BT-Settl preparation for IPAC (T) based on class of features 1-Fs/Fc.

Introduction

After the pre-processing analysis carried out for M stars within the IPAC dataset, we will proceed with a similar methodology to the one ran for IRTF.

## Loading required package: MASS
## Loading required package: Cubist
## Loading required package: lattice
## Loading required package: caret
## Loading required package: ggplot2
## Loading required package: xtable
## Loading required package: Peaks
## Loading required package: magic
## Loading required package: abind
## Loading required package: JADE
## Loading required package: doMC
## Loading required package: foreach
## Loading required package: iterators
## Loading required package: parallel
## Loading required package: segmented
## Loading required package: fftw
## Loading required package: FITSio
## Loading required package: stringr
## Loading required package: ztable
## Welcome to package ztable ver 0.1.5
## Loading required package: signal
## 
## Attaching package: 'signal'
## 
## The following objects are masked from 'package:stats':
## 
##     filter, poly
## 
## Loading required package: e1071
## Loading required package: class
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Loading required package: plyr
## Loading required package: compare
## 
## Attaching package: 'compare'
## 
## The following object is masked from 'package:base':
## 
##     isTRUE
## 
## Loading required package: mgcv
## Loading required package: nlme
## This is mgcv 1.8-6. For overview type 'help("mgcv-package")'.
## 
## Attaching package: 'mgcv'
## 
## The following object is masked from 'package:magic':
## 
##     magic
## 
## Loading required package: elasticnet
## Loading required package: lars
## Loaded lars 1.2
## 
## Loading required package: pbapply
## Loading required package: nnet
## Loading required package: kernlab
## Loading required package: pls
## 
## Attaching package: 'pls'
## 
## The following object is masked from 'package:caret':
## 
##     R2
## 
## The following object is masked from 'package:stats':
## 
##     loadings
## 
## Loading required package: multicore
## 
## Attaching package: 'multicore'
## 
## The following objects are masked from 'package:parallel':
## 
##     mclapply, mcparallel, pvec
## 
## The following object is masked from 'package:lattice':
## 
##     parallel
## 
## Loading required package: devtools
## Loading required package: caretEnsemble
## Loading required package: mlbench
## Loading required package: mclust
## Package 'mclust' version 5.0.1
## Type 'citation("mclust")' for citing this R package in publications.
## 
## Attaching package: 'mclust'
## 
## The following object is masked from 'package:mgcv':
## 
##     mvn
## 
## Loading required package: analogue
## Loading required package: vegan
## Loading required package: permute
## 
## Attaching package: 'permute'
## 
## The following object is masked from 'package:devtools':
## 
##     check
## 
## The following object is masked from 'package:kernlab':
## 
##     how
## 
## This is vegan 2.2-1
## 
## Attaching package: 'vegan'
## 
## The following object is masked from 'package:pls':
## 
##     scores
## 
## The following object is masked from 'package:caret':
## 
##     tolerance
## 
## This is analogue 0.16-0
## 
## Attaching package: 'analogue'
## 
## The following objects are masked from 'package:pls':
## 
##     RMSEP, crossval, pcr
## 
## The following object is masked from 'package:compare':
## 
##     compare
## 
## The following object is masked from 'package:plyr':
## 
##     join
## 
## Loading required package: cluster
## [[1]]
## [1] TRUE
## 
## [[2]]
## [1] TRUE
## 
## [[3]]
## [1] TRUE
## 
## [[4]]
## [1] TRUE
## 
## [[5]]
## [1] TRUE
## 
## [[6]]
## [1] TRUE
## 
## [[7]]
## [1] TRUE
## 
## [[8]]
## [1] TRUE
## 
## [[9]]
## [1] TRUE
## 
## [[10]]
## [1] TRUE
## 
## [[11]]
## [1] TRUE
## 
## [[12]]
## [1] TRUE
## 
## [[13]]
## [1] TRUE
## 
## [[14]]
## [1] TRUE
## 
## [[15]]
## [1] TRUE
## 
## [[16]]
## [1] TRUE
## 
## [[17]]
## [1] TRUE
## 
## [[18]]
## [1] TRUE
## 
## [[19]]
## [1] TRUE
## 
## [[20]]
## [1] TRUE
## 
## [[21]]
## [1] TRUE
## 
## [[22]]
## [1] TRUE
## 
## [[23]]
## [1] TRUE
## 
## [[24]]
## [1] TRUE
## 
## [[25]]
## [1] TRUE
## 
## [[26]]
## [1] TRUE
## 
## [[27]]
## [1] TRUE
## 
## [[28]]
## [1] TRUE
## 
## [[29]]
## [1] TRUE
## 
## [[30]]
## [1] TRUE
## 
## [[31]]
## [1] TRUE
## 
## [[32]]
## [1] TRUE
## 
## [[33]]
## [1] TRUE
## 
## [[34]]
## [1] TRUE
## 
## [[35]]
## [1] TRUE
## 
## [[36]]
## [1] TRUE
## 
## [[37]]
## [1] TRUE

Target T will be between 2000 K and 4200 K

Prediction for Temperature

We will use the I-Band according to GA models noised by SNR=50 and SNR=10 as well as the features proposed by Cestti et al. also noised by SNR=50 and SNR=10.

Recovering already built models

# Procesado del genĂ©tico de Tª 
range_elem<-function(z,l,bi){
  look=function(x,l,y){
    j<-which(y>= as.numeric(x[l]))[1];
    k<-(which(y>as.numeric(x[(l+1)]))[1])-1; 
    return(c(j,k))
  }
  y=z$data[[1]][,1]
  lm<-t(apply(bi,1,look,l,y))
  rownames(lm)<-bi[,1]
  colnames(lm)<-c("From","To")
  return(lm)
}
int_spec<-function(x,idx,norm=0){
    y<-x$data[[1]][eval(parse(text=idx)),]
    xz<-diff(as.numeric(y[,1]),1)
    yz<-as.numeric(y[,2])
    if ( norm > 0 ){
      z<-sum(xz)
    } else {
      z<-sum(xz*rollmean(yz,2))
    }
    return(z)
}
#
feature_extr<-function(sn,bp){
  sig<-sn[1]
  noi<-sn[2]
  nof<-sn[3] # Allowing to consider 2 bands as the paper
  Fcont<-unlist(lapply(bp,int_spec,noi,0))/
         unlist(lapply(bp,int_spec,noi,1))
  if (! is.na(nof)){ # In case of two bands => average
    Fcont2=unlist(lapply(bp,int_spec,nof,0))/
           unlist(lapply(bp,int_spec,nof,1))
    Fcont = (Fcont + Fcont2) /2.
  }
  fea<-unlist(lapply(bp,int_spec,sig,1))-
       unlist(lapply(bp,int_spec,sig,0))/Fcont
  return(fea)
}
#
sacar=function(x,pos=2) {
  if ( length(x) < pos ) {
    return(NA);
  }
  return(x[pos]);
}
#
###################### 
#
# Loading the object BT-Settl
if (file.exists("~/git/M_prep_IPAC/Models_BT_settl_IPAC33_v2.RData")) {
  load( file="~/git/M_prep_IPAC/Models_BT_settl_IPAC33_v2.RData")
} else {
  cat("ERROR: ~/git/M_prep_IPAC/Models_BT_settl_IPAC33_v2.RData NOT FOUND !!!")  
  exit(2)
}
#

Now, we will read the M stars from the IPAC dataset in fits format.

