This first section of R-code extract some of the contrasts that was of interest, but was not done earlier.

library(topGO)
## Loading required package: graph
## Loading required package: Biobase
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## 
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## 
## The following object is masked from 'package:stats':
## 
##     xtabs
## 
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, as.vector, cbind,
##     colnames, do.call, duplicated, eval, evalq, Filter, Find, get,
##     intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rep.int, rownames, sapply, setdiff, sort,
##     table, tapply, union, unique, unlist, unsplit
## 
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## 
## Loading required package: GO.db
## Loading required package: AnnotationDbi
## Loading required package: stats4
## Loading required package: GenomeInfoDb
## Loading required package: S4Vectors
## Loading required package: IRanges
## 
## Attaching package: 'AnnotationDbi'
## 
## The following object is masked from 'package:GenomeInfoDb':
## 
##     species
## 
## Loading required package: DBI
## 
## Loading required package: SparseM
## 
## Attaching package: 'SparseM'
## 
## The following object is masked from 'package:base':
## 
##     backsolve
## 
## groupGOTerms:    GOBPTerm, GOMFTerm, GOCCTerm environments built.
## 
## Attaching package: 'topGO'
## 
## The following objects are masked from 'package:IRanges':
## 
##     members, score, score<-
library(limma)
## 
## Attaching package: 'limma'
## 
## The following object is masked from 'package:BiocGenerics':
## 
##     plotMA
design<-read.table("../designMatrix.txt", header=T)
lev <- c("con.0d","con.1d","CeO2.1d","SDC.1d","NAC.1d","con.4d","CeO2.4d","SDC.4d","NAC.4d", "con.7d","CeO2.7d","SDC.7d","NAC.7d")
f<- factor(design$Name, levels=lev)
des <- model.matrix(~0+f)
colnames(des) <- lev
load(file = "Fit.rdata") # reads in earlier analysis results

control.7_4 <- makeContrasts("con.7d-con.4d", levels=lev)
fit.control.7_4 <- contrasts.fit(fit, control.7_4)
fit.control.7_4 <- eBayes(fit.control.7_4)
fit.control.7_4$genes <- gene.list.retained
topTableF(fit.control.7_4, adjust="BH")
##                       ensembl_gene_id external_gene_name con.7d.con.4d
## ENSMUSG00000031375 ENSMUSG00000031375                Bgn      3.136833
## ENSMUSG00000039748 ENSMUSG00000039748               Exo1     -2.479832
## ENSMUSG00000017716 ENSMUSG00000017716              Birc5     -2.353609
## ENSMUSG00000023015 ENSMUSG00000023015            Racgap1     -1.961801
## ENSMUSG00000028678 ENSMUSG00000028678              Kif2c     -2.284767
## ENSMUSG00000001864 ENSMUSG00000001864              Aif1l     -1.943947
## ENSMUSG00000069910 ENSMUSG00000069910              Spdl1     -1.935958
## ENSMUSG00000030346 ENSMUSG00000030346           Rad51ap1     -2.282057
## ENSMUSG00000023505 ENSMUSG00000023505              Cdca3     -2.347342
## ENSMUSG00000030677 ENSMUSG00000030677              Kif22     -2.370468
##                     AveExpr        F      P.Value    adj.P.Val
## ENSMUSG00000031375 5.332354 808.9531 1.340702e-23 2.364461e-19
## ENSMUSG00000039748 5.043317 711.8636 8.839100e-23 7.794318e-19
## ENSMUSG00000017716 6.039535 685.8608 1.527683e-22 8.980741e-19
## ENSMUSG00000023015 7.400599 633.0405 4.949165e-22 2.141194e-18
## ENSMUSG00000028678 5.620743 624.2695 6.070519e-22 2.141194e-18
## ENSMUSG00000001864 5.574066 589.1575 1.414537e-21 4.157795e-18
## ENSMUSG00000069910 4.788107 581.8255 1.698084e-21 4.278202e-18
## ENSMUSG00000030346 4.596470 568.6560 2.370795e-21 5.226418e-18
## ENSMUSG00000023505 5.524965 553.4214 3.520397e-21 6.801947e-18
## ENSMUSG00000030677 5.671283 546.9897 4.172814e-21 6.801947e-18
results.control.7_4 <- decideTests(fit.control.7_4, adjust.method="BH")
write.fit(fit.control.7_4, results=results.control.7_4, file="control7_4.txt", digits=30, dec=",", adjust = "BH")

control.4_1 <- makeContrasts("con.4d-con.1d", levels=lev)
fit.control.4_1 <- contrasts.fit(fit, control.4_1)
fit.control.4_1 <- eBayes(fit.control.4_1)
fit.control.4_1$genes <- gene.list.retained
topTableF(fit.control.4_1, adjust="BH")
##                       ensembl_gene_id external_gene_name con.4d.con.1d
## ENSMUSG00000026185 ENSMUSG00000026185             Igfbp5      3.343576
## ENSMUSG00000018411 ENSMUSG00000018411               Mapt      2.237047
## ENSMUSG00000052229 ENSMUSG00000052229              Gpr17      2.595538
## ENSMUSG00000030257 ENSMUSG00000030257             Srgap3      1.491618
## ENSMUSG00000041482 ENSMUSG00000041482             Piezo2      2.310039
## ENSMUSG00000024803 ENSMUSG00000024803             Ankrd1     -2.325763
## ENSMUSG00000019997 ENSMUSG00000019997               Ctgf     -3.832182
## ENSMUSG00000007097 ENSMUSG00000007097             Atp1a2      4.257575
## ENSMUSG00000020908 ENSMUSG00000020908               Myh3      3.196655
## ENSMUSG00000042961 ENSMUSG00000042961             Egflam      1.524425
##                     AveExpr        F      P.Value    adj.P.Val
## ENSMUSG00000026185 6.848453 979.5128 7.850641e-25 1.384539e-20
## ENSMUSG00000018411 5.959252 441.8348 9.133987e-20 8.054350e-16
## ENSMUSG00000052229 6.365094 385.1910 6.496782e-19 3.819242e-15
## ENSMUSG00000030257 5.387324 372.9599 1.027839e-18 4.531743e-15
## ENSMUSG00000041482 4.530825 337.9162 4.151035e-18 1.464153e-14
## ENSMUSG00000024803 4.747288 311.4302 1.306247e-17 3.839495e-14
## ENSMUSG00000019997 5.398320 306.7180 1.616745e-17 4.073273e-14
## ENSMUSG00000007097 3.622022 285.6973 4.347676e-17 9.584453e-14
## ENSMUSG00000020908 2.631798 257.3631 1.840999e-16 3.607540e-13
## ENSMUSG00000042961 5.772126 253.1419 2.310477e-16 4.074757e-13
results.control.4_1 <- decideTests(fit.control.4_1, adjust.method="BH")
write.fit(fit.control.4_1, results=results.control.4_1, file="control4_1.txt", digits=30, dec=",", adjust = "BH")

control.1_0 <- makeContrasts("con.1d-con.0d", levels=lev)
fit.control.1_0 <- contrasts.fit(fit, control.1_0)
fit.control.1_0 <- eBayes(fit.control.1_0)
fit.control.1_0$genes <- gene.list.retained
topTableF(fit.control.1_0, adjust="BH")
##                       ensembl_gene_id external_gene_name con.1d.con.0d
## ENSMUSG00000025880 ENSMUSG00000025880              Smad7     -2.767593
## ENSMUSG00000024063 ENSMUSG00000024063                Lbh      1.552172
## ENSMUSG00000022324 ENSMUSG00000022324              Matn2      2.065396
## ENSMUSG00000018166 ENSMUSG00000018166              Erbb3      1.543640
## ENSMUSG00000033066 ENSMUSG00000033066               Gas7      2.008864
## ENSMUSG00000025885 ENSMUSG00000025885              Myo5b      1.634908
## ENSMUSG00000033105 ENSMUSG00000033105                Lss      1.592018
## ENSMUSG00000001123 ENSMUSG00000001123             Lgals9      2.236096
## ENSMUSG00000033208 ENSMUSG00000033208              S100b      2.575458
## ENSMUSG00000063415 ENSMUSG00000063415            Cyp26b1     -5.640826
##                       AveExpr        F      P.Value    adj.P.Val
## ENSMUSG00000025880  3.0921165 697.6810 1.188398e-22 2.095858e-18
## ENSMUSG00000024063  8.9655336 478.6905 2.881580e-20 1.701464e-16
## ENSMUSG00000022324  8.5644917 478.5445 2.894303e-20 1.701464e-16
## ENSMUSG00000018166  8.9954200 453.8158 6.217474e-20 2.741284e-16
## ENSMUSG00000033066  9.6781861 425.6469 1.560393e-19 4.669246e-16
## ENSMUSG00000025885  7.1434780 421.6533 1.786007e-19 4.669246e-16
## ENSMUSG00000033105  7.8363905 420.5657 1.853296e-19 4.669246e-16
## ENSMUSG00000001123  6.1899384 390.0798 5.428817e-19 1.083735e-15
## ENSMUSG00000033208  6.8653808 389.5719 5.530513e-19 1.083735e-15
## ENSMUSG00000063415 -0.8231852 372.8367 1.032672e-18 1.821221e-15
results.control.1_0 <- decideTests(fit.control.1_0, adjust.method="BH")
write.fit(fit.control.1_0, results=results.control.1_0, file="control1_0.txt", digits=30, dec=",", adjust = "BH")

