Assignment: Your assignment is to use your notes from class - along with help from classmates, UTAs, and me - to turn this script into a fleshed-out description of what is going on.
This is a substantial project - we’ll work on it in steps over the rest of the unit.
We are currently focused on the overall process and will cover the details over the rest of this unit.
Your first assignment is to get this script to run from top to bottom by adding all of the missing R commands. Once you have done that, you can knit it into an HTML file and upload it to RPubs. (Note - you’ll need to add the YAML header!)
Your second assignment, which will be posted later, is to answer all the TODO and other prompts to add information. You can start on this, but you don’t have to do this on your first time through the code.
Delete all the prompts like TODO() as you compete them. Use RStudio’s search function to see if you’ve missed any - there are a LOT!
Add YAML header!!! Give it a title
By: Nathan L. Brouwer
Describe how phylogeneies can be used in biology (readings will be assigned)
Make a list of at least 10 vocab terms that are important (don’t have to define)
Make a list of at least 5 key functions Put in the format of package::function
Add the necessary calls to library() to load call packages Indicate which packages cam from Bioconducotr, CRAN, and GitHub
# github packages
getwd()
## [1] "/Users/haydenbash"
library(compbio4all)
# CRAN packages
library(rentrez)
library(seqinr)
library(ape)
# Bioconductor packages
library(msa)
library(Biostrings)
library(ggmsa)
TODO: Fill in the XXXXXs and write a 1-2 sentence of what is going on here.
Add the package that is where entrez_fetch is from using :: notation
# Human shroom 3 (H. sapiens)
hShroom3 <- rentrez::entrez_fetch(db = "protein",
id = "NP_065910",
rettype = "fasta")
TODO:explain what cat() is doing
cat(hShroom3)
## >NP_065910.3 protein Shroom3 [Homo sapiens]
## MMRTTEDFHKPSATLNSNTATKGRYIYLEAFLEGGAPWGFTLKGGLEHGEPLIISKVEEGGKADTLSSKL
## QAGDEVVHINEVTLSSSRKEAVSLVKGSYKTLRLVVRRDVCTDPGHADTGASNFVSPEHLTSGPQHRKAA
## WSGGVKLRLKHRRSEPAGRPHSWHTTKSGEKQPDASMMQISQGMIGPPWHQSYHSSSSTSDLSNYDHAYL
## RRSPDQCSSQGSMESLEPSGAYPPCHLSPAKSTGSIDQLSHFHNKRDSAYSSFSTSSSILEYPHPGISGR
## ERSGSMDNTSARGGLLEGMRQADIRYVKTVYDTRRGVSAEYEVNSSALLLQGREARASANGQGYDKWSNI
## PRGKGVPPPSWSQQCPSSLETATDNLPPKVGAPLPPARSDSYAAFRHRERPSSWSSLDQKRLCRPQANSL
## GSLKSPFIEEQLHTVLEKSPENSPPVKPKHNYTQKAQPGQPLLPTSIYPVPSLEPHFAQVPQPSVSSNGM
## LYPALAKESGYIAPQGACNKMATIDENGNQNGSGRPGFAFCQPLEHDLLSPVEKKPEATAKYVPSKVHFC
## SVPENEEDASLKRHLTPPQGNSPHSNERKSTHSNKPSSHPHSLKCPQAQAWQAGEDKRSSRLSEPWEGDF
## QEDHNANLWRRLEREGLGQSLSGNFGKTKSAFSSLQNIPESLRRHSSLELGRGTQEGYPGGRPTCAVNTK
## AEDPGRKAAPDLGSHLDRQVSYPRPEGRTGASASFNSTDPSPEEPPAPSHPHTSSLGRRGPGPGSASALQ
## GFQYGKPHCSVLEKVSKFEQREQGSQRPSVGGSGFGHNYRPHRTVSTSSTSGNDFEETKAHIRFSESAEP
## LGNGEQHFKNGELKLEEASRQPCGQQLSGGASDSGRGPQRPDARLLRSQSTFQLSSEPEREPEWRDRPGS
## PESPLLDAPFSRAYRNSIKDAQSRVLGATSFRRRDLELGAPVASRSWRPRPSSAHVGLRSPEASASASPH
## TPRERHSVTPAEGDLARPVPPAARRGARRRLTPEQKKRSYSEPEKMNEVGIVEEAEPAPLGPQRNGMRFP