Reading the IPAC dataset

#
scaling=function(x,xlim=NULL,xp=NULL) {
  y=x
  if (! is.null(y$factors)) {
    y$data[,2]=y$data[,2]*y$factors
  }
  if ( is.null(xlim)){
    ixp=rep(TRUE,nrow(y$data))
    xlim=range(y$data[,1])
  } 
  if ( ! is.null(xp)) {
      xp = xp[(xp > xlim[1]) & (xp < xlim[2])]
      xli0 = y$data[rev(which(y$data[,1] < xlim[1]))[1],1] - 0.001 # Rounding ...
      xli1 = y$data[which(y$data[,1]>xlim[2])[1],1] + 0.001 # Rounding ...
      ixp  = (y$data[,1] >= xli0 & y$data[,1] <= xli1)
  } else {
      ixp = (y$data[,1]>= xlim[1] & y$data[,1] <= xlim[2])
  }
  z=y$data[ixp,]
  jp=rep(0,nrow(z)+1)
#  jp[is.finite(z[,2])]=1  # LSB has requested to interpolate the holes 30/7/2014
  jp[nrow(z)+1]=1
  zp=diff(jp)
  ip=which(zp != 0)
  ini=1
  j=0
  y$data=list()  
  for (i in ip) {
    if (zp[i] != -1 ) {
      j=j+1 
      y$data[[j]]=z[ini:i,]
    } else {
      ini=i+1
    }
  }
  y$nch=j
  y$factors=rep(NA,y$nch)
  for (i in 1:y$nch) {
    if ( is.na(y$data[[i]][nrow(y$data[[i]]),2])) {
      kk = rev(which(! is.na(y$data[[i]][,2])))[1]
      y$data[[i]][nrow(y$data[[i]]),2]=y$data[[i]][kk,2]
    }
    if ( is.na(y$data[[i]][1,2])) {
      kk = which(! is.na(y$data[[i]][,2]))[1]
      y$data[[i]][1,2]=y$data[[i]][kk,2]
    }
    if ( ! is.null(xp)) {
      yp=(approx(y$data[[i]][,1],y$data[[i]][,2],xout=xp))$y
      y$data[[i]]=data.frame(x=xp,y=yp)
    } else {
      yp=(approx(y$data[[i]][,1],y$data[[i]][,2],xout=y$data[[i]][,1]))$y
      y$data[[i]]=data.frame(x=y$data[[i]][,1],y=yp)
    }
    y$factors[i]=sum(rollmean(y$data[[i]][,2],2)*diff(y$data[[i]][,1]))
  }
  ss=sum(y$factors)
  for (i in 1:y$nch) {  
    y$data[[i]][,2]=y$data[[i]][,2]/ss      
  }
  return(y)
}
#
pinta=function(x,cortes=NULL,borders=FALSE, boundary=FALSE, close=FALSE,
               xlim=NULL, ylim=NULL,plt=NULL,width=12,height=8,...){
  if (is.null(x$nch)){
    nch=1
  } else {
    nch=x$nch
  }
  if ( length(xlim) < 2 ) {
    xmin=min(x$data[[1]][,1])
    xmax=max(x$data[[nch]][,1])
    xl=c(xmin,xmax)
  } else {
    xl=xlim
  }
  if ( length(ylim) < 2 ) {
    ymin=min(x$data[[1]][,2])
    ymax=max(x$data[[1]][,2])
    if ( nch > 1 ) {
      for (i in 2:nch){
        ymin=min(ymin,x$data[[i]][,2])
        ymax=max(ymax,x$data[[i]][,2])    
      }
    }
    yl=c(ymin,ymax)
  } else {
    yl = ylim
  }
  if (! is.null(plt) ) {
    pdf(file=plt,width,height)
  }
  if ( boundary) {
    plot(0,xlim=xl,ylim=yl,...)
  }
  for (i in 1:nch) {
    lines(x$data[[i]],...)
  }
  for (i in cortes) {
    abline(v=i[1],col=2)
    abline(v=i[2],col=2)
  }
  if ( borders) {
    for (i in nch) {
      abline(v=min(x$data[[i]][,1]),col=3)
      abline(v=max(x$data[[i]][,1]),col=3)
    }
  }
  if ( close ) {
    dev.off()
  }
}
setwd('~/git/M_prep_IPAC')
#

A number of 595 have been readed from the individual spectra dataset.

Preparation of potential features for T

#
if ( file.exists("~/git/M_prep_IPAC/Features_BT-settl_v30.RData")) {
  load("~/git/M_prep_IPAC/Features_BT-settl_v30.RData")
} else {
  bpy=do.call(rbind,lapply(bp_clean,function(x){return(x$data[[1]][,2])}))
  bpy10=do.call(rbind,lapply(bp_10,function(x){return(x$data[[1]][,2])}))
  bpy50=do.call(rbind,lapply(bp_50,function(x){return(x$data[[1]][,2])}))  
  YPT=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[1])}))
  YPG=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[2])}))
  YPM=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[3])}))
  vf=as.character(bp_clean[[1]]$data[[1]][,1])
  colnames(bpy)=vf
  colnames(bpy10)=vf
  colnames(bpy50)=vf
  bfy=do.call(rbind,lapply(bf_clean,function(x){return(x$data[[1]][,2])}))
  colnames(bfy)=vf
  #
  area=function(v,nv) {
    y=data.frame(x=as.numeric(nv),y=v)
    xz = diff(as.numeric(y[,1]),1)
    yz = as.numeric(y[,2])
    z  = sum(xz*rollmean(yz,2))
    return(z)
  }
  #
######################################################################
  #
  siz=30
  bandas=list()
  bfndas=list()
  bandas10=list()
  bandas50=list()
  for (i in seq(1,siz,15)) { # LSB asked for steps of 5 pixels
    idx=paste("s=",i,sep="")
    lvf=vf
    if ( i > 1) {
      lvf=vf[-c(1:(i-1))]
    }
    ff=as.factor(sort(rep(1:ceiling(length(lvf)/siz),siz))[1:length(lvf)])
    st=split(lvf,ff)
    for (j in 1:length(st)) {
      if (length(st[[j]]) < siz)
        st[[j]] = NULL
    }
    lst = length(st)
    bandas[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bpy)))
    bfndas[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bfy)))
    bandas10[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bpy10)))
    bandas50[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bpy50)))
    for (j in 1:lst) {
      bandas[[idx]]$mat[,j]=apply(bpy[,st[[j]]],1,area,st[[j]])
      bandas10[[idx]]$mat[,j]=apply(bpy10[,st[[j]]],1,area,st[[j]])
      bandas50[[idx]]$mat[,j]=apply(bpy50[,st[[j]]],1,area,st[[j]])      
    }
    for (j in 1:lst) {
      bfndas[[idx]]$mat[,j]=apply(bfy[,st[[j]]],1,area,st[[j]])     
    }
  }
  #
  save(bpy,bfy,bandas,bfndas,vf, bpy10,bpy50,st,
       bandas10,bandas50,YPT,YPG,YPM, 
       file="~/git/M_prep_IPAC/Features_BT-settl_v30.RData")
}
#

