Overall

Regression test result at national level


## [1] "Predicotr variable:food_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -48945  -1284   -322    337 232748 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           5.019e+03  3.139e+01  159.88   <2e-16 ***
## df[[vars$outcome[i]]] 5.675e-03  3.444e-04   16.48   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4814 on 38055 degrees of freedom
##   (13866 observations deleted due to missingness)
## Multiple R-squared:  0.007085,   Adjusted R-squared:  0.007059 
## F-statistic: 271.6 on 1 and 38055 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.000344403220735016"
## [1] "TEST RESULT: Ho rejects"


## [1] "Predicotr variable:water_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
##  -1603   -127    -50     -5  32357 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.388e+02  2.619e+00  53.001  < 2e-16 ***
## df[[vars$outcome[i]]] 1.214e-04  2.873e-05   4.225 2.39e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 401.9 on 38075 degrees of freedom
##   (13846 observations deleted due to missingness)
## Multiple R-squared:  0.0004687,  Adjusted R-squared:  0.0004424 
## F-statistic: 17.85 on 1 and 38075 DF,  p-value: 2.391e-05
## 
## [1] "p-value: 2.87330282961671e-05"
## [1] "TEST RESULT: Ho rejects"


## [1] "Predicotr variable:rent_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
##  -9405   -548   -158    215 105993 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           7.314e+02  1.143e+01   64.01  < 2e-16 ***
## df[[vars$outcome[i]]] 9.201e-04  1.255e-04    7.33 2.35e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1750 on 37967 degrees of freedom
##   (13954 observations deleted due to missingness)
## Multiple R-squared:  0.001413,   Adjusted R-squared:  0.001387 
## F-statistic: 53.73 on 1 and 37967 DF,  p-value: 2.346e-13
## 
## [1] "p-value: 0.000125521568620494"
## [1] "TEST RESULT: Ho rejects"


## [1] "Predicotr variable:health_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -16514  -1021   -357     18 122642 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.918e+03  4.016e+01   47.75   <2e-16 ***
## df[[vars$outcome[i]]] 1.160e-02  5.288e-04   21.94   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4267 on 18210 degrees of freedom
##   (33711 observations deleted due to missingness)
## Multiple R-squared:  0.02576,    Adjusted R-squared:  0.0257 
## F-statistic: 481.4 on 1 and 18210 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.000528808863844622"
## [1] "TEST RESULT: Ho rejects"


## [1] "Predicotr variable:transportation_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -4229.7  -276.9  -101.3    92.9 30987.7 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           5.753e+02  1.930e+01  29.811  < 2e-16 ***
## df[[vars$outcome[i]]] 2.029e-03  2.632e-04   7.707 1.46e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1180 on 7192 degrees of freedom
##   (44729 observations deleted due to missingness)
## Multiple R-squared:  0.008191,   Adjusted R-squared:  0.008053 
## F-statistic:  59.4 on 1 and 7192 DF,  p-value: 1.461e-14
## 
## [1] "p-value: 0.000263225631564699"
## [1] "TEST RESULT: Ho rejects"


## [1] "Predicotr variable:education_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -1272.4  -171.8   -79.0   -33.0 24561.8 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.035e+02  9.796e+00  20.773  < 2e-16 ***
## df[[vars$outcome[i]]] 7.929e-04  1.337e-04   5.931 3.15e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 599 on 7192 degrees of freedom
##   (44729 observations deleted due to missingness)
## Multiple R-squared:  0.004868,   Adjusted R-squared:  0.004729 
## F-statistic: 35.18 on 1 and 7192 DF,  p-value: 3.145e-09
## 
## [1] "p-value: 0.00013368172769653"
## [1] "TEST RESULT: Ho rejects"


## [1] "Predicotr variable:communications_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -1475.8  -103.4   -38.9    33.8 10697.5 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.685e+02  5.885e+00  45.620   <2e-16 ***
## df[[vars$outcome[i]]] 7.082e-04  8.028e-05   8.822   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 359.9 on 7196 degrees of freedom
##   (44725 observations deleted due to missingness)
## Multiple R-squared:  0.0107, Adjusted R-squared:  0.01056 
## F-statistic: 77.83 on 1 and 7196 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 8.02804510491905e-05"
## [1] "TEST RESULT: Ho rejects"


## [1] "Predicotr variable:fuel_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -13604   -378    -77    142  36190 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           8.344e+02  7.037e+00  118.58   <2e-16 ***
## df[[vars$outcome[i]]] 1.890e-03  7.726e-05   24.46   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1079 on 38050 degrees of freedom
##   (13871 observations deleted due to missingness)
## Multiple R-squared:  0.01548,    Adjusted R-squared:  0.01545 
## F-statistic: 598.3 on 1 and 38050 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 7.72631012508635e-05"
## [1] "TEST RESULT: Ho rejects"


