There are millions of stray pets around the world, some of which are fortunate enough to be adopted while many others are not. While adoption of a pet is often the definition of success, the rate at which a pet is adopted is also a key success factor - pets that take a long time to adopt contribute to over-crowded animal shelters and can prevent taking on new strays. Sadly, pets that are not adopted eventually need to be euthanized.
Predictor (Adoption Speed) Description: Predict how quickly, if at all, a pet is adopted.
The values are determined in the following way: 0 - Pet was adopted on the same day as it was listed. 1 - Pet was adopted between 1 and 7 days (1st week) after being listed. 2 - Pet was adopted between 8 and 30 days (1st month) after being listed. 3 - Pet was adopted between 31 and 90 days (2nd & 3rd month) after being listed. 4 - No adoption after 100 days of being listed.
The data has no missing values, but there are a number of features in text that need to be converted to some numeric value. This notebook performs those changes.
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(message = FALSE)
knitr::opts_chunk$set(warning = FALSE)
library(dplyr)
library(reshape)
library(ggplot2)
library(purrr)
library(psych)
library(tidyr)
library(scales)
Load the data
## Type Name Age Breed1 Breed2 Gender Color1 Color2 Color3
## 1 1 Lil Milo 2 0 26 2 2 0 0
## 2 1 Bella 4 Months Puppy! 4 0 307 2 2 3 0
## MaturitySize FurLength Vaccinated Dewormed Sterilized Health Quantity Fee
## 1 2 1 1 1 2 1 1 0
## 2 2 1 1 1 2 1 1 100
## State RescuerID VideoAmt
## 1 41326 1a2113010d6048d5410b265347b35c91 0
## 2 41326 3673e167fc9932b13149bed1f2a0180a 0
## Description
## 1 Milo went missing after a week with her new adoptive family. Only 3 months old, light brown coat. Missing from Jalan Kiara, Bandar Botanic, Klang. Please call Su at if you've seen her.
## 2 She's only 4 months old, very friendly and loving. Loves attention. A little naughty sometimes. But she's adorable. I adopted her from MDDB, but recently I have just moved to a condo. Im finding a perfect and loving home for her.
## PetID PhotoAmt AdoptionSpeed
## 1 375905770 3 3
## 2 da8d4a273 5 4
There are no missing values
map(data, ~sum(is.na(.))) %>% t()
## Type Name Age Breed1 Breed2 Gender Color1 Color2 Color3 MaturitySize
## [1,] 0 0 0 0 0 0 0 0 0 0
## FurLength Vaccinated Dewormed Sterilized Health Quantity Fee State
## [1,] 0 0 0 0 0 0 0 0
## RescuerID VideoAmt Description PetID PhotoAmt AdoptionSpeed
## [1,] 0 0 0 0 0 0
str(data)
## 'data.frame': 14993 obs. of 24 variables:
## $ Type : int 1 1 2 1 1 1 1 1 1 1 ...
## $ Name : chr "Lil Milo" "Bella 4 Months Puppy!" "" "\"Boy Boy\"" ...
## $ Age : int 2 4 3 72 2 5 24 3 0 24 ...
## $ Breed1 : int 0 0 0 0 0 1 1 3 5 5 ...
## $ Breed2 : int 26 307 266 307 205 0 0 0 0 307 ...
## $ Gender : int 2 2 3 1 2 2 3 1 2 2 ...
## $ Color1 : int 2 2 1 1 2 1 4 2 1 3 ...
## $ Color2 : int 0 3 4 2 5 4 0 0 2 5 ...
## $ Color3 : int 0 0 7 0 7 7 0 0 0 0 ...
## $ MaturitySize : int 2 2 1 2 1 2 2 2 1 2 ...
## $ FurLength : int 1 1 1 2 1 1 1 2 1 2 ...
## $ Vaccinated : int 1 1 2 2 2 2 1 2 2 1 ...
## $ Dewormed : int 1 1 1 2 2 2 1 1 2 1 ...
## $ Sterilized : int 2 2 2 2 2 2 1 2 2 1 ...
## $ Health : int 1 1 1 1 1 1 1 1 2 1 ...
## $ Quantity : int 1 1 3 1 1 2 2 4 1 1 ...
## $ Fee : int 0 100 0 0 1 0 0 0 0 0 ...
## $ State : int 41326 41326 41401 41326 41336 41326 41330 41326 41401 41326 ...
## $ RescuerID : chr "1a2113010d6048d5410b265347b35c91" "3673e167fc9932b13149bed1f2a0180a" "f7cff59d10c867bdee12c3f35f34d086" "94b991f8dc1e0bb903ca8d4d492c8d43" ...
## $ VideoAmt : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Description : chr "Milo went missing after a week with her new adoptive family. Only 3 months old, light brown coat. Missing from "| __truncated__ "She's only 4 months old, very friendly and loving. Loves attention. A little naughty sometimes. But she's adora"| __truncated__ "Mama cat came to house and gave birth to these 03 lovely kittens, please adopt them and give them a home sweet home." "He is a stray dog found wandering around University Putra Malaysia (UPM), Serdang main campus. I have been told"| __truncated__ ...
## $ PetID : chr "375905770" "da8d4a273" "27e74e45c" "7b5bee232" ...
## $ PhotoAmt : int 3 5 11 5 0 2 5 3 2 2 ...
## $ AdoptionSpeed: int 3 4 2 4 3 4 4 4 1 4 ...
data %>%
ggplot(aes(x= AdoptionSpeed, fill = AdoptionSpeed)) +
geom_bar(stat = "count", color = "black") +
theme_minimal() +
theme(axis.title.y = element_blank()) +
scale_y_continuous(labels = comma) +
scale_fill_brewer(palette="blue") +
theme(legend.position = "top")
### Exploration
library(tidyverse)
library(jsonlite)
library(scales)
library(lubridate)
library(repr)
library(ggrepel)
library(gridExtra)
library(tidytext)
library(grid)
library(rjson)
library(xgboost)
library(caret)
library(Metrics)
library(Ckmeans.1d.dp)
library(dplyr)
train <- read_csv("https://raw.githubusercontent.com/akarimhammoud/Data_621/main/Final%20Project/data/TrainingData/train.csv")
test <- read_csv("https://raw.githubusercontent.com/akarimhammoud/Data_621/main/Final%20Project/data/TestData/test.csv")
state_labels <- read_csv("https://raw.githubusercontent.com/akarimhammoud/Data_621/main/Final%20Project/data/state_labels.csv")
breed_labels <- read_csv("https://raw.githubusercontent.com/akarimhammoud/Data_621/main/Final%20Project/data/TrainingData/breed_labels.csv")
color_labels <- read_csv("https://raw.githubusercontent.com/akarimhammoud/Data_621/main/Final%20Project/data/color_labels.csv")
tr_te <- bind_rows(train, test)
train <- left_join(train, breed_labels %>%dplyr:: select(Breed1=BreedID, MainBreed=BreedName), by="Breed1")
train <- left_join(train, breed_labels %>%dplyr:: select(Breed2=BreedID, SecondBreed=BreedName), by="Breed2")
train <- left_join(train, color_labels %>%dplyr:: select(Color1=ColorID, ColorName1=ColorName), by="Color1")
train <- left_join(train, color_labels %>% dplyr::select(Color2=ColorID, ColorName2=ColorName), by="Color2")
train <- left_join(train, color_labels %>% dplyr::select(Color3=ColorID, ColorName3=ColorName), by="Color3")
train <- train %>% dplyr::select(-State, -Breed1, -Breed2, - Color1, -Color2, -Color3)
train <- train %>% mutate_at(vars(Type, Gender, AdoptionSpeed), as.factor)
train <- train %>% mutate(Type=recode(Type, "1"= "Dog", "2"= "Cat"),
Gender=recode(Gender, "1"= "Male", "2" = "Female", "3"= "Mixed"),
AdoptionSpeed=recode(AdoptionSpeed,
"0"= "0 - Adopted on the same day",
"1" = "1 - Adopted between 1 and 7 days",
"2" = "2 - Adopted between 8 and 30 days",
"3" = "3 - Adopted between 31 and 90 days",
"4" = "4 - No adoption after 100 days"))
train <- train %>% mutate_if(is_character, as_factor)
glimpse(train)
## Rows: 14,993
## Columns: 23
## $ Type <fct> Dog, Dog, Cat, Dog, Dog, Dog, Dog, Dog, Dog, Dog, Dog, D~
## $ Name <fct> "Lil Milo", "Bella 4 Months Puppy!", NA, "\"Boy Boy\"", ~
## $ Age <dbl> 2, 4, 3, 72, 2, 5, 24, 3, 0, 24, 14, 60, 84, 21, 1, 1, 1~
## $ Gender <fct> Female, Female, Mixed, Male, Female, Female, Mixed, Male~
## $ MaturitySize <dbl> 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,~
## $ FurLength <dbl> 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 3,~
## $ Vaccinated <dbl> 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1,~
## $ Dewormed <dbl> 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1,~
## $ Sterilized <dbl> 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 3, 1,~
## $ Health <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,~
## $ Quantity <dbl> 1, 1, 3, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Fee <dbl> 0, 100, 0, 0, 1, 0, 0, 0, 0, 0, 500, 0, 0, 0, 0, 0, 0, 0~
## $ RescuerID <fct> 1a2113010d6048d5410b265347b35c91, 3673e167fc9932b13149be~
## $ VideoAmt <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ Description <fct> "Milo went missing after a week with her new adoptive fa~
## $ PetID <fct> 375905770, da8d4a273, 27e74e45c, 7b5bee232, 0327b8e94, f~
## $ PhotoAmt <dbl> 3, 5, 11, 5, 0, 2, 5, 3, 2, 2, 2, 2, 1, 2, 4, 4, 3, 1, 3~
## $ AdoptionSpeed <fct> 3 - Adopted between 31 and 90 days, 4 - No adoption afte~
## $ MainBreed <fct> NA, NA, NA, NA, NA, Affenpinscher, Affenpinscher, Aireda~
## $ SecondBreed <fct> Belgian Shepherd Malinois, Mixed Breed, Dom Short Hair, ~
## $ ColorName1 <fct> Brown, Brown, Black, Black, Brown, Black, Yellow, Brown,~
## $ ColorName2 <fct> NA, Golden, Yellow, Brown, Cream, Yellow, NA, NA, Brown,~
## $ ColorName3 <fct> NA, NA, White, NA, White, White, NA, NA, NA, NA, NA, NA,~
not_pure <- c("Domestic Short Hair", "Domestic Medium Hair", "Domestic Long Hair", "Mixed Breed")
train$pure_breed <- ifelse(train$MainBreed %in% not_pure, 0, 1)
train %>% filter(pure_breed==1) %>% count(Type, MainBreed) %>% group_by(Type) %>% top_n(10, n) %>%
ggplot(aes(x=reorder(MainBreed, -n), y=n))+
geom_bar(stat="identity", fill="blue") +
facet_wrap(~Type, scales = "free_x") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x="Most common pure breeds", y="number of pets")
train %>% count(AdoptionSpeed, pure_breed) %>%
ggplot(aes(x=AdoptionSpeed, y=n, fill=as.factor(pure_breed))) +
geom_bar(stat="identity", position="fill") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
guides(fill=guide_legend(title="Pure Breed")) +
scale_y_continuous(labels=percent) +
labs(x="", y="percent")