Otras features de genĂ©ticos que evolucionan construyendo las features (PoblaciĂ³n 8000 individuos, 1000 evoluciones)

#
#
require(GA)
GA_r Loading required package: GA
GA_r Package 'GA' version 2.2
GA_r Type 'citation("GA")' for citing this R package in publications.
require(doParallel)
GA_r Loading required package: doParallel
require(plyr)
#
#
area=function(v,nv) {
  y=data.frame(x=as.numeric(nv),y=v)
  xz = diff(as.numeric(y[,1]),1)
  yz = as.numeric(y[,2])
  z  = sum(xz*rollmean(yz,2))
  return(z)
}
fitness = function(string) {
  par = decode(string)
  if ( 0 %in% unlist(apply(par,1,sd)) ) {
    return (-1000*NBLK*NBITS)
  }
  if ( length(unique(sort(par[,1]))) < nrow(par) |
         length(unique(sort(par[,2]))) < nrow(par) ) {
    return (-1000*NBLK*NBITS)
  }
  X   = as.data.frame(matrix(0,nrow=nrow(bandas[[cnjts[1]]]$mat),ncol=(nrow(par))))
  colnames(X)[1] ="Intercept"
  for ( i in 1:nrow(par)) {    
    bi=par[i,1] %% NBLK
    bj=par[i,2] %% NBLK
    if ( bi==0 ) bi=NBLK
    if ( bj==0 ) bj=NBLK
    idxi=(par[i,1] %/% NBLK) +1
    idxj=(par[i,2] %/% NBLK) +1    
    wini=-eval(parse(text=bandas[[cnjts[bi]]]$names[idxi]))
    winj=-eval(parse(text=bandas[[cnjts[bj]]]$names[idxj]))    
    X[,(i)]=wini-bandas[[cnjts[bi]]]$mat[,idxi] / (bandas[[cnjts[bj]]]$mat[,idxj]/winj)
    colnames(X)[(i)] = paste(par[i,],collapse="-")
  }
  mod = lm.fit(as.matrix(X), y)
  class(mod) = "lm"
  return( -BIC(mod))
}
fitness10 = function(string) {
  par = decode(string)
  if ( 0 %in% unlist(apply(par,1,sd)) ) {
    return (-1000*NBLK*NBITS)
  }
  if ( length(unique(sort(par[,1]))) < nrow(par) |
         length(unique(sort(par[,2]))) < nrow(par) ) {
    return (-1000*NBLK*NBITS)
  }
  X   = as.data.frame(matrix(0,nrow=nrow(bandas10[[cnjts[1]]]$mat),ncol=(nrow(par))))
  colnames(X)[1] ="Intercept"
  for ( i in 1:nrow(par)) {    
    bi=par[i,1] %% NBLK
    bj=par[i,2] %% NBLK
    if ( bi==0 ) bi=NBLK
    if ( bj==0 ) bj=NBLK
    idxi=(par[i,1] %/% NBLK) +1
    idxj=(par[i,2] %/% NBLK) +1    
    wini=-eval(parse(text=bandas10[[cnjts[bi]]]$names[idxi]))
    winj=-eval(parse(text=bandas10[[cnjts[bj]]]$names[idxj]))
    X[,(i)]=wini-bandas10[[cnjts[bi]]]$mat[,idxi] / (bandas10[[cnjts[bj]]]$mat[,idxj]/winj)    
    colnames(X)[(i)] = paste(par[i,],collapse="-")
  }
  mod = lm.fit(as.matrix(X), y)
  class(mod) = "lm"
  return( -BIC(mod))
}
fitness50 = function(string) {
  par = decode(string)
  if ( 0 %in% unlist(apply(par,1,sd)) ) {
    return (-1000*NBLK*NBITS)
  }
  if ( length(unique(sort(par[,1]))) < nrow(par) |
         length(unique(sort(par[,2]))) < nrow(par) ) {
    return (-1000*NBLK*NBITS)
  }
  X   = as.data.frame(matrix(0,nrow=nrow(bandas50[[cnjts[1]]]$mat),ncol=(nrow(par))))
  colnames(X)[1] ="Intercept"
  for ( i in 1:nrow(par)) {    
    bi=par[i,1] %% NBLK
    bj=par[i,2] %% NBLK
    if ( bi==0 ) bi=NBLK
    if ( bj==0 ) bj=NBLK
    idxi=(par[i,1] %/% NBLK) +1
    idxj=(par[i,2] %/% NBLK) +1    
    wini=-eval(parse(text=bandas50[[cnjts[bi]]]$names[idxi]))
    winj=-eval(parse(text=bandas50[[cnjts[bj]]]$names[idxj]))
    X[,(i)]=wini-bandas50[[cnjts[bi]]]$mat[,idxi] / (bandas50[[cnjts[bj]]]$mat[,idxj]/winj) 
    colnames(X)[(i)] = paste(par[i,],collapse="-")
  }
  mod = lm.fit(as.matrix(X), y)
  class(mod) = "lm"
  return( -BIC(mod))
}
#
SelFeatures=function(x,sets=cnjts,dat=bandas,fitness.=fitness,pp=FALSE){
  pos=which.max(as.numeric(unlist(ldply(x@bestSol,fitness.,.parallel=pp))))
  sol=x@bestSol[[pos]]
  par = decode(sol)  
  res = list()
  for ( i in 1:nrow(par)) {    
    bi=par[i,1] %% NBLK
    bj=par[i,2] %% NBLK
    if ( bi==0 ) bi=NBLK
    if ( bj==0 ) bj=NBLK
    idxi=(par[i,1] %/% NBLK) +1
    idxj=(par[i,2] %/% NBLK) +1  
    res[[i]]=list(set1=sets[bi],pos1=idxi,set2=sets[bj],pos2=idxj,par=par[i,],
                  x=dat[[sets[bi]]]$mat[,idxi],
                  x0=dat[[sets[bj]]]$mat[,idxj],
                  name=dat[[sets[bi]]]$nam[idxi],
                  name0=dat[[sets[bj]]]$nam[idxj])
  }
  return(res)
}
#
FeaturesExt=function(x,num,sets=cnjts,dat=bandas,fitness.=fitness,pp=FALSE){
  vals=as.numeric(unlist(ldply(x@bestSol,fitness.,.parallel=pp)))
  fiveval=summary(vals)
  uv    = unique(sort(vals,decreasing=TRUE))
  uvals = uv[1:min(num,length(uv))]
  isols=rep(0,length(uvals))
  for (i in 1:length(uvals)) {
    isols[i] = which(vals==uvals[i])[1]
  }
  res=NA
  if ( length(isols) > 0) {
    par=decode(x@bestSol[[1]])
    res = as.data.frame(matrix(NA,nrow=nrow(par),ncol=(2*length(isols))))
    nam = as.data.frame(matrix(NA,nrow=nrow(par),ncol=(2*length(isols))))    
    for (j in 1:length(isols)) {
      sol=x@bestSol[[isols[j]]]
      par = decode(sol)  
      res[,(2*(j-1)+1):(2*j)]=par
      names(res)[(2*(j-1)+1):(2*j)] = c(paste(j,":s",sep=""),paste(j,":c",sep=""))
      for ( i in 1:nrow(par)) {    
        bi=par[i,1] %% NBLK
        bj=par[i,2] %% NBLK
        if ( bi==0 ) bi=NBLK
        if ( bj==0 ) bj=NBLK
        idxi=(par[i,1] %/% NBLK) +1
        idxj=(par[i,2] %/% NBLK) +1  
        nam[i,(2*(j-1)+1)]=dat[[sets[bi]]]$nam[idxi]
        nam[i,(2*j)]=dat[[sets[bj]]]$nam[idxj]
      }
      names(nam)[(2*(j-1)+1):(2*j)] = c(paste(j,":s",sep=""),paste(j,":c",sep=""))        
    }
  }
  return(list(par=res,name=nam,pos=isols,vpos=vals[isols],fivevals=fiveval))
}
#
decode = function(string) {
  string = gray2binary(string)
  n = binary2decimal(string[1:NBITS])
  c = binary2decimal(string[(NBITS + 1):(2*NBITS)])
  res = data.frame(p1=n%%MAXV,p2=c%%MAXV)
  ini = 2 * NBITS
