rm(list = ls())
library(ggplot2)
###############################input data_1
dir_path <- "C:\\Users\\liyix\\OneDrive\\Desktop\\"
dir_path_name <- dir(dir_path,pattern = ".*.csv",full.names = T)
dir_path_name
## [1] "C:\\Users\\liyix\\OneDrive\\Desktop\\2021-11-23-cal_ic50_all.csv"
## [2] "C:\\Users\\liyix\\OneDrive\\Desktop\\data.csv"
###############################merge data
data_train <- read.csv(grep("data.csv",dir_path_name,value = T),header = T,stringsAsFactors = F)
dim(data_train) #[1] 1009 5
## [1] 1009 5
data_train$Freq <- factor(data_train$Freq)
ggplot(data_train) +
stat_density(aes(x = probability_1, color = Freq),size = 1,
alpha=0.5, bw = 0.01, geom="line",position="identity") +
scale_y_discrete(expand = c(0.01, 0)) +
scale_x_continuous(expand = c(0, 0),limits = c(-0.05, 1.05),
breaks = seq(0,1,.2)) +
labs(colour="Antiviral drug",x = "Probability")+
#geom_vline(aes(xintercept=max(AUC)),
# color="blue", linetype="dashed", size=1)+
theme(panel.spacing = unit(0.1, "cm"),
legend.position= "top",
legend.key = element_rect(colour = NA, fill = NA),
legend.text=element_text(size=14),
legend.title = element_text(size=14),
axis.ticks = element_line(colour = "black",
size = 0.5, linetype = "solid"),
axis.line = element_line(colour = "black",
size = 0.5, linetype = "solid"),
axis.text =element_text(face="plain", color="black", family = "sans",
size=14,angle = 0),
panel.background = element_rect(fill = "white",
colour = "white",
size = 0.5, linetype = "solid"),
panel.grid.major = element_line(size = 1, linetype = 'dashed',
colour = "white"),
axis.title = element_text(color="black", size=14, face="plain",family="sans")) +
scale_color_manual(name = "Antiviral drug",values=c("#3b58a7","#90278e"))

##########################output
ggsave(filename = paste0(Sys.Date(),"-probability_1.tif"), plot = last_plot(),
device = "tiff", path = dir_path,
scale = 1, width = 16, height = 12, units = "cm",
dpi = 300, limitsize = TRUE, compression = "lzw")
data_1 <- data_train[data_train$Freq == 1, ]
data_2 <- data_train[data_train$Freq != 1, ]
dim(data_1) #[1] 115 5
## [1] 115 5
#View(data_train)
head(data_1)
## probability_0 probability_1 Freq Virus Drug
## 11 0.080 0.920 1 HCV-6 sofosbuvir
## 17 0.002 0.998 1 HCV-H77 elbasvir
## 28 0.054 0.946 1 H3N2 rimantadine hydrochloride
## 47 0.048 0.952 1 HCV-7 glecaprevir
## 48 0.090 0.910 1 HCV-3 eltrombopag
## 76 0.034 0.966 1 HCV-5 bifendate
table(cut(data_1$probability_1, breaks = c(0,0.5,1), include.lowest = T))
##
## [0,0.5] (0.5,1]
## 13 102
table(cut(data_2$probability_1, breaks = c(0,0.5,1), include.lowest = T))
##
## [0,0.5] (0.5,1]
## 884 10
#https://stackoverflow.com/questions/17506053/making-line-legends-for-geom-density-in-ggplot2-in-r/51934610