji asumsi kehomogenan ragam dengan Breusch-Pagan test menunjukkan bahwa sisaan memiliki ragam yang tidak homogen (tolak Ho karena p_value < alpha=5%)

Karena sisaan tidak homogen, maka selanjutnya digunakan GWR dan juga dibandingkan dengan Spatially Dissagregated Model .

Practice 3 Compare the insights provided by the expansion method to those from GWR, and carry out sensitivity analysis for the choice of bandwidth and kernel function.

Spatially Dissagregated Model

boston.sd <- lm(CRIM ~ (INDUS+ LSTAT)*(LAT + LON))
summary(boston.sd)
## 
## Call:
## lm(formula = CRIM ~ (INDUS + LSTAT) * (LAT + LON))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -13.317  -2.330  -0.384   0.659  83.243 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4094.5296   915.6054  -4.472 9.61e-06 ***
## INDUS         134.0545   128.9281   1.040 0.298956    
## LSTAT         490.5703   130.1910   3.768 0.000184 ***
## LAT            55.5023    12.5358   4.427 1.17e-05 ***
## LON           -24.5940     9.3749  -2.623 0.008974 ** 
## INDUS:LAT      -1.9502     1.3983  -1.395 0.163741    
## INDUS:LON       0.7252     1.4583   0.497 0.619212    
## LSTAT:LAT      -6.4855     1.5158  -4.279 2.26e-05 ***
## LSTAT:LON       3.0451     1.1891   2.561 0.010736 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.242 on 497 degrees of freedom
## Multiple R-squared:  0.3025, Adjusted R-squared:  0.2912 
## F-statistic: 26.94 on 8 and 497 DF,  p-value: < 2.2e-16

Perhatikan bahwa R-square pada model ini sudah lebih baik dibandingkan dengan model regresi klasik, namun perhatikan pula bahwa peubah yang signifikan hanyalah sedikit.

Selanjutnya, misalkan kita ingin mengekstrak koefisien pada model tersebut.

b <- boston.sd$coefficients
b[2]
##    INDUS 
## 134.0545
b[3]
##    LSTAT 
## 490.5703
b[8]
## LSTAT:LAT 
## -6.485513
b[9]
## LSTAT:LON 
##  3.045127

Peubah INDUS:

Koefisien pada setiap titik lokasi.

INDUS <- b[2] + b[8] * LAT  + b[9] * LON
INDUS
##   [1] -356.0579 -356.2535 -356.1816 -356.2221 -356.2363 -356.2585 -356.2724
##   [8] -356.3613 -356.3606 -356.3743 -356.3926 -356.4265 -356.3765 -356.3268
##  [15] -356.3172 -356.3763 -356.4375 -356.3225 -356.3504 -356.3050 -356.2874
##  [22] -356.3087 -356.2821 -356.2684 -356.2740 -356.2734 -356.2798 -356.2506
##  [29] -356.2261 -356.1949 -356.2501 -356.2248 -356.2491 -356.2687 -356.2367
##  [36] -356.2922 -356.3458 -356.4114 -356.4666 -356.6107 -356.7338 -356.7260
##  [43] -356.6483 -356.5720 -356.4981 -356.4517 -356.4288 -356.4339 -356.4568
##  [50] -356.4770 -356.5581 -356.6219 -356.6572 -356.6954 -357.0038 -356.8979
##  [57] -356.7536 -356.7358 -356.5978 -356.5116 -356.5136 -356.4520 -356.4553
##  [64] -356.4580 -356.3523 -356.9157 -357.0374 -356.9956 -357.0751 -356.9999
##  [71] -356.9590 -356.8254 -356.9151 -356.8095 -356.7519 -356.7102 -356.6538
##  [78] -356.6501 -356.7299 -356.7963 -356.7473 -356.7942 -356.8610 -356.7721
##  [85] -356.6664 -356.6390 -356.6197 -356.5310 -356.4824 -356.4524 -356.3965
##  [92] -356.4314 -356.5379 -356.6496 -356.5703 -356.5723 -356.5997 -356.5730
##  [99] -356.5815 -356.5229 -356.3951 -356.3767 -356.4195 -356.3905 -356.3597
## [106] -356.3155 -356.3072 -356.3082 -356.3332 -356.3712 -356.4011 -356.3785
## [113] -356.3312 -356.3447 -356.2909 -356.2998 -356.3422 -356.3271 -356.3012
## [120] -356.2885 -356.2255 -356.2608 -356.2579 -356.2330 -356.2239 -356.1975
## [127] -356.1958 -356.2299 -356.2418 -356.2712 -356.3019 -356.3260 -356.3278
## [134] -356.3706 -356.3323 -356.3014 -356.2617 -356.2409 -356.2054 -356.2058
## [141] -356.1983 -356.1754 -356.1284 -356.1454 -356.1265 -356.1259 -356.1541
## [148] -356.1512 -356.1665 -356.1640 -356.1801 -356.1606 -356.1281 -356.1319
## [155] -356.1449 -356.1426 -356.1711 -356.2332 -356.2012 -356.1808 -356.1902
## [162] -356.2449 -356.2348 -356.2485 -356.2896 -356.2793 -356.2705 -356.3257
## [169] -356.2782 -356.3019 -356.3236 -356.3323 -356.3730 -356.3904 -356.4000
## [176] -356.4974 -356.5375 -356.4931 -356.4369 -356.4074 -356.3650 -356.3153
## [183] -356.3304 -356.3571 -356.3739 -356.4230 -356.4644 -356.5762 -356.6237
## [190] -356.7020 -356.6625 -356.7866 -356.7554 -356.9512 -357.0035 -356.7543
## [197] -356.9719 -357.0393 -357.0915 -356.8569 -356.7850 -356.4744 -356.6066
## [204] -356.6517 -356.4818 -356.5760 -356.4948 -356.4658 -356.4386 -356.4144
## [211] -356.3900 -356.3985 -356.4069 -356.4872 -356.4520 -356.3970 -356.3425
## [218] -356.3104 -356.2650 -356.2810 -356.2620 -356.3144 -356.3058 -356.3248
## [225] -356.2121 -356.1302 -356.2244 -356.1571 -356.0759 -356.0754 -356.1563
## [232] -356.1841 -356.2295 -356.2722 -356.3323 -356.3499 -356.3618 -356.3117
## [239] -356.3829 -356.3736 -356.2034 -356.2590 -356.3668 -356.3664 -356.3398
## [246] -356.3746 -356.4350 -356.3978 -356.4636 -356.4784 -356.5046 -356.5680
## [253] -356.6137 -356.5159 -356.4442 -356.3214 -356.1606 -356.0923 -356.1096
## [260] -356.1198 -356.1078 -356.0918 -356.0925 -356.0536 -356.0739 -356.0514
## [267] -356.0363 -356.0484 -356.1685 -355.8383 -355.7205 -355.7062 -355.7773
## [274] -355.8767 -356.0248 -356.0853 -356.0274 -356.1184 -356.1417 -356.2111
## [281] -356.2594 -356.3030 -356.2069 -356.0246 -355.8059 -355.8398 -355.5727
## [288] -355.4944 -355.5542 -355.6487 -355.7638 -355.8593 -355.7146 -355.5865
## [295] -355.6897 -355.6959 -355.6495 -355.5744 -355.3767 -355.2283 -355.3330
## [302] -355.4237 -355.3930 -355.5828 -355.6231 -355.7037 -355.7094 -355.6414
## [309] -355.5917 -355.6400 -355.7313 -355.7184 -355.6699 -355.6101 -355.5334
## [316] -355.5034 -355.4677 -355.4775 -355.5444 -355.5813 -355.4036 -355.4026
## [323] -355.3972 -355.3823 -355.3296 -355.2325 -355.3017 -355.3596 -355.3577
## [330] -355.4133 -355.2528 -355.1371 -355.1094 -355.1240 -355.0896 -355.1956
## [337] -355.2982 -355.2436 -355.3205 -355.3761 -355.4093 -355.1487 -355.3200
## [344] -355.3059 -355.1333 -354.8499 -354.9242 -354.8360 -354.9564 -354.9427
## [351] -354.7784 -354.5261 -354.3452 -354.3380 -354.4307 -354.2865 -356.2025
## [358] -356.2053 -356.2097 -356.1668 -356.1352 -356.1665 -356.1368 -356.1989
## [365] -356.0815 -356.0681 -356.0364 -356.0383 -356.0525 -356.0706 -356.0601
## [372] -356.0690 -356.0772 -356.0757 -356.0649 -356.1056 -356.1104 -356.1258
## [379] -356.1209 -356.1384 -356.1729 -356.1512 -356.0944 -356.0788 -356.0652
## [386] -356.0479 -356.0575 -356.0645 -356.0630 -356.0716 -356.0660 -356.0629
## [393] -356.0321 -355.8956 -355.8946 -355.9026 -355.9129 -355.9299 -355.9666
## [400] -355.9595 -355.9446 -355.9393 -355.9218 -355.9264 -355.9439 -355.9726
## [407] -356.0854 -356.0266 -356.0037 -356.0157 -356.0276 -356.0177 -356.0008
## [414] -355.9853 -355.9564 -355.9463 -355.9608 -355.9944 -355.9910 -356.0160
## [421] -356.0199 -356.0478 -356.0213 -355.9930 -355.9660 -355.9925 -355.9673
## [428] -355.9780 -355.9580 -355.9340 -355.9335 -355.9142 -355.9019 -355.8690
## [435] -355.8804 -355.8921 -355.9074 -355.9199 -355.9335 -355.9120 -355.8873
## [442] -355.8460 -355.8704 -355.8833 -355.9097 -355.8963 -355.8714 -355.8471
## [449] -355.8433 -355.8680 -355.8551 -355.8301 -355.8056 -355.8109 -355.8263
## [456] -355.8509 -355.8238 -355.8005 -355.7818 -355.7681 -355.7928 -355.7794
## [463] -355.7348 -355.7365 -355.7418 -355.7787 -355.8014 -355.8965 -355.8439
## [470] -355.8700 -355.8560 -355.8936 -355.9298 -355.9574 -355.8955 -355.9154
## [477] -355.9325 -355.9471 -355.9517 -356.0066 -355.9766 -355.9524 -355.8950
## [484] -355.8809 -355.7847 -355.7132 -355.7641 -355.7832 -356.1189 -356.1249
## [491] -356.1515 -356.1347 -356.2186 -356.1759 -356.2006 -356.2250 -356.1818
## [498] -356.1438 -356.1485 -356.1125 -356.0603 -355.9979 -355.9892 -355.9910
## [505] -355.9558 -355.9211
summary(INDUS)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -357.1  -356.4  -356.2  -356.1  -355.9  -354.3

