library(glmnet)
## Warning: package 'glmnet' was built under R version 4.1.2
library(Matrix)
library(caret)
inTrain1 = createDataPartition(y=Wage$wage, p=0.75,list = FALSE)
train1 = Wage[inTrain1,]
test1 = Wage[-inTrain1,]
# train and test
x.train = model.matrix(wage ~ ., data=train1)
x.test = model.matrix(wage ~ ., data=test1)
y.train= train1$wage
y.test = Wage$wage
# choose degree using cross-validation
cv.d=cv.glmnet(x.train,y.train,alpha=0)
d=round(cv.d$lambda.min, 0)
d
## [1] 4
# polynomial regression to the 4th degree
poly.fit = glm(wage ~ poly(age, 4), data = Wage)
# create grid of values for age to predict wage
agelims = range(Wage$age)
age.grid = seq(from = agelims[1], to = agelims[2])
# predict wage using age
poly.preds = predict(poly.fit, newdata = list(age = age.grid), se = TRUE)
poly.se.bands = cbind(poly.preds$se.fit + 2 * poly.preds$se.fit, poly.preds$poly.fit - 2 * poly.preds$se.fit)
summary(poly.fit)
##
## Call:
## glm(formula = wage ~ poly(age, 4), data = Wage)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -98.707 -24.626 -4.993 15.217 203.693
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 111.7036 0.7287 153.283 < 2e-16 ***
## poly(age, 4)1 447.0679 39.9148 11.201 < 2e-16 ***
## poly(age, 4)2 -478.3158 39.9148 -11.983 < 2e-16 ***
## poly(age, 4)3 125.5217 39.9148 3.145 0.00168 **
## poly(age, 4)4 -77.9112 39.9148 -1.952 0.05104 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 1593.19)
##
## Null deviance: 5222086 on 2999 degrees of freedom
## Residual deviance: 4771604 on 2995 degrees of freedom
## AIC: 30641
##
## Number of Fisher Scoring iterations: 2
# linear model
fit.1=lm(wage~age,data=Wage)
#polynomial models
fit.2=lm(wage~poly(age,2),data=Wage)
fit.3=lm(wage~poly(age,3),data=Wage)
fit.4=lm(wage~poly(age,4),data=Wage)
fit.5=lm(wage~poly(age,5),data=Wage)
anova(fit.1,fit.2,fit.3,fit.4,fit.5)
## Analysis of Variance Table
##
## Model 1: wage ~ age
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.5931 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.8888 0.001679 **
## 4 2995 4771604 1 6070 3.8098 0.051046 .
## 5 2994 4770322 1 1283 0.8050 0.369682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The p-value is increasing and F statistic is decreasing as the degree of the polynomial is increasing. The model with the 5th degree polynomial has a F statistic that’s less than 1 and a p-value that is bigger 0.05. So the degree of the polynomial model for the Wage data needs to be less than 5.
par(mfrow=c(1,1),mar=c(4.5,4.5,1,1),oma=c(0,0,2,0))
plot(age,wage,xlim=agelims,cex =.5,col="darkgrey")
title("Degree-4 Polynomial",outer=T)
lines(age.grid,poly.preds$fit,lwd=2,col="darkblue")
matlines(age.grid,poly.se.bands,lwd=1,col="lightblue",lty=3)
### (b) Fit a step function to predict wage using age, and perform crossvalidation to choose the optimal number of cuts. Make a plot of the fit obtained.
library(base)
library(ModelMetrics)
library(boot)
library(lava)
# cross-validation
cv <- rep(NA, 10)
for (i in 2:10) {
Wage$age.cut <- cut(Wage$age, i)
fit <- glm(wage ~ age.cut, data = Wage)
cv[i] <- cv.glm(Wage, fit, K = 10)$delta[1]
}
which.min(cv)
## [1] 8
cv.df = as.data.frame(cbind(cv=cv[2:10], xaxis=(2:10)))
ggplot(cv.df, aes(xaxis, cv))+geom_line(color = "navy")+geom_point(size=2)+geom_point(cv.df[7,], mapping=aes(xaxis, cv),size=2, color = "red")+ xlab("Cut Points")
# Fit a step function
step.fit=lm(wage~cut(age, 8),data=Wage)
coef(summary(step.fit))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 76.28175 2.629812 29.006542 3.110596e-163