### As pure breed pets have faster adoption rate, a new variable is created to identify pure breed pets.
tr_te <- left_join(tr_te, state_labels %>% dplyr::rename(State=StateID), by="State")
tr_te <- left_join(tr_te, breed_labels %>% dplyr::select(Breed1=BreedID, MainBreed=BreedName), by="Breed1")
#creating Has Name variable
tr_te$has_name <- ifelse(is.na(tr_te$Name), 0, 1)
#creating Pure Breed variable
not_pure <- c("Domestic Short Hair", "Domestic Medium Hair", "Domestic Long Hair", "Mixed Breed")
tr_te$pure_breed <- ifelse(tr_te$MainBreed %in% not_pure, 0, 1)
#making Not Specified in ordinal factors NA (just in case there are any in stage 2)
tr_te$MaturitySize[tr_te$MaturitySize==0] <- NA
tr_te$FurLength[tr_te$FurLength==0] <- NA
tr_te$Health[tr_te$Health==0] <- NA
categorical_vars <- c("Type", "Gender", "Vaccinated", "Dewormed", "Sterilized", "StateName", "MainBreed", "has_name", "pure_breed", "Breed2", "Color1", "Color2", "Color3")
tr_te <- tr_te %>% dplyr::select(-Name, -Breed1, -RescuerID, -Description, -State, -PetID) %>%
mutate_at(categorical_vars, funs(factor(.))) %>% mutate_if(is.numeric, as.integer)
glimpse(tr_te)
## Rows: 18,941
## Columns: 22
## $ Type <fct> 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Age <int> 2, 4, 3, 72, 2, 5, 24, 3, 0, 24, 14, 60, 84, 21, 1, 1, 1~
## $ Breed2 <fct> 26, 307, 266, 307, 205, 0, 0, 0, 0, 307, 0, 0, 0, 307, 0~
## $ Gender <fct> 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1,~
## $ Color1 <fct> 2, 2, 1, 1, 2, 1, 4, 2, 1, 3, 2, 1, 2, 2, 7, 2, 2, 1, 1,~
## $ Color2 <fct> 0, 3, 4, 2, 5, 4, 0, 0, 2, 5, 0, 7, 0, 7, 0, 0, 6, 2, 2,~
## $ Color3 <fct> 0, 0, 7, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0,~
## $ MaturitySize <int> 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,~
## $ FurLength <int> 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 3,~
## $ Vaccinated <fct> 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1,~
## $ Dewormed <fct> 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1,~
## $ Sterilized <fct> 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 3, 1,~
## $ Health <int> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,~
## $ Quantity <int> 1, 1, 3, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Fee <int> 0, 100, 0, 0, 1, 0, 0, 0, 0, 0, 500, 0, 0, 0, 0, 0, 0, 0~
## $ VideoAmt <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ PhotoAmt <int> 3, 5, 11, 5, 0, 2, 5, 3, 2, 2, 2, 2, 1, 2, 4, 4, 3, 1, 3~
## $ AdoptionSpeed <int> 3, 4, 2, 4, 3, 4, 4, 4, 1, 4, 4, 3, 3, 3, 4, 4, 1, 4, 4,~
## $ StateName <fct> Selangor, Selangor, Kuala Lumpur, Selangor, Johor, Selan~
## $ MainBreed <fct> NA, NA, NA, NA, NA, Affenpinscher, Affenpinscher, Aireda~
## $ has_name <fct> 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ pure_breed <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
glimpse(train)
## Rows: 14,993
## Columns: 24
## $ Type <fct> Dog, Dog, Cat, Dog, Dog, Dog, Dog, Dog, Dog, Dog, Dog, D~
## $ Name <fct> "Lil Milo", "Bella 4 Months Puppy!", NA, "\"Boy Boy\"", ~
## $ Age <dbl> 2, 4, 3, 72, 2, 5, 24, 3, 0, 24, 14, 60, 84, 21, 1, 1, 1~
## $ Gender <fct> Female, Female, Mixed, Male, Female, Female, Mixed, Male~
## $ MaturitySize <dbl> 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,~
## $ FurLength <dbl> 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 3,~
## $ Vaccinated <dbl> 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1,~
## $ Dewormed <dbl> 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1,~
## $ Sterilized <dbl> 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 3, 1,~
## $ Health <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,~
## $ Quantity <dbl> 1, 1, 3, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Fee <dbl> 0, 100, 0, 0, 1, 0, 0, 0, 0, 0, 500, 0, 0, 0, 0, 0, 0, 0~
## $ RescuerID <fct> 1a2113010d6048d5410b265347b35c91, 3673e167fc9932b13149be~
## $ VideoAmt <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ Description <fct> "Milo went missing after a week with her new adoptive fa~
## $ PetID <fct> 375905770, da8d4a273, 27e74e45c, 7b5bee232, 0327b8e94, f~
## $ PhotoAmt <dbl> 3, 5, 11, 5, 0, 2, 5, 3, 2, 2, 2, 2, 1, 2, 4, 4, 3, 1, 3~
## $ AdoptionSpeed <fct> 3 - Adopted between 31 and 90 days, 4 - No adoption afte~
## $ MainBreed <fct> NA, NA, NA, NA, NA, Affenpinscher, Affenpinscher, Aireda~
## $ SecondBreed <fct> Belgian Shepherd Malinois, Mixed Breed, Dom Short Hair, ~
## $ ColorName1 <fct> Brown, Brown, Black, Black, Brown, Black, Yellow, Brown,~
## $ ColorName2 <fct> NA, Golden, Yellow, Brown, Cream, Yellow, NA, NA, Brown,~
## $ ColorName3 <fct> NA, NA, White, NA, White, White, NA, NA, NA, NA, NA, NA,~
## $ pure_breed <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
glimpse(tr_te)
## Rows: 18,941
## Columns: 22
## $ Type <fct> 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Age <int> 2, 4, 3, 72, 2, 5, 24, 3, 0, 24, 14, 60, 84, 21, 1, 1, 1~
## $ Breed2 <fct> 26, 307, 266, 307, 205, 0, 0, 0, 0, 307, 0, 0, 0, 307, 0~
## $ Gender <fct> 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1,~
## $ Color1 <fct> 2, 2, 1, 1, 2, 1, 4, 2, 1, 3, 2, 1, 2, 2, 7, 2, 2, 1, 1,~
## $ Color2 <fct> 0, 3, 4, 2, 5, 4, 0, 0, 2, 5, 0, 7, 0, 7, 0, 0, 6, 2, 2,~
## $ Color3 <fct> 0, 0, 7, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0,~
## $ MaturitySize <int> 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,~
## $ FurLength <int> 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 3,~
## $ Vaccinated <fct> 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1,~
## $ Dewormed <fct> 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1,~
## $ Sterilized <fct> 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 3, 1,~
## $ Health <int> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,~
## $ Quantity <int> 1, 1, 3, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Fee <int> 0, 100, 0, 0, 1, 0, 0, 0, 0, 0, 500, 0, 0, 0, 0, 0, 0, 0~
## $ VideoAmt <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ PhotoAmt <int> 3, 5, 11, 5, 0, 2, 5, 3, 2, 2, 2, 2, 1, 2, 4, 4, 3, 1, 3~
## $ AdoptionSpeed <int> 3, 4, 2, 4, 3, 4, 4, 4, 1, 4, 4, 3, 3, 3, 4, 4, 1, 4, 4,~
## $ StateName <fct> Selangor, Selangor, Kuala Lumpur, Selangor, Johor, Selan~
## $ MainBreed <fct> NA, NA, NA, NA, NA, Affenpinscher, Affenpinscher, Aireda~
## $ has_name <fct> 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ pure_breed <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
High = ifelse(tr_te$AdoptionSpeed<3, "1", "0")
tr_te = data.frame(tr_te, High)
glimpse(tr_te)
## Rows: 18,941
## Columns: 23
## $ Type <fct> 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Age <int> 2, 4, 3, 72, 2, 5, 24, 3, 0, 24, 14, 60, 84, 21, 1, 1, 1~
## $ Breed2 <fct> 26, 307, 266, 307, 205, 0, 0, 0, 0, 307, 0, 0, 0, 307, 0~
## $ Gender <fct> 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1,~
## $ Color1 <fct> 2, 2, 1, 1, 2, 1, 4, 2, 1, 3, 2, 1, 2, 2, 7, 2, 2, 1, 1,~
## $ Color2 <fct> 0, 3, 4, 2, 5, 4, 0, 0, 2, 5, 0, 7, 0, 7, 0, 0, 6, 2, 2,~
## $ Color3 <fct> 0, 0, 7, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0,~
## $ MaturitySize <int> 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,~
## $ FurLength <int> 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 3,~
## $ Vaccinated <fct> 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1,~
## $ Dewormed <fct> 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1,~
## $ Sterilized <fct> 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 3, 1,~
## $ Health <int> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,~
## $ Quantity <int> 1, 1, 3, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Fee <int> 0, 100, 0, 0, 1, 0, 0, 0, 0, 0, 500, 0, 0, 0, 0, 0, 0, 0~
## $ VideoAmt <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ PhotoAmt <int> 3, 5, 11, 5, 0, 2, 5, 3, 2, 2, 2, 2, 1, 2, 4, 4, 3, 1, 3~
## $ AdoptionSpeed <int> 3, 4, 2, 4, 3, 4, 4, 4, 1, 4, 4, 3, 3, 3, 4, 4, 1, 4, 4,~
## $ StateName <fct> Selangor, Selangor, Kuala Lumpur, Selangor, Johor, Selan~
## $ MainBreed <fct> NA, NA, NA, NA, NA, Affenpinscher, Affenpinscher, Aireda~
## $ has_name <fct> 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ pure_breed <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ High <chr> "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "~
tr_te$High<-as.numeric(tr_te$High)
glimpse(tr_te)
## Rows: 18,941
## Columns: 23
## $ Type <fct> 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Age <int> 2, 4, 3, 72, 2, 5, 24, 3, 0, 24, 14, 60, 84, 21, 1, 1, 1~
## $ Breed2 <fct> 26, 307, 266, 307, 205, 0, 0, 0, 0, 307, 0, 0, 0, 307, 0~
## $ Gender <fct> 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1,~
## $ Color1 <fct> 2, 2, 1, 1, 2, 1, 4, 2, 1, 3, 2, 1, 2, 2, 7, 2, 2, 1, 1,~
## $ Color2 <fct> 0, 3, 4, 2, 5, 4, 0, 0, 2, 5, 0, 7, 0, 7, 0, 0, 6, 2, 2,~
## $ Color3 <fct> 0, 0, 7, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0,~
## $ MaturitySize <int> 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,~
## $ FurLength <int> 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 3,~
## $ Vaccinated <fct> 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1,~
## $ Dewormed <fct> 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1,~
## $ Sterilized <fct> 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 3, 1,~
## $ Health <int> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,~
## $ Quantity <int> 1, 1, 3, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Fee <int> 0, 100, 0, 0, 1, 0, 0, 0, 0, 0, 500, 0, 0, 0, 0, 0, 0, 0~
## $ VideoAmt <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ PhotoAmt <int> 3, 5, 11, 5, 0, 2, 5, 3, 2, 2, 2, 2, 1, 2, 4, 4, 3, 1, 3~
## $ AdoptionSpeed <int> 3, 4, 2, 4, 3, 4, 4, 4, 1, 4, 4, 3, 3, 3, 4, 4, 1, 4, 4,~
## $ StateName <fct> Selangor, Selangor, Kuala Lumpur, Selangor, Johor, Selan~
## $ MainBreed <fct> NA, NA, NA, NA, NA, Affenpinscher, Affenpinscher, Aireda~
## $ has_name <fct> 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ pure_breed <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ High <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,~
library(MASS)
modelnegb <- glm.nb(High ~ ., data = tr_te)
summary(modelnegb)
##
## Call:
## glm.nb(formula = High ~ ., data = tr_te, init.theta = 23950.02709,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.4076 -0.4663 -0.3909 0.5029 1.1392
