STAT 545A Homework 2

Matt Gingerich

Loading a Gapminder data set and printing basic info:

gDat <- read.delim("gapminderDataFiveYear.txt")
print(paste("Number of observations: ", nrow(gDat)))
## [1] "Number of observations:  1704"
colnames(gDat)
## [1] "country"   "year"      "pop"       "continent" "lifeExp"   "gdpPercap"
summary(gDat)
##         country          year           pop              continent  
##  Afghanistan:  12   Min.   :1952   Min.   :6.00e+04   Africa  :624  
##  Albania    :  12   1st Qu.:1966   1st Qu.:2.79e+06   Americas:300  
##  Algeria    :  12   Median :1980   Median :7.02e+06   Asia    :396  
##  Angola     :  12   Mean   :1980   Mean   :2.96e+07   Europe  :360  
##  Argentina  :  12   3rd Qu.:1993   3rd Qu.:1.96e+07   Oceania : 24  
##  Australia  :  12   Max.   :2007   Max.   :1.32e+09                 
##  (Other)    :1632                                                   
##     lifeExp       gdpPercap     
##  Min.   :23.6   Min.   :   241  
##  1st Qu.:48.2   1st Qu.:  1202  
##  Median :60.7   Median :  3532  
##  Mean   :59.5   Mean   :  7215  
##  3rd Qu.:70.8   3rd Qu.:  9325  
##  Max.   :82.6   Max.   :113523  
## 

Plotting per capita GDP of South Korea (Korea, Rep.) and North Korea (Korea, Dem. Rep.) from 1952 to 2007:

library(lattice)
xyplot(gdpPercap ~ year | country, gDat, subset = (country == "Korea, Rep." | 
    country == "Korea, Dem. Rep."), type = c("p", "smooth"))

plot of chunk unnamed-chunk-2