  if ( NG > 1) {
    for (i in 2:NG) {
      n = binary2decimal(string[(ini+1):(ini+NBITS)])
      c = binary2decimal(string[(ini + NBITS + 1):(ini + 2*NBITS)])
      res = rbind(res, c(n%%MAXV,c%%MAXV))
      ini = ini + 2*NBITS
    }
  }
  return(res)
}
#
encode = function(res,nbits=NBITS) {
  if (! is.data.frame(res)) {
    warning(paste("ENCODE: First parameter is not data.frame:",str(res),sep=" "))
    return(NULL)
  }
  cad=rep(0,ncol(res)*nrow(res)*nbits)
  for (i in 1:nrow(res)) {
    for (j in 1:ncol(res)) {
      k=((i-1)*ncol(res) + (j - 1))*nbits+1
      cad[k:(k+nbits-1)]=decimal2binary(res[i,j],nbits)
    }
  }
  return(binary2gray(cad))
}
#
#
NITER=9
if ( file.exists("~/git/M_prep_IPAC/GA_NT11F2_IPAC_30.RData")) {
  j=1
  load("~/git/M_prep_IPAC/GA_NT11F2_IPAC_30.RData")
  tt50=list()
  GAs50 = list()
  solsT50=list()
  tt10=list()
  GAs10 = list()
  solsT10=list()
  tt=list()
  GAs=list()
  solsT=list()
  while(j <= NITER) {
    cat(paste("Reading Iteration:",j,"<br>",sep=""))
    flush.console()
    load(paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_50_f2_IPAC_30.RData",sep=""))
    tt50[[j]]= t_tot
    GAs50[[j]]=GA1
    solsT50[[j]]=FeaturesExt(GA1,12)
    load(paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_10_f2_IPAC_30.RData",sep=""))
    tt10[[j]]= t_tot
    GAs10[[j]]=GA1
    solsT10[[j]]=FeaturesExt(GA1,12)
    load(paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_f2_IPAC_30.RData",sep=""))
    tt[[j]]= t_tot
    GAs[[j]]=GA1
    solsT[[j]]=FeaturesExt(GA1,12)    
    j = j+1
  }
} else {
#  cnjts = c("s=1","s=6","s=11","s=16","s=21","s=26")  
  cnjts = c("s=1","s=16")
  bpy=do.call(rbind,lapply(bp_clean,function(x){return(x$data[[1]][,2])}))
  YPT=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[1])}))
  YPG=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[2])}))
  YPM=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[3])}))  
  vf=as.character(bp_clean[[1]]$data[[1]][,1])
  colnames(bpy)=vf
  bfy=do.call(rbind,lapply(bf_clean,function(x){return(x$data[[1]][,2])}))
  colnames(bfy)=vf
  #
  siz=30
  bandas=list()
  bfndas=list()
  bandas10=list()
  bandas50=list()
  for (i in seq(1,30,15)) { # LSB asked for steps of 5 pixels
    idx=paste("s=",i,sep="")
    lvf=vf
    if ( i > 1) {
      lvf=vf[-c(1:(i-1))]
    }
    ff=as.factor(sort(rep(1:ceiling(length(lvf)/siz),siz))[1:length(lvf)])
    st=split(lvf,ff)
    for (j in 1:length(st)) {
      if (length(st[[j]]) < siz)
        st[[j]] = NULL
    }
    lst = length(st)
    bandas[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bpy)))
    bfndas[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bfy)))
    bandas10[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bpy10)))
    bandas50[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bpy50)))
    for (j in 1:lst) {
      bandas[[idx]]$mat[,j]=apply(bpy[,st[[j]]],1,area,st[[j]])
      bandas10[[idx]]$mat[,j]=apply(bpy10[,st[[j]]],1,area,st[[j]])
      bandas50[[idx]]$mat[,j]=apply(bpy50[,st[[j]]],1,area,st[[j]])      
    }
    for (j in 1:lst) {
      bfndas[[idx]]$mat[,j]=apply(bfy[,st[[j]]],1,area,st[[j]])     
    }
  }
  #
  #
  y=as.numeric(unlist(YPT))
  cnjts = c("s=1","s=16")
  NG=10   # NĂºmero de Features
  NBLK = length(cnjts)
  NBITS= ceiling(log(NBLK*ncol(bandas[[cnjts[1]]]$mat),2))
  MAXV = ncol(bandas[[cnjts[1]]]$mat)
  #
  save(bpy,bpy10,bpy50,bfy,YPT,YPG,YPM,vf,siz,bandas,bfndas, bandas10,bandas50,
       cnjts,st,NG,NBLK,NBITS,MAXV,y,fitness,encode,decode,
       SelFeatures,file="~/git/M_prep_IPAC/GA_NT11F2_IPAC_30.RData")
  #
  tt=list()
  GAs = list()
  solsT=list()
  j=1
  while(j <= NITER) {
    cat(paste("Starting Iteration:",j,"<br>",sep=""))
    flush.console()
    tt[[j]]= system.time({GA1 = ga("binary", fitness = fitness, nBits = NBITS*2*NG,
        monitor = FALSE,parallel=18,maxiter=1000,popSize=8000,keepBest=TRUE)})
    t_tot=tt[[j]]
    GAs[[j]]=GA1
    save(fitness,encode,decode,SelFeatures,GA1,t_tot,j,
       file=paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_f2_IPAC_30.RData",sep=""))
    solsT[[j]]=FeaturesExt(GA1,12)
    j=j+1
  }
  #
  print(xtable(ldply(solsT,function(x){return(x$vpos[1])})),type="html")
  #
  j=1
  tt10=list()
  GAs10 = list()
  solsT10=list()
  while(j <= NITER) {
    cat(paste("Starting Iteration:",j,"<br>",sep=""))
    flush.console()
    tt10[[j]]= system.time({GA1 = ga("binary", fitness = fitness10, nBits = NBITS*2*NG,
        monitor = FALSE,parallel=18,maxiter=1000,popSize=8000,keepBest=TRUE)})
    t_tot=tt10[[j]]
    GAs10[[j]]=GA1
    save(fitness,encode,decode,SelFeatures,GA1,t_tot,j,
       file=paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_10_f2_IPAC_30.RData",sep=""))
    solsT10[[j]]=FeaturesExt(GA1,12)
    j=j+1
  }
  #
  print(xtable(ldply(solsT10,function(x){return(x$vpos[1])})),type="html")
  #
  j=1
  tt50=list()
  GAs50 = list()
  solsT50=list()
  while(j <= NITER) {
    cat(paste("Starting Iteration:",j,"<br>",sep=""))
    flush.console()
    tt50[[j]]= system.time({GA1 = ga("binary", fitness = fitness50, nBits = NBITS*2*NG,
        monitor = FALSE,parallel=18,maxiter=1000,popSize=8000,keepBest=TRUE)})
    t_tot=tt50[[j]]
    GAs50[[j]]=GA1
    save(fitness,encode,decode,SelFeatures,GA1,t_tot,j,
       file=paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_50_f2_IPAC_30.RData",sep=""))
    solsT50[[j]]=FeaturesExt(GA1,12)
    j=j+1
  }  
  #
  print(xtable(ldply(solsT50,function(x){return(x$vpos[1])})),type="html")
}