##
## Coefficients: (3 not defined because of singularities)
## Estimate Std. Error
## (Intercept) 1.630e+00 7.223e-01
## Type2 -7.824e-01 6.447e-01
## Age -4.571e-04 9.434e-04
## Breed21 5.644e-01 1.001e+00
## Breed22 -2.885e-01 1.008e+00
## Breed24 -1.951e-01 1.029e+00
## Breed25 -1.051e-01 7.890e-01
## Breed210 4.339e-01 1.021e+00
## Breed214 -3.511e+01 4.745e+07
## Breed216 2.495e-01 7.414e-01
## Breed217 -3.466e+01 6.711e+07
## Breed218 1.539e-01 1.004e+00
## Breed219 5.096e-01 1.019e+00
## Breed220 7.630e-02 3.000e-01
## Breed221 -3.508e+01 4.745e+07
## Breed224 -4.349e-01 5.807e-01
## Breed225 3.302e+01 4.263e+07
## Breed226 4.186e-01 2.705e-01
## Breed236 -3.549e+01 6.711e+07
## Breed239 2.013e-01 4.491e-01
## Breed240 -3.550e+01 6.711e+07
## Breed244 2.565e-01 6.138e-01
## Breed249 2.886e-01 1.001e+00
## Breed250 3.766e-01 7.244e-01
## Breed258 -3.472e+01 6.711e+07
## Breed260 -1.083e-01 5.164e-01
## Breed265 1.113e-01 1.229e+00
## Breed269 4.511e-02 5.407e-01
## Breed270 5.456e-02 5.827e-01
## Breed272 1.177e-02 5.914e-01
## Breed275 5.651e-02 3.374e-01
## Breed276 -3.827e-01 4.227e-01
## Breed278 6.510e-02 3.804e-01
## Breed283 7.468e-01 1.026e+00
## Breed296 7.305e-01 1.039e+00
## Breed298 5.644e-01 6.018e-01
## Breed2102 3.965e-01 1.001e+00
## Breed2103 9.437e-02 1.691e-01
## Breed2104 -3.474e+01 6.711e+07
## Breed2109 -3.024e-01 2.422e-01
## Breed2111 -3.458e+01 6.711e+07
## Breed2115 -6.726e-03 1.016e+00
## Breed2117 -7.667e-01 1.001e+00
## Breed2119 1.757e-01 3.099e-01
## Breed2122 -3.523e+01 6.711e+07
## Breed2128 1.254e-01 3.366e-01
## Breed2129 7.650e-02 7.192e-01
## Breed2130 -1.071e-01 1.009e+00
## Breed2141 -1.478e-01 1.556e-01
## Breed2146 -3.605e+01 6.711e+07
## Breed2147 2.527e-01 5.124e-01
## Breed2150 4.935e-01 1.006e+00
## Breed2152 -2.656e-01 5.061e-01
## Breed2155 -4.815e-02 9.177e-01
## Breed2159 -3.557e+01 6.711e+07
## Breed2167 -3.554e+01 6.711e+07
## Breed2169 -1.290e-01 5.059e-01
## Breed2173 -4.240e-02 1.001e+00
## Breed2176 -3.485e+01 6.711e+07
## Breed2178 2.111e-01 7.143e-01
## Breed2179 3.313e-02 2.056e-01
## Breed2182 -3.572e+01 6.711e+07
## Breed2187 4.240e-03 4.544e-01
## Breed2188 -1.557e-01 1.043e+00
## Breed2189 -3.351e-02 1.797e-01
## Breed2190 -3.465e+01 6.711e+07
## Breed2192 -4.285e-01 1.013e+00
## Breed2195 -2.474e-01 2.671e-01
## Breed2200 1.512e-01 5.800e-01
## Breed2201 -4.351e-01 7.237e-01
## Breed2202 -1.360e-01 1.008e+00
## Breed2203 6.031e-01 1.001e+00
## Breed2204 -3.534e+01 6.711e+07
## Breed2205 -4.639e-02 2.293e-01
## Breed2206 -4.003e-01 5.901e-01
## Breed2207 5.764e-02 5.928e-01
## Breed2210 5.757e-01 1.006e+00
## Breed2212 2.275e-01 7.148e-01
## Breed2213 2.201e-01 2.125e-01
## Breed2218 -8.651e-02 1.555e-01
## Breed2227 2.641e-01 1.006e+00
## Breed2228 7.068e-01 7.212e-01
## Breed2237 8.388e-01 1.009e+00
## Breed2239 -2.581e-02 1.004e+00
## Breed2240 -8.296e-02 1.004e+00
## Breed2241 -9.282e-02 5.997e-01
## Breed2242 1.611e-01 6.086e-01
## Breed2243 -2.755e-01 2.786e-01
## Breed2245 5.828e-02 7.115e-01
## Breed2246 6.435e-02 4.546e-01
## Breed2247 -3.969e-01 2.274e-01
## Breed2248 -2.313e-01 6.176e-01
## Breed2249 -4.010e-01 5.126e-01
## Breed2250 -3.529e+01 3.355e+07
## Breed2251 -1.482e-01 4.594e-01
## Breed2252 -4.538e-01 3.050e-01
## Breed2254 3.132e-02 2.331e-01
## Breed2256 -1.959e-01 5.802e-01
## Breed2257 -3.486e+01 6.711e+07
## Breed2260 -3.490e+01 6.711e+07
## Breed2262 7.310e-01 1.025e+00
## Breed2263 7.723e-01 1.014e+00
## Breed2264 -3.152e-02 1.322e-01
## Breed2265 -5.620e-02 7.725e-02
## Breed2266 -1.917e-02 6.006e-02
## Breed2267 1.318e-01 5.930e-01
## Breed2268 -6.290e-01 4.497e-01
## Breed2270 -5.528e-01 1.102e+00
## Breed2271 -4.535e-01 6.133e-01
## Breed2272 3.047e-01 1.039e+00
## Breed2274 -3.507e+01 4.745e+07
## Breed2276 -2.561e-01 2.782e-01
## Breed2277 2.779e-01 1.021e+00
## Breed2278 4.716e-01 1.003e+00
## Breed2279 -3.555e+01 6.711e+07
## Breed2282 2.561e-01 6.077e-01
## Breed2283 -1.466e-01 3.643e-01
## Breed2284 -3.503e+01 4.745e+07
## Breed2285 5.822e-02 1.448e-01
## Breed2288 1.164e-01 3.906e-01
## Breed2289 -3.218e-01 1.003e+00
## Breed2290 -3.464e+01 6.711e+07
## Breed2291 -8.203e-01 1.007e+00
## Breed2292 -9.543e-02 1.391e-01
## Breed2293 -3.567e+01 6.711e+07
## Breed2294 1.459e-01 6.166e-01
## Breed2295 -1.021e-02 1.008e+00
## Breed2296 -3.813e-01 1.007e+00
## Breed2299 9.201e-02 1.111e-01
## Breed2300 -1.168e-01 6.243e-01
## Breed2301 -3.551e+01 6.711e+07
## Breed2302 -3.070e-01 1.004e+00
## Breed2303 1.102e-01 2.545e-01
## Breed2304 -1.437e-01 1.003e+00
## Breed2305 -3.349e-01 7.099e-01
## Breed2306 3.253e-01 2.407e-01
## Breed2307 -5.663e-02 4.555e-02
## Gender2 -3.132e-02 2.584e-02
## Gender3 -5.090e-02 4.880e-02
## Color12 -4.438e-02 3.565e-02
## Color13 2.509e-02 5.261e-02
## Color14 -2.907e-02 6.454e-02
## Color15 -2.126e-02 5.344e-02
## Color16 1.057e-02 6.037e-02
## Color17 5.131e-02 6.430e-02
## Color22 2.227e-02 4.734e-02
## Color23 2.976e-02 6.670e-02
## Color24 6.988e-02 6.277e-02
## Color25 2.222e-02 5.424e-02
## Color26 9.245e-03 5.739e-02
## Color27 -1.971e-03 3.583e-02
## Color33 -3.837e-02 1.174e-01
## Color34 -1.342e-02 1.188e-01
## Color35 -1.120e-01 7.804e-02
## Color36 4.077e-02 7.809e-02
## Color37 -9.394e-03 4.020e-02
## MaturitySize 1.951e-02 2.353e-02
## FurLength -9.875e-03 2.523e-02
## Vaccinated2 3.426e-02 3.574e-02
## Vaccinated3 7.586e-02 7.190e-02
## Dewormed2 -3.943e-02 3.306e-02
## Dewormed3 -3.821e-02 7.243e-02
## Sterilized2 1.054e-01 3.895e-02
## Sterilized3 -5.223e-02 5.638e-02
## Health -5.786e-02 6.632e-02
## Quantity 5.714e-03 1.203e-02
## Fee 1.213e-04 1.601e-04
## VideoAmt -4.348e-03 3.695e-02
## PhotoAmt 4.436e-03 3.700e-03
## AdoptionSpeed -8.264e-01 1.229e-02
## StateNameKedah 1.001e-01 1.557e-01
## StateNameKelantan -2.749e-01 3.649e-01
## StateNameKuala Lumpur 9.502e-03 6.649e-02
## StateNameLabuan 3.024e-01 1.006e+00
## StateNameMelaka -9.426e-02 1.710e-01
## StateNameNegeri Sembilan 5.372e-02 1.186e-01
## StateNamePahang -1.483e-01 1.674e-01
## StateNamePerak 6.682e-02 1.014e-01
## StateNamePulau Pinang 2.905e-02 8.309e-02
## StateNameSabah -2.610e-01 3.446e-01
## StateNameSarawak -8.948e-01 7.154e-01
## StateNameSelangor 1.646e-02 6.404e-02
## StateNameTerengganu -1.817e-01 3.129e-01
## MainBreedAffenpinscher -3.543e+01 4.745e+07
## MainBreedAiredale Terrier -3.548e+01 6.711e+07
## MainBreedAkita -8.879e-01 1.229e+00
## MainBreedAmer Bulldog -3.538e+01 6.711e+07
## MainBreedAmer Curl 2.125e-01 4.733e-01
## MainBreedAmer Shorthair 1.784e-02 3.373e-01
## MainBreedAmer Staffordshire Terrier -3.611e+01 3.875e+07
## MainBreedAmer Water Spaniel -3.543e+01 4.745e+07
## MainBreedAmer Wirehair 6.760e-01 6.920e-01
## MainBreedApplehead Siamese 6.079e-01 1.046e+00
## MainBreedAustralian Kelpie -8.707e-01 9.238e-01
## MainBreedAustralian Shepherd -3.525e+01 6.711e+07
## MainBreedAustralian Terrier -1.422e+00 1.228e+00
## MainBreedBalinese 6.036e-01 7.708e-01
## MainBreedBasenji -4.373e-01 1.008e+00
## MainBreedBasset Hound -1.179e+00 8.733e-01
## MainBreedBeagle -9.298e-01 7.266e-01
## MainBreedBearded Collie -5.325e-01 8.219e+07
## MainBreedBedlington Terrier 1.922e-01 1.231e+00
## MainBreedBelgian Shepherd Dog Sheepdog -5.902e-01 1.085e+00
## MainBreedBelgian Shepherd Laekenois -3.386e+01 4.263e+07
## MainBreedBelgian Shepherd Malinois -6.927e-01 7.548e-01
## MainBreedBengal -4.227e-02 3.345e-01
## MainBreedBirman 6.243e-01 1.056e+00
## MainBreedBlack Labrador Retriever -4.388e-01 8.431e-01
## MainBreedBlack Mouth Cur -8.082e-02 9.172e-01
## MainBreedBobtail 1.866e-01 4.786e-01
## MainBreedBombay 3.761e-01 5.753e-01
## MainBreedBorder Collie -6.664e-01 7.802e-01
## MainBreedBoston Terrier -5.269e-01 9.225e-01
## MainBreedBoxer -5.395e-01 8.458e-01
## MainBreedBritish Shorthair -2.090e-02 3.725e-01
## MainBreedBull Terrier -6.132e-01 8.058e-01
## MainBreedBullmastiff -7.244e-01 8.341e-01
## MainBreedBurmese 1.190e-01 4.147e-01
## MainBreedBurmilla -4.935e-01 1.047e+00
## MainBreedCalico -1.149e-01 3.356e-01
## MainBreedCattle Dog -3.636e+01 6.711e+07
## MainBreedCavalier King Charles Spaniel -7.174e-01 1.231e+00
## MainBreedChartreux 6.437e-01 1.050e+00
## MainBreedChausie -3.452e+01 6.711e+07
## MainBreedChihuahua -5.817e-01 