This second section does the TopGO analysis for the contrasts addressed, treating up and down regulated genes seperately. NB! This code is anything, but nicely written and I will update it using functions and loops instead of this mess, but there was not enough time to finalize that.

control.7_4.pval.up <- limmaTopGenes(fit.control.7_4, dir = 'up') 
go.MF.control.7_4.up <- new("topGOdata", description="GO annotation control 7 vs 4", ontology="MF", allGenes = control.7_4.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs .....
## Loading required package: org.Mm.eg.db
##  ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.weight01.control.7_4.up <- runTest(go.MF.control.7_4.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 1192 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 13:  3 nodes to be scored    (19 eliminated genes)
## 
##   Level 12:  3 nodes to be scored    (19 eliminated genes)
## 
##   Level 11:  10 nodes to be scored   (53 eliminated genes)
## 
##   Level 10:  25 nodes to be scored   (86 eliminated genes)
## 
##   Level 9:   80 nodes to be scored   (237 eliminated genes)
## 
##   Level 8:   134 nodes to be scored  (719 eliminated genes)
## 
##   Level 7:   198 nodes to be scored  (2474 eliminated genes)
## 
##   Level 6:   293 nodes to be scored  (3308 eliminated genes)
## 
##   Level 5:   201 nodes to be scored  (5027 eliminated genes)
## 
##   Level 4:   160 nodes to be scored  (7188 eliminated genes)
## 
##   Level 3:   65 nodes to be scored   (9347 eliminated genes)
## 
##   Level 2:   16 nodes to be scored   (10008 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10686 eliminated genes)
all.res.control.7_4.up <- GenTable(go.MF.control.7_4.up, Weight01 = result.weight01.control.7_4.up, topNodes = table(result.weight01.control.7_4.up@score < 0.01)[2])
showSigOfNodes(go.MF.control.7_4.up, score(result.weight01.control.7_4.up), firstSigNodes = 10, useInfo = 'all')
## Loading required package: Rgraphviz
## Loading required package: grid
## 
## Attaching package: 'grid'
## 
## The following object is masked from 'package:topGO':
## 
##     depth