## [1] "Predicotr variable:debt_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -15149   -735   -332   -133 228361 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           5.889e+02  3.102e+01  18.985   <2e-16 ***
## df[[vars$outcome[i]]] 2.955e-03  3.405e-04   8.679   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4760 on 38103 degrees of freedom
##   (13818 observations deleted due to missingness)
## Multiple R-squared:  0.001973,   Adjusted R-squared:  0.001947 
## F-statistic: 75.33 on 1 and 38103 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.000340481732989287"
## [1] "TEST RESULT: Ho rejects"

By Population

Regression test result by population group


Population group: idps


## [1] "Population group:idps"
## [1] "Predicotr variable:food_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -10662   -843   -167    354 147649 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           4.529e+03  3.423e+01 132.286   <2e-16 ***
## df[[vars$outcome[i]]] 3.714e-03  4.035e-04   9.204   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2998 on 21213 degrees of freedom
##   (6345 observations deleted due to missingness)
## Multiple R-squared:  0.003978,   Adjusted R-squared:  0.003931 
## F-statistic: 84.72 on 1 and 21213 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.000403468314720973"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:idps"
## [1] "Predicotr variable:water_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -591.9  -88.7  -37.6   16.4 7919.4 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.399e+02  2.873e+00  48.682   <2e-16 ***
## df[[vars$outcome[i]]] 2.923e-04  3.385e-05   8.634   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 251.8 on 21229 degrees of freedom
##   (6329 observations deleted due to missingness)
## Multiple R-squared:  0.0035, Adjusted R-squared:  0.003453 
## F-statistic: 74.55 on 1 and 21229 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 3.38545713968524e-05"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:idps"
## [1] "Predicotr variable:rent_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
##  -3221   -424    -74    207  59780 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.008e+03  1.531e+01  65.800  < 2e-16 ***
## df[[vars$outcome[i]]] 7.620e-04  1.809e-04   4.213 2.53e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1339 on 21167 degrees of freedom
##   (6391 observations deleted due to missingness)
## Multiple R-squared:  0.0008378,  Adjusted R-squared:  0.0007906 
## F-statistic: 17.75 on 1 and 21167 DF,  p-value: 2.531e-05
## 
## [1] "p-value: 0.000180859452262939"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:idps"
## [1] "Predicotr variable:health_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -12326   -778   -304    -38  84930 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.183e+03  5.245e+01   41.63   <2e-16 ***
## df[[vars$outcome[i]]] 7.912e-03  7.223e-04   10.95   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3108 on 11854 degrees of freedom
##   (15704 observations deleted due to missingness)
## Multiple R-squared:  0.01002,    Adjusted R-squared:  0.009937 
## F-statistic:   120 on 1 and 11854 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.000722283792426694"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:idps"
## [1] "Predicotr variable:transportation_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -1170.7  -202.2   -88.4    54.1 10027.6 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           5.806e+02  2.698e+01  21.519  < 2e-16 ***
## df[[vars$outcome[i]]] 2.364e-03  3.721e-04   6.352 2.31e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 603.1 on 4817 degrees of freedom
##   (22741 observations deleted due to missingness)
## Multiple R-squared:  0.008308,   Adjusted R-squared:  0.008102 
## F-statistic: 40.35 on 1 and 4817 DF,  p-value: 2.314e-10
## 
## [1] "p-value: 0.000372053543368382"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:idps"
## [1] "Predicotr variable:education_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -373.5  -67.0  -39.9  -20.2 6896.7 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.186e+02  1.059e+01  11.207  < 2e-16 ***
## df[[vars$outcome[i]]] 7.274e-04  1.461e-04   4.979 6.63e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 236.6 on 4817 degrees of freedom
##   (22741 observations deleted due to missingness)
## Multiple R-squared:  0.005119,   Adjusted R-squared:  0.004913 
## F-statistic: 24.79 on 1 and 4817 DF,  p-value: 6.629e-07
## 
## [1] "p-value: 0.000146109416018916"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:idps"
## [1] "Predicotr variable:communications_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -389.4  -54.0  -18.7   26.6 4141.0 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.233e+02  6.521e+00  34.248  < 2e-16 ***
## df[[vars$outcome[i]]] 7.106e-04  8.990e-05   7.904 3.32e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 145.8 on 4819 degrees of freedom
##   (22739 observations deleted due to missingness)
## Multiple R-squared:  0.0128, Adjusted R-squared:  0.01259 
## F-statistic: 62.48 on 1 and 4819 DF,  p-value: 3.317e-15
## 
## [1] "p-value: 8.98976497153348e-05"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:idps"
## [1] "Predicotr variable:fuel_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -2115.5  -171.1    -8.1   173.1 12843.0 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           6.716e+02  7.008e+00  95.828  < 2e-16 ***
## df[[vars$outcome[i]]] 6.023e-04  8.260e-05   7.291 3.17e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 613.8 on 21223 degrees of freedom
##   (6335 observations deleted due to missingness)
## Multiple R-squared:  0.002499,   Adjusted R-squared:  0.002452 
## F-statistic: 53.17 on 1 and 21223 DF,  p-value: 3.173e-13
## 
## [1] "p-value: 8.25965571068694e-05"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:idps"
## [1] "Predicotr variable:debt_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
##  -2624   -505   -262   -105 105959 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           6.399e+02  3.267e+01  19.586  < 2e-16 ***
## df[[vars$outcome[i]]] 1.246e-03  3.850e-04   3.237  0.00121 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2863 on 21242 degrees of freedom
##   (6316 observations deleted due to missingness)
## Multiple R-squared:  0.0004931,  Adjusted R-squared:  0.0004461 
## F-statistic: 10.48 on 1 and 21242 DF,  p-value: 0.001208
## 
## [1] "p-value: 0.00038499923680882"
## [1] "TEST RESULT: Ho rejects"