## ESSVADRRRLFERDGKACSTLSLSGPELKQFQQSALADYIQRKTGKRPTSAAGCSLQEPGPLRERAQSAY
## LQPGPAALEGSGLASASSLSSLREPSLQPRREATLLPATVAETQQAPRDRSSSFAGGRRLGERRRGDLLS
## GANGGTRGTQRGDETPREPSSWGARAGKSMSAEDLLERSDVLAGPVHVRSRSSPATADKRQDVLLGQDSG
## FGLVKDPCYLAGPGSRSLSCSERGQEEMLPLFHHLTPRWGGSGCKAIGDSSVPSECPGTLDHQRQASRTP
## CPRPPLAGTQGLVTDTRAAPLTPIGTPLPSAIPSGYCSQDGQTGRQPLPPYTPAMMHRSNGHTLTQPPGP
## RGCEGDGPEHGVEEGTRKRVSLPQWPPPSRAKWAHAAREDSLPEESSAPDFANLKHYQKQQSLPSLCSTS
## DPDTPLGAPSTPGRISLRISESVLRDSPPPHEDYEDEVFVRDPHPKATSSPTFEPLPPPPPPPPSQETPV
## YSMDDFPPPPPHTVCEAQLDSEDPEGPRPSFNKLSKVTIARERHMPGAAHVVGSQTLASRLQTSIKGSEA
## ESTPPSFMSVHAQLAGSLGGQPAPIQTQSLSHDPVSGTQGLEKKVSPDPQKSSEDIRTEALAKEIVHQDK
## SLADILDPDSRLKTTMDLMEGLFPRDVNLLKENSVKRKAIQRTVSSSGCEGKRNEDKEAVSMLVNCPAYY
## SVSAPKAELLNKIKEMPAEVNEEEEQADVNEKKAELIGSLTHKLETLQEAKGSLLTDIKLNNALGEEVEA
## LISELCKPNEFDKYRMFIGDLDKVVNLLLSLSGRLARVENVLSGLGEDASNEERSSLYEKRKILAGQHED
## ARELKENLDRRERVVLGILANYLSEEQLQDYQHFVKMKSTLLIEQRKLDDKIKLGQEQVKCLLESLPSDF
## IPKAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL
TODO: explain what this code chunk is doing
# Mouse shroom 3a (M. musculus)
mShroom3a <- entrez_fetch(db = "protein",
id = "AAF13269",
rettype = "fasta")
# Human shroom 2 (H. sapiens)
hShroom2 <- entrez_fetch(db = "protein",
id = "CAA58534",
rettype = "fasta")
# Sea-urchin shroom
sShroom <- entrez_fetch(db = "protein",
id = "XP_783573",
rettype = "fasta")
TODO: Explain what this code chunk is doing
nchar(hShroom3)
## [1] 2070
nchar(mShroom3a)
## [1] 2083
nchar(sShroom)
## [1] 1758
nchar(hShroom2)
## [1] 1673
TODO: Explain what this function does
fasta_cleaner
## function (fasta_object, parse = TRUE)
## {
## fasta_object <- sub("^(>)(.*?)(\\n)(.*)(\\n\\n)", "\\4",
## fasta_object)
## fasta_object <- gsub("\n", "", fasta_object)
## if (parse == TRUE) {
## fasta_object <- stringr::str_split(fasta_object, pattern = "",
## simplify = FALSE)
## }
## return(fasta_object[[1]])
## }
## <bytecode: 0x7f888ef713d0>
## <environment: namespace:compbio4all>
TODO: explain how to add the function to your R session even if you can’t download compbio4all
fasta_cleaner <- function(fasta_object, parse = TRUE){
fasta_object <- sub("^(>)(.*?)(\\n)(.*)(\\n\\n)","\\4",fasta_object)
fasta_object <- gsub("\n", "", fasta_object)
if(parse == TRUE){
fasta_object <- stringr::str_split(fasta_object,
pattern = "",
simplify = FALSE)
}
return(fasta_object[[1]])
}
TODO: briefly explain what this code chunk is doing
hShroom3 <- fasta_cleaner(hShroom3, parse = F)
mShroom3a <- fasta_cleaner(mShroom3a, parse = F)
hShroom2 <- fasta_cleaner(hShroom2, parse = F)
sShroom <- fasta_cleaner(sShroom, parse = F)
hShroom3