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 34 
## Number of Edges = 39 
## 
## $complete.dag
## [1] "A graph with 34 nodes."
control.7_4.pval.down <- limmaTopGenes(fit.control.7_4, dir = 'down') 
go.MF.control.7_4.down <- new("topGOdata", description="GO annotation control 7 vs 4", ontology="MF", allGenes = control.7_4.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.weight01.control.7_4.down <- runTest(go.MF.control.7_4.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 1196 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 13:  3 nodes to be scored    (10 eliminated genes)
## 
##   Level 12:  2 nodes to be scored    (19 eliminated genes)
## 
##   Level 11:  8 nodes to be scored    (53 eliminated genes)
## 
##   Level 10:  25 nodes to be scored   (71 eliminated genes)
## 
##   Level 9:   79 nodes to be scored   (203 eliminated genes)
## 
##   Level 8:   134 nodes to be scored  (720 eliminated genes)
## 
##   Level 7:   204 nodes to be scored  (2489 eliminated genes)
## 
##   Level 6:   293 nodes to be scored  (3315 eliminated genes)
## 
##   Level 5:   203 nodes to be scored  (5054 eliminated genes)
## 
##   Level 4:   161 nodes to be scored  (7191 eliminated genes)
## 
##   Level 3:   65 nodes to be scored   (9352 eliminated genes)
## 
##   Level 2:   16 nodes to be scored   (10012 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10686 eliminated genes)
all.res.control.7_4.down <- GenTable(go.MF.control.7_4.down, Weight01 = result.weight01.control.7_4.down, topNodes = table(result.weight01.control.7_4.down@score < 0.01)[2])
showSigOfNodes(go.MF.control.7_4.down, score(result.weight01.control.7_4.down), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 43 
## Number of Edges = 58 
## 
## $complete.dag
## [1] "A graph with 43 nodes."
control.7_4.pval.up <- limmaTopGenes(fit.control.7_4, dir = 'up') 
go.BP.control.7_4.up <- new("topGOdata", description="GO annotation control 7 vs 4", ontology="BP", allGenes = control.7_4.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.weight01.control.7_4.up <- runTest(go.BP.control.7_4.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 4426 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 19:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 18:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  7 nodes to be scored    (10 eliminated genes)
## 
##   Level 16:  14 nodes to be scored   (45 eliminated genes)
## 
##   Level 15:  25 nodes to be scored   (148 eliminated genes)
## 
##   Level 14:  56 nodes to be scored   (320 eliminated genes)
## 
##   Level 13:  112 nodes to be scored  (609 eliminated genes)
## 
##   Level 12:  208 nodes to be scored  (1112 eliminated genes)
## 
##   Level 11:  371 nodes to be scored  (1975 eliminated genes)
## 
##   Level 10:  500 nodes to be scored  (3701 eliminated genes)
## 
##   Level 9:   614 nodes to be scored  (5023 eliminated genes)
## 
##   Level 8:   649 nodes to be scored  (6885 eliminated genes)
## 
##   Level 7:   647 nodes to be scored  (8051 eliminated genes)
## 
##   Level 6:   552 nodes to be scored  (9003 eliminated genes)
## 
##   Level 5:   391 nodes to be scored  (9709 eliminated genes)
## 
##   Level 4:   203 nodes to be scored  (10318 eliminated genes)
## 
##   Level 3:   53 nodes to be scored   (10558 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10811 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10919 eliminated genes)
all.res.BP.control.7_4.up <- GenTable(go.BP.control.7_4.up, Weight01 = result.BP.weight01.control.7_4.up, topNodes = table(result.BP.weight01.control.7_4.up@score < 0.01)[2])
showSigOfNodes(go.BP.control.7_4.up, score(result.BP.weight01.control.7_4.up), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 170 
## Number of Edges = 360 
## 
## $complete.dag
## [1] "A graph with 170 nodes."
control.7_4.pval.down <- limmaTopGenes(fit.control.7_4, dir = 'down') 
go.BP.control.7_4.down <- new("topGOdata", description="GO annotation control 7 vs 4", ontology="BP", allGenes = control.7_4.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.weight01.control.7_4.down <- runTest(go.BP.control.7_4.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 4426 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 19:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 18:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  7 nodes to be scored    (10 eliminated genes)
## 
##   Level 16:  12 nodes to be scored   (45 eliminated genes)
## 
##   Level 15:  23 nodes to be scored   (148 eliminated genes)
## 
##   Level 14:  56 nodes to be scored   (305 eliminated genes)
## 
##   Level 13:  111 nodes to be scored  (600 eliminated genes)
## 
##   Level 12:  204 nodes to be scored  (1116 eliminated genes)
## 
##   Level 11:  370 nodes to be scored  (1999 eliminated genes)
## 
##   Level 10:  508 nodes to be scored  (3706 eliminated genes)
## 
##   Level 9:   629 nodes to be scored  (5072 eliminated genes)
## 
##   Level 8:   648 nodes to be scored  (6922 eliminated genes)
## 
##   Level 7:   642 nodes to be scored  (8058 eliminated genes)
## 
##   Level 6:   550 nodes to be scored  (9023 eliminated genes)
## 
##   Level 5:   389 nodes to be scored  (9705 eliminated genes)
## 
##   Level 4:   201 nodes to be scored  (10316 eliminated genes)
## 
##   Level 3:   52 nodes to be scored   (10557 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10811 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10919 eliminated genes)
all.res.BP.control.7_4.down <- GenTable(go.BP.control.7_4.down, Weight01 = result.BP.weight01.control.7_4.down, topNodes = table(result.BP.weight01.control.7_4.down@score < 0.01)[2])
showSigOfNodes(go.BP.control.7_4.down, score(result.BP.weight01.control.7_4.down), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 129 
## Number of Edges = 248 
## 
## $complete.dag
## [1] "A graph with 129 nodes."
control.7_4.pval.up <- limmaTopGenes(fit.control.7_4, dir = 'up') 
go.CC.control.7_4.up <- new("topGOdata", description="GO annotation control 7 vs 4", ontology="CC", allGenes = control.7_4.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.weight01.control.7_4.up <- runTest(go.CC.control.7_4.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 550 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 16:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 15:  8 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  21 nodes to be scored   (15 eliminated genes)
## 
##   Level 13:  22 nodes to be scored   (103 eliminated genes)
## 
##   Level 12:  34 nodes to be scored   (438 eliminated genes)
## 
##   Level 11:  74 nodes to be scored   (855 eliminated genes)
## 
##   Level 10:  73 nodes to be scored   (1663 eliminated genes)
## 
##   Level 9:   56 nodes to be scored   (3266 eliminated genes)
## 
##   Level 8:   57 nodes to be scored   (4552 eliminated genes)
## 
##   Level 7:   40 nodes to be scored   (5040 eliminated genes)
## 
##   Level 6:   38 nodes to be scored   (9281 eliminated genes)
## 
##   Level 5:   48 nodes to be scored   (9458 eliminated genes)
## 
##   Level 4:   47 nodes to be scored   (10565 eliminated genes)
## 
##   Level 3:   20 nodes to be scored   (11504 eliminated genes)
## 
##   Level 2:   10 nodes to be scored   (11717 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
all.res.CC.control.7_4.up <- GenTable(go.CC.control.7_4.up, Weight01 = result.CC.weight01.control.7_4.up, topNodes = table(result.CC.weight01.control.7_4.up@score < 0.01)[2])
showSigOfNodes(go.CC.control.7_4.up, score(result.CC.weight01.control.7_4.up), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 40 
## Number of Edges = 66 
## 
## $complete.dag
## [1] "A graph with 40 nodes."
control.7_4.pval.down <- limmaTopGenes(fit.control.7_4, dir = 'down') 
go.CC.control.7_4.down <- new("topGOdata", description="GO annotation control 7 vs 4", ontology="CC", allGenes = control.7_4.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.weight01.control.7_4.down <- runTest(go.CC.control.7_4.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 580 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 16:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 15:  8 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  25 nodes to be scored   (15 eliminated genes)
## 
##   Level 13:  24 nodes to be scored   (103 eliminated genes)
## 
##   Level 12:  36 nodes to be scored   (480 eliminated genes)
## 
##   Level 11:  80 nodes to be scored   (886 eliminated genes)
## 
##   Level 10:  75 nodes to be scored   (1703 eliminated genes)
## 
##   Level 9:   55 nodes to be scored   (3415 eliminated genes)
## 
##   Level 8:   60 nodes to be scored   (4562 eliminated genes)
## 
##   Level 7:   42 nodes to be scored   (5032 eliminated genes)
## 
##   Level 6:   43 nodes to be scored   (9294 eliminated genes)
## 
##   Level 5:   46 nodes to be scored   (9456 eliminated genes)
## 
##   Level 4:   53 nodes to be scored   (10558 eliminated genes)
## 
##   Level 3:   20 nodes to be scored   (11497 eliminated genes)
## 
##   Level 2:   11 nodes to be scored   (11718 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
all.res.CC.control.7_4.down <- GenTable(go.CC.control.7_4.down, Weight01 = result.CC.weight01.control.7_4.down, topNodes = table(result.CC.weight01.control.7_4.down@score < 0.01)[2])
showSigOfNodes(go.CC.control.7_4.down, score(result.CC.weight01.control.7_4.down), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 44 
## Number of Edges = 76 
## 
## $complete.dag
## [1] "A graph with 44 nodes."
control.4_1.pval.up <- limmaTopGenes(fit.control.4_1, dir = 'up') 
go.MF.control.4_1.up <- new("topGOdata", description="GO annotation control 4 vs 1", ontology="MF", allGenes = control.4_1.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.weight01.control.4_1.up <- runTest(go.MF.control.4_1.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 1142 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 13:  2 nodes to be scored    (11 eliminated genes)
## 
##   Level 12:  3 nodes to be scored    (19 eliminated genes)
## 
##   Level 11:  9 nodes to be scored    (53 eliminated genes)
## 
##   Level 10:  22 nodes to be scored   (86 eliminated genes)
## 
##   Level 9:   79 nodes to be scored   (229 eliminated genes)
## 
##   Level 8:   128 nodes to be scored  (691 eliminated genes)
## 
##   Level 7:   191 nodes to be scored  (2478 eliminated genes)
## 
##   Level 6:   280 nodes to be scored  (3269 eliminated genes)
## 
##   Level 5:   190 nodes to be scored  (4970 eliminated genes)
## 
##   Level 4:   157 nodes to be scored  (7140 eliminated genes)
## 
##   Level 3:   62 nodes to be scored   (9327 eliminated genes)
## 
##   Level 2:   16 nodes to be scored   (10009 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10683 eliminated genes)
all.res.control.4_1.up <- GenTable(go.MF.control.4_1.up, Weight01 = result.weight01.control.4_1.up, topNodes = table(result.weight01.control.4_1.up@score < 0.01)[2])
showSigOfNodes(go.MF.control.4_1.up, score(result.weight01.control.4_1.up), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 25 
## Number of Edges = 24 
## 
## $complete.dag
## [1] "A graph with 25 nodes."
control.4_1.pval.down <- limmaTopGenes(fit.control.4_1, dir = 'down') 
go.MF.control.4_1.down <- new("topGOdata", description="GO annotation control 4 vs 1", ontology="MF", allGenes = control.4_1.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.weight01.control.4_1.down <- runTest(go.MF.control.4_1.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 1091 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 13:  3 nodes to be scored    (19 eliminated genes)
## 
##   Level 12:  3 nodes to be scored    (19 eliminated genes)
## 
##   Level 11:  8 nodes to be scored    (53 eliminated genes)
## 
##   Level 10:  22 nodes to be scored   (86 eliminated genes)
## 
##   Level 9:   74 nodes to be scored   (203 eliminated genes)
## 
##   Level 8:   127 nodes to be scored  (686 eliminated genes)
## 
##   Level 7:   187 nodes to be scored  (2466 eliminated genes)
## 
##   Level 6:   245 nodes to be scored  (3290 eliminated genes)
## 
##   Level 5:   187 nodes to be scored  (4996 eliminated genes)
## 
##   Level 4:   151 nodes to be scored  (7157 eliminated genes)
## 
##   Level 3:   64 nodes to be scored   (9307 eliminated genes)
## 
##   Level 2:   16 nodes to be scored   (9992 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10687 eliminated genes)
all.res.control.4_1.down <- GenTable(go.MF.control.4_1.down, Weight01 = result.weight01.control.4_1.down, topNodes = table(result.weight01.control.4_1.down@score < 0.01)[2])
showSigOfNodes(go.MF.control.4_1.down, score(result.weight01.control.4_1.down), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 55 
## Number of Edges = 73 
## 
## $complete.dag
## [1] "A graph with 55 nodes."
control.4_1.pval.up <- limmaTopGenes(fit.control.4_1, dir = 'up') 
go.BP.control.4_1.up <- new("topGOdata", description="GO annotation control 4 vs 1", ontology="BP", allGenes = control.4_1.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.weight01.control.4_1.up <- runTest(go.BP.control.4_1.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 4184 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 19:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 18:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  4 nodes to be scored    (10 eliminated genes)
## 
##   Level 16:  11 nodes to be scored   (45 eliminated genes)
## 
##   Level 15:  23 nodes to be scored   (129 eliminated genes)
## 
##   Level 14:  51 nodes to be scored   (298 eliminated genes)
## 
##   Level 13:  100 nodes to be scored  (593 eliminated genes)
## 
##   Level 12:  198 nodes to be scored  (1093 eliminated genes)
## 
##   Level 11:  341 nodes to be scored  (1947 eliminated genes)
## 
##   Level 10:  472 nodes to be scored  (3703 eliminated genes)
## 
##   Level 9:   579 nodes to be scored  (4961 eliminated genes)
## 
##   Level 8:   610 nodes to be scored  (6841 eliminated genes)
## 
##   Level 7:   607 nodes to be scored  (8011 eliminated genes)
## 
##   Level 6:   528 nodes to be scored  (9000 eliminated genes)
## 
##   Level 5:   384 nodes to be scored  (9698 eliminated genes)
## 
##   Level 4:   201 nodes to be scored  (10318 eliminated genes)
## 
##   Level 3:   51 nodes to be scored   (10558 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10811 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10918 eliminated genes)
all.res.BP.control.4_1.up <- GenTable(go.BP.control.4_1.up, Weight01 = result.BP.weight01.control.4_1.up, topNodes = table(result.BP.weight01.control.4_1.up@score < 0.01)[2])
showSigOfNodes(go.BP.control.4_1.up, score(result.BP.weight01.control.4_1.up), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 115 
## Number of Edges = 204 
## 
## $complete.dag
## [1] "A graph with 115 nodes."
control.4_1.pval.down <- limmaTopGenes(fit.control.4_1, dir = 'down') 
go.BP.control.4_1.down <- new("topGOdata", description="GO annotation control 4 vs 1", ontology="BP", allGenes = control.4_1.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.weight01.control.4_1.down <- runTest(go.BP.control.4_1.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 4235 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 19:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 18:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  5 nodes to be scored    (10 eliminated genes)
## 
##   Level 16:  13 nodes to be scored   (45 eliminated genes)
## 
##   Level 15:  24 nodes to be scored   (139 eliminated genes)
## 
##   Level 14:  51 nodes to be scored   (318 eliminated genes)
## 
##   Level 13:  105 nodes to be scored  (600 eliminated genes)
## 
##   Level 12:  193 nodes to be scored  (1087 eliminated genes)
## 
##   Level 11:  344 nodes to be scored  (1962 eliminated genes)
## 
##   Level 10:  474 nodes to be scored  (3673 eliminated genes)
## 
##   Level 9:   590 nodes to be scored  (5034 eliminated genes)
## 
##   Level 8:   630 nodes to be scored  (6839 eliminated genes)
## 
##   Level 7:   620 nodes to be scored  (8013 eliminated genes)
## 
##   Level 6:   526 nodes to be scored  (9011 eliminated genes)
## 
##   Level 5:   383 nodes to be scored  (9703 eliminated genes)
## 
##   Level 4:   200 nodes to be scored  (10309 eliminated genes)
## 
##   Level 3:   53 nodes to be scored   (10552 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10811 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10919 eliminated genes)
all.res.BP.control.4_1.down <- GenTable(go.BP.control.4_1.down, Weight01 = result.BP.weight01.control.4_1.down, topNodes = table(result.BP.weight01.control.4_1.down@score < 0.01)[2])
showSigOfNodes(go.BP.control.4_1.down, score(result.BP.weight01.control.4_1.down), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 156 
## Number of Edges = 276 
## 
## $complete.dag
## [1] "A graph with 156 nodes."
control.4_1.pval.up <- limmaTopGenes(fit.control.4_1, dir = 'up') 
go.CC.control.4_1.up <- new("topGOdata", description="GO annotation control 4 vs 1", ontology="CC", allGenes = control.4_1.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.weight01.control.4_1.up <- runTest(go.CC.control.4_1.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 529 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  5 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  19 nodes to be scored   (0 eliminated genes)
## 
##   Level 13:  16 nodes to be scored   (77 eliminated genes)
## 
##   Level 12:  27 nodes to be scored   (414 eliminated genes)
## 
##   Level 11:  72 nodes to be scored   (784 eliminated genes)
## 
##   Level 10:  71 nodes to be scored   (1593 eliminated genes)
## 
##   Level 9:   53 nodes to be scored   (3359 eliminated genes)
## 
##   Level 8:   58 nodes to be scored   (4550 eliminated genes)
## 
##   Level 7:   41 nodes to be scored   (5025 eliminated genes)
## 
##   Level 6:   38 nodes to be scored   (9286 eliminated genes)
## 
##   Level 5:   48 nodes to be scored   (9458 eliminated genes)
## 
##   Level 4:   49 nodes to be scored   (10563 eliminated genes)
## 
##   Level 3:   20 nodes to be scored   (11504 eliminated genes)
## 
##   Level 2:   11 nodes to be scored   (11718 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
all.res.CC.control.4_1.up <- GenTable(go.CC.control.4_1.up, Weight01 = result.CC.weight01.control.4_1.up, topNodes = table(result.CC.weight01.control.4_1.up@score < 0.01)[2])
showSigOfNodes(go.CC.control.4_1.up, score(result.CC.weight01.control.4_1.up), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 46 
## Number of Edges = 74 
## 
## $complete.dag
## [1] "A graph with 46 nodes."
control.4_1.pval.down <- limmaTopGenes(fit.control.4_1, dir = 'down') 
go.CC.control.4_1.down <- new("topGOdata", description="GO annotation control 4 vs 1", ontology="CC", allGenes = control.4_1.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.weight01.control.4_1.down <- runTest(go.CC.control.4_1.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 515 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 16:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 15:  7 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  17 nodes to be scored   (15 eliminated genes)
## 
##   Level 13:  18 nodes to be scored   (93 eliminated genes)
## 
##   Level 12:  28 nodes to be scored   (377 eliminated genes)
## 
##   Level 11:  71 nodes to be scored   (785 eliminated genes)
## 
##   Level 10:  67 nodes to be scored   (1657 eliminated genes)
## 
##   Level 9:   53 nodes to be scored   (3332 eliminated genes)
## 
##   Level 8:   57 nodes to be scored   (4526 eliminated genes)
## 
##   Level 7:   36 nodes to be scored   (5025 eliminated genes)
## 
##   Level 6:   40 nodes to be scored   (9278 eliminated genes)
## 
##   Level 5:   44 nodes to be scored   (9451 eliminated genes)
## 
##   Level 4:   44 nodes to be scored   (10558 eliminated genes)
## 
##   Level 3:   20 nodes to be scored   (11492 eliminated genes)
## 
##   Level 2:   11 nodes to be scored   (11718 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
all.res.CC.control.4_1.down <- GenTable(go.CC.control.4_1.down, Weight01 = result.CC.weight01.control.4_1.down, topNodes = table(result.CC.weight01.control.4_1.down@score < 0.01)[2])
showSigOfNodes(go.CC.control.4_1.down, score(result.CC.weight01.control.4_1.down), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 51 
## Number of Edges = 83 
## 
## $complete.dag
## [1] "A graph with 51 nodes."
control.1_0.pval.up <- limmaTopGenes(fit.control.1_0, dir = 'up') 
go.MF.control.1_0.up <- new("topGOdata", description="GO annotation control 1 vs 0", ontology="MF", allGenes = control.1_0.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.weight01.control.1_0.up <- runTest(go.MF.control.1_0.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 1190 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 13:  2 nodes to be scored    (11 eliminated genes)
## 
##   Level 12:  3 nodes to be scored    (19 eliminated genes)
## 
##   Level 11:  10 nodes to be scored   (53 eliminated genes)
## 
##   Level 10:  24 nodes to be scored   (86 eliminated genes)
## 
##   Level 9:   80 nodes to be scored   (237 eliminated genes)
## 
##   Level 8:   130 nodes to be scored  (716 eliminated genes)
## 
##   Level 7:   199 nodes to be scored  (2482 eliminated genes)
## 
##   Level 6:   291 nodes to be scored  (3286 eliminated genes)
## 
##   Level 5:   205 nodes to be scored  (5026 eliminated genes)
## 
##   Level 4:   162 nodes to be scored  (7207 eliminated genes)
## 
##   Level 3:   65 nodes to be scored   (9356 eliminated genes)
## 
##   Level 2:   16 nodes to be scored   (10012 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10686 eliminated genes)
all.res.control.1_0.up <- GenTable(go.MF.control.1_0.up, Weight01 = result.weight01.control.1_0.up, topNodes = table(result.weight01.control.1_0.up@score < 0.01)[2])
showSigOfNodes(go.MF.control.1_0.up, score(result.weight01.control.1_0.up), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 27 
## Number of Edges = 31 
## 
## $complete.dag
## [1] "A graph with 27 nodes."
control.1_0.pval.down <- limmaTopGenes(fit.control.1_0, dir = 'down') 
go.MF.control.1_0.down <- new("topGOdata", description="GO annotation control 1 vs 0", ontology="MF", allGenes = control.1_0.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.weight01.control.1_0.down <- runTest(go.MF.control.1_0.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 1157 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 13:  3 nodes to be scored    (19 eliminated genes)
## 
##   Level 12:  3 nodes to be scored    (19 eliminated genes)
## 
##   Level 11:  7 nodes to be scored    (53 eliminated genes)
## 
##   Level 10:  25 nodes to be scored   (86 eliminated genes)
## 
##   Level 9:   77 nodes to be scored   (211 eliminated genes)
## 
##   Level 8:   128 nodes to be scored  (720 eliminated genes)
## 
##   Level 7:   195 nodes to be scored  (2474 eliminated genes)
## 
##   Level 6:   282 nodes to be scored  (3270 eliminated genes)
## 
##   Level 5:   198 nodes to be scored  (5010 eliminated genes)
## 
##   Level 4:   157 nodes to be scored  (7164 eliminated genes)
## 
##   Level 3:   62 nodes to be scored   (9343 eliminated genes)
## 
##   Level 2:   16 nodes to be scored   (10010 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10687 eliminated genes)
all.res.control.1_0.down <- GenTable(go.MF.control.1_0.down, Weight01 = result.weight01.control.1_0.down, topNodes = table(result.weight01.control.1_0.down@score < 0.01)[2])
showSigOfNodes(go.MF.control.1_0.down, score(result.weight01.control.1_0.down), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 47 
## Number of Edges = 60 
## 
## $complete.dag
## [1] "A graph with 47 nodes."
control.1_0.pval.up <- limmaTopGenes(fit.control.1_0, dir = 'up') 
go.BP.control.1_0.up <- new("topGOdata", description="GO annotation control 1 vs 0", ontology="BP", allGenes = control.1_0.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.weight01.control.1_0.up <- runTest(go.BP.control.1_0.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 4427 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 18:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  7 nodes to be scored    (0 eliminated genes)
## 
##   Level 16:  14 nodes to be scored   (45 eliminated genes)
## 
##   Level 15:  25 nodes to be scored   (148 eliminated genes)
## 
##   Level 14:  53 nodes to be scored   (320 eliminated genes)
## 
##   Level 13:  108 nodes to be scored  (609 eliminated genes)
## 
##   Level 12:  204 nodes to be scored  (1085 eliminated genes)
## 
##   Level 11:  371 nodes to be scored  (1957 eliminated genes)
## 
##   Level 10:  512 nodes to be scored  (3707 eliminated genes)
## 
##   Level 9:   621 nodes to be scored  (5051 eliminated genes)
## 
##   Level 8:   649 nodes to be scored  (6914 eliminated genes)
## 
##   Level 7:   644 nodes to be scored  (8037 eliminated genes)
## 
##   Level 6:   551 nodes to be scored  (9014 eliminated genes)
## 
##   Level 5:   390 nodes to be scored  (9709 eliminated genes)
## 
##   Level 4:   202 nodes to be scored  (10319 eliminated genes)
## 
##   Level 3:   53 nodes to be scored   (10558 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10811 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10919 eliminated genes)
all.res.BP.control.1_0.up <- GenTable(go.BP.control.1_0.up, Weight01 = result.BP.weight01.control.1_0.up, topNodes = table(result.BP.weight01.control.1_0.up@score < 0.01)[2])
showSigOfNodes(go.BP.control.1_0.up, score(result.BP.weight01.control.1_0.up), firstSigNodes = 10, useInfo = 'all')
## Warning in arrows(head_from[1], head_from[2], head_to[1], head_to[2], col
## = edgeColor, : zero-length arrow is of indeterminate angle and so skipped