Population group: returnees


## [1] "Population group:returnees"
## [1] "Predicotr variable:food_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -16868   -922   -281    442  78862 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           4.269e+03  7.756e+01   55.04   <2e-16 ***
## df[[vars$outcome[i]]] 1.465e-02  8.555e-04   17.13   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3089 on 5282 degrees of freedom
##   (2396 observations deleted due to missingness)
## Multiple R-squared:  0.05263,    Adjusted R-squared:  0.05245 
## F-statistic: 293.4 on 1 and 5282 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.000855493936607985"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:returnees"
## [1] "Predicotr variable:water_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
##  -319.0   -81.1   -49.7   -22.9 23624.1 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1.455e+02  1.067e+01   13.64   <2e-16 ***
## df[[vars$outcome[i]]] -1.976e-04  1.176e-04   -1.68   0.0929 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 425.7 on 5278 degrees of freedom
##   (2400 observations deleted due to missingness)
## Multiple R-squared:  0.0005347,  Adjusted R-squared:  0.0003453 
## F-statistic: 2.824 on 1 and 5278 DF,  p-value: 0.09294
## 
## [1] "p-value: 0.000117594510244631"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:returnees"
## [1] "Predicotr variable:rent_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
##  -1888   -437   -214     73  34981 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            8.379e+02  3.242e+01  25.845  < 2e-16 ***
## df[[vars$outcome[i]]] -9.475e-04  3.567e-04  -2.656  0.00792 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1290 on 5267 degrees of freedom
##   (2411 observations deleted due to missingness)
## Multiple R-squared:  0.001338,   Adjusted R-squared:  0.001148 
## F-statistic: 7.056 on 1 and 5267 DF,  p-value: 0.007923
## 
## [1] "p-value: 0.000356683633385711"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:returnees"
## [1] "Predicotr variable:health_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
##  -6307  -1305   -675    -26  72961 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.204e+03  1.549e+02  14.228   <2e-16 ***
## df[[vars$outcome[i]]] 5.488e-03  2.332e-03   2.353   0.0188 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4047 on 1400 degrees of freedom
##   (6278 observations deleted due to missingness)
## Multiple R-squared:  0.003939,   Adjusted R-squared:  0.003227 
## F-statistic: 5.536 on 1 and 1400 DF,  p-value: 0.01877
## 
## [1] "p-value: 0.00233235019468631"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:returnees"
## [1] "Predicotr variable:fuel_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -3179.5  -261.2     2.2   321.0  7879.6 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           7.438e+02  1.547e+01   48.08   <2e-16 ***
## df[[vars$outcome[i]]] 2.814e-03  1.707e-04   16.49   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 616.7 on 5273 degrees of freedom
##   (2405 observations deleted due to missingness)
## Multiple R-squared:  0.04902,    Adjusted R-squared:  0.04884 
## F-statistic: 271.8 on 1 and 5273 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.000170719016569889"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:returnees"
## [1] "Predicotr variable:debt_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
##  -2500   -520   -323   -163  63974 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           6.509e+02  6.401e+01  10.169   <2e-16 ***
## df[[vars$outcome[i]]] 1.539e-03  7.055e-04   2.181   0.0292 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2555 on 5288 degrees of freedom
##   (2390 observations deleted due to missingness)
## Multiple R-squared:  0.0008989,  Adjusted R-squared:  0.00071 
## F-statistic: 4.758 on 1 and 5288 DF,  p-value: 0.02921
## 
## [1] "p-value: 0.000705549125334165"
## [1] "TEST RESULT: Ho rejects"