## [1] "MMRTTEDFHKPSATLNSNTATKGRYIYLEAFLEGGAPWGFTLKGGLEHGEPLIISKVEEGGKADTLSSKLQAGDEVVHINEVTLSSSRKEAVSLVKGSYKTLRLVVRRDVCTDPGHADTGASNFVSPEHLTSGPQHRKAAWSGGVKLRLKHRRSEPAGRPHSWHTTKSGEKQPDASMMQISQGMIGPPWHQSYHSSSSTSDLSNYDHAYLRRSPDQCSSQGSMESLEPSGAYPPCHLSPAKSTGSIDQLSHFHNKRDSAYSSFSTSSSILEYPHPGISGRERSGSMDNTSARGGLLEGMRQADIRYVKTVYDTRRGVSAEYEVNSSALLLQGREARASANGQGYDKWSNIPRGKGVPPPSWSQQCPSSLETATDNLPPKVGAPLPPARSDSYAAFRHRERPSSWSSLDQKRLCRPQANSLGSLKSPFIEEQLHTVLEKSPENSPPVKPKHNYTQKAQPGQPLLPTSIYPVPSLEPHFAQVPQPSVSSNGMLYPALAKESGYIAPQGACNKMATIDENGNQNGSGRPGFAFCQPLEHDLLSPVEKKPEATAKYVPSKVHFCSVPENEEDASLKRHLTPPQGNSPHSNERKSTHSNKPSSHPHSLKCPQAQAWQAGEDKRSSRLSEPWEGDFQEDHNANLWRRLEREGLGQSLSGNFGKTKSAFSSLQNIPESLRRHSSLELGRGTQEGYPGGRPTCAVNTKAEDPGRKAAPDLGSHLDRQVSYPRPEGRTGASASFNSTDPSPEEPPAPSHPHTSSLGRRGPGPGSASALQGFQYGKPHCSVLEKVSKFEQREQGSQRPSVGGSGFGHNYRPHRTVSTSSTSGNDFEETKAHIRFSESAEPLGNGEQHFKNGELKLEEASRQPCGQQLSGGASDSGRGPQRPDARLLRSQSTFQLSSEPEREPEWRDRPGSPESPLLDAPFSRAYRNSIKDAQSRVLGATSFRRRDLELGAPVASRSWRPRPSSAHVGLRSPEASASASPHTPRERHSVTPAEGDLARPVPPAARRGARRRLTPEQKKRSYSEPEKMNEVGIVEEAEPAPLGPQRNGMRFPESSVADRRRLFERDGKACSTLSLSGPELKQFQQSALADYIQRKTGKRPTSAAGCSLQEPGPLRERAQSAYLQPGPAALEGSGLASASSLSSLREPSLQPRREATLLPATVAETQQAPRDRSSSFAGGRRLGERRRGDLLSGANGGTRGTQRGDETPREPSSWGARAGKSMSAEDLLERSDVLAGPVHVRSRSSPATADKRQDVLLGQDSGFGLVKDPCYLAGPGSRSLSCSERGQEEMLPLFHHLTPRWGGSGCKAIGDSSVPSECPGTLDHQRQASRTPCPRPPLAGTQGLVTDTRAAPLTPIGTPLPSAIPSGYCSQDGQTGRQPLPPYTPAMMHRSNGHTLTQPPGPRGCEGDGPEHGVEEGTRKRVSLPQWPPPSRAKWAHAAREDSLPEESSAPDFANLKHYQKQQSLPSLCSTSDPDTPLGAPSTPGRISLRISESVLRDSPPPHEDYEDEVFVRDPHPKATSSPTFEPLPPPPPPPPSQETPVYSMDDFPPPPPHTVCEAQLDSEDPEGPRPSFNKLSKVTIARERHMPGAAHVVGSQTLASRLQTSIKGSEAESTPPSFMSVHAQLAGSLGGQPAPIQTQSLSHDPVSGTQGLEKKVSPDPQKSSEDIRTEALAKEIVHQDKSLADILDPDSRLKTTMDLMEGLFPRDVNLLKENSVKRKAIQRTVSSSGCEGKRNEDKEAVSMLVNCPAYYSVSAPKAELLNKIKEMPAEVNEEEEQADVNEKKAELIGSLTHKLETLQEAKGSLLTDIKLNNALGEEVEALISELCKPNEFDKYRMFIGDLDKVVNLLLSLSGRLARVENVLSGLGEDASNEERSSLYEKRKILAGQHEDARELKENLDRRERVVLGILANYLSEEQLQDYQHFVKMKSTLLIEQRKLDDKIKLGQEQVKCLLESLPSDFIPKAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL"
TODO: give this a title. Explain what code below is doing
# add necessary function
align.h3.vs.m3a <- Biostrings::pairwiseAlignment(
hShroom3,
mShroom3a)
TODO: In 1-2 sentence explain what this object shows
align.h3.vs.m3a
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: MMRTTEDFHKPSATLN-SNTATKGRYIYLEAFLE...KAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL
## subject: MK-TPENLEEPSATPNPSRTPTE-RFVYLEALLE...KAGAISLPPALTGHATPGGTSVFGGVFPTLTSPL
## score: 2189.934
TODO: explain what this is showing
# add necessary function
Biostrings::pid(align.h3.vs.m3a)
## [1] 70.56511
TODO: briefly explain what is going on here versus the previous code chunk
align.h3.vs.h2 <- Biostrings::pairwiseAlignment(
hShroom3,
hShroom2)
TODO: explain what is going on here and compare and contrast with previous ouput
score(align.h3.vs.h2)
## [1] -5673.853
TODO: briefly explian the difference between the output of score() and pid() (can be very brief - we’ll get into the details later)
Biostrings::pid(align.h3.vs.h2)
## [1] 33.83277
TODO: briefly explain why I have this whole table here
shroom_table <- c("CAA78718" , "X. laevis Apx" , "xShroom1",
"NP_597713" , "H. sapiens APXL2" , "hShroom1",
"CAA58534" , "H. sapiens APXL", "hShroom2",
"ABD19518" , "M. musculus Apxl" , "mShroom2",
"AAF13269" , "M. musculus ShroomL" , "mShroom3a",
"AAF13270" , "M. musculus ShroomS" , "mShroom3b",