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 136 
## Number of Edges = 282 
## 
## $complete.dag
## [1] "A graph with 136 nodes."
control.1_0.pval.down <- limmaTopGenes(fit.control.1_0, dir = 'down') 
go.BP.control.1_0.down <- new("topGOdata", description="GO annotation control 1 vs 0", ontology="BP", allGenes = control.1_0.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.weight01.control.1_0.down <- runTest(go.BP.control.1_0.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 4370 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 19:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 18:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  6 nodes to be scored    (10 eliminated genes)
## 
##   Level 16:  12 nodes to be scored   (45 eliminated genes)
## 
##   Level 15:  25 nodes to be scored   (141 eliminated genes)
## 
##   Level 14:  56 nodes to be scored   (313 eliminated genes)
## 
##   Level 13:  112 nodes to be scored  (609 eliminated genes)
## 
##   Level 12:  203 nodes to be scored  (1124 eliminated genes)
## 
##   Level 11:  366 nodes to be scored  (1998 eliminated genes)
## 
##   Level 10:  496 nodes to be scored  (3694 eliminated genes)
## 
##   Level 9:   613 nodes to be scored  (5062 eliminated genes)
## 
##   Level 8:   640 nodes to be scored  (6875 eliminated genes)
## 
##   Level 7:   632 nodes to be scored  (8040 eliminated genes)
## 
##   Level 6:   543 nodes to be scored  (9018 eliminated genes)
## 
##   Level 5:   387 nodes to be scored  (9703 eliminated genes)
## 
##   Level 4:   202 nodes to be scored  (10305 eliminated genes)
## 
##   Level 3:   53 nodes to be scored   (10553 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10811 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10919 eliminated genes)
all.res.BP.control.1_0.down <- GenTable(go.BP.control.1_0.down, Weight01 = result.BP.weight01.control.1_0.down, topNodes = table(result.BP.weight01.control.1_0.down@score < 0.01)[2])
showSigOfNodes(go.BP.control.1_0.down, score(result.BP.weight01.control.1_0.down), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 87 
## Number of Edges = 140 
## 
## $complete.dag
## [1] "A graph with 87 nodes."
control.1_0.pval.up <- limmaTopGenes(fit.control.1_0, dir = 'up') 
go.CC.control.1_0.up <- new("topGOdata", description="GO annotation control 1 vs 0", ontology="CC", allGenes = control.1_0.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.weight01.control.1_0.up <- runTest(go.CC.control.1_0.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 550 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 16:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 15:  6 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  18 nodes to be scored   (15 eliminated genes)
## 
##   Level 13:  19 nodes to be scored   (84 eliminated genes)
## 
##   Level 12:  34 nodes to be scored   (407 eliminated genes)
## 
##   Level 11:  74 nodes to be scored   (825 eliminated genes)
## 
##   Level 10:  74 nodes to be scored   (1673 eliminated genes)
## 
##   Level 9:   56 nodes to be scored   (3377 eliminated genes)
## 
##   Level 8:   59 nodes to be scored   (4551 eliminated genes)
## 
##   Level 7:   41 nodes to be scored   (5036 eliminated genes)
## 
##   Level 6:   40 nodes to be scored   (9293 eliminated genes)
## 
##   Level 5:   47 nodes to be scored   (9456 eliminated genes)
## 
##   Level 4:   49 nodes to be scored   (10565 eliminated genes)
## 
##   Level 3:   20 nodes to be scored   (11504 eliminated genes)
## 
##   Level 2:   11 nodes to be scored   (11718 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
all.res.CC.control.1_0.up <- GenTable(go.CC.control.1_0.up, Weight01 = result.CC.weight01.control.1_0.up, topNodes = table(result.CC.weight01.control.1_0.up@score < 0.01)[2])
showSigOfNodes(go.CC.control.1_0.up, score(result.CC.weight01.control.1_0.up), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 46 
## Number of Edges = 75 
## 
## $complete.dag
## [1] "A graph with 46 nodes."
control.1_0.pval.down <- limmaTopGenes(fit.control.1_0, dir = 'down') 
go.CC.control.1_0.down <- new("topGOdata", description="GO annotation control 1 vs 0", ontology="CC", allGenes = control.1_0.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.weight01.control.1_0.down <- runTest(go.CC.control.1_0.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 570 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 16:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 15:  8 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  24 nodes to be scored   (15 eliminated genes)
## 
##   Level 13:  23 nodes to be scored   (103 eliminated genes)
## 
##   Level 12:  35 nodes to be scored   (470 eliminated genes)
## 
##   Level 11:  77 nodes to be scored   (875 eliminated genes)
## 
##   Level 10:  74 nodes to be scored   (1711 eliminated genes)
## 
##   Level 9:   55 nodes to be scored   (3396 eliminated genes)
## 
##   Level 8:   61 nodes to be scored   (4549 eliminated genes)
## 
##   Level 7:   40 nodes to be scored   (5030 eliminated genes)
## 
##   Level 6:   41 nodes to be scored   (9296 eliminated genes)
## 
##   Level 5:   47 nodes to be scored   (9456 eliminated genes)
## 
##   Level 4:   52 nodes to be scored   (10558 eliminated genes)
## 
##   Level 3:   20 nodes to be scored   (11504 eliminated genes)
## 
##   Level 2:   11 nodes to be scored   (11718 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
all.res.CC.control.1_0.down <- GenTable(go.CC.control.1_0.down, Weight01 = result.CC.weight01.control.1_0.down, topNodes = table(result.CC.weight01.control.1_0.down@score < 0.01)[2])
showSigOfNodes(go.CC.control.1_0.down, score(result.CC.weight01.control.1_0.down), firstSigNodes = 10, useInfo = 'all')

