data <- read.csv("data.csv")
class.rika <- read.csv("class.rika.csv")
# リンクファイルの読み込み
astjpnm5 <- read.csv("astjpnm5.csv")
# リンクファイルの加工
id.table.u <- astjpnm5[c("IDCLASS","IDTEACH")]
id.table.u <- unique(id.table.u)
colnames(id.table.u) <- c("idclass","idteach")
# 学校学級データとリンクファイルの結合
data.d <- data[,c(-1)]
data.link <- merge(data.d, id.table.u, by="idteach")
class.rika.d <- class.rika[,c(-1)]
timss <- merge(data.link, class.rika.d, by="idclass")
timss <- timss[,c(-12)]
# 欠損値の処理
timss$ses.hi[timss$ses.hi==9] <- NA
timss$ses.lo[timss$ses.lo==9] <- NA
timss$jap.moth.tg[timss$jap.moth.tg==9] <- NA
timss$jap.konnan[timss$jap.konnan==999] <- NA
# 念のため保存
write.csv(timss,"timss.csv")
head(timss)
## idclass idteach idschool sc.n.pupil gr.n.pupil ses.lo ses.hi jap.moth.tg
## 1 104 101 1 1059 189 2 NA 1
## 2 204 201 2 957 158 2 2 1
## 3 305 301 3 847 142 1 4 1
## 4 401 401 4 845 141 1 4 1
## 5 501 501 5 724 137 3 1 1
## 6 601 601 6 788 132 1 1 1
## jinko chiiki shotoku keiken t.kyodo.1 t.kyodo.2 t.kyodo.3 t.kyodo.4
## 1 2 1 2 3 3 3 2 2
## 2 1 1 2 5 4 3 3 2
## 3 1 1 1 18 2 3 3 1
## 4 1 1 1 3 3 3 2 1
## 5 1 1 3 28 2 2 4 1
## 6 1 1 2 19 3 3 3 2
## t.kyodo.5 cl.n.pupil uchi.4nen jap.konnan tch.sbj.koku tch.sbj.san
## 1 2 37 37 NA 1 1
## 2 1 32 32 NA 1 1
## 3 2 30 30 NA 1 1
## 4 2 35 35 NA 1 1
## 5 2 33 33 NA 1 1
## 6 2 33 33 NA 1 1
## tch.sbj.rika gr.n.cl cs.kijun rika.mean rika.sd lv1 lv2
## 1 1 5 40 569.8817 53.97667 0.00000000 0.02702703
## 2 1 5 35 564.3780 54.67014 0.00000000 0.03225806
## 3 1 5 35 576.2101 61.08431 0.00000000 0.03571429
## 4 1 4 40 597.7882 55.92306 0.00000000 0.02857143
## 5 1 4 40 547.6221 77.69665 0.06060606 0.09090909
## 6 1 4 40 566.7242 71.60676 0.03571429 0.03571429
## lv3 lv4 lv5 lo.prop
## 1 0.3513514 0.4594595 0.1621622 0.3783784
## 2 0.2903226 0.5483871 0.1290323 0.3225806
## 3 0.3571429 0.3214286 0.2857143 0.3928571
## 4 0.1142857 0.5142857 0.3428571 0.1428571
## 5 0.2727273 0.4545455 0.1212121 0.4242424
## 6 0.1785714 0.6071429 0.1428571 0.2500000
plot(timss$cl.n.pupil, timss$rika.mean)
cor(timss$cl.n.pupil, timss$rika.mean)
## [1] 0.1688964
plot(timss$cl.n.pupil, timss$rika.sd)
cor(timss$cl.n.pupil, timss$rika.sd)
## [1] 0.01940805
plot(timss$ses.hi, timss$rika.mean)
cor(timss$ses.hi, timss$rika.mean, use="pairwise")
## [1] 0.2895114
plot(timss$ses.lo, timss$rika.mean)
cor(timss$ses.lo, timss$rika.mean, use="pairwise")
## [1] -0.2587414
plot(timss$shotoku, timss$rika.mean)
cor(timss$shotoku, timss$rika.mean)
## [1] -0.351869
table(timss$jap.moth.tg)
##
## 1 2
## 125 1
timss <- subset(timss, jap.moth.tg==1)
nrow(timss)
## [1] 125
timss.ses.hi <- subset(timss, shotoku==1)