Reading Iteration:1
Reading Iteration:2
Reading Iteration:3
Reading Iteration:4
Reading Iteration:5
Reading Iteration:6
Reading Iteration:7
Reading Iteration:8
Reading Iteration:9

#
print(xtable(ldply(solsT,function(x){return(x$vpos[1])})),type="html")
V1
1 -11161.73
2 -11284.13
3 -11281.02
4 -11183.67
5 -11181.73
6 -11176.48
7 -11157.40
8 -11249.65
9 -11102.38
# ISOL holds the best solution !
isol = which.max(as.numeric(ldply(solsT,function(x){return(x$vpos[1])})[,1])) 
isol

[1] 9

print(xtable(ldply(solsT10,function(x){return(x$vpos[1])})),type="html")
V1
1 -11310.37
2 -11353.04
3 -11361.24
4 -11394.16
5 -11346.44
6 -11327.27
7 -11384.69
8 -11262.78
9 -11285.79
# ISOL holds the best solution !
isol10 = which.max(as.numeric(ldply(solsT10,function(x){return(x$vpos[1])})[,1])) 
isol10 

[1] 8

#
print(xtable(ldply(solsT50,function(x){return(x$vpos[1])})),type="html")
V1
1 -11321.64
2 -11247.15
3 -11104.20
4 -11169.37
5 -11202.69
6 -11266.13
7 -11213.65
8 -11195.41
9 -11165.31
# ISOL holds the best solution !
isol50 = which.max(as.numeric(ldply(solsT50,function(x){return(x$vpos[1])})[,1])) 
isol50 

[1] 3

#

T foreseen by Luminosity models

# Loading IPAC prediction from Dr Sarro  (objeto piac_temp)
load("~/git/M_prep_Noise/Teffs.RData")
ipac_temp[,1]=as.character(ipac_temp[,1])
ipac_temp[,2]=as.character(ipac_temp[,2])
ipac_temp[,3]=as.character(ipac_temp[,3])
ipac_temp[,4]=as.character(ipac_temp[,4])
ipac_temp[,5]=as.character(ipac_temp[,5])
ipac_temp[,6]=as.character(ipac_temp[,6])
ipac_temp[ipac_temp=='\xa0']=""
#
lnm<-unlist(lapply(bf_clean,function(x){return(x$name)}))
buscar=function(x,y,l=4){
  for ( i in x[1:l]) {
    if (nchar(i) > 1) {
      stg = gsub('+','p',gsub(' ','_',i),fixed=TRUE)
      stg = gsub('\\(','\\\\(',gsub('\\)','\\\\)',stg))
      if (nchar(stg) > 0) {
        pos=grep(stg,y)
        if ( length(pos) == 1 ) {
          return (pos)
        }
      }
    }
  }
  return(-1)
}
#
idx=apply(ipac_temp[,-c(5,7)],1,buscar,lnm,6)
Teff_scs = rep(NA,max(idx))
Tipo_scs = rep(NA,max(idx))
idpos=data.frame(LSB=1:length(idx),BPG=idx)
for ( i in 1:nrow(idpos)) {
  if (idpos[i,2]>0) {
    Teff_scs[idpos[i,2]]= ipac_temp[idpos[i,1],7]
    Tipo_scs[idpos[i,2]]= ipac_temp[idpos[i,1],5]
  }
}
# 