## $dag
## A graphNEL graph with directed edges
## Number of Nodes = 44 
## Number of Edges = 77 
## 
## $complete.dag
## [1] "A graph with 44 nodes."

The last section reads in earlier results and runs the topGO analysis for these contrasts

source('topgofunctions.R')
load(file = "FitLM.rdata")
rm(fit.CeO2.time)
rm(fit.NAC.time)
rm(fit.SDC.time)

NAC.time7.pval.up <- limmaTopGenes(fit.NAC.time7, dir="up") 
go.MF.NAC.time7.up <- new("topGOdata", description="GO annotation NAC time 7", ontology="MF", allGenes = NAC.time7.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.MF.NAC.time7.up <- runTest(go.MF.NAC.time7.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 765 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 13:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 12:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 11:  5 nodes to be scored    (53 eliminated genes)
## 
##   Level 10:  12 nodes to be scored   (53 eliminated genes)
## 
##   Level 9:   49 nodes to be scored   (171 eliminated genes)
## 
##   Level 8:   80 nodes to be scored   (505 eliminated genes)
## 
##   Level 7:   105 nodes to be scored  (2290 eliminated genes)
## 
##   Level 6:   146 nodes to be scored  (3004 eliminated genes)
## 
##   Level 5:   161 nodes to be scored  (4636 eliminated genes)
## 
##   Level 4:   133 nodes to be scored  (6948 eliminated genes)
## 
##   Level 3:   55 nodes to be scored   (9233 eliminated genes)
## 
##   Level 2:   15 nodes to be scored   (9961 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10681 eliminated genes)
allRes.MF.NAC.time7.up <- GenTable(go.MF.NAC.time7.up, Weight01 = result.MF.NAC.time7.up, topNodes = table(result.MF.NAC.time7.up@score < 0.01)[2])

NAC.time7.pval.down <- limmaTopGenes(fit.NAC.time7, dir="down") 
go.MF.NAC.time7.down <- new("topGOdata", description="GO annotation NAC time 7", ontology="MF", allGenes = NAC.time7.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.MF.NAC.time7.down <- runTest(go.MF.NAC.time7.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 888 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 13:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 12:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 11:  7 nodes to be scored    (52 eliminated genes)
## 
##   Level 10:  18 nodes to be scored   (71 eliminated genes)
## 
##   Level 9:   48 nodes to be scored   (194 eliminated genes)
## 
##   Level 8:   92 nodes to be scored   (596 eliminated genes)
## 
##   Level 7:   144 nodes to be scored  (2288 eliminated genes)
## 
##   Level 6:   217 nodes to be scored  (2945 eliminated genes)
## 
##   Level 5:   150 nodes to be scored  (4614 eliminated genes)
## 
##   Level 4:   141 nodes to be scored  (7032 eliminated genes)
## 
##   Level 3:   53 nodes to be scored   (9225 eliminated genes)
## 
##   Level 2:   14 nodes to be scored   (9945 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10648 eliminated genes)
allRes.MF.NAC.time7.down <- GenTable(go.MF.NAC.time7.down, Weight01 = result.MF.NAC.time7.down, topNodes = table(result.MF.NAC.time7.down@score < 0.01)[2])