Berikut ini kita akan coba memvisualisasikan koefisien tersebut.

library(rgdal)
boston.tr <- readOGR(system.file("shapes/boston_tracts.shp", package="spData")[1])
## OGR data source with driver: ESRI Shapefile 
## Source: "C:\Users\User\Documents\R\win-library\4.1\spData\shapes\boston_tracts.shp", layer: "boston_tracts"
## with 506 features
## It has 36 fields
boston_nb <- poly2nb(boston.tr)
boston.tr@data$INDUS<-INDUS

spplot(boston.tr, zcol="INDUS",main="Peta Sebaran Penduga Parameter INDUS")

Peubah LSTAT:

Koefisien pada setiap titik lokasi.

LSTAT. <- b[3] + b[8] * LAT  + b[9] * LON
LSTAT.
##   [1]  0.4578918323  0.2623382898  0.3341548804  0.2936607664  0.2795039639
##   [6]  0.2573390845  0.2433576958  0.1544783334  0.1552103796  0.1414488358
##  [11]  0.1231780724  0.0892864141  0.1393111685  0.1889991355  0.1985882472
##  [16]  0.1394865823  0.0783279369  0.1932885101  0.1653479482  0.2108300354
##  [21]  0.2284244159  0.2070500539  0.2337241529  0.2474272255  0.2418318619
##  [26]  0.2424058046  0.2360433122  0.2652281215  0.2896637480  0.3209055378
##  [31]  0.2656979889  0.2910471536  0.2666861357  0.2470904380  0.2791227452
##  [36]  0.2235784088  0.1700325815  0.1043869322  0.0491793832 -0.0948853125
##  [41] -0.2179931206 -0.2101604575 -0.1325319286 -0.0561782867  0.0177259240
##  [46]  0.0641126631  0.0869511174  0.0819296966  0.0590327711  0.0387578824
##  [51] -0.0422832008 -0.1060638831 -0.1414252498 -0.1796284983 -0.4879909067
##  [56] -0.3821212840 -0.2377560565 -0.2200197099 -0.0820452687  0.0041842251
##  [61]  0.0022079316  0.0638203069  0.0605190790  0.0577522680  0.1634827326
##  [66] -0.3998658061 -0.5215902087 -0.4798240157 -0.5592812560 -0.4841049663
##  [71] -0.4432155935 -0.3096168298 -0.3992810936 -0.2936535314 -0.2361329014
##  [76] -0.1944307956 -0.1380374705 -0.1343187684 -0.2141434358 -0.2805211314
##  [81] -0.2314623081 -0.2783834641 -0.3451564183 -0.2563355272 -0.1505688070
##  [86] -0.1232433487 -0.1039037517 -0.0151635474  0.0334221382  0.0633946570
##  [91]  0.1192535653  0.0844322315 -0.0221250062 -0.1338428228 -0.0544941009
##  [96] -0.0564926101 -0.0838987552 -0.0571661850 -0.0657248160 -0.0070607437
## [101]  0.1206893639  0.1390609324  0.0962960712  0.1252993886  0.1561459197
## [106]  0.2003425985  0.2086317995  0.2075924326  0.1825639180  0.1446389857
## [111]  0.1146636589  0.1373044838  0.1846208985  0.1710731214  0.2249190182
## [116]  0.2160018464  0.1736205496  0.1886763881  0.2146184409  0.2273333666
## [121]  0.2903174532  0.2550379462  0.2579439154  0.2827748006  0.2919263197
## [126]  0.3182563800  0.3199838241  0.2859368704  0.2739539908  0.2446183291
## [131]  0.2139065130  0.1897592618  0.1880390688  0.1451511869  0.1834713780
## [136]  0.2144042119  0.2541445264  0.2749421376  0.3104148308  0.3100357094
## [141]  0.3174787298  0.3403478237  0.3874198320  0.3703554252  0.3893098227
## [146]  0.3899027108  0.3617060482  0.3645813777  0.3492533013  0.3517801491
## [151]  0.3357083322  0.3552043976  0.3876481010  0.3838709275  0.3709115954
## [156]  0.3732129822  0.3447440817  0.2826134269  0.3146457341  0.3350041176
## [161]  0.3256154433  0.2708560083  0.2809517052  0.2672486326  0.2261555523
## [166]  0.2365412597  0.2452813826  0.1901061084  0.2375544301  0.2139254583
## [171]  0.1922421406  0.1834552406  0.1428409139  0.1253578599  0.1158433568
## [176]  0.0184053635 -0.0217157074  0.0227225698  0.0788904339  0.1084426703
## [181]  0.1508239671  0.2005135692  0.1853948163  0.1586928858  0.1419446860
## [186]  0.0927689202  0.0513729623 -0.0603726859 -0.1078928082 -0.1861860258
## [191] -0.1467090631 -0.2707788215 -0.2395955030 -0.4353688904 -0.4877128041
## [196] -0.2384541580 -0.4560778529 -0.5234659108 -0.5756645882 -0.3410810241
## [201] -0.2692281777  0.0413888404 -0.0908321338 -0.1359524099  0.0339680356
## [206] -0.0601972722  0.0210414405  0.0500286204  0.0772004184  0.1013755011
## [211]  0.1257949903  0.1172496886  0.1089020164  0.0286236189  0.0638402115
## [216]  0.1187972759  0.1733356930  0.2054164124  0.2507726708  0.2347988511
## [221]  0.2537488055  0.2014444176  0.2100175509  0.1910280706  0.3036872570
## [226]  0.3856112388  0.2913675900  0.3587027927  0.4398830340  0.4403645956
## [231]  0.3595239497  0.3316640746  0.2862682903  0.2435752297  0.1835132497
## [236]  0.1658910376  0.1540222925  