Modelado de T con esas Features

#
clase_luminosidad = function(x) {
  # we look over Spectral SubClass
  # for roman numbers V=>dwarft; III => giants I => Supergiants (II => I) 
  cl=c("V","III","I") 
  i=1
  res=NA
  if ( ! is.na(x)) {
    while(i <= length(cl) & is.na(res)) {
      j=regexpr(cl[i],x)
      if (j[1] > 0) {
        res=cl[i]
      } else {
        i=i+1
      }
    }
  }
  return(res)
}
clase_m = function(x) {
  # we look over Spectral SubClass
  # for roman numbers V=>dwarft; III => giants I => Supergiants (II => I) 
#   cl=c("M0.5","M0","M1.5","M1","M2.5","M2","M3.5","M3","M4.5","M4","M5.5","M5","M6.5","M6",
#        "M7.5","M7","M8.5","M8","M9.5","M9") 
  cl=c("M0","M1","M2","M3","M4","M5","M6","M7","M8","M9") 
  i=1
  res=NA
  if ( ! is.na(x) ) {
    while(i <= length(cl) & is.na(res)) {
      j=regexpr(cl[i],x)
      if (j[1] > 0) {
        res=cl[i]
      } else {
        i=i+1
      }
    }
  }
  return(res)
}
#
#
prep_datos=function(res){
  X=matrix(NA,nrow=length(res[[1]]$x),ncol=length(res))
  for (j in 1:length(res)) {
    X[,j]=res[[j]]$x/res[[j]]$x0
  }
  colnames(X)=paste("C",1:length(res),sep="")   
  return(X)
}
#
modelado=function(X,Y) {
  #
  trn=1:nrow(X)
  folds=5
  repeats=1
  #
  mseeds <- vector(mode = "list", length = (folds+1))
  for(i in 1:folds) mseeds[[i]] <- sample.int(nrow(X), 100)
      mseeds[[(folds+1)]] <- sample.int(1000, 1)
  myControl = trainControl(method='cv', number=folds, 
                  repeats=repeats, returnResamp='none', 
                  returnData=FALSE, savePredictions=TRUE, 
                  verboseIter=FALSE, allowParallel=TRUE,seeds=mseeds)
  #Train some models
  model_1.1 = "train(X[trn,], Y[trn], method='gbm', 
                     trControl=myControl,
                tuneGrid=expand.grid(n.trees=seq(200,500,100), n.minobsinnode=c(2,5),
                                     interaction.depth=seq(3,15,2), 
                                     shrinkage = seq(0.01,0.1,0.02)),verbose=FALSE)"
  model_1.2 = "train(X[trn,], Y[trn], method='blackboost', 
                  trControl=myControl, tuneGrid=expand.grid(.mstop=10^(2:4), 
                                     .maxdepth=seq(5,15,3)))"
  model_1.3 = "train(X[trn,], Y[trn], method='rf', 
                     trControl=myControl,
                     tuneGrid=expand.grid(.mtry=(2:ncol(X))),
                     proximity=TRUE)"
  model_1.4 = "train(X[trn,], Y[trn], method='knn', 
                     trControl=myControl, trace=FALSE,
                     tuneGrid=expand.grid(k=(2:min(9,ncol(X)))))"
  model_1.5 = "train(X[trn,], Y[trn], method='ppr', 
                     trControl=myControl,tuneGrid=expand.grid(.nterms=10))"
  model_1.6 = "train(X[trn,], Y[trn], method='earth', 
                     trControl=myControl,tuneGrid=expand.grid(.degree = 3,
                          .nprune = (1:10) * 2), metric = 'RMSE',
                          maximize = FALSE)"
  model_1.7 = "train(X[trn,], Y[trn], method='glm', 
                     trControl=myControl)"
  model_1.8 = "train(X[trn,], Y[trn], method='svmRadial', 
                     trControl=myControl,tuneGrid=expand.grid(.C=10^(-3:3), 
                      .sigma=c(10^(-4:3))))"
  model_1.9 = "train(X[trn,], Y[trn], method='cubist', 
                     trControl=myControl,commiittees=10)"
  model_1.10 = "train(X[trn,], Y[trn], method='kernelpls', 
                     trControl=myControl,tuneGrid=expand.grid(.ncomp=seq(2,ncol(X))))"
  model_1.11 = "train(X[trn,], Y[trn], method='nnet', 
                  trControl=myControl,tuneGrid=expand.grid(.size=seq(2,round(2*ncol(X)),3), 
                      .decay=c(1.e-5,1.e-2)),
                      linout=TRUE, rang = 300, trace=FALSE,
                      maxit=10000, reltol=1.0e-11, abstol=1.0e-6)"
  model_1.12 = "train(X[trn,], Y[trn], method='bagEarth', 
                  trControl=myControl,tuneGrid=expand.grid(.nprune=(1:10)*3,.degree=1:5))"
  model_1.13 = "train(X[trn,], Y[trn], method='cubist', trControl=myControl,
                  tuneGrid=expand.grid(.committees=3:50, .neighbors=1:7))"
  # 
  #Make a list of all the models
  lmodels=c("model_1.1", "model_1.2", "model_1.3", "model_1.4", 
            "model_1.5", "model_1.6", "model_1.7", "model_1.8", 
            "model_1.9", "model_1.10","model_1.11","model_1.12", 
            "model_1.13") 
#  
  all.models_5 =list()
  for (i in lmodels) {
    all.models_5[[length(all.models_5)+1]] = eval(parse(text=gsub('\n','',get(i))))
  }
  names(all.models_5) = sapply(all.models_5, function(x) x$method)
  # 
  ensam_5 <- caretList(X[trn,],Y[trn],methodList=c('svmRadial',
                        'gbm','blackboost','rf','earth','bagEarth'))
  ens <- caretEnsemble(ensam_5)
  #Make a linear regression ensemble
  if (exists("ens")){
    all.models_5[[length(all.models_5)+1]] = get("ens")
    names(all.models_5)[length(all.models_5)]="ENS"
  } 
  return(all.models_5)
}
#
# Function that returns Root Mean Squared Error
rmse <- function(error) {
    sqrt(mean(error^2,na.rm=TRUE))
}
# Function that returns Mean Absolute Error
mae <- function(error) {
    mean(abs(error),na.rm=TRUE)
}
#
#
if ( file.exists("~/git/M_prep_IPAC/GA_IPAC_MT_TF2_30_Models.RData")) {
  load("~/git/M_prep_IPAC/GA_IPAC_MT_TF2_30_Models.RData")
} else {
  res00=SelFeatures(GAs[[isol]],cnjts,bandas)
  res10=SelFeatures(GAs10[[isol10]],cnjts,bandas10)
  res50=SelFeatures(GAs50[[isol50]],cnjts,bandas50)    
  #
  X00 = prep_datos(res00)
  md5 = modelado(X00,as.numeric(YPT[,1]))
  X10 = prep_datos(res10)
  md51= modelado(X10,as.numeric(YPT[,1]))
  X50 = prep_datos(res50)
  md55= modelado(X50,as.numeric(YPT[,1]))
  #
  xf0 = prep_datos(SelFeatures(GAs[[isol]],cnjts,bfndas))
  xf1 = prep_datos(SelFeatures(GAs10[[isol10]],cnjts,bfndas))
  xf5 = prep_datos(SelFeatures(GAs50[[isol50]],cnjts,bfndas))
  #
  YTn00=predict(md5[[which(names(md5)=="rf")]],xf0)
  YTn01=predict(md51[[which(names(md51)=="rf")]],xf0)
  YTn05=predict(md55[[which(names(md55)=="rf")]],xf0)
  YTn10=predict(md5[[which(names(md5)=="rf")]],xf1)
  YTn11=predict(md51[[which(names(md51)=="rf")]],xf1)
  YTn15=predict(md55[[which(names(md55)=="rf")]],xf1)
  YTn50=predict(md5[[which(names(md5)=="rf")]],xf5)
  YTn51=predict(md51[[which(names(md51)=="rf")]],xf5)
  YTn55=predict(md55[[which(names(md55)=="rf")]],xf5)
  #
  Clase_lum=apply(as.data.frame(as.character(Tipo_scs),
            stringsAsFactors=FALSE),1,clase_luminosidad)
  Clase_m  =apply(as.data.frame(as.character(Tipo_scs),
            stringsAsFactors=FALSE),1,clase_m)
  SpT=Clase_m
  LC =Clase_lum
  ref_tot0=data.frame(Name=as.character(ref$Name),
                chi2d_10=ref$Chi2_T_10, chi2d_50=ref$Chi2_T_50,
                YTn00,YTn01,YTn05,YTn10,YTn11,YTn15,YTn50,
                YTn51,YTn55,Teff_LSB=Teff_scs,SpT=SpT,LC=LC)
  #
  save(bpy,bfy,YPT,YPG,YPM,vf,siz,bandas,bfndas, bandas10,
       bandas50,cnjts, NG,NBLK,NBITS,MAXV,md5,md51,
       md55,res00,res10,res50, X00,X10,X50,YTn00,YTn01,
       YTn05,YTn10,YTn11,YTn15,YTn50,YTn51,YTn55,xf0,xf1,xf5,
       ref_tot0,LC,SpT,
       file="~/git/M_prep_IPAC/GA_IPAC_MT_TF2_30_Models.RData")
}
#
YTpknn00=predict(md5[[which(names(md5)=="knn")]],xf0)
YTpknn11=predict(md51[[which(names(md51)=="knn")]],xf1)
YTpknn55=predict(md55[[which(names(md55)=="knn")]],xf5)
save(YTpknn00,YTpknn11,YTpknn55,xf0,xf1,xf5,
     file="~/git/M_prep_IPAC/GA_IPAC_predict_T_11F2_30.RData")