7.434e-01
## MainBreedChinese Crested Dog -1.660e+00 1.364e+00
## MainBreedChocolate Labrador Retriever -3.625e+01 6.711e+07
## MainBreedChow Chow -8.542e-01 1.007e+00
## MainBreedCocker Spaniel -6.690e-01 7.451e-01
## MainBreedCollie -7.942e-01 7.550e-01
## MainBreedCoonhound -3.626e+01 4.745e+07
## MainBreedCorgi -8.125e-01 7.822e-01
## MainBreedCymric 8.488e-01 1.060e+00
## MainBreedDachshund -5.682e-01 7.509e-01
## MainBreedDalmatian -8.811e-01 7.480e-01
## MainBreedDilute Calico 2.513e-01 1.045e+00
## MainBreedDilute Tortoiseshell 2.475e-01 1.045e+00
## MainBreedDoberman Pinscher -8.754e-01 7.371e-01
## MainBreedDom Long Hair -4.654e-02 3.099e-01
## MainBreedDom Medium Hair 1.956e-02 3.025e-01
## MainBreedDom Short Hair 4.743e-02 3.018e-01
## MainBreedDutch Shepherd -8.284e-01 1.228e+00
## MainBreedEgyptian Mau 3.082e-01 7.717e-01
## MainBreedEnglish Bulldog -1.157e+00 9.219e-01
## MainBreedEnglish Cocker Spaniel -5.272e-01 8.061e-01
## MainBreedEnglish Pointer -5.787e-02 1.229e+00
## MainBreedEnglish Springer Spaniel -3.621e+01 4.745e+07
## MainBreedExotic Shorthair -5.313e-02 6.526e-01
## MainBreedExtra-Toes Cat (Hemingway Polydactyl) 2.234e-01 7.693e-01
## MainBreedField Spaniel -3.521e+01 6.711e+07
## MainBreedFlat-coated Retriever -3.544e+01 3.875e+07
## MainBreedFox Terrier -7.607e-01 1.236e+00
## MainBreedFoxhound -7.904e-01 1.229e+00
## MainBreedFrench Bulldog -4.186e-01 9.175e-01
## MainBreedGerman Pinscher -7.722e-01 9.170e-01
## MainBreedGerman Shepherd Dog -5.971e-01 7.240e-01
## MainBreedGerman Spitz -6.933e-01 1.007e+00
## MainBreedGlen of Imaal Terrier -4.394e-01 1.006e+00
## MainBreedGolden Retriever -7.951e-01 7.200e-01
## MainBreedGreat Dane -8.484e-01 8.719e-01
## MainBreedGreyhound -1.539e-01 1.205e+00
## MainBreedHavana 7.748e-01 1.058e+00
## MainBreedHimalayan 2.460e-01 6.943e-01
## MainBreedHound -7.323e-01 8.402e-01
## MainBreedHusky -8.195e-01 7.492e-01
## MainBreedIrish Setter -8.889e-01 1.232e+00
## MainBreedIrish Terrier -3.540e+01 6.711e+07
## MainBreedIrish Wolfhound -1.505e-01 1.306e+00
## MainBreedJack Russell Terrier -6.707e-01 7.382e-01
## MainBreedJack Russell Terrier (Parson Russell Terrier) -6.221e-01 1.005e+00
## MainBreedJapanese Bobtail 1.027e-02 7.707e-01
## MainBreedJapanese Chin -3.607e+01 6.711e+07
## MainBreedJavanese -1.777e-01 5.847e-01
## MainBreedKai Dog -3.528e+01 4.745e+07
## MainBreedKorat 5.917e-01 5.901e-01
## MainBreedKuvasz -1.049e+00 1.267e+00
## MainBreedLabrador Retriever -7.477e-01 7.181e-01
## MainBreedLancashire Heeler NA NA
## MainBreedLhasa Apso -4.116e-01 1.005e+00
## MainBreedLowchen -3.611e+01 6.711e+07
## MainBreedMaine Coon -1.600e-01 3.748e-01
## MainBreedMaltese -8.879e-01 7.676e-01
## MainBreedManchester Terrier -5.666e-01 1.004e+00
## MainBreedManx 2.198e-01 5.939e-01
## MainBreedMastiff -1.137e+00 1.233e+00
## MainBreedMiniature Pinscher -6.626e-01 7.306e-01
## MainBreedMixed Breed -7.076e-01 7.118e-01
## MainBreedMountain Dog -3.545e+01 6.711e+07
## MainBreedMunsterlander NA NA
## MainBreedNebelung -3.464e+01 3.875e+07
## MainBreedNorwegian Forest Cat -5.518e-02 6.131e-01
## MainBreedOcicat 3.391e-01 1.269e+00
## MainBreedOld English Sheepdog -3.608e+01 6.711e+07
## MainBreedOrient Long Hair -3.125e-01 4.216e-01
## MainBreedOrient Short Hair 5.556e-02 3.512e-01
## MainBreedOrient Tabby -6.926e-02 7.766e-01
## MainBreedPapillon -1.091e+00 1.005e+00
## MainBreedPekingese -4.402e-01 7.577e-01
## MainBreedPersian -7.041e-02 3.128e-01
## MainBreedPit Bull Terrier -8.871e-01 7.739e-01
## MainBreedPixie-Bob -3.489e+01 6.711e+07
## MainBreedPointer -3.537e+01 6.711e+07
## MainBreedPomeranian -5.621e-01 7.549e-01
## MainBreedPoodle -8.017e-01 7.181e-01
## MainBreedPug -7.694e-01 7.600e-01
## MainBreedRagamuffin -1.975e-01 1.046e+00
## MainBreedRagdoll 3.136e-01 4.179e-01
## MainBreedRat Terrier -5.405e-01 1.003e+00
## MainBreedRetriever -2.689e-01 1.007e+00
## MainBreedRhodesian Ridgeback -1.089e+00 1.238e+00
## MainBreedRottweiler -8.478e-01 7.247e-01
## MainBreedRussian Blue 5.078e-02 3.770e-01
## MainBreedSaint Bernard -8.744e-01 8.426e-01
## MainBreedSamoyed -3.613e+01 6.711e+07
## MainBreedSchnauzer -9.041e-01 7.302e-01
## MainBreedScottish Fold 8.459e-01 1.049e+00
## MainBreedScottish Terrier Scottie 6.408e-02 1.006e+00
## MainBreedSetter -3.600e+01 4.745e+07
## MainBreedShar Pei -6.239e-01 8.078e-01
## MainBreedSheep Dog -3.539e+01 6.711e+07
## MainBreedShepherd -7.859e-01 9.184e-01
## MainBreedShetland Sheepdog Sheltie -6.454e-01 1.005e+00
## MainBreedShiba Inu -5.688e-01 1.228e+00
## MainBreedShih Tzu -6.865e-01 7.155e-01
## MainBreedSiamese -7.926e-03 3.112e-01
## MainBreedSiberian -5.911e-01 7.701e-01
## MainBreedSiberian Husky -6.662e-01 7.508e-01
## MainBreedSilky Terrier -1.048e+00 7.627e-01
## MainBreedSilver -3.462e+01 3.355e+07
## MainBreedSingapura 1.122e-01 5.842e-01
## MainBreedSnowshoe 2.187e-01 1.047e+00
## MainBreedSomali 2.269e-01 5.847e-01
## MainBreedSpaniel -3.531e+01 6.711e+07
## MainBreedSphynx (hairless cat) -8.162e-01 1.049e+00
## MainBreedSpitz -6.965e-01 7.299e-01
## MainBreedStaffordshire Bull Terrier -3.527e+01 6.711e+07
## MainBreedStandard Poodle -4.512e-01 1.229e+00
## MainBreedSwedish Vallhund -3.513e+01 6.711e+07
## MainBreedTabby 2.959e-02 3.095e-01
## MainBreedTerrier -6.498e-01 7.120e-01
## MainBreedTiger 2.528e-02 4.199e-01
## MainBreedTonkinese 1.840e-01 5.908e-01
## MainBreedTorbie 9.910e-01 1.050e+00
## MainBreedTortoiseshell 1.488e-01 3.585e-01
## MainBreedToy Fox Terrier -6.897e-01 1.004e+00
## MainBreedTurkish Angora 6.139e-01 5.927e-01
## MainBreedTurkish Van -6.306e-01 7.692e-01
## MainBreedTuxedo -1.465e-01 3.558e-01
## MainBreedWeimaraner -3.565e+01 3.875e+07
## MainBreedWelsh Corgi 3.195e-01 1.276e+00
## MainBreedWest Highland White Terrier Westie -6.535e-01 9.278e-01
## MainBreedWheaten Terrier -3.617e+01 4.745e+07
## MainBreedWhippet -1.082e+00 1.232e+00
## MainBreedWhite German Shepherd -4.286e-01 1.230e+00
## MainBreedWirehaired Terrier -1.555e-01 1.230e+00
## MainBreedYellow Labrador Retriever -8.670e-01 9.188e-01
## MainBreedYorkshire Terrier Yorkie -7.118e-01 8.410e-01
## has_name1 -4.575e-04 4.446e-02
## pure_breed1 NA NA
## z value Pr(>|z|)
## (Intercept) 2.257 0.02402 *
## Type2 -1.214 0.22492
## Age -0.485 0.62798
## Breed21 0.564 0.57297
## Breed22 -0.286 0.77479
## Breed24 -0.190 0.84962
## Breed25 -0.133 0.89403
## Breed210 0.425 0.67089
## Breed214 0.000 1.00000
## Breed216 0.337 0.73647
## Breed217 0.000 1.00000
## Breed218 0.153 0.87808
## Breed219 0.500 0.61713
## Breed220 0.254 0.79921
## Breed221 0.000 1.00000
## Breed224 -0.749 0.45390
## Breed225 0.000 1.00000
## Breed226 1.547 0.12177
## Breed236 0.000 1.00000
## Breed239 0.448 0.65396
## Breed240 0.000 1.00000
## Breed244 0.418 0.67607
## Breed249 0.288 0.77312
## Breed250 0.520 0.60319
## Breed258 0.000 1.00000
## Breed260 -0.210 0.83387
## Breed265 0.091 0.92782
## Breed269 0.083 0.93352
## Breed270 0.094 0.92540
## Breed272 0.020 0.98412
## Breed275 0.167 0.86699
## Breed276 -0.905 0.36535
## Breed278 0.171 0.86412
## Breed283 0.728 0.46681
## Breed296 0.703 0.48191
## Breed298 0.938 0.34833
## Breed2102 0.396 0.69206
## Breed2103 0.558 0.57689
## Breed2104 0.000 1.00000
## Breed2109 -1.249 0.21170
## Breed2111 0.000 1.00000
## Breed2115 -0.007 0.99472
## Breed2117 -0.766 0.44370
## Breed2119 0.567 0.57067
## Breed2122 0.000 1.00000
## Breed2128 0.373 0.70943
## Breed2129 0.106 0.91530
## Breed2130 -0.106 0.91545
## Breed2141 -0.950 0.34228
## Breed2146 0.000 1.00000
## Breed2147 0.493 0.62187
## Breed2150 0.491 0.62365
## Breed2152 -0.525 0.59976
## Breed2155 -0.052 0.95815
## Breed2159 0.000 1.00000
## Breed2167 0.000 1.00000
## Breed2169 -0.255 0.79879
## Breed2173 -0.042 0.96621
## Breed2176 0.000 1.00000
## Breed2178 0.295 0.76763
## Breed2179 0.161 0.87198
## Breed2182 0.000 1.00000
## Breed2187 0.009 0.99256
## Breed2188 -0.149 0.88128
## Breed2189 -0.186 0.85207
## Breed2190 0.000 1.00000
## Breed2192 -0.423 0.67242
## Breed2195 -0.926 0.35428
## Breed2200 0.261 0.79427
## Breed2201 -0.601 0.54770
## Breed2202 -0.135 0.89268
## Breed2203 0.602 0.54703
## Breed2204 0.000 1.00000
## Breed2205 -0.202 0.83970
## Breed2206 -0.678 0.49755
## Breed2207 0.097 0.92254
## Breed2210 0.572 0.56731
## Breed2212 0.318 0.75026
## Breed2213 1.036 0.30023
## Breed2218 -0.556 0.57790
## Breed2227 0.263 0.79285
## Breed2228 0.980 0.32703
## Breed2237 0.832 0.40558
## Breed2239 -0.026 0.97949
## Breed2240 -0.083 0.93417
## Breed2241 -0.155 0.87699
## Breed2242 0.265 0.79126
## Breed2243 -0.989 0.32271
## Breed2245 0.082 0.93472
## Breed2246 0.142 0.88742
## Breed2247 -1.745 0.08090 .