"NP_065910", "H. sapiens Shroom" , "hShroom3",
"ABD59319" , "X. laevis Shroom-like", "xShroom3",
"NP_065768", "H. sapiens KIAA1202" , "hShroom4a",
"AAK95579" , "H. sapiens SHAP-A" , "hShroom4b",
#"DQ435686" , "M. musculus KIAA1202" , "mShroom4",
"ABA81834" , "D. melanogaster Shroom", "dmShroom",
"EAA12598" , "A. gambiae Shroom", "agShroom",
"XP_392427" , "A. mellifera Shroom" , "amShroom",
"XP_783573" , "S. purpuratus Shroom" , "spShroom") #sea urchin
TODO: write a short sentence explaining what this next code chunk will do, then annotate each line with what was done.
# convert to XXXXXXXXXC
shroom_table_matrix <- matrix(shroom_table,
byrow = T,
nrow = 14)
# convert to XXXXXXXXXC
shroom_table <- data.frame(shroom_table_matrix,
stringsAsFactors = F)
# XXXXXXXXXC columns
names(shroom_table) <- c("accession", "name.orig","name.new")
# Create simplified species names
shroom_table$spp <- "Homo"
shroom_table$spp[grep("laevis",shroom_table$name.orig)] <- "Xenopus"
shroom_table$spp[grep("musculus",shroom_table$name.orig)] <- "Mus"
shroom_table$spp[grep("melanogaster",shroom_table$name.orig)] <- "Drosophila"
shroom_table$spp[grep("gambiae",shroom_table$name.orig)] <- "mosquito"
shroom_table$spp[grep("mellifera",shroom_table$name.orig)] <- "bee"
shroom_table$spp[grep("purpuratus",shroom_table$name.orig)] <- "sea urchin"
TODO: in a brief sentence explain what this is doing
shroom_table
## accession name.orig name.new spp
## 1 CAA78718 X. laevis Apx xShroom1 Xenopus
## 2 NP_597713 H. sapiens APXL2 hShroom1 Homo
## 3 CAA58534 H. sapiens APXL hShroom2 Homo
## 4 ABD19518 M. musculus Apxl mShroom2 Mus
## 5 AAF13269 M. musculus ShroomL mShroom3a Mus
## 6 AAF13270 M. musculus ShroomS mShroom3b Mus
## 7 NP_065910 H. sapiens Shroom hShroom3 Homo
## 8 ABD59319 X. laevis Shroom-like xShroom3 Xenopus
## 9 NP_065768 H. sapiens KIAA1202 hShroom4a Homo
## 10 AAK95579 H. sapiens SHAP-A hShroom4b Homo
## 11 ABA81834 D. melanogaster Shroom dmShroom Drosophila
## 12 EAA12598 A. gambiae Shroom agShroom mosquito
## 13 XP_392427 A. mellifera Shroom amShroom bee
## 14 XP_783573 S. purpuratus Shroom spShroom sea urchin
TODO: in a brief sentence explain what the $ allows us to do
shroom_table$accession
## [1] "CAA78718" "NP_597713" "CAA58534" "ABD19518" "AAF13269" "AAF13270"
## [7] "NP_065910" "ABD59319" "NP_065768" "AAK95579" "ABA81834" "EAA12598"
## [13] "XP_392427" "XP_783573"
TODO: briefly explain what this chunk is doing and add the correct function
# add necessary function
shrooms <-rentrez::entrez_fetch(db = "protein",
id = shroom_table$accession,
rettype = "fasta")
TODO: in a very brief sentence explain what this is doing.
cat(shrooms)
TODO: in a brief sentence explain what this is doing and if/how its different from the previous code chunks
shrooms_list <- compbio4all::entrez_fetch_list(db = "protein",
id = shroom_table$accession,
rettype = "fasta")
TODO: briefly explain what I am doing this
length(shrooms_list)
## [1] 14
TODO: briefly explain what I am doing this. We will get into the details of for() loops in R later in the semester.