## cut(age, 8)(25.8,33.5] 25.83329 3.161343 8.171618 4.440913e-16
## cut(age, 8)(33.5,41.2] 40.22568 3.049065 13.192791 1.136044e-38
## cut(age, 8)(41.2,49] 43.50112 3.018341 14.412262 1.406253e-45
## cut(age, 8)(49,56.8] 40.13583 3.176792 12.634076 1.098741e-35
## cut(age, 8)(56.8,64.5] 44.10243 3.564299 12.373380 2.481643e-34
## cut(age, 8)(64.5,72.2] 28.94825 6.041576 4.791505 1.736008e-06
## cut(age, 8)(72.2,80.1] 15.22418 9.781110 1.556488 1.196978e-01
# predict the step function
step.preds=predict(step.fit,newdata=list(age=age.grid),se=TRUE)
step.se.bands = cbind(step.preds$step.fit + 2 * step.preds$se.fit, step.preds$fit - 2 * step.preds$se.fit)
par(mfrow=c(1,1),mar=c(4.5,4.5,1,1),oma=c(0,0,2,0))
plot(age,wage,xlim=agelims,cex =.5,col="darkgrey")
title("Step Function",outer=T)
lines(age.grid,step.preds$fit,lwd=2,col="darkblue")
matlines(age.grid,step.se.bands,lwd=1,col="lightblue",lty=3)
detach(Wage)
attach(College)
# Split the data into a training set and a test set
inTrain2 = createDataPartition(y = College$Outstate, list = FALSE, p=0.75)
train2 = College[inTrain2,]
test2= College[-inTrain2,]
library(leaps)
# forward stepwise selection on the training set
stepwise.fwd=regsubsets(Outstate~., data= train2, nvmax = 17, method ="forward")
fwd.summary = summary(stepwise.fwd)
fwd.summary
## Subset selection object
## Call: regsubsets.formula(Outstate ~ ., data = train2, nvmax = 17, method = "forward")
## 17 Variables (and intercept)
## Forced in Forced out
## PrivateYes FALSE FALSE
## Apps FALSE FALSE
## Accept FALSE FALSE
## Enroll FALSE FALSE
## Top10perc FALSE FALSE
## Top25perc FALSE FALSE
## F.Undergrad FALSE FALSE
## P.Undergrad FALSE FALSE
## Room.Board FALSE FALSE
## Books FALSE FALSE
## Personal FALSE FALSE
## PhD FALSE FALSE
## Terminal FALSE FALSE
## S.F.Ratio FALSE FALSE
## perc.alumni FALSE FALSE
## Expend FALSE FALSE
## Grad.Rate FALSE FALSE
## 1 subsets of each size up to 17
## Selection Algorithm: forward
## PrivateYes Apps Accept Enroll Top10perc Top25perc F.Undergrad
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) "*" " " " " " " " " " " " "
## 3 ( 1 ) "*" " " " " " " " " " " " "
## 4 ( 1 ) "*" " " " " " " " " " " " "
## 5 ( 1 ) "*" " " " " " " " " " " " "
## 6 ( 1 ) "*" " " " " " " " " " " " "
## 7 ( 1 ) "*" " " " " " " " " " " " "
## 8 ( 1 ) "*" " " " " " " " " " " " "
## 9 ( 1 ) "*" " " "*" " " " " " " " "
## 10 ( 1 ) "*" "*" "*" " " " " " " " "
## 11 ( 1 ) "*" "*" "*" "*" " " " " " "
## 12 ( 1 ) "*" "*" "*" "*" "*" " " " "
## 13 ( 1 ) "*" "*" "*" "*" "*" " " "*"
## 14 ( 1 ) "*" "*" "*" "*" "*" " " "*"
## 15 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## 16 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## P.Undergrad Room.Board Books Personal PhD Terminal S.F.Ratio
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " "
## 3 ( 1 ) " " "*" " " " " " " " " " "
## 4 ( 1 ) " " "*" " " " " " " " " " "
## 5 ( 1 ) " " "*" " " " " " " "*" " "
## 6 ( 1 ) " " "*" " " " " " " "*" " "
## 7 ( 1 ) " " "*" " " "*" " " "*" " "
## 8 ( 1 ) " " "*" " " "*" " " "*" "*"
## 9 ( 1 ) " " "*" " " "*" " " "*" "*"
## 10 ( 1 ) " " "*" " " "*" " " "*" "*"
## 11 ( 1 ) " " "*" " " "*" " " "*" "*"
## 12 ( 1 ) " " "*" " " "*" " " "*" "*"
## 13 ( 1 ) " " "*" " " "*" " " "*" "*"
## 14 ( 1 ) " " "*" "*" "*" " " "*" "*"
## 15 ( 1 ) " " "*" "*" "*" " " "*" "*"
## 16 ( 1 ) "*" "*" "*" "*" " " "*" "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## perc.alumni Expend Grad.Rate
## 1 ( 1 ) " " "*" " "
## 2 ( 1 ) " " "*" " "
## 3 ( 1 ) " " "*" " "
## 4 ( 1 ) "*" "*" " "
## 5 ( 1 ) "*" "*" " "
## 6 ( 1 ) "*" "*" "*"
## 7 ( 1 ) "*" "*" "*"
## 8 ( 1 ) "*" "*" "*"
## 9 ( 1 ) "*" "*" "*"
## 10 ( 1 ) "*" "*" "*"
## 11 ( 1 ) "*" "*" "*"
## 12 ( 1 ) "*" "*" "*"
## 13 ( 1 ) "*" "*" "*"
## 14 ( 1 ) "*" "*" "*"
## 15 ( 1 ) "*" "*" "*"
## 16 ( 1 ) "*" "*" "*"
## 17 ( 1 ) "*" "*" "*"
rsq.df = as.data.frame(cbind(xaxis=(1:17), rsq=fwd.summary$rsq))