## Breed2248 -0.374 0.70810
## Breed2249 -0.782 0.43411
## Breed2250 0.000 1.00000
## Breed2251 -0.323 0.74699
## Breed2252 -1.488 0.13683
## Breed2254 0.134 0.89313
## Breed2256 -0.338 0.73562
## Breed2257 0.000 1.00000
## Breed2260 0.000 1.00000
## Breed2262 0.713 0.47590
## Breed2263 0.762 0.44608
## Breed2264 -0.238 0.81157
## Breed2265 -0.727 0.46693
## Breed2266 -0.319 0.74959
## Breed2267 0.222 0.82414
## Breed2268 -1.399 0.16188
## Breed2270 -0.502 0.61599
## Breed2271 -0.739 0.45971
## Breed2272 0.293 0.76941
## Breed2274 0.000 1.00000
## Breed2276 -0.921 0.35716
## Breed2277 0.272 0.78553
## Breed2278 0.470 0.63829
## Breed2279 0.000 1.00000
## Breed2282 0.421 0.67345
## Breed2283 -0.403 0.68727
## Breed2284 0.000 1.00000
## Breed2285 0.402 0.68757
## Breed2288 0.298 0.76571
## Breed2289 -0.321 0.74841
## Breed2290 0.000 1.00000
## Breed2291 -0.815 0.41519
## Breed2292 -0.686 0.49277
## Breed2293 0.000 1.00000
## Breed2294 0.237 0.81303
## Breed2295 -0.010 0.99192
## Breed2296 -0.379 0.70486
## Breed2299 0.828 0.40778
## Breed2300 -0.187 0.85161
## Breed2301 0.000 1.00000
## Breed2302 -0.306 0.75987
## Breed2303 0.433 0.66511
## Breed2304 -0.143 0.88608
## Breed2305 -0.472 0.63709
## Breed2306 1.351 0.17657
## Breed2307 -1.243 0.21375
## Gender2 -1.212 0.22545
## Gender3 -1.043 0.29688
## Color12 -1.245 0.21318
## Color13 0.477 0.63338
## Color14 -0.450 0.65241
## Color15 -0.398 0.69071
## Color16 0.175 0.86101
## Color17 0.798 0.42487
## Color22 0.470 0.63803
## Color23 0.446 0.65545
## Color24 1.113 0.26558
## Color25 0.410 0.68204
## Color26 0.161 0.87203
## Color27 -0.055 0.95613
## Color33 -0.327 0.74379
## Color34 -0.113 0.91001
## Color35 -1.435 0.15116
## Color36 0.522 0.60161
## Color37 -0.234 0.81524
## MaturitySize 0.829 0.40711
## FurLength -0.391 0.69551
## Vaccinated2 0.959 0.33776
## Vaccinated3 1.055 0.29136
## Dewormed2 -1.193 0.23296
## Dewormed3 -0.528 0.59781
## Sterilized2 2.707 0.00679 **
## Sterilized3 -0.926 0.35422
## Health -0.872 0.38298
## Quantity 0.475 0.63469
## Fee 0.758 0.44867
## VideoAmt -0.118 0.90632
## PhotoAmt 1.199 0.23051
## AdoptionSpeed -67.236 < 2e-16 ***
## StateNameKedah 0.643 0.52011
## StateNameKelantan -0.753 0.45131
## StateNameKuala Lumpur 0.143 0.88636
## StateNameLabuan 0.301 0.76374
## StateNameMelaka -0.551 0.58148
## StateNameNegeri Sembilan 0.453 0.65058
## StateNamePahang -0.886 0.37555
## StateNamePerak 0.659 0.51002
## StateNamePulau Pinang 0.350 0.72659
## StateNameSabah -0.757 0.44878
## StateNameSarawak -1.251 0.21101
## StateNameSelangor 0.257 0.79719
## StateNameTerengganu -0.581 0.56150
## MainBreedAffenpinscher 0.000 1.00000
## MainBreedAiredale Terrier 0.000 1.00000
## MainBreedAkita -0.723 0.46989
## MainBreedAmer Bulldog 0.000 1.00000
## MainBreedAmer Curl 0.449 0.65340
## MainBreedAmer Shorthair 0.053 0.95782
## MainBreedAmer Staffordshire Terrier 0.000 1.00000
## MainBreedAmer Water Spaniel 0.000 1.00000
## MainBreedAmer Wirehair 0.977 0.32868
## MainBreedApplehead Siamese 0.581 0.56126
## MainBreedAustralian Kelpie -0.943 0.34593
## MainBreedAustralian Shepherd 0.000 1.00000
## MainBreedAustralian Terrier -1.158 0.24688
## MainBreedBalinese 0.783 0.43357
## MainBreedBasenji -0.434 0.66434
## MainBreedBasset Hound -1.350 0.17695
## MainBreedBeagle -1.280 0.20063
## MainBreedBearded Collie 0.000 1.00000
## MainBreedBedlington Terrier 0.156 0.87591
## MainBreedBelgian Shepherd Dog Sheepdog -0.544 0.58636
## MainBreedBelgian Shepherd Laekenois 0.000 1.00000
## MainBreedBelgian Shepherd Malinois -0.918 0.35878
## MainBreedBengal -0.126 0.89945
## MainBreedBirman 0.591 0.55440
## MainBreedBlack Labrador Retriever -0.520 0.60272
## MainBreedBlack Mouth Cur -0.088 0.92978
## MainBreedBobtail 0.390 0.69663
## MainBreedBombay 0.654 0.51326
## MainBreedBorder Collie -0.854 0.39307
## MainBreedBoston Terrier -0.571 0.56788
## MainBreedBoxer -0.638 0.52359
## MainBreedBritish Shorthair -0.056 0.95526
## MainBreedBull Terrier -0.761 0.44666
## MainBreedBullmastiff -0.868 0.38516
## MainBreedBurmese 0.287 0.77413
## MainBreedBurmilla -0.472 0.63727
## MainBreedCalico -0.342 0.73214
## MainBreedCattle Dog 0.000 1.00000
## MainBreedCavalier King Charles Spaniel -0.583 0.56022
## MainBreedChartreux 0.613 0.53996
## MainBreedChausie 0.000 1.00000
## MainBreedChihuahua -0.782 0.43393
## MainBreedChinese Crested Dog -1.217 0.22366
## MainBreedChocolate Labrador Retriever 0.000 1.00000
## MainBreedChow Chow -0.849 0.39615
## MainBreedCocker Spaniel -0.898 0.36921
## MainBreedCollie -1.052 0.29283
## MainBreedCoonhound 0.000 1.00000
## MainBreedCorgi -1.039 0.29894
## MainBreedCymric 0.801 0.42312
## MainBreedDachshund -0.757 0.44927
## MainBreedDalmatian -1.178 0.23886
## MainBreedDilute Calico 0.241 0.80988
## MainBreedDilute Tortoiseshell 0.237 0.81275
## MainBreedDoberman Pinscher -1.188 0.23498
## MainBreedDom Long Hair -0.150 0.88060
## MainBreedDom Medium Hair 0.065 0.94843
## MainBreedDom Short Hair 0.157 0.87512
## MainBreedDutch Shepherd -0.674 0.50000
## MainBreedEgyptian Mau 0.399 0.68966
## MainBreedEnglish Bulldog -1.255 0.20960
## MainBreedEnglish Cocker Spaniel -0.654 0.51312
## MainBreedEnglish Pointer -0.047 0.96245
## MainBreedEnglish Springer Spaniel 0.000 1.00000
## MainBreedExotic Shorthair -0.081 0.93512
## MainBreedExtra-Toes Cat (Hemingway Polydactyl) 0.290 0.77148
## MainBreedField Spaniel 0.000 1.00000
## MainBreedFlat-coated Retriever 0.000 1.00000
## MainBreedFox Terrier -0.616 0.53822
## MainBreedFoxhound -0.643 0.52012
## MainBreedFrench Bulldog -0.456 0.64821
## MainBreedGerman Pinscher -0.842 0.39972
## MainBreedGerman Shepherd Dog -0.825 0.40958
## MainBreedGerman Spitz -0.689 0.49111
## MainBreedGlen of Imaal Terrier -0.437 0.66231
## MainBreedGolden Retriever -1.104 0.26947
## MainBreedGreat Dane -0.973 0.33050
## MainBreedGreyhound -0.128 0.89834
## MainBreedHavana 0.732 0.46418
## MainBreedHimalayan 0.354 0.72309
## MainBreedHound -0.872 0.38344
## MainBreedHusky -1.094 0.27408
## MainBreedIrish Setter -0.721 0.47072
## MainBreedIrish Terrier 0.000 1.00000
## MainBreedIrish Wolfhound -0.115 0.90827
## MainBreedJack Russell Terrier -0.909 0.36360
## MainBreedJack Russell Terrier (Parson Russell Terrier) -0.619 0.53612
## MainBreedJapanese Bobtail 0.013 0.98936
## MainBreedJapanese Chin 0.000 1.00000
## MainBreedJavanese -0.304 0.76115
## MainBreedKai Dog 0.000 1.00000
## MainBreedKorat 1.003 0.31604
## MainBreedKuvasz -0.828 0.40763
## MainBreedLabrador Retriever -1.041 0.29779
## MainBreedLancashire Heeler NA NA
## MainBreedLhasa Apso -0.410 0.68201
## MainBreedLowchen 0.000 1.00000
## MainBreedMaine Coon -0.427 0.66951
## MainBreedMaltese -1.157 0.24740
## MainBreedManchester Terrier -0.565 0.57238
## MainBreedManx 0.370 0.71134
## MainBreedMastiff -0.922 0.35647
## MainBreedMiniature Pinscher -0.907 0.36449
## MainBreedMixed Breed -0.994 0.32017
## MainBreedMountain Dog 0.000 1.00000
## MainBreedMunsterlander NA NA
## MainBreedNebelung 0.000 1.00000
## MainBreedNorwegian Forest Cat -0.090 0.92828
## MainBreedOcicat 0.267 0.78931
## MainBreedOld English Sheepdog 0.000 1.00000
## MainBreedOrient Long Hair -0.741 0.45852
## MainBreedOrient Short Hair 0.158 0.87428
## MainBreedOrient Tabby -0.089 0.92894
## MainBreedPapillon -1.085 0.27778
## MainBreedPekingese -0.581 0.56131
## MainBreedPersian -0.225 0.82193
## MainBreedPit Bull Terrier -1.146 0.25170
## MainBreedPixie-Bob 0.000 1.00000
## MainBreedPointer 0.000 1.00000
## MainBreedPomeranian -0.745 0.45651
## MainBreedPoodle -1.116 0.26427
## MainBreedPug -1.012 0.31134
## MainBreedRagamuffin -0.189 0.85028
## MainBreedRagdoll 0.750 0.45301
## MainBreedRat Terrier -0.539 0.59006
## MainBreedRetriever -0.267 0.78948
## MainBreedRhodesian Ridgeback -0.880 0.37883
## MainBreedRottweiler -1.170 