for(i in 1:length(shrooms_list)){
shrooms_list[[i]] <- fasta_cleaner(shrooms_list[[i]], parse = F)
}
TODO: summarize what is going on in this code chunk, then annotate each line of code with what its doing
# XXXXXXXXCX
shrooms_vector <- rep(NA, length(shrooms_list))
# XXXXXXXXCX
for(i in 1:length(shrooms_vector)){
shrooms_vector[i] <- shrooms_list[[i]]
}
# XXXXXXXXCX
names(shrooms_vector) <- names(shrooms_list)
TODO: explain what this is doing then add the necessary function.
# add necessary function
shrooms_vector_ss <- Biostrings::AAStringSet(shrooms_vector)
TODO: briefly summarize what this section of the document will do.
Readings will be assigned to explain what MSAs are.
TODO: briefly explain what this chunk does, then add the necessary function.
# add necessary function
shrooms_align <-msa(shrooms_vector_ss,
method = "ClustalW")
## use default substitution matrix
TODO: briefly summarize what this section will do.
TODO: Briefly summarize what output is shown below
shrooms_align
## CLUSTAL 2.1
##
## Call:
## msa(shrooms_vector_ss, method = "ClustalW")
##
## MsaAAMultipleAlignment with 14 rows and 2252 columns
## aln names
## [1] -------------------------...------------------------- NP_065768
## [2] -------------------------...------------------------- AAK95579
## [3] -------------------------...SVFGGVFPTLTSPL----------- AAF13269
## [4] -------------------------...SVFGGVFPTLTSPL----------- AAF13270
## [5] -------------------------...CTFSGIFPTLTSPL----------- NP_065910
## [6] -------------------------...NKS--LPPPLTSSL----------- ABD59319
## [7] -------------------------...------------------------- CAA58534
## [8] -------------------------...------------------------- ABD19518
## [9] -------------------------...LT----------------------- NP_597713
## [10] -------------------------...------------------------- CAA78718
## [11] -------------------------...------------------------- EAA12598
## [12] -------------------------...------------------------- ABA81834
## [13] MTELQPSPPGYRVQDEAPGPPSCPP...------------------------- XP_392427
## [14] -------------------------...AATSSSSNGIGGPEQLNSNATSSYC XP_783573
## Con -------------------------...------------------------- Consensus
TODO: briefly explain what is being done in this chunk. This is tricky (and annoying) so do your best
# WHAT IS THE LINE BELOW DOING? (its tricky - do your best)
class(shrooms_align) <- "AAMultipleAlignment"
# WHAT IS THE LINE BELOW DOING? This is simpler
shrooms_align_seqinr <- msaConvert(shrooms_align, type = "seqinr::alignment")
TODO: what is the output this produces
print_msa(alignment = shrooms_align_seqinr,
chunksize = 60)
TODO: explain this output and how its differnet from the prevoius
## add necessary function
ggmsa::ggmsa(shrooms_align, # shrooms_align, NOT shrooms_align_seqinr
start = 2000,
end = 2100)
TODO: explain what this command is doing. Add the package the function is coming from using :: notation This may not work for everyone. If its not working you can comment it out.