0.2040793217  0.1328596000  0.1421926111
## [241]  0.3123707924  0.2567518473  0.1490205277  0.1494464261  0.1760398382
## [246]  0.1411906727  0.0807919052  0.1180376466  0.0521693443  0.0373918220
## [251]  0.0111936687 -0.0522502261 -0.0978964950 -0.0001483729  0.0716343079
## [256]  0.1943746889  0.3552041840  0.4234559465  0.4062451305  0.3959707496
## [261]  0.4080121005  0.4240282541  0.4232962079  0.4621508158  0.4419037588
## [266]  0.4644054256  0.4794919037  0.4673698660  0.3472487139  0.6774754698
## [271]  0.7952835408  0.8096379727  0.7384788196  0.6390745918  0.4909544065
## [276]  0.4304999757  0.4883908409  0.3974266665  0.3740481794  0.3047116595
## [281]  0.2563848824  0.2127955940  0.3089203473  0.4912467628  0.7098948602
## [286]  0.6759809863  0.9430950188  1.0213608670  0.9615493715  0.8670919560
## [291]  0.7519559690  0.6565047906  0.8011817820  0.9293416505  0.8260550011
## [296]  0.8198489770  0.8662958225  0.9414414726  1.1390519956  1.2875089684
## [301]  1.1828110818  1.0920945840  1.1228241725  0.9330018815  0.8926691411
## [306]  0.8120539562  0.8064396473  0.8744205933  0.9241469133  0.8757778023
## [311]  0.7844946129  0.7974071681  0.8459093589  0.9057152383  0.9823834521
## [316]  1.0123809945  1.0481097883  1.0383008316  0.9713887193  0.9344519337
## [321]  1.1121521872  1.1132210208  1.1185485895  1.1334580187  1.1862233876
## [326]  1.2833112641  1.2141417340  1.1562258452  1.1580629807  1.1024601730
## [331]  1.2629584967  1.3786511160  1.4063940486  1.3917835161  1.4262095913
## [336]  1.3201867704  1.2176043355  1.2722028590  1.1953136274  1.1397197060
## [341]  1.1064737910  1.3671161019  1.1958206748  1.2098967905  1.3824949362
## [346]  1.6658590074  1.5915639811  1.6798403962  1.5593490090  1.5730937047
## [351]  1.7373692018  1.9897113281  2.1705958669  2.1777912106  2.0850539880
## [356]  2.2292578418  0.3132679447  0.3104510864  0.3060648876  0.3489689068
## [361]  0.3805781237  0.3493056943  0.3790249205  0.3168781284  0.4343437959
## [366]  0.4477379127  0.4794027928  0.4774732762  0.4633003363  0.4451525936
## [371]  0.4556685728  0.4468143153  0.4386364408  0.4400843958  0.4509238331
## [376]  0.4101558460  0.4054066631  0.3899833976  0.3949185156  0.3774076299
## [381]  0.3429230836  0.3646342329  0.4213921771  0.4369852404  0.4505491549
## [386]  0.4678624111  0.4583200764  0.4512533694  0.4528037647  0.4441632739
## [391]  0.4498070495  0.4528844515  0.4837087670  0.6202251941  0.6212016466
## [396]  0.6131657382  0.6029308832  0.5858709196  0.5491567870  0.5563214911
## [401]  0.5711591197  0.5764822453  0.5939931309  0.5894371343  0.5718588912
## [406]  0.5431528354  0.4303912088  0.4891677804  0.5120647060  0.5000979637
## [411]  0.4882381049  0.4981361724  0.5149868125  0.5305008240  0.5593972580
## [416]  0.5694929549  0.5550110591  0.5213771365  0.5248292167  0.4997684274
## [421]  0.4958609821  0.4679571380  0.4945199105  0.5227956248  0.5497859307
## [426]  0.5232626841  0.5485049655  0.5378119374  0.5578262823  0.5817597667
## [431]  0.5823365174  0.6016115650  0.6139062084  0.6468125280  0.6353918968
## [436]  0.6237458047  0.6084060340  0.5958859296  0.5822663519  0.6038077035
## [441]  0.6284570968  0.6697901403  0.6453706512  0.6325020651  0.6061207846
## [446]  0.6194870697  0.6444131440  0.6686628354  0.6724984801  0.6477583409
## [451]  0.6607132299  0.6856671359  0.7102257831  0.7049260461  0.6894749489
## [456]  0.6649441333  0.6919973536  0.7153056752  0.7339716973  0.7476747699
## [461]  0.7230298198  0.7363654652  0.7809735401  0.7793279558  0.7740120814
## [466]  0.7370752958  0.7143759996  0.6192672247  0.6719418477  0.6458021656
## [471]  0.6597613388  0.6222038335  0.5860430631  0.5584292295  0.6203360584
## [476]  0.6004330400  0.5833408016  0.5686657196  0.5640701971  0.5092111299
## [481]  0.5392388497  0.5633861008  0.6207675728  0.6348965437  0.7310697091
## [486]  0.8026402583  0.7516858283  0.7325660762  0.3969097736  0.3908707393
## [491]  0.3642918294  0.3810956925  0.2972216136  0.3398695323  0.3152245822
## [496]  0.2908329246  0.3340297624  0.3720220522  0.3672478458  0.4032549558
## [501]  0.4554758488  0.5178481019  0.5266188645  0.5247756508  0.5599761060
## [506]  0.5946582818
summary(LSTAT.)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -0.5757  0.1448  0.3491  0.3992  0.6013  2.2293