0.24207
## MainBreedRussian Blue 0.135 0.89285
## MainBreedSaint Bernard -1.038 0.29941
## MainBreedSamoyed 0.000 1.00000
## MainBreedSchnauzer -1.238 0.21565
## MainBreedScottish Fold 0.806 0.42008
## MainBreedScottish Terrier Scottie 0.064 0.94920
## MainBreedSetter 0.000 1.00000
## MainBreedShar Pei -0.772 0.43992
## MainBreedSheep Dog 0.000 1.00000
## MainBreedShepherd -0.856 0.39212
## MainBreedShetland Sheepdog Sheltie -0.642 0.52081
## MainBreedShiba Inu -0.463 0.64321
## MainBreedShih Tzu -0.959 0.33733
## MainBreedSiamese -0.025 0.97968
## MainBreedSiberian -0.768 0.44274
## MainBreedSiberian Husky -0.887 0.37495
## MainBreedSilky Terrier -1.374 0.16932
## MainBreedSilver 0.000 1.00000
## MainBreedSingapura 0.192 0.84766
## MainBreedSnowshoe 0.209 0.83456
## MainBreedSomali 0.388 0.69803
## MainBreedSpaniel 0.000 1.00000
## MainBreedSphynx (hairless cat) -0.778 0.43667
## MainBreedSpitz -0.954 0.33993
## MainBreedStaffordshire Bull Terrier 0.000 1.00000
## MainBreedStandard Poodle -0.367 0.71359
## MainBreedSwedish Vallhund 0.000 1.00000
## MainBreedTabby 0.096 0.92385
## MainBreedTerrier -0.913 0.36145
## MainBreedTiger 0.060 0.95199
## MainBreedTonkinese 0.311 0.75550
## MainBreedTorbie 0.944 0.34518
## MainBreedTortoiseshell 0.415 0.67814
## MainBreedToy Fox Terrier -0.687 0.49203
## MainBreedTurkish Angora 1.036 0.30034
## MainBreedTurkish Van -0.820 0.41231
## MainBreedTuxedo -0.412 0.68049
## MainBreedWeimaraner 0.000 1.00000
## MainBreedWelsh Corgi 0.250 0.80228
## MainBreedWest Highland White Terrier Westie -0.704 0.48119
## MainBreedWheaten Terrier 0.000 1.00000
## MainBreedWhippet -0.878 0.37992
## MainBreedWhite German Shepherd -0.349 0.72739
## MainBreedWirehaired Terrier -0.126 0.89936
## MainBreedYellow Labrador Retriever -0.944 0.34534
## MainBreedYorkshire Terrier Yorkie -0.846 0.39736
## has_name1 -0.010 0.99179
## pure_breed1 NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(23950.02) family taken to be 1)
##
## Null deviance: 10362.7 on 14987 degrees of freedom
## Residual deviance: 4204.6 on 14632 degrees of freedom
## (3953 observations deleted due to missingness)
## AIC: 19991
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 23950
## Std. Err.: 27269
## Warning while fitting theta: alternation limit reached
##
## 2 x log-likelihood: -19276.89
set.seed(100)
index = sample(1:nrow(newtr_te), 0.7*nrow(newtr_te))
train1 = newtr_te[index,] # Create the training data
test1 = newtr_te[-index,] # Create the test data
dim(train1)
## [1] 13258 17
dim(test1)
## [1] 5683 17
modelnegb1 <- glm.nb(High ~ ., data = train1)
summary(modelnegb1)
##
## Call:
## glm.nb(formula = High ~ ., data = train1, init.theta = 16669.18195,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5052 -0.9488 -0.1298 0.5660 1.5594
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error
## (Intercept) -6.631e-01 7.002e-01
## Type2 -3.317e-01 6.040e-01
## Age -7.170e-03 1.165e-03
## Gender2 -1.136e-01 3.067e-02
## Gender3 -1.353e-01 5.820e-02
## Color12 -2.006e-02 3.640e-02
## Color13 1.861e-02 5.994e-02
## Color14 -1.806e-01 7.463e-02
## Color15 7.820e-02 5.997e-02
## Color16 3.520e-02 6.857e-02
## Color17 8.234e-02 6.831e-02
## MaturitySize -1.509e-02 2.827e-02
## FurLength 7.439e-02 2.886e-02
## Vaccinated2 1.476e-01 4.169e-02
## Vaccinated3 3.792e-02 8.508e-02
## Dewormed2 -1.612e-02 3.885e-02
## Dewormed3 -3.651e-02 8.565e-02
## Sterilized2 4.047e-01 4.648e-02
## Sterilized3 2.403e-01 6.616e-02
## Health -1.618e-01 7.724e-02
## Quantity -3.287e-02 1.481e-02
## Fee -3.873e-04 2.026e-04
## PhotoAmt 1.577e-03 4.182e-03
## MainBreedAffenpinscher -3.573e+01 6.711e+07
## MainBreedAiredale Terrier -3.674e+01 6.711e+07
## MainBreedAkita 3.199e-02 1.216e+00
## MainBreedAmer Bulldog -3.616e+01 6.711e+07
## MainBreedAmer Curl 4.082e-01 5.075e-01
## MainBreedAmer Shorthair 1.087e-01 3.778e-01
## MainBreedAmer Staffordshire Terrier -3.580e+01 6.711e+07
## MainBreedAmer Water Spaniel -3.681e+01 4.745e+07
## MainBreedAmer Wirehair 5.527e-01 6.680e-01
## MainBreedApplehead Siamese 3.793e-01 1.055e+00
## MainBreedAustralian Kelpie -8.117e-01 9.881e-01
## MainBreedAustralian Shepherd -3.629e+01 6.711e+07
## MainBreedAustralian Terrier -1.183e+00 1.216e+00
## MainBreedBalinese 4.808e-02 7.830e-01
## MainBreedBasenji -3.567e-01 9.887e-01
## MainBreedBasset Hound -7.062e-02 1.216e+00
## MainBreedBeagle 1.370e-01 7.115e-01
## MainBreedBearded Collie -3.632e+01 6.711e+07
## MainBreedBedlington Terrier 1.366e+00 1.220e+00
## MainBreedBelgian Shepherd Dog Sheepdog 6.073e-01 9.899e-01
## MainBreedBelgian Shepherd Laekenois -4.609e-02 1.110e+00
## MainBreedBelgian Shepherd Malinois 8.468e-02 7.535e-01
## MainBreedBengal 3.491e-01 3.766e-01
## MainBreedBirman 2.252e-01 1.056e+00
## MainBreedBlack Labrador Retriever 2.706e-01 8.540e-01
## MainBreedBlack Mouth Cur 3.108e-01 9.003e-01
## MainBreedBobtail -9.414e-01 7.823e-01
## MainBreedBombay -2.214e-01 6.674e-01
## MainBreedBorder Collie -5.668e-02 7.532e-01
## MainBreedBoston Terrier 4.531e-01 9.010e-01
## MainBreedBoxer -2.878e-02 9.003e-01
## MainBreedBritish Shorthair 3.622e-01 4.606e-01
## MainBreedBull Terrier -4.019e-01 8.523e-01
## MainBreedBullmastiff -1.611e-02 8.229e-01
## MainBreedBurmese 1.223e-01 5.043e-01
## MainBreedBurmilla 2.725e-01 1.056e+00
## MainBreedCalico 7.288e-02 3.781e-01
## MainBreedCattle Dog -3.679e+01 6.711e+07
## MainBreedCavalier King Charles Spaniel 6.098e-01 1.219e+00
## MainBreedChartreux 2.980e-01 1.057e+00
## MainBreedChihuahua 2.135e-01 7.405e-01
## MainBreedChinese Crested Dog 9.641e-01 1.216e+00
## MainBreedChocolate Labrador Retriever -3.654e+01 6.711e+07
## MainBreedChow Chow 7.900e-01 9.902e-01
## MainBreedCocker Spaniel 3.817e-01 7.304e-01
## MainBreedCollie 2.745e-01 7.447e-01
## MainBreedCoonhound -3.654e+01 4.745e+07
## MainBreedCorgi -8.464e-02 8.225e-01
## MainBreedCymric -3.635e+01 6.711e+07
## MainBreedDachshund 2.552e-01 7.593e-01
## MainBreedDalmatian 7.275e-02 7.342e-01
## MainBreedDilute Calico 5.421e-01 1.055e+00
## MainBreedDilute Tortoiseshell 2.292e-01 1.057e+00
## MainBreedDoberman Pinscher 7.621e-02 7.202e-01
## MainBreedDom Long Hair 3.165e-01 3.461e-01
## MainBreedDom Medium Hair 1.998e-01 3.371e-01
## MainBreedDom Short Hair 1.783e-01 3.352e-01
## MainBreedEgyptian Mau 5.710e-01 7.830e-01
## MainBreedEnglish Bulldog -2.136e-01 1.216e+00
## MainBreedEnglish Cocker Spaniel 6.649e-01 8.234e-01
## MainBreedEnglish Springer Spaniel -3.651e+01 6.711e+07
## MainBreedExotic Shorthair 1.027e-01 7.825e-01
## MainBreedExtra-Toes Cat (Hemingway Polydactyl) 8.192e-01 7.829e-01
## MainBreedField Spaniel -3.671e+01 6.711e+07
## MainBreedFlat-coated Retriever -3.592e+01 3.875e+07
## MainBreedFox Terrier -1.949e-01 1.217e+00
## MainBreedFrench Bulldog 9.847e-01 9.927e-01
## MainBreedGerman Pinscher 1.062e-01 9.001e-01
## MainBreedGerman Shepherd Dog 8.147e-02 7.080e-01
## MainBreedGerman Spitz -3.616e+01 6.711e+07
## MainBreedGlen of Imaal Terrier 7.701e-01 9.905e-01
## MainBreedGolden Retriever 2.525e-01 7.022e-01
## MainBreedGreat Dane 8.856e-01 8.549e-01
## MainBreedHimalayan 7.613e-01 6.681e-01
## MainBreedHound 9.870e-02 8.524e-01
## MainBreedHusky 9.661e-02 7.443e-01
## MainBreedIrish Setter -3.581e+01 6.711e+07
## MainBreedIrish Terrier -3.645e+01 6.711e+07
## MainBreedIrish Wolfhound 8.985e-01 1.216e+00
## MainBreedJack Russell Terrier 1.848e-02 7.225e-01
## MainBreedJack Russell Terrier (Parson Russell Terrier) 1.303e-01 9.896e-01
## MainBreedJapanese Bobtail 1.880e-01 1.056e+00
## MainBreedJapanese Chin -3.586e+01 6.711e+07
## MainBreedJavanese -6.747e-02 6.675e-01
## MainBreedKai Dog -3.595e+01 6.711e+07
## MainBreedKorat 6.467e-01 6.690e-01
## MainBreedKuvasz 6.200e-01 1.217e+00
## MainBreedLabrador Retriever 1.326e-02 6.996e-01
## MainBreedLhasa Apso 7.390e-01 1.218e+00
## MainBreedMaine Coon 3.185e-01 4.198e-01
## MainBreedMaltese 3.627e-01 7.620e-01
## MainBreedManchester Terrier 2.736e-01 1.215e+00
## MainBreedManx 1.166e-01 6.676e-01
## MainBreedMastiff -9.823e-02 1.217e+00
## MainBreedMiniature Pinscher 7.107e-02 7.213e-01
## MainBreedMixed Breed -3.467e-01 6.901e-01
## MainBreedMountain Dog -3.676e+01 6.711e+07
## MainBreedMunsterlander 4.284e-01 1.216e+00