NAC.time7.pval.up <- limmaTopGenes(fit.NAC.time7, dir="up") 
go.BP.NAC.time7.up <- new("topGOdata", description="GO annotation NAC time 7", ontology="BP", allGenes = NAC.time7.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.NAC.time7.up <- runTest(go.BP.NAC.time7.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 3744 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 18:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  3 nodes to be scored    (0 eliminated genes)
## 
##   Level 16:  10 nodes to be scored   (40 eliminated genes)
## 
##   Level 15:  23 nodes to be scored   (129 eliminated genes)
## 
##   Level 14:  39 nodes to be scored   (289 eliminated genes)
## 
##   Level 13:  87 nodes to be scored   (595 eliminated genes)
## 
##   Level 12:  166 nodes to be scored  (957 eliminated genes)
## 
##   Level 11:  287 nodes to be scored  (1782 eliminated genes)
## 
##   Level 10:  416 nodes to be scored  (3464 eliminated genes)
## 
##   Level 9:   507 nodes to be scored  (4685 eliminated genes)
## 
##   Level 8:   552 nodes to be scored  (6376 eliminated genes)
## 
##   Level 7:   545 nodes to be scored  (7768 eliminated genes)
## 
##   Level 6:   485 nodes to be scored  (8909 eliminated genes)
## 
##   Level 5:   355 nodes to be scored  (9644 eliminated genes)
## 
##   Level 4:   196 nodes to be scored  (10297 eliminated genes)
## 
##   Level 3:   51 nodes to be scored   (10539 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10801 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10919 eliminated genes)
allRes.BP.NAC.time7.up <- GenTable(go.BP.NAC.time7.up, Weight01 = result.BP.NAC.time7.up, topNodes = table(result.BP.NAC.time7.up@score < 0.01)[2])

NAC.time7.pval.down <- limmaTopGenes(fit.NAC.time7, dir="down") 
go.BP.NAC.time7.down <- new("topGOdata", description="GO annotation NAC time 7", ontology="BP", allGenes = NAC.time7.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.NAC.time7.down <- runTest(go.BP.NAC.time7.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 3406 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 19:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 18:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  5 nodes to be scored    (10 eliminated genes)
## 
##   Level 16:  13 nodes to be scored   (45 eliminated genes)
## 
##   Level 15:  19 nodes to be scored   (138 eliminated genes)
## 
##   Level 14:  30 nodes to be scored   (319 eliminated genes)
## 
##   Level 13:  68 nodes to be scored   (544 eliminated genes)
## 
##   Level 12:  144 nodes to be scored  (888 eliminated genes)
## 
##   Level 11:  253 nodes to be scored  (1666 eliminated genes)
## 
##   Level 10:  369 nodes to be scored  (3413 eliminated genes)
## 
##   Level 9:   454 nodes to be scored  (4615 eliminated genes)
## 
##   Level 8:   491 nodes to be scored  (6363 eliminated genes)
## 
##   Level 7:   496 nodes to be scored  (7722 eliminated genes)
## 
##   Level 6:   468 nodes to be scored  (8808 eliminated genes)
## 
##   Level 5:   339 nodes to be scored  (9644 eliminated genes)
## 
##   Level 4:   183 nodes to be scored  (10292 eliminated genes)
## 
##   Level 3:   50 nodes to be scored   (10530 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10797 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10913 eliminated genes)
allRes.BP.NAC.time7.down <- GenTable(go.BP.NAC.time7.down, Weight01 = result.BP.NAC.time7.down, topNodes = table(result.BP.NAC.time7.down@score < 0.01)[2])


NAC.time7.pval.up <- limmaTopGenes(fit.NAC.time7, dir="up") 
go.CC.NAC.time7.up <- new("topGOdata", description="GO annotation NAC time 7", ontology="CC", allGenes = NAC.time7.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.NAC.time7.up <- runTest(go.CC.NAC.time7.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 415 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  3 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  11 nodes to be scored   (0 eliminated genes)
## 
##   Level 13:  13 nodes to be scored   (50 eliminated genes)
## 
##   Level 12:  18 nodes to be scored   (333 eliminated genes)
## 
##   Level 11:  51 nodes to be scored   (740 eliminated genes)
## 
##   Level 10:  55 nodes to be scored   (1551 eliminated genes)
## 
##   Level 9:   43 nodes to be scored   (3149 eliminated genes)
## 
##   Level 8:   49 nodes to be scored   (4334 eliminated genes)
## 
##   Level 7:   33 nodes to be scored   (4960 eliminated genes)
## 
##   Level 6:   29 nodes to be scored   (9259 eliminated genes)
## 
##   Level 5:   38 nodes to be scored   (9443 eliminated genes)
## 
##   Level 4:   43 nodes to be scored   (10559 eliminated genes)
## 
##   Level 3:   19 nodes to be scored   (11503 eliminated genes)
## 
##   Level 2:   9 nodes to be scored    (11718 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
allRes.CC.NAC.time7.up <- GenTable(go.CC.NAC.time7.up, Weight01 = result.CC.NAC.time7.up, topNodes = table(result.CC.NAC.time7.up@score < 0.01)[2])

NAC.time7.pval.down <- limmaTopGenes(fit.NAC.time7, dir="down") 
go.CC.NAC.time7.down <- new("topGOdata", description="GO annotation NAC time 7", ontology="CC", allGenes = NAC.time7.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.NAC.time7.down <- runTest(go.CC.NAC.time7.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 416 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  5 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  10 nodes to be scored   (0 eliminated genes)
## 
##   Level 13:  14 nodes to be scored   (56 eliminated genes)
## 
##   Level 12:  20 nodes to be scored   (295 eliminated genes)
## 
##   Level 11:  49 nodes to be scored   (755 eliminated genes)
## 
##   Level 10:  55 nodes to be scored   (1569 eliminated genes)
## 
##   Level 9:   46 nodes to be scored   (3057 eliminated genes)
## 
##   Level 8:   46 nodes to be scored   (4362 eliminated genes)
## 
##   Level 7:   32 nodes to be scored   (4993 eliminated genes)
## 
##   Level 6:   32 nodes to be scored   (9248 eliminated genes)
## 
##   Level 5:   38 nodes to be scored   (9440 eliminated genes)
## 
##   Level 4:   41 nodes to be scored   (10561 eliminated genes)
## 
##   Level 3:   18 nodes to be scored   (11504 eliminated genes)
## 
##   Level 2:   9 nodes to be scored    (11717 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
allRes.CC.NAC.time7.down <- GenTable(go.CC.NAC.time7.down, Weight01 = result.CC.NAC.time7.down, topNodes = table(result.CC.NAC.time7.down@score < 0.01)[2])




CeO2.time7.pval.up <- limmaTopGenes(fit.CeO2.time7, dir="up") 
go.MF.CeO2.time7.up <- new("topGOdata", description="GO annotation CeO2 time 7", ontology="MF", allGenes = CeO2.time7.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.MF.CeO2.time7.up <- runTest(go.MF.CeO2.time7.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 1100 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 13:  3 nodes to be scored    (19 eliminated genes)
## 
##   Level 12:  2 nodes to be scored    (19 eliminated genes)
## 
##   Level 11:  6 nodes to be scored    (53 eliminated genes)
## 
##   Level 10:  19 nodes to be scored   (68 eliminated genes)
## 
##   Level 9:   74 nodes to be scored   (210 eliminated genes)
## 
##   Level 8:   121 nodes to be scored  (665 eliminated genes)
## 
##   Level 7:   181 nodes to be scored  (2474 eliminated genes)
## 
##   Level 6:   265 nodes to be scored  (3297 eliminated genes)
## 
##   Level 5:   192 nodes to be scored  (4988 eliminated genes)
## 
##   Level 4:   156 nodes to be scored  (7164 eliminated genes)
## 
##   Level 3:   61 nodes to be scored   (9335 eliminated genes)
## 
##   Level 2:   16 nodes to be scored   (10011 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10685 eliminated genes)
allRes.MF.CeO2.time7.up <- GenTable(go.MF.CeO2.time7.up, Weight01 = result.MF.CeO2.time7.up, topNodes = table(result.MF.CeO2.time7.up@score < 0.01)[2])

CeO2.time7.pval.down <- limmaTopGenes(fit.CeO2.time7, dir="down") 
go.MF.CeO2.time7.down <- new("topGOdata", description="GO annotation CeO2 time 7", ontology="MF", allGenes = CeO2.time7.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.MF.CeO2.time7.down <- runTest(go.MF.CeO2.time7.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 1135 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 13:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 12:  3 nodes to be scored    (0 eliminated genes)
## 
##   Level 11:  10 nodes to be scored   (53 eliminated genes)
## 
##   Level 10:  22 nodes to be scored   (86 eliminated genes)
## 
##   Level 9:   77 nodes to be scored   (237 eliminated genes)
## 
##   Level 8:   132 nodes to be scored  (672 eliminated genes)
## 
##   Level 7:   192 nodes to be scored  (2467 eliminated genes)
## 
##   Level 6:   279 nodes to be scored  (3288 eliminated genes)
## 
##   Level 5:   188 nodes to be scored  (4973 eliminated genes)
## 
##   Level 4:   151 nodes to be scored  (7152 eliminated genes)
## 
##   Level 3:   62 nodes to be scored   (9307 eliminated genes)
## 
##   Level 2:   16 nodes to be scored   (9999 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10687 eliminated genes)
allRes.MF.CeO2.time7.down <- GenTable(go.MF.CeO2.time7.down, Weight01 = result.MF.CeO2.time7.down, topNodes = table(result.MF.CeO2.time7.down@score < 0.01)[2])