Berikut ini kita akan coba memvisualisasikan koefisien tersebut.

library(rgdal)
boston.tr@data$LSTAT<-LSTAT.

spplot(boston.tr, zcol="LSTAT",main="Peta Sebaran Penduga Parameter LSTAT")

Basic GWR

library(spgwr)

Menggunakan Bandwidth=20:

gwr.boston <- gwr(CRIM ~ (INDUS+ LSTAT),data=boston.c,
    coords=cbind(LAT,LON),bandwidth=20)
gwr.boston
## Call:
## gwr(formula = CRIM ~ (INDUS + LSTAT), data = boston.c, coords = cbind(LAT, 
##     LON), bandwidth = 20)
## Kernel function: gwr.Gauss 
## Fixed bandwidth: 20 
## Summary of GWR coefficient estimates at data points:
##                  Min.  1st Qu.   Median  3rd Qu.     Max.  Global
## X.Intercept. -4.31571 -4.31567 -4.31567 -4.31566 -4.31564 -4.3156
## INDUS         0.25943  0.25943  0.25943  0.25943  0.25943  0.2594
## LSTAT         0.39832  0.39832  0.39832  0.39832  0.39832  0.3983

Menentukan Bandwidth Optimal

Berdasarkan cv dan Model GWR Kernel function: gwr.Gauss:

bw1.boston <- gwr.sel(CRIM ~ (INDUS+ LSTAT),data=boston.c,
    coords=cbind(LAT,LON))
## Bandwidth: 0.2273468 CV score: 28928.76 
## Bandwidth: 0.3674875 CV score: 28987.32 
## Bandwidth: 0.140735 CV score: 28755.41 
## Bandwidth: 0.087206 CV score: 28255.7 
## Bandwidth: 0.05412325 CV score: 27196.09 
## Bandwidth: 0.03367699 CV score: 25607.39 
## Bandwidth: 0.0210405 CV score: 23385.73 
## Bandwidth: 0.01323073 CV score: 21034.9 
## Bandwidth: 0.008404017 CV score: 19649.11 
## Bandwidth: 0.005420948 CV score: NA
## Warning in optimize(gwr.cv.f, lower = beta1, upper = beta2, maximum = FALSE, :
## NA/Inf replaced by maximum positive value
## Bandwidth: 0.01024766 CV score: 20125.49 
## Bandwidth: 0.007264586 CV score: 19401.45 
## Bandwidth: 0.006560379 CV score: NA
## Warning in optimize(gwr.cv.f, lower = beta1, upper = beta2, maximum = FALSE, :
## NA/Inf replaced by maximum positive value
## Bandwidth: 0.00769981 CV score: 19489.93 
## Bandwidth: 0.006995603 CV score: NA
## Warning in optimize(gwr.cv.f, lower = beta1, upper = beta2, maximum = FALSE, :
## NA/Inf replaced by maximum positive value
## Bandwidth: 0.007430827 CV score: 19434.02 
## Bandwidth: 0.007161844 CV score: 19382.27 
## Bandwidth: 0.007098345 CV score: NA
## Warning in optimize(gwr.cv.f, lower = beta1, upper = beta2, maximum = FALSE, :
## NA/Inf replaced by maximum positive value
## Bandwidth: 0.007202534 CV score: 19389.77 
## Bandwidth: 0.007161844 CV score: 19382.27
gwr.bostoncv <- gwr(CRIM ~ (INDUS+ LSTAT),data=boston.c,
    coords=cbind(LAT,LON),bandwidth=bw1.boston)
gwr.bostoncv
## Call:
## gwr(formula = CRIM ~ (INDUS + LSTAT), data = boston.c, coords = cbind(LAT, 
##     LON), bandwidth = bw1.boston)
## Kernel function: gwr.Gauss 
## Fixed bandwidth: 0.007161844 
## Summary of GWR coefficient estimates at data points:
## Warning in print.gwr(x): NAs in coefficients dropped
##                     Min.     1st Qu.      Median     3rd Qu.        Max.
## X.Intercept. -1.4497e+01 -1.5917e+00 -3.4157e-02  3.0317e-01  1.7458e+02
## INDUS        -9.3138e+00 -5.7613e-03  2.8933e-02  1.9571e-01  9.0828e-01
## LSTAT        -7.6555e-01 -8.4898e-04  1.2285e-02  1.7122e-01  1.6518e+00
##               Global
## X.Intercept. -4.3156
## INDUS         0.2594
## LSTAT         0.3983