## MainBreedNebelung -3.620e+01 4.745e+07
## MainBreedNorwegian Forest Cat 9.390e-01 6.039e-01
## MainBreedOcicat 1.241e+00 1.057e+00
## MainBreedOld English Sheepdog -3.572e+01 6.711e+07
## MainBreedOrient Long Hair 6.096e-01 4.729e-01
## MainBreedOrient Short Hair 5.733e-02 3.961e-01
## MainBreedOrient Tabby -3.984e-01 7.826e-01
## MainBreedPekingese 6.077e-01 7.767e-01
## MainBreedPersian 4.092e-01 3.495e-01
## MainBreedPit Bull Terrier -2.124e-01 7.871e-01
## MainBreedPixie-Bob -3.626e+01 6.711e+07
## MainBreedPomeranian 4.039e-01 7.490e-01
## MainBreedPoodle 3.226e-01 7.015e-01
## MainBreedPug 4.234e-01 7.759e-01
## MainBreedRagdoll 6.761e-01 4.508e-01
## MainBreedRetriever -1.124e-01 9.887e-01
## MainBreedRhodesian Ridgeback 2.025e-01 1.216e+00
## MainBreedRottweiler 2.412e-01 7.081e-01
## MainBreedRussian Blue 4.827e-01 4.240e-01
## MainBreedSaint Bernard 6.442e-01 8.242e-01
## MainBreedSamoyed -3.583e+01 6.711e+07
## MainBreedSchnauzer 1.923e-01 7.155e-01
## MainBreedScottish Terrier Scottie 6.998e-01 1.218e+00
## MainBreedSetter -3.632e+01 4.745e+07
## MainBreedShar Pei 1.946e-01 8.020e-01
## MainBreedShepherd -1.919e-01 9.889e-01
## MainBreedShetland Sheepdog Sheltie 6.923e-02 9.890e-01
## MainBreedShiba Inu -3.793e-01 1.216e+00
## MainBreedShih Tzu 4.171e-01 6.959e-01
## MainBreedSiamese 4.284e-01 3.470e-01
## MainBreedSiberian Husky 2.540e-01 7.536e-01
## MainBreedSilky Terrier 1.823e-01 7.880e-01
## MainBreedSilver -3.591e+01 3.875e+07
## MainBreedSingapura -4.462e-01 7.822e-01
## MainBreedSnowshoe -3.378e-01 1.055e+00
## MainBreedSomali 5.121e-01 6.676e-01
## MainBreedSpaniel -3.576e+01 6.711e+07
## MainBreedSphynx (hairless cat) 1.059e+00 1.060e+00
## MainBreedSpitz -3.169e-02 7.140e-01
## MainBreedStaffordshire Bull Terrier -3.542e+01 6.711e+07
## MainBreedStandard Poodle -1.483e-01 1.217e+00
## MainBreedTabby 3.068e-01 3.443e-01
## MainBreedTerrier -2.404e-01 6.989e-01
## MainBreedTiger 1.375e-01 4.864e-01
## MainBreedTonkinese 7.290e-01 7.828e-01
## MainBreedTorbie 1.475e+00 1.056e+00
## MainBreedTortoiseshell 5.209e-01 4.176e-01
## MainBreedToy Fox Terrier -4.148e-01 1.215e+00
## MainBreedTurkish Angora 6.779e-02 7.824e-01
## MainBreedTurkish Van -9.840e-01 1.055e+00
## MainBreedTuxedo 1.473e-01 4.130e-01
## MainBreedWeimaraner -3.656e+01 4.745e+07
## MainBreedWelsh Corgi 1.101e+00 1.216e+00
## MainBreedWest Highland White Terrier Westie 4.050e-01 9.029e-01
## MainBreedWheaten Terrier -3.573e+01 4.745e+07
## MainBreedWhite German Shepherd 8.976e-02 1.219e+00
## MainBreedWirehaired Terrier 4.629e-01 1.216e+00
## MainBreedYellow Labrador Retriever -9.944e-01 9.903e-01
## MainBreedYorkshire Terrier Yorkie 7.732e-01 9.016e-01
## has_name1 1.651e-02 5.168e-02
## pure_breed1 NA NA
## z value Pr(>|z|)
## (Intercept) -0.947 0.343676
## Type2 -0.549 0.582918
## Age -6.154 7.55e-10 ***
## Gender2 -3.705 0.000212 ***
## Gender3 -2.325 0.020080 *
## Color12 -0.551 0.581528
## Color13 0.311 0.756160
## Color14 -2.420 0.015542 *
## Color15 1.304 0.192202
## Color16 0.513 0.607700
## Color17 1.205 0.228050
## MaturitySize -0.534 0.593480
## FurLength 2.578 0.009942 **
## Vaccinated2 3.541 0.000399 ***
## Vaccinated3 0.446 0.655801
## Dewormed2 -0.415 0.678103
## Dewormed3 -0.426 0.669877
## Sterilized2 8.707 < 2e-16 ***
## Sterilized3 3.633 0.000281 ***
## Health -2.095 0.036188 *
## Quantity -2.219 0.026499 *
## Fee -1.911 0.055996 .
## PhotoAmt 0.377 0.706079
## MainBreedAffenpinscher 0.000 1.000000
## MainBreedAiredale Terrier 0.000 1.000000
## MainBreedAkita 0.026 0.979012
## MainBreedAmer Bulldog 0.000 1.000000
## MainBreedAmer Curl 0.804 0.421284
## MainBreedAmer Shorthair 0.288 0.773495
## MainBreedAmer Staffordshire Terrier 0.000 1.000000
## MainBreedAmer Water Spaniel 0.000 0.999999
## MainBreedAmer Wirehair 0.827 0.407971
## MainBreedApplehead Siamese 0.359 0.719264
## MainBreedAustralian Kelpie -0.821 0.411391
## MainBreedAustralian Shepherd 0.000 1.000000
## MainBreedAustralian Terrier -0.973 0.330613
## MainBreedBalinese 0.061 0.951037
## MainBreedBasenji -0.361 0.718293
## MainBreedBasset Hound -0.058 0.953675
## MainBreedBeagle 0.193 0.847318
## MainBreedBearded Collie 0.000 1.000000
## MainBreedBedlington Terrier 1.120 0.262830
## MainBreedBelgian Shepherd Dog Sheepdog 0.613 0.539596
## MainBreedBelgian Shepherd Laekenois -0.042 0.966877
## MainBreedBelgian Shepherd Malinois 0.112 0.910521
## MainBreedBengal 0.927 0.353944
## MainBreedBirman 0.213 0.831048
## MainBreedBlack Labrador Retriever 0.317 0.751392
## MainBreedBlack Mouth Cur 0.345 0.729952
## MainBreedBobtail -1.203 0.228800
## MainBreedBombay -0.332 0.740152
## MainBreedBorder Collie -0.075 0.940007
## MainBreedBoston Terrier 0.503 0.615015
## MainBreedBoxer -0.032 0.974495
## MainBreedBritish Shorthair 0.786 0.431644
## MainBreedBull Terrier -0.472 0.637269
## MainBreedBullmastiff -0.020 0.984383
## MainBreedBurmese 0.242 0.808444
## MainBreedBurmilla 0.258 0.796286
## MainBreedCalico 0.193 0.847162
## MainBreedCattle Dog 0.000 1.000000
## MainBreedCavalier King Charles Spaniel 0.500 0.616895
## MainBreedChartreux 0.282 0.778081
## MainBreedChihuahua 0.288 0.773109
## MainBreedChinese Crested Dog 0.793 0.427949
## MainBreedChocolate Labrador Retriever 0.000 1.000000
## MainBreedChow Chow 0.798 0.424952
## MainBreedCocker Spaniel 0.523 0.601250
## MainBreedCollie 0.369 0.712416
## MainBreedCoonhound 0.000 0.999999
## MainBreedCorgi -0.103 0.918037
## MainBreedCymric 0.000 1.000000
## MainBreedDachshund 0.336 0.736763
## MainBreedDalmatian 0.099 0.921071
## MainBreedDilute Calico 0.514 0.607295
## MainBreedDilute Tortoiseshell 0.217 0.828281
## MainBreedDoberman Pinscher 0.106 0.915731
## MainBreedDom Long Hair 0.914 0.360507
## MainBreedDom Medium Hair 0.593 0.553357
## MainBreedDom Short Hair 0.532 0.594828
## MainBreedEgyptian Mau 0.729 0.465850
## MainBreedEnglish Bulldog -0.176 0.860542
## MainBreedEnglish Cocker Spaniel 0.807 0.419395
## MainBreedEnglish Springer Spaniel 0.000 1.000000
## MainBreedExotic Shorthair 0.131 0.895616
## MainBreedExtra-Toes Cat (Hemingway Polydactyl) 1.046 0.295392
## MainBreedField Spaniel 0.000 1.000000
## MainBreedFlat-coated Retriever 0.000 0.999999
## MainBreedFox Terrier -0.160 0.872699
## MainBreedFrench Bulldog 0.992 0.321202
## MainBreedGerman Pinscher 0.118 0.906051
## MainBreedGerman Shepherd Dog 0.115 0.908396
## MainBreedGerman Spitz 0.000 1.000000
## MainBreedGlen of Imaal Terrier 0.777 0.436864
## MainBreedGolden Retriever 0.360 0.719219
## MainBreedGreat Dane 1.036 0.300221
## MainBreedHimalayan 1.140 0.254491
## MainBreedHound 0.116 0.907823
## MainBreedHusky 0.130 0.896731
## MainBreedIrish Setter 0.000 1.000000
## MainBreedIrish Terrier 0.000 1.000000
## MainBreedIrish Wolfhound 0.739 0.459864
## MainBreedJack Russell Terrier 0.026 0.979590
## MainBreedJack Russell Terrier (Parson Russell Terrier) 0.132 0.895267
## MainBreedJapanese Bobtail 0.178 0.858775
## MainBreedJapanese Chin 0.000 1.000000
## MainBreedJavanese -0.101 0.919491
## MainBreedKai Dog 0.000 1.000000
## MainBreedKorat 0.967 0.333719
## MainBreedKuvasz 0.510 0.610386
## MainBreedLabrador Retriever 0.019 0.984874
## MainBreedLhasa Apso 0.607 0.543961
## MainBreedMaine Coon 0.759 0.448008
## MainBreedMaltese 0.476 0.634118
## MainBreedManchester Terrier 0.225 0.821872
## MainBreedManx 0.175 0.861337
## MainBreedMastiff -0.081 0.935682
## MainBreedMiniature Pinscher 0.099 0.921517
## MainBreedMixed Breed -0.502 0.615394
## MainBreedMountain Dog 0.000 1.000000
## MainBreedMunsterlander 0.352 0.724648
## MainBreedNebelung 0.000 0.999999
## MainBreedNorwegian Forest Cat 1.555 0.119968
## MainBreedOcicat 1.174 0.240253
## MainBreedOld English Sheepdog 0.000 1.000000
## MainBreedOrient Long Hair 1.289 0.197392
## MainBreedOrient Short Hair 0.145 0.884914
## MainBreedOrient Tabby -0.509 0.610748
## MainBreedPekingese 0.782 0.433933
## MainBreedPersian 1.171 0.241726
## MainBreedPit Bull Terrier -0.270 0.787304
## MainBreedPixie-Bob 0.000 1.000000
## MainBreedPomeranian 0.539 0.589767
## MainBreedPoodle 0.460 0.645554
## MainBreedPug 0.546 0.585280
## MainBreedRagdoll 1.500 0.133699
## MainBreedRetriever -0.114 0.909461
## MainBreedRhodesian Ridgeback 0.167 0.867694
## MainBreedRottweiler 