CeO2.time7.pval.up <- limmaTopGenes(fit.CeO2.time7, dir="up") 
go.BP.CeO2.time7.up <- new("topGOdata", description="GO annotation CeO2 time 7", ontology="BP", allGenes = CeO2.time7.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.CeO2.time7.up <- runTest(go.BP.CeO2.time7.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 4207 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 18:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  5 nodes to be scored    (0 eliminated genes)
## 
##   Level 16:  11 nodes to be scored   (40 eliminated genes)
## 
##   Level 15:  20 nodes to be scored   (141 eliminated genes)
## 
##   Level 14:  51 nodes to be scored   (290 eliminated genes)
## 
##   Level 13:  103 nodes to be scored  (578 eliminated genes)
## 
##   Level 12:  195 nodes to be scored  (1087 eliminated genes)
## 
##   Level 11:  343 nodes to be scored  (1972 eliminated genes)
## 
##   Level 10:  477 nodes to be scored  (3662 eliminated genes)
## 
##   Level 9:   593 nodes to be scored  (4977 eliminated genes)
## 
##   Level 8:   625 nodes to be scored  (6866 eliminated genes)
## 
##   Level 7:   604 nodes to be scored  (8025 eliminated genes)
## 
##   Level 6:   526 nodes to be scored  (9016 eliminated genes)
## 
##   Level 5:   379 nodes to be scored  (9690 eliminated genes)
## 
##   Level 4:   201 nodes to be scored  (10311 eliminated genes)
## 
##   Level 3:   52 nodes to be scored   (10549 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10811 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10919 eliminated genes)
allRes.BP.CeO2.time7.up <- GenTable(go.BP.CeO2.time7.up, Weight01 = result.BP.CeO2.time7.up, topNodes = table(result.BP.CeO2.time7.up@score < 0.01)[2])

CeO2.time7.pval.down <- limmaTopGenes(fit.CeO2.time7, dir="down") 
go.BP.CeO2.time7.down <- new("topGOdata", description="GO annotation CeO2 time 7", ontology="BP", allGenes = CeO2.time7.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.CeO2.time7.down <- runTest(go.BP.CeO2.time7.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 4092 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 19:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 18:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  7 nodes to be scored    (10 eliminated genes)
## 
##   Level 16:  13 nodes to be scored   (45 eliminated genes)
## 
##   Level 15:  24 nodes to be scored   (148 eliminated genes)
## 
##   Level 14:  45 nodes to be scored   (304 eliminated genes)
## 
##   Level 13:  96 nodes to be scored   (600 eliminated genes)
## 
##   Level 12:  186 nodes to be scored  (1042 eliminated genes)
## 
##   Level 11:  338 nodes to be scored  (1898 eliminated genes)
## 
##   Level 10:  460 nodes to be scored  (3651 eliminated genes)
## 
##   Level 9:   562 nodes to be scored  (4966 eliminated genes)
## 
##   Level 8:   596 nodes to be scored  (6804 eliminated genes)
## 
##   Level 7:   598 nodes to be scored  (7972 eliminated genes)
## 
##   Level 6:   517 nodes to be scored  (8967 eliminated genes)
## 
##   Level 5:   375 nodes to be scored  (9678 eliminated genes)
## 
##   Level 4:   198 nodes to be scored  (10298 eliminated genes)
## 
##   Level 3:   53 nodes to be scored   (10549 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10811 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10919 eliminated genes)
allRes.BP.CeO2.time7.down <- GenTable(go.BP.CeO2.time7.down, Weight01 = result.BP.CeO2.time7.down, topNodes = table(result.BP.CeO2.time7.down@score < 0.01)[2])


CeO2.time7.pval.up <- limmaTopGenes(fit.CeO2.time7, dir="up") 
go.CC.CeO2.time7.up <- new("topGOdata", description="GO annotation CeO2 time 7", ontology="CC", allGenes = CeO2.time7.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.CeO2.time7.up <- runTest(go.CC.CeO2.time7.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 528 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  5 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  18 nodes to be scored   (0 eliminated genes)
## 
##   Level 13:  17 nodes to be scored   (70 eliminated genes)
## 
##   Level 12:  35 nodes to be scored   (420 eliminated genes)
## 
##   Level 11:  72 nodes to be scored   (794 eliminated genes)
## 
##   Level 10:  72 nodes to be scored   (1705 eliminated genes)
## 
##   Level 9:   52 nodes to be scored   (3391 eliminated genes)
## 
##   Level 8:   56 nodes to be scored   (4557 eliminated genes)
## 
##   Level 7:   40 nodes to be scored   (5006 eliminated genes)
## 
##   Level 6:   38 nodes to be scored   (9280 eliminated genes)
## 
##   Level 5:   42 nodes to be scored   (9454 eliminated genes)
## 
##   Level 4:   49 nodes to be scored   (10562 eliminated genes)
## 
##   Level 3:   20 nodes to be scored   (11499 eliminated genes)
## 
##   Level 2:   11 nodes to be scored   (11718 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
allRes.CC.CeO2.time7.up <- GenTable(go.CC.CeO2.time7.up, Weight01 = result.CC.CeO2.time7.up, topNodes = table(result.CC.CeO2.time7.up@score < 0.01)[2])

CeO2.time7.pval.down <- limmaTopGenes(fit.CeO2.time7, dir="down") 
go.CC.CeO2.time7.down <- new("topGOdata", description="GO annotation CeO2 time 7", ontology="CC", allGenes = CeO2.time7.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.CeO2.time7.down <- runTest(go.CC.CeO2.time7.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 529 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 16:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 15:  8 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  22 nodes to be scored   (15 eliminated genes)
## 
##   Level 13:  21 nodes to be scored   (103 eliminated genes)
## 
##   Level 12:  30 nodes to be scored   (451 eliminated genes)
## 
##   Level 11:  68 nodes to be scored   (843 eliminated genes)
## 
##   Level 10:  73 nodes to be scored   (1639 eliminated genes)
## 
##   Level 9:   55 nodes to be scored   (3303 eliminated genes)
## 
##   Level 8:   57 nodes to be scored   (4548 eliminated genes)
## 
##   Level 7:   39 nodes to be scored   (5036 eliminated genes)
## 
##   Level 6:   36 nodes to be scored   (9281 eliminated genes)
## 
##   Level 5:   42 nodes to be scored   (9451 eliminated genes)
## 
##   Level 4:   48 nodes to be scored   (10556 eliminated genes)
## 
##   Level 3:   19 nodes to be scored   (11497 eliminated genes)
## 
##   Level 2:   9 nodes to be scored    (11718 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
allRes.CC.CeO2.time7.down <- GenTable(go.CC.CeO2.time7.down, Weight01 = result.CC.CeO2.time7.down, topNodes = table(result.CC.CeO2.time7.down@score < 0.01)[2])


SDC.time7.pval.up <- limmaTopGenes(fit.SDC.time7, dir="up") 
go.MF.SDC.time7.up <- new("topGOdata", description="GO annotation SDC time 7", ontology="MF", allGenes = SDC.time7.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.MF.SDC.time7.up <- runTest(go.MF.SDC.time7.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 634 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 13:  3 nodes to be scored    (10 eliminated genes)
## 
##   Level 12:  1 nodes to be scored    (19 eliminated genes)
## 
##   Level 11:  3 nodes to be scored    (53 eliminated genes)
## 
##   Level 10:  10 nodes to be scored   (53 eliminated genes)
## 
##   Level 9:   36 nodes to be scored   (93 eliminated genes)
## 
##   Level 8:   58 nodes to be scored   (386 eliminated genes)
## 
##   Level 7:   92 nodes to be scored   (2198 eliminated genes)
## 
##   Level 6:   148 nodes to be scored  (2848 eliminated genes)
## 
##   Level 5:   122 nodes to be scored  (4473 eliminated genes)
## 
##   Level 4:   100 nodes to be scored  (6775 eliminated genes)
## 
##   Level 3:   44 nodes to be scored   (8963 eliminated genes)
## 
##   Level 2:   14 nodes to be scored   (9767 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10671 eliminated genes)
allRes.MF.SDC.time7.up <- GenTable(go.MF.SDC.time7.up, Weight01 = result.MF.SDC.time7.up, topNodes = table(result.MF.SDC.time7.up@score < 0.01)[2])