Berdasarkan AIC dan Model GWR Kernel function: gwr.Gauss:

bw2.boston <- gwr.sel(CRIM ~ (INDUS+ LSTAT),data=boston.c,
    coords=cbind(LAT,LON),method="aic")
## Bandwidth: 0.2273468 AIC: 3484.438 
## Bandwidth: 0.3674875 AIC: 3485.055 
## Bandwidth: 0.140735 AIC: 3482.655 
## Bandwidth: 0.087206 AIC: 3478.053 
## Bandwidth: 0.05412325 AIC: 3474.048 
## Bandwidth: 0.03367699 AIC: 3484.634 
## Bandwidth: 0.06675974 AIC: 3474.929 
## Bandwidth: 0.04657227 AIC: 3474.999 
## Bandwidth: 0.05684603 AIC: 3474.058 
## Bandwidth: 0.05520268 AIC: 3474.035 
## Bandwidth: 0.05528758 AIC: 3474.035 
## Bandwidth: 0.05532827 AIC: 3474.035 
## Bandwidth: 0.05524689 AIC: 3474.035 
## Bandwidth: 0.05524689 AIC: 3474.035
gwr.bostonaic <- gwr(CRIM ~ (INDUS+ LSTAT),data=boston.c,
    coords=cbind(LAT,LON),bandwidth=bw2.boston)
gwr.bostonaic
## Call:
## gwr(formula = CRIM ~ (INDUS + LSTAT), data = boston.c, coords = cbind(LAT, 
##     LON), bandwidth = bw2.boston)
## Kernel function: gwr.Gauss 
## Fixed bandwidth: 0.05524689 
## Summary of GWR coefficient estimates at data points:
##                    Min.    1st Qu.     Median    3rd Qu.       Max.  Global
## X.Intercept. -6.5141132 -4.7142701 -4.3013542 -3.6572734 -0.0950198 -4.3156
## INDUS         0.0472121  0.1682818  0.1903810  0.2434683  0.3780145  0.2594
## LSTAT        -0.0054539  0.3357467  0.4877656  0.5435015  0.6057270  0.3983

Berdasarkan CV dan Model GWR Kernel function: gwr.bisquare :

bwbs1.boston <- gwr.sel(CRIM ~ (INDUS+ LSTAT),data=boston.c,
    coords=cbind(LAT,LON),gweight=gwr.bisquare)
## Bandwidth: 0.2273468 CV score: 28520.97 
## Bandwidth: 0.3674875 CV score: 28887.86 
## Bandwidth: 0.140735 CV score: 27464.94 
## Bandwidth: 0.087206 CV score: 25969.22 
## Bandwidth: 0.05412325 CV score: NA
## Warning in optimize(gwr.cv.f, lower = beta1, upper = beta2, maximum = FALSE, :
## NA/Inf replaced by maximum positive value
## Bandwidth: 0.1076523 CV score: 26611.11 
## Bandwidth: 0.07456951 CV score: 25318.48 
## Bandwidth: 0.06675974 CV score: NA
## Warning in optimize(gwr.cv.f, lower = beta1, upper = beta2, maximum = FALSE, :
## NA/Inf replaced by maximum positive value
## Bandwidth: 0.07939622 CV score: 25605.29 
## Bandwidth: 0.07158644 CV score: 25121.47 
## Bandwidth: 0.06974281 CV score: NA
## Warning in optimize(gwr.cv.f, lower = beta1, upper = beta2, maximum = FALSE, :
## NA/Inf replaced by maximum positive value
## Bandwidth: 0.07272587 CV score: 25198.3 
## Bandwidth: 0.07088224 CV score: 25072.97 
## Bandwidth: 0.07044701 CV score: 25042.6 
## Bandwidth: 0.07017803 CV score: 25023.68 
## Bandwidth: 0.07001179 CV score: 25011.93 
## Bandwidth: 0.06990905 CV score: 25004.65 
## Bandwidth: 0.06984555 CV score: 25000.14 
## Bandwidth: 0.06980486 CV score: NA
## Warning in optimize(gwr.cv.f, lower = beta1, upper = beta2, maximum = FALSE, :
## NA/Inf replaced by maximum positive value
## Bandwidth: 0.06984555 CV score: 25000.14
gwr.bostonbs <- gwr(CRIM ~ (INDUS+ LSTAT),data=boston.c,
    coords=cbind(LAT,LON),gweight=gwr.bisquare, bandwidth=bwbs1.boston)
gwr.bostonbs
## Call:
## gwr(formula = CRIM ~ (INDUS + LSTAT), data = boston.c, coords = cbind(LAT, 
##     LON), bandwidth = bwbs1.boston, gweight = gwr.bisquare)
## Kernel function: gwr.bisquare 
## Fixed bandwidth: 0.06984555 
## Summary of GWR coefficient estimates at data points:
##                    Min.    1st Qu.     Median    3rd Qu.       Max.  Global
## X.Intercept. -9.3795067 -2.7094549 -0.8827906 -0.1073159  2.3209521 -4.3156
## INDUS        -0.2085938  0.0100675  0.0707898  0.1643640  0.4491845  0.2594
## LSTAT        -0.0663816  0.0029311  0.2616100  0.5586709  0.8006971  0.3983

Berdasarkan AIC dan Model GWR Kernel function: gwr.bisquare :

bwbs2.boston <- gwr.sel(CRIM ~ (INDUS+ LSTAT),data=boston.c,
    coords=cbind(LAT,LON),gweight=gwr.bisquare,method="aic")
## Bandwidth: 0.2273468 AIC: 3482.375 
## Bandwidth: 0.3674875 AIC: 3484.461 
## Bandwidth: 0.140735 AIC: 3479.518 
## Bandwidth: 0.087206 AIC: 3492.311 
## Bandwidth: 0.1738178 AIC: 3480.475 
## Bandwidth: 0.1202887 AIC: 3479.989 
## Bandwidth: 0.1423683 AIC: 3479.545 
## Bandwidth: 0.1369631 AIC: 3479.47 
## Bandwidth: 0.130594 AIC: 3479.476 
## Bandwidth: 0.1341197 AIC: 3479.456 
## Bandwidth: 0.1340545 AIC: 3479.456 
## Bandwidth: 0.1337516 AIC: 3479.455 
## Bandwidth: 0.1325455 AIC: 3479.458 
## Bandwidth: 0.1337982 AIC: 3479.455 
## Bandwidth: 0.1338389 AIC: 3479.455 
## Bandwidth: 0.1337982 AIC: 3479.455
gwr.bostonbsaic <- gwr(CRIM ~ (INDUS+ LSTAT),data=boston.c,
    coords=cbind(LAT,LON),gweight=gwr.bisquare, bandwidth=bwbs2.boston)
gwr.bostonbsaic
## Call:
## gwr(formula = CRIM ~ (INDUS + LSTAT), data = boston.c, coords = cbind(LAT, 
##     LON), bandwidth = bwbs2.boston, gweight = gwr.bisquare)
## Kernel function: gwr.bisquare 
## Fixed bandwidth: 0.1337982 
## Summary of GWR coefficient estimates at data points:
##                   Min.   1st Qu.    Median   3rd Qu.      Max.  Global
## X.Intercept. -7.390289 -4.650110 -4.294599 -3.185295  0.068982 -4.3156
## INDUS        -0.015499  0.158148  0.171396  0.212683  0.364991  0.2594
## LSTAT        -0.036006  0.279449  0.496623  0.546361  0.651621  0.3983