msaPrettyPrint(shrooms_align, # alignment
file = "shroom_msa.pdf", # file name
y=c(2000, 2100), # range
askForOverwrite=FALSE)
TODO: explain what this command is doing
getwd()
## [1] "/Users/haydenbash"
To make things easier we’ll move forward with just a subset of sequences:
Our main working object shrooms_vector_ss has the names of our genes listed
names(shrooms_vector_ss)
## [1] "CAA78718" "NP_597713" "CAA58534" "ABD19518" "AAF13269" "AAF13270"
## [7] "NP_065910" "ABD59319" "NP_065768" "AAK95579" "ABA81834" "EAA12598"
## [13] "XP_392427" "XP_783573"
We can select the ones we want to focus on be first making a vector of the names
names.focal <- c("XP_392427","EAA12598","ABA81834","XP_783573","CAA78718")
We can use this vector and bracket notation to select the what we want from shrooms_vector_ss:
shrooms_vector_ss[names.focal]
## AAStringSet object of length 5:
## width seq names
## [1] 2126 MTELQPSPPGYRVQDEAPGPPSC...GREIQDKVKLGEEQLAALREAID XP_392427
## [2] 674 IPFSSSPKNRSNSKASYLPRQPR...ADKIKLGEEQLAALKDTLVQSEC EAA12598
## [3] 1576 MKMRNHKENGNGSEMGESTKSLA...AVRIKGSEEQLSSLSDALVQSDC ABA81834
## [4] 1661 MMKDAMYPTTTSTTSSSVNPLPK...TSSSSNGIGGPEQLNSNATSSYC XP_783573
## [5] 1420 MSAFGNTIERWNIKSTGVIAGLG...KNLEEKIKVYEEQFESIHNSLPP CAA78718
Let’s assign the subset of sequences to a new object called shrooms_vector_ss_subset.
shrooms_vector_ss_subset <- shrooms_vector_ss[names.focal]
Let’s make another MSA with just this subset. If msa isn’t working for you you can comment this out.
shrooms_align_subset <- msa(shrooms_vector_ss_subset,
method = "ClustalW")
## use default substitution matrix
To view it using ggmsa we need to do those annoying conversions again.
class(shrooms_align_subset) <- "AAMultipleAlignment"
shrooms_align_subset_seqinr <- msaConvert(shrooms_align_subset, type = "seqinr::alignment")
THen we can plot it
ggmsa::ggmsa(shrooms_align_subset, # shrooms_align, NOT shrooms_align_seqinr
start = 2030,
end = 2100)
We can save our new smaller MSA like this.
msaPrettyPrint(shrooms_align_subset, # alignment
file = "shroom_msa_subset.pdf", # file name
y=c(2030, 2100), # range
askForOverwrite=FALSE)
While an MSA is a good way to examine a sequence its hard to assess all of the information visually. A phylogenetic tree allows you to summarize patterns in an MSA. The fastest way to make phylogenetic trees to is first summarize an MSA using a genetic distance matrix. The more amino acids that are identical to each other, the smaller the genetic distance is between them and the less evolution has occurred.
We usually work in terms of difference or genetic distance (a.k.a. evolutionary distance), though often we also talk in terms of similarity or identity.