0.341 0.733370
## MainBreedRussian Blue 1.139 0.254889
## MainBreedSaint Bernard 0.782 0.434426
## MainBreedSamoyed 0.000 1.000000
## MainBreedSchnauzer 0.269 0.788076
## MainBreedScottish Terrier Scottie 0.575 0.565629
## MainBreedSetter 0.000 0.999999
## MainBreedShar Pei 0.243 0.808256
## MainBreedShepherd -0.194 0.846158
## MainBreedShetland Sheepdog Sheltie 0.070 0.944197
## MainBreedShiba Inu -0.312 0.754994
## MainBreedShih Tzu 0.599 0.548881
## MainBreedSiamese 1.235 0.216924
## MainBreedSiberian Husky 0.337 0.736123
## MainBreedSilky Terrier 0.231 0.817058
## MainBreedSilver 0.000 0.999999
## MainBreedSingapura -0.570 0.568366
## MainBreedSnowshoe -0.320 0.748858
## MainBreedSomali 0.767 0.443002
## MainBreedSpaniel 0.000 1.000000
## MainBreedSphynx (hairless cat) 0.999 0.317811
## MainBreedSpitz -0.044 0.964602
## MainBreedStaffordshire Bull Terrier 0.000 1.000000
## MainBreedStandard Poodle -0.122 0.902982
## MainBreedTabby 0.891 0.372909
## MainBreedTerrier -0.344 0.730834
## MainBreedTiger 0.283 0.777395
## MainBreedTonkinese 0.931 0.351713
## MainBreedTorbie 1.397 0.162397
## MainBreedTortoiseshell 1.247 0.212291
## MainBreedToy Fox Terrier -0.341 0.732837
## MainBreedTurkish Angora 0.087 0.930953
## MainBreedTurkish Van -0.933 0.350854
## MainBreedTuxedo 0.357 0.721367
## MainBreedWeimaraner 0.000 0.999999
## MainBreedWelsh Corgi 0.906 0.365167
## MainBreedWest Highland White Terrier Westie 0.449 0.653718
## MainBreedWheaten Terrier 0.000 0.999999
## MainBreedWhite German Shepherd 0.074 0.941278
## MainBreedWirehaired Terrier 0.381 0.703453
## MainBreedYellow Labrador Retriever -1.004 0.315286
## MainBreedYorkshire Terrier Yorkie 0.858 0.391108
## has_name1 0.319 0.749403
## pure_breed1 NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(16669.18) family taken to be 1)
##
## Null deviance: 7298.9 on 10503 degrees of freedom
## Residual deviance: 6757.7 on 10323 degrees of freedom
## (2754 observations deleted due to missingness)
## AIC: 17566
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 16669
## Std. Err.: 22000
## Warning while fitting theta: alternation limit reached
##
## 2 x log-likelihood: -17202.01
modelnegb2 <- glm.nb(High~ Age + FurLength + Health+
as.factor(Gender) +
as.factor(Vaccinated) +
as.factor(Sterilized)+
as.factor(Color1), data = train1)
summary(modelnegb2)
##
## Call:
## glm.nb(formula = High ~ Age + FurLength + Health + as.factor(Gender) +
## as.factor(Vaccinated) + as.factor(Sterilized) + as.factor(Color1),
## data = train1, init.theta = 17299.81994, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3463 -0.9836 -0.6856 0.5725 1.3332
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.037513 0.096130 -10.793 < 2e-16 ***
## Age -0.003208 0.000995 -3.225 0.001262 **
## FurLength 0.134519 0.022733 5.917 3.27e-09 ***
## Health -0.138554 0.075953 -1.824 0.068120 .
## as.factor(Gender)2 -0.128883 0.030167 -4.272 1.93e-05 ***
## as.factor(Gender)3 -0.219131 0.044147 -4.964 6.92e-07 ***
## as.factor(Vaccinated)2 0.132879 0.033827 3.928 8.56e-05 ***
## as.factor(Vaccinated)3 0.028352 0.054183 0.523 0.600794
## as.factor(Sterilized)2 0.414381 0.045838 9.040 < 2e-16 ***
## as.factor(Sterilized)3 0.228526 0.064635 3.536 0.000407 ***
## as.factor(Color1)2 -0.037595 0.034951 -1.076 0.282089
## as.factor(Color1)3 0.083682 0.057252 1.462 0.143843
## as.factor(Color1)4 -0.131694 0.073257 -1.798 0.072223 .
## as.factor(Color1)5 0.100691 0.058370 1.725 0.084520 .
## as.factor(Color1)6 0.133284 0.065103 2.047 0.040630 *
## as.factor(Color1)7 0.104872 0.065793 1.594 0.110941
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(17299.82) family taken to be 1)
##
## Null deviance: 7302.9 on 10507 degrees of freedom
## Residual deviance: 6997.5 on 10492 degrees of freedom
## (2750 observations deleted due to missingness)
## AIC: 17476
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 17300
## Std. Err.: 23665
## Warning while fitting theta: iteration limit reached
##
## 2 x log-likelihood: -17441.78
modelnegb3 <- glm.nb(High~ Age + FurLength + Health+
as.factor(Gender) +
as.factor(Color1), data = train1)
summary(modelnegb3)
##
## Call:
## glm.nb(formula = High ~ Age + FurLength + Health + as.factor(Gender) +
## as.factor(Color1), data = train1, init.theta = 17830.91647,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2875 -0.9753 -0.6593 0.6000 1.5675
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.6132553 0.0881599 -6.956 3.50e-12 ***
## Age -0.0082888 0.0009764 -8.489 < 2e-16 ***
## FurLength 0.1417395 0.0226634 6.254 4.00e-10 ***
## Health -0.1189043 0.0753947 -1.577 0.1148
## as.factor(Gender)2 -0.1515801 0.0300709 -5.041 4.64e-07 ***
## as.factor(Gender)3 -0.1845937 0.0436871 -4.225 2.39e-05 ***
## as.factor(Color1)2 -0.0520582 0.0348861 -1.492 0.1356
## as.factor(Color1)3 0.0815006 0.0572268 1.424 0.1544
## as.factor(Color1)4 -0.1325599 0.0732325 -1.810 0.0703 .
## as.factor(Color1)5 0.0740500 0.0582930 1.270 0.2040
## as.factor(Color1)6 0.1357831 0.0650674 2.087 0.0369 *
## as.factor(Color1)7 0.0829134 0.0657301 1.261 0.2072
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(17830.92) family taken to be 1)
##
## Null deviance: 7302.9 on 10507 degrees of freedom
## Residual deviance: 7146.6 on 10496 degrees of freedom
## (2750 observations deleted due to missingness)
## AIC: 17617
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 17831
## Std. Err.: 25059
## Warning while fitting theta: iteration limit reached
##
## 2 x log-likelihood: -17590.93
modellin <- lm(High~ Age + FurLength + Health+
as.factor(Gender) +
as.factor(Vaccinated) +
as.factor(Sterilized)+
as.factor(Color1), data = train1)
summary(modellin)
##
## Call:
## lm(formula = High ~ Age + FurLength + Health + as.factor(Gender) +
## as.factor(Vaccinated) + as.factor(Sterilized) + as.factor(Color1),
## data = train1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8089 -0.4918 -0.1805 0.4622 0.9506
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.355997 0.030261 11.764 < 2e-16 ***
## Age -0.001322 0.000292 -4.529 5.98e-06 ***
## FurLength 0.067127 0.007984 8.408 < 2e-16 ***
## Health -0.062218 0.023716 -2.623 0.00872 **
## as.factor(Gender)2 -0.064853 0.010469 -6.194 6.07e-10 ***
## as.factor(Gender)3 -0.110770 0.015056 -7.357 2.02e-13 ***
## as.factor(Vaccinated)2 0.069331 0.011689 5.931 3.10e-09 ***
## as.factor(Vaccinated)3 0.013287 0.017927 0.741 0.45861
## as.factor(Sterilized)2 0.176341 0.013875 12.709 < 2e-16 ***
## as.factor(Sterilized)3 0.085058 0.020099 4.232 2.34e-05 ***
## as.factor(Color1)2 -0.017676 0.011732 -1.507 0.13192
## as.factor(Color1)3 0.042561 0.020381 2.088 0.03679 *
## as.factor(Color1)4 -0.061837 0.023855 -2.592 0.00955 **
## as.factor(Color1)5 0.049674 0.020664 2.404 0.01624 *
## as.factor(Color1)6 0.070713 0.023644 2.991 0.00279 **
## as.factor(Color1)7 0.053539 0.023383 2.290 0.02206 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4864 on 10492 degrees of freedom
## (2750 observations deleted due to missingness)
## Multiple R-squared: 0.05498, Adjusted R-squared: 0.05363
## F-statistic: 40.7 on 15 and 10492 DF, p-value: < 2.2e-16
library(kableExtra)
aic1 <- modelnegb$aic
aic2 <- modelnegb1$aic
aic3 <- modelnegb2$aic
aic4 <- modellin$aic
mse1 <- mean((train1$High - predict(modelnegb))^2)
mse2 <- mean((train1$High - predict(modelnegb1))^2)
mse3 <- mean((train1$High - predict(modelnegb2))^2)
mse4 <- mean((train1$High - predict(modellin))^2)
compare_aic_mse <- matrix(c(mse1, mse2, mse3 ,mse4 ,aic1, aic2,aic3,aic4),nrow=4,ncol=2,byrow=TRUE)
rownames(compare_aic_mse) <- c("Model1","Model2","Model3","Model4")
colnames(compare_aic_mse) <- c("MSE","AIC")
compare_models <- as.data.frame(compare_models)
kable(compare_aic_mse) %>%
kable_styling(full_width = T)
| MSE | AIC | |
|---|---|---|
| Model1 | NA | NA |
| Model2 | NA | NA |
| Model3 | 19990.89 | 17566.01 |
| Model4 | 17475.78 | NA |
pred <- predict(modelnegb2, train1, type = "response")
summary(pred)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1813 0.4076 0.5103 0.4952 0.5852 0.9092
pred1 <- predict(modellin, train1, type = "response")
summary(pred1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04944 0.42064 0.51851 0.49535 0.58721 0.81022