Membandingkan antar Model Lokal

Peubah INDUS:

hb20 <- gwr.boston$SDF$INDUS
hbGaussAIC <- gwr.bostonaic$SDF$INDUS
hbBisquareCV <- gwr.bostonbs$SDF$INDUS
hbBisquareAIC<- gwr.bostonbsaic$SDF$INDUS
hbGaussCV<- gwr.bostoncv$SDF$INDUS

boxplot(LSTAT.,hb20,hbGaussAIC,hbBisquareCV,hbBisquareAIC,hbGaussCV,
    names=c("Expansion","bw=20","GaussAIC","BiSCV","BiSAIC","hbGaussCV"))

Perhatikan bahwa sebaran pada bandwidth “bw=20”,“GaussAIC”,“BisquareCV”,“BisquareAIC” terkonsentrasi di sekitar median dengan sedikit pencilan, pada bandwidth “hExpansion” menunjukkan beberapa pencilan yang bernilai positif, sedangkan pada bandwidth “hbGaussCV” menunjukkan beberapa pencilan yang bernilai negatif. Selanjutnya akan dibandingkan bandwidth yang memberikan sedikit outlier.

par(mfrow = c(2, 2))

boxplot(hb20,main="bw=20")

boxplot(hbGaussAIC,main="GaussAIC")

boxplot(hbBisquareCV, main="BisquareCV")

boxplot(hbBisquareAIC,main="BisquareAIC")

Perhatikan bahwa sebaran pada bandwidth “GaussAIC” dan “BisquareCV” terkonsentrasi di sekitar median dengan sedikit pencilan dibandingkan “bw=20” dan BisquareAIC. Pada bandwidth “GaussAIC” menunjukkan sedikit pencilan dengan rentang nilai positif, sedangkan pada bandwidth “BisquareCV” menunjukkan sedikit pencilan dengan rentang nilai penduganya antara negatif s.d. positif. Dari sebaran data ini, alternatif yang dipilih bandwidth “GaussAIC” atau “BisquareCV”

par(mfrow = c(1, 2))
boxplot(hbGaussAIC,main="GaussAIC")
boxplot(hbBisquareCV, main="BisquareCV")

Perhatikan bahwa sebaran pada bandwidth bandwidth “GaussAIC” menunjukkan sedikit pencilan dengan rentang nilai positif, sedangkan pada bandwidth “BisquareCV” menunjukkan sedikit pencilan dengan rentang nilai penduganya antara negatif s.d. positif. Dari sebaran data ini, alternatif yang dipilih bandwidth “GaussAIC” karena semua penduga parameternya positif dan tidak ada yang nol.

Peubah LSTAT:

hb20L <- gwr.boston$SDF$LSTAT
hbGaussAICL <- gwr.bostonaic$SDF$LSTAT
hbBisquareCVL <- gwr.bostonbs$SDF$LSTAT
hbBisquareAICL<- gwr.bostonbsaic$SDF$LSTAT
hbGaussCVL<- gwr.bostoncv$SDF$LSTAT

boxplot(LSTAT.,hb20L,hbGaussAICL,hbBisquareCVL,hbBisquareAICL,hbGaussCVL,
    names=c("Expansion","bw=20","GaussAIC","BiSCV","BiSAIC","hbGaussCV"))

Perhatikan bahwa sebaran pada bandwidth “bw=20”,“GaussAIC”,“BisquareCV”,“BisquareAIC” terkonsentrasi di sekitar median dengan sedikit pencilan, pada bandwidth “hExpansion” menunjukkan beberapa pencilan yang bernilai positif, sedangkan pada bandwidth “hbGaussCV” menunjukkan beberapa pencilan yang bernilai negatif. Selanjutnya akan dibandingkan bandwidth yang memberikan sedikit outlier.

par(mfrow = c(2, 2))

boxplot(hb20L,main="bw=20")

boxplot(hbGaussAICL,main="GaussAIC")

boxplot(hbBisquareCVL, main="BisquareCV")

boxplot(hbBisquareAICL,main="BisquareAIC")

Perhatikan bahwa sebaran pada bandwidth “GaussAIC” dan “BisquareCV” terkonsentrasi di sekitar median dengan sedikit pencilan dibandingkan “bw=20” dan BisquareAIC. Pada bandwidth “GaussAIC” menunjukkan sedikit pencilan dengan rentang nilai positif, sedangkan pada bandwidth “BisquareCV” menunjukkan sedikit pencilan dengan rentang nilai penduganya antara negatif s.d. positif. Dari sebaran data ini, alternatif yang dipilih bandwidth “GaussAIC” atau “BisquareCV”. Karena pada penduga parameter sebelumnya dipilih “GaussAIC”, maka selanjutnya akan digunakan bandwith “GaussAIC”.

boxplot(hbGaussAICL,main="GaussAIC")

Pemodelan RTG/GWR menggunakan matriks pembobot fungsi pembobot Kernel function: gwr.Gauss dengan lebar jendela optimum menggunakan AIC.

gwr.bostonaic
## Call:
## gwr(formula = CRIM ~ (INDUS + LSTAT), data = boston.c, coords = cbind(LAT, 
##     LON), bandwidth = bw2.boston)
## Kernel function: gwr.Gauss 
## Fixed bandwidth: 0.05524689 
## Summary of GWR coefficient estimates at data points:
##                    Min.    1st Qu.     Median    3rd Qu.       Max.  Global
## X.Intercept. -6.5141132 -4.7142701 -4.3013542 -3.6572734 -0.0950198 -4.3156
## INDUS         0.0472121  0.1682818  0.1903810  0.2434683  0.3780145  0.2594
## LSTAT        -0.0054539  0.3357467  0.4877656  0.5435015  0.6057270  0.3983

Nilai penduga parameter peubah penjelas INDUS bernilai positif menunjukkan bahwa peubah penjelas berkontribusi positif terhadap peubah respon CRIM. Sementara nilai penduga parameter peubah penjelas LSTAT ada yang bernilai positif dan negatif menunjukkan bahwa peubah penjelas berkontribusi negatif, positif,dan ada yang tidak berkontribusi terhadap peubah respon CRIM.

Plot Sebaran Penduga Parameter Model RTG Terpilih

Penduga parameter untuk peubah penjelas INDUS

b.INDUS<- gwr.bostonaic$SDF$INDUS
boston.tr@data$b.INDUS<- b.INDUS
spplot(boston.tr,zcol="b.INDUS",main="Peta Sebaran Penduga Parameter INDUS Model RTG")

Interpretasi terhadap penduga parameter untuk peubah penjelas INDUS pada mode RTG:

Warna biru pada peta sebaran penduga parameter untuk peubah penjelas INDUS di atas menunjukkan nilai yang rendah, warna merah muda untuk nilai sedang, hingga warna kuning menunjukkan nilai tinggi.