timss.ses.mid <- subset(timss, shotoku==2)
timss.ses.lo <- subset(timss, shotoku==3)
nrow(timss.ses.hi)
## [1] 11
nrow(timss.ses.mid)
## [1] 97
nrow(timss.ses.lo)
## [1] 17
plot(timss.ses.hi$cl.n.pupil, timss.ses.hi$rika.mean)
cor(timss.ses.hi$cl.n.pupil, timss.ses.hi$rika.mean)
## [1] -0.5860547
plot(timss.ses.hi$cl.n.pupil, timss.ses.hi$rika.sd)
cor(timss.ses.hi$cl.n.pupil, timss.ses.hi$rika.sd)
## [1] -0.328518
plot(timss.ses.hi$cl.n.pupil, timss.ses.hi$lo.prop)
cor(timss.ses.hi$cl.n.pupil, timss.ses.hi$lo.prop)
## [1] 0.3532275
plot(timss.ses.mid$cl.n.pupil, timss.ses.mid$rika.mean)
cor(timss.ses.mid$cl.n.pupil, timss.ses.mid$rika.mean)
## [1] 0.1869622
plot(timss.ses.mid$cl.n.pupil, timss.ses.mid$rika.sd)
cor(timss.ses.mid$cl.n.pupil, timss.ses.mid$rika.sd)
## [1] 0.03146559
plot(timss.ses.mid$cl.n.pupil, timss.ses.mid$lo.prop)
cor(timss.ses.mid$cl.n.pupil, timss.ses.mid$lo.prop)
## [1] -0.2178488
plot(timss.ses.lo$cl.n.pupil, timss.ses.lo$rika.mean)
cor(timss.ses.lo$cl.n.pupil, timss.ses.lo$rika.mean)
## [1] 0.5028253
plot(timss.ses.lo$cl.n.pupil, timss.ses.lo$rika.sd)
cor(timss.ses.lo$cl.n.pupil, timss.ses.lo$rika.sd)
## [1] 0.168337
plot(timss.ses.lo$cl.n.pupil, timss.ses.lo$lo.prop)
cor(timss.ses.lo$cl.n.pupil, timss.ses.lo$lo.prop)
## [1] -0.5467852
tapply(timss$rika.mean, timss$chiiki, mean)
## 1 2 3 4
## 566.6555 563.6579 559.1527 547.5105
table(timss$chiiki)
##
## 1 2 3 4
## 22 24 64 15
table(timss$chiiki,timss$shotoku)
##
## 1 2 3
## 1 4 14 4
## 2 2 21 1
## 3 5 50 9
## 4 0 12 3
table(timss$gr.n.cl,timss$cl.n.pupil)
##
## 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
## 1 1 0 0 3 0 0 0 0 1 0 1 0 0 0 0 0 2 1 2 0
## 2 3 2 1 1 1 1 5 1 2 1 4 1 4 1 3 1 2 2 0 2
## 3 0 0 0 0 0 2 3 2 1 4 2 7 4 5 2 0 4 5 1 0
## 4 0 0 0 0 0 0 0 0 2 1 3 4 4 3 3 0 1 1 0 1
## 5 0 0 0 1 0 0 0 0 0 2 1 2 2 0 0 0 2 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
timss2 <- read.csv("timss2.csv")
table(timss2$shotoku,timss2$cat.csns)
##
## 11 12 21 22
## 1 1 2 5 4
## 2 41 15 30 12
## 3 8 0 8 1
timss2.1 <- subset(timss2, gr.n.cl>1)
timss2.1 <- subset(timss2.1, cs.kijun>35)
table(timss2.1$cs.kijun)
##
## 40
## 106
timss2.2 <- subset(timss2.1, chiiki==3)
tim <- subset(timss2, shotoku==2)
table(tim$shotoku)
##
## 2
## 98
table(tim$cat.csns)
##
## 11 12 21 22
## 41 15 30 12
tapply(tim$rika.mean, tim$cat.csns, mean)
## 11 12 21 22
## 556.4677 561.3257 559.0337 566.0654
tapply(tim$rika.sd, tim$cat.csns, mean)
## 11 12 21 22
## 61.04954 58.45276 63.84131 56.93858
tapply(tim$lo.prop, tim$cat.csns, mean)
## 11 12 21 22
## 0.4208365 0.4084519 0.4071225 0.3559835