res00=SelFeatures(GAs[[isol]],cnjts,bandas)
res10=SelFeatures(GAs10[[isol10]],cnjts,bandas10)
res50=SelFeatures(GAs50[[isol50]],cnjts,bandas50)  
ref_tot0=data.frame(Name=as.character(ref$Name),
                chi2d_10=ref$Chi2_T_10, chi2d_50=ref$Chi2_T_50,
                YTn00,YTn01,YTn05,YTn10,YTn11,YTn15,YTn50,
                YTn51,YTn55,Teff_LSB=Teff_scs,SpT=SpT,LC=LC)
#
ref_tot2=ref_tot0
#
print(xtable(ldply(res00,function(x){return(c(x$name,x$name0))})),type="html")
V1 V2
1 7602-7706.4 7764-7868.4
2 7224-7328.4 7872-7976.4
3 7926-8030.4 7170-7274.4
4 7656-7760.4 7548-7652.4
5 6954-7058.4 7926-8030.4
6 6900-7004.4 7818-7922.4
7 7818-7922.4 7386-7490.4
8 7116-7220.4 7494-7598.4
9 7764-7868.4 7710-7814.4
10 7872-7976.4 7224-7328.4
print(xtable(ldply(res10,function(x){return(c(x$name,x$name0))})),type="html")
V1 V2
1 7602-7706.4 7008-7112.4
2 7656-7760.4 6954-7058.4
3 7872-7976.4 7224-7328.4
4 7062-7166.4 7494-7598.4
5 6900-7004.4 7818-7922.4
6 7278-7382.4 7548-7652.4
7 7224-7328.4 7872-7976.4
8 7332-7436.4 7926-8030.4
9 7926-8030.4 7170-7274.4
10 6954-7058.4 7278-7382.4
print(xtable(ldply(res50,function(x){return(c(x$name,x$name0))})),type="html")
V1 V2
1 7764-7868.4 7332-7436.4
2 6954-7058.4 7872-7976.4
3 7548-7652.4 7926-8030.4
4 7116-7220.4 7062-7166.4
5 7818-7922.4 7764-7868.4
6 7170-7274.4 7116-7220.4
7 6900-7004.4 7818-7922.4
8 7008-7112.4 7224-7328.4
9 7872-7976.4 7278-7382.4
10 7494-7598.4 7710-7814.4
#
ggplot(data=ref_tot2) + 
         geom_point(aes(x=Teff_LSB,y=chi2d_10,shape=LC),size=3) +
         xlab("Theoretical T [K]") + ylab("Chi2 10 [K]") +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="gray") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2))

#
ggplot(data=ref_tot2) + 
         geom_point(aes(x=Teff_LSB,y=chi2d_50,shape=LC),size=3) +
         xlab("Theoretical T [K]") + ylab("Chi2 50 [K]") +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="gray") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2))

#
ggplot(data=ref_tot2) + 
         geom_point(aes(x=Teff_LSB,y=YTn00,shape=LC),size=3) +
         xlab("Theoretical T [K]") + 
         ylab("ML predicted Msnr=oo Fsnr=oo [K]") +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="gray") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2))

#
ggplot(data=ref_tot2) + 
         geom_point(aes(x=Teff_LSB,y=YTn11,shape=LC),size=3) +
         xlab("Theoretical T [K]") + 
         ylab("ML predicted Msnr=10 Fsnr=10 [K]") +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="gray") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2))

#
ggplot(data=ref_tot2) + 
         geom_point(aes(x=Teff_LSB,y=YTn55,shape=LC),size=3) +
         xlab("Theoretical T [K]") + 
         ylab("ML predicted Msnr=50 Fsnr=50 [K]") +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="gray") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2))