SDC.time7.pval.down <- limmaTopGenes(fit.SDC.time7, dir="down") 
go.MF.SDC.time7.down <- new("topGOdata", description="GO annotation SDC time 7", ontology="MF", allGenes = SDC.time7.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 3874 GO terms found. )
## 
## Build GO DAG topology .......... ( 4287 GO terms and 5292 relations. )
## 
## Annotating nodes ............... ( 13656 genes annotated to the GO terms. )
result.MF.SDC.time7.down <- runTest(go.MF.SDC.time7.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 755 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 13:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 12:  3 nodes to be scored    (0 eliminated genes)
## 
##   Level 11:  6 nodes to be scored    (52 eliminated genes)
## 
##   Level 10:  16 nodes to be scored   (86 eliminated genes)
## 
##   Level 9:   41 nodes to be scored   (181 eliminated genes)
## 
##   Level 8:   87 nodes to be scored   (619 eliminated genes)
## 
##   Level 7:   138 nodes to be scored  (2245 eliminated genes)
## 
##   Level 6:   185 nodes to be scored  (2972 eliminated genes)
## 
##   Level 5:   118 nodes to be scored  (4464 eliminated genes)
## 
##   Level 4:   103 nodes to be scored  (6883 eliminated genes)
## 
##   Level 3:   44 nodes to be scored   (9071 eliminated genes)
## 
##   Level 2:   12 nodes to be scored   (9803 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10605 eliminated genes)
allRes.MF.SDC.time7.down <- GenTable(go.MF.SDC.time7.down, Weight01 = result.MF.SDC.time7.down, topNodes = table(result.MF.SDC.time7.down@score < 0.01)[2])


SDC.time7.pval.up <- limmaTopGenes(fit.SDC.time7, dir="up") 
go.BP.SDC.time7.up <- new("topGOdata", description="GO annotation SDC time 7", ontology="BP", allGenes = SDC.time7.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.SDC.time7.up <- runTest(go.BP.SDC.time7.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 3005 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 17:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 16:  5 nodes to be scored    (0 eliminated genes)
## 
##   Level 15:  7 nodes to be scored    (121 eliminated genes)
## 
##   Level 14:  15 nodes to be scored   (227 eliminated genes)
## 
##   Level 13:  54 nodes to be scored   (419 eliminated genes)
## 
##   Level 12:  108 nodes to be scored  (707 eliminated genes)
## 
##   Level 11:  201 nodes to be scored  (1522 eliminated genes)
## 
##   Level 10:  314 nodes to be scored  (3176 eliminated genes)
## 
##   Level 9:   396 nodes to be scored  (4442 eliminated genes)
## 
##   Level 8:   454 nodes to be scored  (6274 eliminated genes)
## 
##   Level 7:   456 nodes to be scored  (7543 eliminated genes)
## 
##   Level 6:   415 nodes to be scored  (8764 eliminated genes)
## 
##   Level 5:   324 nodes to be scored  (9566 eliminated genes)
## 
##   Level 4:   181 nodes to be scored  (10275 eliminated genes)
## 
##   Level 3:   52 nodes to be scored   (10542 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10807 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10919 eliminated genes)
allRes.BP.SDC.time7.up <- GenTable(go.BP.SDC.time7.up, Weight01 = result.BP.SDC.time7.up, topNodes = table(result.BP.SDC.time7.up@score < 0.01)[2])

SDC.time7.pval.down <- limmaTopGenes(fit.SDC.time7, dir="down") 
go.BP.SDC.time7.down <- new("topGOdata", description="GO annotation SDC time 7", ontology="BP", allGenes = SDC.time7.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 8852 GO terms found. )
## 
## Build GO DAG topology .......... ( 12170 GO terms and 28213 relations. )
## 
## Annotating nodes ............... ( 13785 genes annotated to the GO terms. )
result.BP.SDC.time7.down <- runTest(go.BP.SDC.time7.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 2905 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 19:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 18:  2 nodes to be scored    (0 eliminated genes)
## 
##   Level 17:  3 nodes to be scored    (10 eliminated genes)
## 
##   Level 16:  10 nodes to be scored   (45 eliminated genes)
## 
##   Level 15:  16 nodes to be scored   (96 eliminated genes)
## 
##   Level 14:  25 nodes to be scored   (275 eliminated genes)
## 
##   Level 13:  57 nodes to be scored   (522 eliminated genes)
## 
##   Level 12:  110 nodes to be scored  (846 eliminated genes)
## 
##   Level 11:  203 nodes to be scored  (1537 eliminated genes)
## 
##   Level 10:  288 nodes to be scored  (3253 eliminated genes)
## 
##   Level 9:   378 nodes to be scored  (4480 eliminated genes)
## 
##   Level 8:   411 nodes to be scored  (6223 eliminated genes)
## 
##   Level 7:   434 nodes to be scored  (7561 eliminated genes)
## 
##   Level 6:   405 nodes to be scored  (8658 eliminated genes)
## 
##   Level 5:   311 nodes to be scored  (9538 eliminated genes)
## 
##   Level 4:   180 nodes to be scored  (10245 eliminated genes)
## 
##   Level 3:   50 nodes to be scored   (10530 eliminated genes)
## 
##   Level 2:   20 nodes to be scored   (10804 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (10913 eliminated genes)
allRes.BP.SDC.time7.down <- GenTable(go.BP.SDC.time7.down, Weight01 = result.BP.SDC.time7.down, topNodes = table(result.BP.SDC.time7.down@score < 0.01)[2])


SDC.time7.pval.up <- limmaTopGenes(fit.SDC.time7, dir="up") 
go.CC.SDC.time7.up <- new("topGOdata", description="GO annotation SDC time 7", ontology="CC", allGenes = SDC.time7.pval.up, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.SDC.time7.up <- runTest(go.CC.SDC.time7.up, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 317 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 14:  4 nodes to be scored    (0 eliminated genes)
## 
##   Level 13:  3 nodes to be scored    (0 eliminated genes)
## 
##   Level 12:  11 nodes to be scored   (201 eliminated genes)
## 
##   Level 11:  34 nodes to be scored   (431 eliminated genes)
## 
##   Level 10:  39 nodes to be scored   (1298 eliminated genes)
## 
##   Level 9:   36 nodes to be scored   (2779 eliminated genes)
## 
##   Level 8:   41 nodes to be scored   (3884 eliminated genes)
## 
##   Level 7:   23 nodes to be scored   (4704 eliminated genes)
## 
##   Level 6:   21 nodes to be scored   (9229 eliminated genes)
## 
##   Level 5:   37 nodes to be scored   (9403 eliminated genes)
## 
##   Level 4:   40 nodes to be scored   (10529 eliminated genes)
## 
##   Level 3:   18 nodes to be scored   (11500 eliminated genes)
## 
##   Level 2:   9 nodes to be scored    (11717 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
allRes.CC.SDC.time7.up <- GenTable(go.CC.SDC.time7.up, Weight01 = result.CC.SDC.time7.up, topNodes = table(result.CC.SDC.time7.up@score < 0.01)[2])

SDC.time7.pval.down <- limmaTopGenes(fit.SDC.time7, dir="down") 
go.CC.SDC.time7.down <- new("topGOdata", description="GO annotation SDC time 7", ontology="CC", allGenes = SDC.time7.pval.down, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.org, mapping="org.Mm.eg.db", ID = "Ensembl")
## 
## Building most specific GOs ..... ( 1194 GO terms found. )
## 
## Build GO DAG topology .......... ( 1420 GO terms and 2773 relations. )
## 
## Annotating nodes ............... ( 13908 genes annotated to the GO terms. )
result.CC.SDC.time7.down <- runTest(go.CC.SDC.time7.down, algorithm = 'weight01', statistic = "fisher")
## 
##           -- Weight01 Algorithm -- 
## 
##       the algorithm is scoring 344 nontrivial nodes
##       parameters: 
##           test statistic:  fisher 
## 
##   Level 15:  1 nodes to be scored    (0 eliminated genes)
## 
##   Level 14:  7 nodes to be scored    (0 eliminated genes)
## 
##   Level 13:  9 nodes to be scored    (29 eliminated genes)
## 
##   Level 12:  11 nodes to be scored   (249 eliminated genes)
## 
##   Level 11:  35 nodes to be scored   (580 eliminated genes)
## 
##   Level 10:  49 nodes to be scored   (1477 eliminated genes)
## 
##   Level 9:   41 nodes to be scored   (2772 eliminated genes)
## 
##   Level 8:   43 nodes to be scored   (4305 eliminated genes)
## 
##   Level 7:   29 nodes to be scored   (4937 eliminated genes)
## 
##   Level 6:   25 nodes to be scored   (9236 eliminated genes)
## 
##   Level 5:   32 nodes to be scored   (9434 eliminated genes)
## 
##   Level 4:   34 nodes to be scored   (10545 eliminated genes)
## 
##   Level 3:   18 nodes to be scored   (11489 eliminated genes)
## 
##   Level 2:   9 nodes to be scored    (11717 eliminated genes)
## 
##   Level 1:   1 nodes to be scored    (11729 eliminated genes)
allRes.CC.SDC.time7.down <- GenTable(go.CC.SDC.time7.down, Weight01 = result.CC.SDC.time7.down, topNodes = table(result.CC.SDC.time7.down@score < 0.01)[2])

save(list=ls(pattern = "allRes."), file = "TopGO.rdata")

```