cp.df = as.data.frame(cbind(xaxis=(1:17), cp=fwd.summary$cp))
bic.df = as.data.frame(cbind(xaxis=(1:17), bic=fwd.summary$bic))
adjrsq.df = as.data.frame(cbind(xaxis=(1:17), adjrsq=fwd.summary$adjr2))
ggplot()+
geom_line(rsq.df, mapping=aes(xaxis, rsq),color = "navy") +
geom_point(rsq.df, mapping=aes(xaxis, rsq),color = "navy", size=2) + geom_boxplot()
ggplot() +
geom_line(cp.df, mapping=aes(xaxis, cp),color = "black") +
geom_point(cp.df, mapping=aes(xaxis, cp),color = "black", size=2)
ggplot() +
geom_line(bic.df, mapping=aes(xaxis, bic),color = "maroon") +
geom_point(bic.df, mapping=aes(xaxis, bic),color = "maroon", size=2)
ggplot() +
geom_line(adjrsq.df, mapping=aes(xaxis, adjrsq),color = "darkred") +
geom_point(adjrsq.df, mapping=aes(xaxis, adjrsq),color = "darkred", size=2)
library(gam)
gam.clg = gam(
Outstate ~ Private + Private + s(Apps, 4) + s(Accept, 5) + s(F.Undergrad, 5) + s(P.Undergrad, 4) + s(Room.Board, 5), data = train2)
summary.Gam(gam.clg)
##
## Call: gam(formula = Outstate ~ Private + Private + s(Apps, 4) + s(Accept,
## 5) + s(F.Undergrad, 5) + s(P.Undergrad, 4) + s(Room.Board,
## 5), data = train2)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8348.57 -1457.01 39.43 1612.54 10911.40
##
## (Dispersion Parameter for gaussian family taken to be 5520530)
##
## Null Deviance: 9448773184 on 583 degrees of freedom
## Residual Deviance: 3085975073 on 558.9998 degrees of freedom
## AIC: 10749.78
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 2772355946 2772355946 502.1902 < 2.2e-16 ***
## s(Apps, 4) 1 975667155 975667155 176.7343 < 2.2e-16 ***
## s(Accept, 5) 1 58030536 58030536 10.5118 0.001257 **
## s(F.Undergrad, 5) 1 343657509 343657509 62.2508 1.601e-14 ***
## s(P.Undergrad, 4) 1 51137176 51137176 9.2631 0.002448 **
## s(Room.Board, 5) 1 1258974392 1258974392 228.0532 < 2.2e-16 ***
## Residuals 559 3085975073 5520530
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Apps, 4) 3 11.7634 1.753e-07 ***
## s(Accept, 5) 4 9.0412 4.417e-07 ***
## s(F.Undergrad, 5) 4 3.6128 0.006415 **
## s(P.Undergrad, 4) 3 17.5085 7.086e-11 ***
## s(Room.Board, 5) 4 3.6275 0.006256 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot.Gam(gam.clg, col ="blue", se=TRUE)
preds = predict(gam.clg, test2)
RSS = sum((test2$Outstate - preds)^2)
TSS = sum((test2$Outstate - mean(test2$Outstate))^2)
1 - (RSS / TSS)
## [1] 0.6675091
summary.Gam(gam.clg)
##
## Call: gam(formula = Outstate ~ Private + Private + s(Apps, 4) + s(Accept,
## 5) + s(F.Undergrad, 5) + s(P.Undergrad, 4) + s(Room.Board,
## 5), data = train2)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8348.57 -1457.01 39.43 1612.54 10911.40
##
## (Dispersion Parameter for gaussian family taken to be 5520530)
##
## Null Deviance: 9448773184 on 583 degrees of freedom
## Residual Deviance: 3085975073 on 558.9998 degrees of freedom
## AIC: 10749.78
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 2772355946 2772355946 502.1902 < 2.2e-16 ***
## s(Apps, 4) 1 975667155 975667155 176.7343 < 2.2e-16 ***
## s(Accept, 5) 1 58030536 58030536 10.5118 0.001257 **
## s(F.Undergrad, 5) 1 343657509 343657509 62.2508 1.601e-14 ***
## s(P.Undergrad, 4) 1 51137176 51137176 9.2631 0.002448 **
## s(Room.Board, 5) 1 1258974392 1258974392 228.0532 < 2.2e-16 ***
## Residuals 559 3085975073 5520530
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Apps, 4) 3 11.7634 1.753e-07 ***
## s(Accept, 5) 4 9.0412 4.417e-07 ***
## s(F.Undergrad, 5) 4 3.6128 0.006415 **
## s(P.Undergrad, 4) 3 17.5085 7.086e-11 ***
## s(Room.Board, 5) 4 3.6275 0.006256 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The model suggests a strong non-linear relationship between “Outstate” and “Expend”, and a moderate non-linear relationship between “Outstate” and “Grad.rate”