#
lmod=c("rf","gbm","svmRadial","nnet","knn","bagEarth","kernelpls","cubist")
nmod=c("RF","GB","SVR","NNR","KNN","MARS","PLS","Rule-Regression")
for(ll in c(1:2)) {
  if (ll == 2) {
    pdf(file="~/git/M_prep_IPAC/GA_model_30_T.pdf",width=12,heigh=10)
  }
  for (i in 1:length(lmod)) {
    YTm00=predict(md5[[which(names(md5)==lmod[i])[1]]],xf0)
    YTm11=predict(md51[[which(names(md51)==lmod[i])[1]]],xf1)
    YTm55=predict(md55[[which(names(md55)==lmod[i])[1]]],xf5)
    #
    ref_tot0m=data.frame(Name=as.character(ref$Name),
                chi2d_10=ref$Chi2_T_10, chi2d_50=ref$Chi2_T_50,
                YTm00,YTm11,YTm55,Teff_LSB=Teff_scs,SpT=SpT,LC=LC)
    ref_tot2m=ref_tot0m 
    diffs=apply(ref_tot2m[,! colnames(ref_tot2m) %in% c("Name","SpT","Teff_LSB","LC")],
              2,FUN="-",ref_tot2m[,"Teff_LSB"])
    rownames(diffs)=ref_tot2m[,"Name"]
    #
    cat(paste("T Modelling with ",lmod[i],". Error analysis follows.",sep=""))
    errors=data.frame(drmse = apply(diffs,2,rmse),dmae=apply(diffs,2,mae))
    print(xtable(errors),type="html")
  #
    cat(paste("T Modelling with",nmod[i],". SNR=oo",sep=""))
    print(ggplot(data=ref_tot2m) + 
           geom_point(aes(x=Teff_LSB,y=YTm00,shape=LC),size=3) +
           xlab("Theoretical T [K]") + 
           ylab(paste(nmod[i]," predicted SNR=oo [K]","")) +
           theme_bw() + #  scale_colour_brewer(palette="Set1") +
           geom_abline(position="identity", colour="red") +
           xlim(2000,4200) + ylim(2000,4200)   +
           guides(col=guide_legend(ncol=2)))
    #
    cat(paste("T Modelling with",nmod[i],". SNR=10",sep=""))
    print(ggplot(data=ref_tot2m) + 
           geom_point(aes(x=Teff_LSB,y=YTm11,shape=LC),size=3) +
           xlab("Theoretical T [K]") + 
           ylab(paste(nmod[i]," predicted SNR=10 [K]","")) +
           theme_bw() + #  scale_colour_brewer(palette="Set1") +
           geom_abline(position="identity", colour="red") +
           xlim(2000,4200) + ylim(2000,4200)   +
           guides(col=guide_legend(ncol=2)))
    #
    cat(paste("T Modelling with",nmod[i],". SNR=50",sep=""))
    print(ggplot(data=ref_tot2m) + 
           geom_point(aes(x=Teff_LSB,y=YTm55,shape=LC),size=3) +
           xlab("Theoretical T [K]") + 
           ylab(paste(nmod[i]," predicted SNR=50 [K]","")) +
           theme_bw() + #  scale_colour_brewer(palette="Set1") +
           geom_abline(position="identity", colour="red") +
           xlim(2000,4200) + ylim(2000,4200)   +
           guides(col=guide_legend(ncol=2)))
  }
}
GA_r3 Loading required package: randomForest
GA_r3 randomForest 4.6-7
GA_r3 Type rfNews() to see new features/changes/bug fixes.
T Modelling with rf. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 213.31 142.29
YTm11 252.26 181.39
YTm55 375.31 285.51

T Modelling withRF. SNR=ooT Modelling withRF. SNR=10T Modelling withRF. SNR=50

GA_r3 Loading required package: gbm
GA_r3 Loading required package: survival
GA_r3 
GA_r3 Attaching package: 'survival'
GA_r3 
GA_r3 The following object is masked from 'package:caret':
GA_r3 
GA_r3     cluster
GA_r3 
GA_r3 Loading required package: splines
GA_r3 Loaded gbm 2.1.1
T Modelling with gbm. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 252.36 195.10
YTm11 308.49 241.92
YTm55 439.70 354.19
T Modelling withGB. SNR=ooT Modelling withGB. SNR=10T Modelling withGB. SNR=50T Modelling with svmRadial. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 1263.58 1168.71
YTm11 313.69 228.18
YTm55 504.40 433.35
T Modelling withSVR. SNR=ooT Modelling withSVR. SNR=10T Modelling withSVR. SNR=50T Modelling with nnet. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 1741.56 1646.00
YTm11 386.57 313.57
YTm55 605.90 449.79
T Modelling withNNR. SNR=ooT Modelling withNNR. SNR=10T Modelling withNNR. SNR=50T Modelling with knn. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 199.70 119.72
YTm11 226.99 169.73
YTm55 276.19 175.42

T Modelling withKNN. SNR=ooT Modelling withKNN. SNR=10T Modelling withKNN. SNR=50

GA_r3 Loading required package: earth
GA_r3 Loading required package: plotmo
GA_r3 Loading required package: plotrix
GA_r3 Loading required package: TeachingDemos
T Modelling with bagEarth. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 434.32 363.85
YTm11 301.41 207.20
YTm55 470.88 367.38
T Modelling withMARS. SNR=ooT Modelling withMARS. SNR=10T Modelling withMARS. SNR=50T Modelling with kernelpls. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 618.61 537.56
YTm11 315.16 210.06
YTm55 436.10 314.34
T Modelling withPLS. SNR=ooT Modelling withPLS. SNR=10T Modelling withPLS. SNR=50T Modelling with cubist. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 1149.43 1016.61
YTm11 275.52 183.72
YTm55 435.17 361.92
T Modelling withRule-Regression. SNR=ooT Modelling withRule-Regression. SNR=10T Modelling withRule-Regression. SNR=50T Modelling with rf. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 213.31 142.29
YTm11 252.26 181.39
YTm55 375.31 285.51
T Modelling withRF. SNR=ooT Modelling withRF. SNR=10T Modelling withRF. SNR=50T Modelling with gbm. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 252.36 195.10
YTm11 308.49 241.92
YTm55 439.70 354.19
T Modelling withGB. SNR=ooT Modelling withGB. SNR=10T Modelling withGB. SNR=50T Modelling with svmRadial. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 1263.58 1168.71
YTm11 313.69 228.18
YTm55 504.40 433.35
T Modelling withSVR. SNR=ooT Modelling withSVR. SNR=10T Modelling withSVR. SNR=50T Modelling with nnet. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 1741.56 1646.00
YTm11 386.57 313.57
YTm55 605.90 449.79
T Modelling withNNR. SNR=ooT Modelling withNNR. SNR=10T Modelling withNNR. SNR=50T Modelling with knn. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 199.70 119.72
YTm11 226.99 169.73
YTm55 276.19 175.42
T Modelling withKNN. SNR=ooT Modelling withKNN. SNR=10T Modelling withKNN. SNR=50T Modelling with bagEarth. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 434.32 363.85
YTm11 301.41 207.20
YTm55 470.88 367.38
T Modelling withMARS. SNR=ooT Modelling withMARS. SNR=10T Modelling withMARS. SNR=50T Modelling with kernelpls. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 618.61 537.56
YTm11 315.16 210.06
YTm55 436.10 314.34
T Modelling withPLS. SNR=ooT Modelling withPLS. SNR=10T Modelling withPLS. SNR=50T Modelling with cubist. Error analysis follows.
drmse dmae
chi2d_10 168.61 122.99
chi2d_50 155.71 99.24
YTm00 1149.43 1016.61
YTm11 275.52 183.72
YTm55 435.17 361.92

T Modelling withRule-Regression. SNR=ooT Modelling withRule-Regression. SNR=10T Modelling withRule-Regression. SNR=50

dev.off()

png 2

#

That’s all folks.