Tidak ada penduga parameter untuk peubah penjelas INDUS yang memiliki nilai NEGATIF atau nol. Peubah penjelas INDUS berkontribusi positif terhadap peubah respon CRIM di semua lokasi amatan.

Peta sebaran penduga parameter untuk peubah penjelas INDUS menunjukkan kemiripan antarwilayah yang berdekatan. Kemiripan ini ditunjukkan dengan pola kecenderungan warna-warna yang sama untuk mengelompok dengan wilayah tetangganya.

Penduga parameter untuk peubah penjelas LSTAT

b.LSTAT<- gwr.bostonaic$SDF$LSTAT
boston.tr@data$b.LSTAT<- b.LSTAT
spplot(boston.tr,zcol="b.LSTAT",main="Peta Sebaran Penduga Parameter LSTAT Model RTG")

Interpretasi terhadap penduga parameter untuk peubah penjelas LSTAT pada mode RTG:

Warna biru pada peta sebaran penduga parameter untuk peubah penjelas LSTAT di atas menunjukkan nilai yang rendah, warna merah muda untuk nilai sedang, hingga warna kuning menunjukkan nilai tinggi.

Ada penduga parameter untuk peubah penjelas LSTAT yang memiliki nilai Positif atau NEGATIF atau nol. Peubah penjelas LSTAT berkontribusi positif atau negatif dan ada juga yang tidak berkontribusi terhadap peubah respon CRIM di beberapa lokasi amatan.

Peta sebaran penduga parameter untuk peubah penjelas LSTAT menunjukkan kemiripan antarwilayah yang berdekatan. Kemiripan ini ditunjukkan dengan pola kecenderungan warna-warna yang sama untuk mengelompok dengan wilayah tetangganya.

Penduga parameter untuk peubah respon CRIM:

pred.CRIM<- gwr.bostonaic$SDF$pred
boston.tr@data$pred.CRIM<- pred.CRIM

boston.tr@data$CRIM.awal <- boston.c$CRIM

spplot(boston.tr,c("CRIM.awal","pred.CRIM"),names.attr=c("Peta Sebaran Peubah CRIM pada Data","Peta Sebaran Dugaan Peubah Respon CRIM Model RTG"),as.table = TRUE, main = "Nilai Peubah CRIM VS Dugaan CRIM RTG")

#Statistik Amatan Peubah CRIM dan dugaan model RTG
summary(boston.tr@data[,c("CRIM.awal","pred.CRIM")])
##    CRIM.awal          pred.CRIM      
##  Min.   : 0.00632   Min.   :-2.9883  
##  1st Qu.: 0.08205   1st Qu.: 0.1265  
##  Median : 0.25651   Median : 2.2659  
##  Mean   : 3.61352   Mean   : 3.8607  
##  3rd Qu.: 3.67708   3rd Qu.: 7.0257  
##  Max.   :88.97620   Max.   :19.3390

Dengan membandingkan peta sebaran peubah respon CRIM dengan dugaan CRIM berdasarkan model RTG, terlihat bahwa model RTG memberikan nilai dugaan yang tidak jauh berbeda dengan nilai amatan peubah respon CRIM. Dari pola warna yang ada,perbedaan yang terjadi adalah nilai dugaan menjadi sedikit lebih RENDAH untuk amatan yang sebelumnya tinggi.

Berdasarkan ringkasan statistik dari data dugaan CRIM, rataan dari nilai dugaan CRIM tidak jauh berbeda dengan rataan amatan CRIM.

Plot Sisaan Model RTG

gwr.sisaan <- boston.c$CRIM - gwr.bostonaic$SDF$pred
boston.tr@data$gwr.sisaan<- gwr.sisaan
spplot(boston.tr,zcol="gwr.sisaan",main="Peta Sebaran Sisaan Model RTG")

Peta sebaran sisaan model RTG/GWR menunjukkan kecenderungan nilai sisaan yang relatif kecil.

Peta Sebaran R-Square

Assessing the global fit of the model, marginal improvements are observed. The AIC and Residual sum of squares experienced marginal reductions, while the R2 increased compared to the GRW based on a fixed kernel. To gain a better understanding of these changes, as above, we map the R2 values for the estimated local regressions (sumber: https://gdsl-ul.github.io/san/geographically-weighted-regression.html#interpretation-1)

localR2<- gwr.bostonaic$SDF$localR2
boston.tr@data$localR2 <- localR2
spplot(boston.tr,zcol="localR2",main="Peta Sebaran localR2 Model RTG")

Peta sebaran R-Square model RTG/GWR menunjukkan kecenderungan nilai R-Square yang relatif tinggi.

RTG vs Regresi Linier

Pengujian secara global dengan menggunakan ANOVA untuk mengidentifikasi kebaikan model RTG dibanding model Regresi Linier Berganda dalam menjelaskan hubungan peubah respon dengan peubah penjelas.

gwr.bostonaicc <- gwr(CRIM ~ (INDUS+ LSTAT),data=boston.c,
    coords=cbind(LAT,LON),bandwidth=bw2.boston,hatmatrix=TRUE)

BFC99.gwr.test(gwr.bostonaicc)
## 
##  Brunsdon, Fotheringham & Charlton (1999) ANOVA
## 
## data:  gwr.bostonaicc
## F = 2.0222, df1 = 108.38, df2 = 492.84, p-value = 2.071e-07
## alternative hypothesis: greater
## sample estimates:
## SS GWR improvement   SS GWR residuals 
##           1944.971          26645.516
BFC02.gwr.test(gwr.bostonaicc)
## 
##  Brunsdon, Fotheringham & Charlton (2002, pp. 91-2) ANOVA
## 
## data:  gwr.bostonaicc
## F = 1.073, df1 = 503.00, df2 = 485.48, p-value = 0.2172
## alternative hypothesis: greater
## sample estimates:
## SS OLS residuals SS GWR residuals 
##         28590.49         26645.52
BFC02.gwr.test(gwr.bostonaicc,approx = T)
## 
##  Brunsdon, Fotheringham & Charlton (2002, pp. 91-2) ANOVA (approximate
##  degrees of freedom - only tr(S))
## 
## data:  gwr.bostonaicc
## F = 1.073, df1 = 503.00, df2 = 491.35, p-value = 0.2164
## alternative hypothesis: greater
## sample estimates:
## SS OLS residuals SS GWR residuals 
##         28590.49         26645.52
anova(gwr.bostonaicc)
## Analysis of Variance Table 
##                      Df Sum Sq Mean Sq F value
## OLS Residuals     3.000  28591                
## GWR Improvement  17.524   1945 110.988        
## GWR Residuals   485.476  26646  54.885  2.0222
anova(gwr.bostonaicc,approx=T)
## Analysis of Variance Table 
## approximate degrees of freedom (only tr(S))
##                      Df Sum Sq Mean Sq F value
## OLS Residuals     3.000  28591                
## GWR Improvement  11.651   1945 166.939        
## GWR Residuals   491.349  26646  54.229  3.0784

Berdasarkan hasil ANOVA, jika menggunakan Brunsdon, Fotheringham & Charlton (1999) ANOVA didapatkan nilai-p < tarafnyata 5% sehingga diputuskan untuk menolak hipotesis nol (H0: model RTG dan model RLB sama baik). Dapat disimpulkan bahwa model RTG lebih efektif dalam menghubungkan peubah penjelas dengan peubah respon dibandingkan model regresi linier klasik.