Calculating genetic distance from an MSA is done using the seqinr::dist.alignment() function.
shrooms_subset_dist <- seqinr::dist.alignment(shrooms_align_subset_seqinr,
matrix = "identity")
This produces a “dist” class object.
is(shrooms_subset_dist)
## [1] "dist" "oldClass"
class(shrooms_subset_dist)
## [1] "dist"
If you’ve been having trouble with the MSA software, the data necessary to build the distance matrix directly in R is in this code chunk (you can ignore the details).
shrooms_subset_dist_alt <- matrix(data = NA,
nrow = 5,
ncol = 5)
distances <- c(0.8260049,
0.8478722, 0.9000568,
0.9244596, 0.9435187, 0.9372139,
0.9238779, 0.9370038, 0.9323225,0.9413209)
shrooms_subset_dist_alt[lower.tri(shrooms_subset_dist_alt)] <- distances
seqnames <- c("EAA12598","ABA81834","XP_392427", "XP_783573","CAA78718")
colnames(shrooms_subset_dist_alt) <- seqnames
row.names(shrooms_subset_dist_alt) <- seqnames
shrooms_subset_dist_alt <- as.dist(shrooms_subset_dist_alt)
shrooms_subset_dist <- shrooms_subset_dist_alt
We’ve made a matrix using dist.alignment(); let’s round it off so its easier to look at using the round() function.
shrooms_subset_dist_rounded <- round(shrooms_subset_dist,
digits = 3)
If we want to look at it we can type
shrooms_subset_dist_rounded
## EAA12598 ABA81834 XP_392427 XP_783573
## ABA81834 0.826
## XP_392427 0.848 0.944
## XP_783573 0.900 0.937 0.937
## CAA78718 0.924 0.924 0.932 0.941
Not that we have 5 sequence, but the matrix is 4 x 4. This is because redundant information is dropped, including distances from one sequence to itself. This makes it so that the first column is EAA12598, but the first row is ABA81834.
We got our sequences, built a multiple sequence alignment, and calculated the genetic distance between sequences. Now we are - finally - ready to build a phylogenetic tree.
First, we let R figure out the structure of the tree. There are MANY ways to build phylogenetic trees. We’ll use a common one used for exploring sequences called neighbor joining algorithm via the function nj(). Neighbor joining uses genetic distances to cluster sequences into clades.
nj() is simple function that takes only a single argument, a distance matrix.
# Note - not using rounded values
tree_subset <- nj(shrooms_subset_dist)
Now we’ll make a quick plot of our tree using plot() (and add a little label using an important function called mtext()).
# plot tree
plot.phylo(tree_subset, main="Phylogenetic Tree",
type = "unrooted",
use.edge.length = F)
# add label
mtext(text = "Shroom family gene tree - UNrooted, no branch lengths")
This is an unrooted tree with no outgroup defined. For the sake of plotting we’ve also ignored the evolutionary distance between the sequences, so the branch lengths don’t have meaning.
To make a rooted tree we remove type = "unrooted. In the case of neighbor joining, the algorithm tries to figure out the outgroup on its own.
# plot tree
plot.phylo(tree_subset, main="Phylogenetic Tree",
use.edge.length = F)
# add label
mtext(text = "Shroom family gene tree - rooted, no branch lenths")
We can include information about branch length by setting use.edge.length = ... to T.
# plot tree
plot.phylo(tree_subset, main="Phylogenetic Tree",
use.edge.length = T)
# add label
mtext(text = "Shroom family gene tree - rooted, with branch lenths")
Now the length of the branches indicates the evolutionary distance between sequences and correlate to the distances reported in our distance matrix. The branches are all very long, indicating that these genes have been evolving independently for many millions of years.
An important note: the vertical lines on the tree have no meaning, only the horizontal ones.
Because the branch lengths are all so long I find this tree a bit hard to view when its rooted. Let’s make it unrooted again.
# plot tree
plot.phylo(tree_subset, main="Phylogenetic Tree",
type = "unrooted",
use.edge.length = T)
# add label
mtext(text = "Shroom family gene tree - rooted, with branch lenths")
Now you can see that the ABA and EAA sequences form a clade, and that the distance between them is somewhat smaller than the distance between other sequences. If we go back to our original distance matrix, we can see that the smallest genetic distance is between ABA and EAA at 0.826.
shrooms_subset_dist_rounded
## EAA12598 ABA81834 XP_392427 XP_783573
## ABA81834 0.826
## XP_392427 0.848 0.944
## XP_783573 0.900 0.937 0.937
## CAA78718 0.924 0.924 0.932 0.941
We can confirm that this is the minimum using the min() function.
min(shrooms_subset_dist_rounded)
## [1] 0.826