Namun, jika berdasarkan Brunsdon, Fotheringham & Charlton (2002, pp. 91-2) ANOVA dan Brunsdon, Fotheringham & Charlton (2002, pp. 91-2) ANOVA (approximate degrees of freedom - only tr(S)), didapatkan nilai-p >tarafnyata 5% sehingga diputuskan untuk tidak menolak hipotesis nol (H0: model RTG dan model RLB sama baik). Dapat disimpulkan bahwa model RTG dan Regresi Linier Klasik sama baik dalam menghubungkan peubah penjelas dengan peubah respon.

Kebaikan model dapat dilihat dari nilai AIC, yaitu model terbaik adalah model dengan nilai AIC lebih kecil.

#AIC GWR Model
gwr.bostonaicc[["results"]][["AICh"]]
## [1] 3456.319
#AIC Regresi Linier Berganda
AIC(boston.ols)
## [1] 3485.318

Model RTG memiliki AIC yang lebih kecil dari model RLB, sehingga model RTG lebih baik.

Perbandingan antara model RTG dan RLB:

reg.klasik.pred <- Predict(boston.ols,data=boston.c)

boston.tr@data$rlbpred <- reg.klasik.pred

gwr.bostonaicc.pred <- gwr.bostonaicc$SDF$pred
boston.tr@data$gwr.bostonaicc.pred <- gwr.bostonaicc.pred
spplot(boston.tr,c("gwr.bostonaicc.pred","rlbpred","CRIM.awal"),names.attr=c("Dugaan CRIM RTG","Dugaan CRIM RLB","Peubah CRIM pada Data"),as.table = TRUE, main = "Nilai CRIM VS Dugaan CRIM Model RTG VS RLB")

#Statistik Amatan Peubah CRIM, dugaan CRIM model RTG,dan dugaan CRIM model RLB
summary(boston.tr@data[,c("gwr.bostonaicc.pred","rlbpred","CRIM.awal")])
##  gwr.bostonaicc.pred    rlbpred           CRIM.awal       
##  Min.   :-2.9883     Min.   :-3.01330   Min.   : 0.00632  
##  1st Qu.: 0.1265     1st Qu.: 0.08031   1st Qu.: 0.08205  
##  Median : 2.2659     Median : 2.80881   Median : 0.25651  
##  Mean   : 3.8607     Mean   : 3.61352   Mean   : 3.61352  
##  3rd Qu.: 7.0257     3rd Qu.: 6.79523   3rd Qu.: 3.67708  
##  Max.   :19.3390     Max.   :15.50419   Max.   :88.97620
gwr.sisaanc <- boston.c$CRIM - gwr.bostonaicc$SDF$pred
boston.tr@data$gwr.sisaanc<- gwr.sisaanc

reg.klasik.sisaan <- boston.c$CRIM - reg.klasik.pred
boston.tr@data$reg.klasik.sisaan<- reg.klasik.sisaan

#Statistik Sisaan model RTG dan model RLB
summary(boston.tr@data[,c("reg.klasik.sisaan","gwr.sisaanc")])
##  reg.klasik.sisaan  gwr.sisaanc      
##  Min.   :-14.496   Min.   :-15.6405  
##  1st Qu.: -2.652   1st Qu.: -2.6506  
##  Median : -0.544   Median : -0.3778  
##  Mean   :  0.000   Mean   : -0.2472  
##  3rd Qu.:  1.370   3rd Qu.:  0.7246  
##  Max.   : 81.741   Max.   : 81.3699

Dari nilai statistik di atas, Dugaan dengan model RTG memberikan sisaan yang lebih kecil dibandingkan model RLB.

TERIMA KASIH

Referensi

Anisa, R. 2021.Spatial Weights. Retrieved from newlms.ipb.ac.id

Anisa, R. November 12, 2020.Spatial Autocorrelation. Retrieved from https://rpubs.com/r_anisa/spatial-autocorrelation

Anisa, R. 2020.Spatial Regression. Retrieved from https://rpubs.com/r_anisa/Spatial-Regression

Anisa, R. 2020.Spatial Durbin Model. Retrieved from https://rpubs.com/r_anisa/Spatial-Durbin

Anisa, R. 2020.Marginal Effects (Spill-over) on the Spatial Regression Modeling. Retrieved from https://rpubs.com/r_anisa/Marginal-Effects

Anisa, R. 2020.Geographically Weighted Regression (GWR) . Retrieved from https://rpubs.com/r_anisa/GWR

Anik Djuraidah. 2021.Efek Spasial. Retrieved from newlms.ipb.ac.id

Anik Djuraidah. 2021.Uji Efek Spasial. Retrieved from newlms.ipb.ac.id

Anonymous. Local regression. http://rspatial.org/analysis/rst/6-local_regression.html#local-regression [18 Desember 2017]

Brunsdon, C. 2015. Geographically Weighted Regression. https://rstudio-pubs-static.s3.amazonaws.com/176883_06a3fa1fc77444be85e94dcd97ba9a34.html [18 Desember 2017]

Guliyev, H. (2020). Determining the spatial effects of COVID-19 using the spatial panel data model. Spatial Statistics, 100443. doi:10.1016/j.spasta.2020.100443. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139267/

Lizarazo, I. (2016, October 31). Areal pattern analysis. https://rstudio-pubs-static.s3.amazonaws.com/223305_944ddc517306448f8fb0d60ca29dd94b.html

Mendez, C. (2020). Spatial autocorrelation analysis in R. R Studio/RPubs. Available at https://rpubs.com/quarcs-lab/spatial-autocorrelation

Sarmiento-Barbieri, I. (2016, April 24). An introduction to spatial econometrics in R. Spatial Econometric Workshop, University of Illinois. Retrieved from: https://www.econ.uiuc.edu/~lab/workshop/Spatial_in_R.html#modeling-spatial-dependence

Zhukov, Y. M. (2010, January 19). Applied Spatial Statistics in R, Section 6, Spatial Regression [PDF slides.]. IQSS, Harvard University. http://www.people.fas.harvard.edu/~zhukov/Spatial6.pdf

https://gdsl-ul.github.io/san/geographically-weighted-regression.html#interpretation-1


  1. Mahasiswa Pascasarjana Statistika dan Sains Data, IPB University, ↩︎