Population group: refugees


## [1] "Population group:refugees"
## [1] "Predicotr variable:food_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -6417.1  -675.8  -356.3   365.6 10172.1 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           4.913e+03  1.507e+02  32.607   <2e-16 ***
## df[[vars$outcome[i]]] 2.355e-03  1.060e-03   2.222   0.0265 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1459 on 962 degrees of freedom
##   (95 observations deleted due to missingness)
## Multiple R-squared:  0.005105,   Adjusted R-squared:  0.004071 
## F-statistic: 4.937 on 1 and 962 DF,  p-value: 0.02653
## 
## [1] "p-value: 0.00106001578421661"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:refugees"
## [1] "Predicotr variable:water_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##      Min       1Q   Median       3Q      Max 
## -1156.84  -103.75   -43.17    -7.16  2278.42 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -4.175e+01  3.604e+01  -1.159    0.247    
## df[[vars$outcome[i]]]  2.904e-03  2.536e-04  11.451   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 349.4 on 965 degrees of freedom
##   (92 observations deleted due to missingness)
## Multiple R-squared:  0.1196, Adjusted R-squared:  0.1187 
## F-statistic: 131.1 on 1 and 965 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.000253621296773446"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:refugees"
## [1] "Predicotr variable:rent_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -3272.8  -367.7  -241.1   433.7  2669.3 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           4.856e+02  6.896e+01   7.042 3.65e-12 ***
## df[[vars$outcome[i]]] 6.204e-03  4.849e-04  12.794  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 662.9 on 945 degrees of freedom
##   (112 observations deleted due to missingness)
## Multiple R-squared:  0.1476, Adjusted R-squared:  0.1467 
## F-statistic: 163.7 on 1 and 945 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.000484931016641191"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:refugees"
## [1] "Predicotr variable:health_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
##  -5621  -1496  -1081   -303 118335 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            5.283e+03  8.319e+02   6.351 5.39e-10 ***
## df[[vars$outcome[i]]] -1.147e-02  6.908e-03  -1.661   0.0975 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6185 on 436 degrees of freedom
##   (621 observations deleted due to missingness)
## Multiple R-squared:  0.006286,   Adjusted R-squared:  0.004007 
## F-statistic: 2.758 on 1 and 436 DF,  p-value: 0.09749
## 
## [1] "p-value: 0.00690753097200674"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:refugees"
## [1] "Predicotr variable:transportation_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##      Min       1Q   Median       3Q      Max 
## -1108.36  -131.15    -1.59   150.53  1704.70 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           7.490e+02  9.480e+01   7.901 3.11e-10 ***
## df[[vars$outcome[i]]] 5.723e-04  7.626e-04   0.750    0.457    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 438.4 on 48 degrees of freedom
##   (1009 observations deleted due to missingness)
## Multiple R-squared:  0.01159,    Adjusted R-squared:  -0.008997 
## F-statistic: 0.5631 on 1 and 48 DF,  p-value: 0.4567
## 
## [1] "p-value: 0.000762640766584675"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:refugees"
## [1] "Predicotr variable:education_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -148.56  -83.52  -13.20   -9.65 1110.90 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            1.107e+02  4.179e+01   2.649   0.0109 *
## df[[vars$outcome[i]]] -5.211e-04  3.362e-04  -1.550   0.1277  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 193.3 on 48 degrees of freedom
##   (1009 observations deleted due to missingness)
## Multiple R-squared:  0.04766,    Adjusted R-squared:  0.02782 
## F-statistic: 2.402 on 1 and 48 DF,  p-value: 0.1277
## 
## [1] "p-value: 0.000336224185506336"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:refugees"
## [1] "Predicotr variable:communications_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -437.20  -23.54  -18.21   29.00  887.99 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.688e+02  3.964e+01   9.304 2.55e-12 ***
## df[[vars$outcome[i]]] -6.909e-04  3.189e-04  -2.167   0.0352 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 183.3 on 48 degrees of freedom
##   (1009 observations deleted due to missingness)
## Multiple R-squared:  0.08909,    Adjusted R-squared:  0.07012 
## F-statistic: 4.695 on 1 and 48 DF,  p-value: 0.03525
## 
## [1] "p-value: 0.000318879349574019"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:refugees"
## [1] "Predicotr variable:fuel_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##      Min       1Q   Median       3Q      Max 
## -2040.78  -276.80    15.45   309.34  2547.26 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           7.810e+02  4.443e+01  17.578  < 2e-16 ***
## df[[vars$outcome[i]]] 2.275e-03  3.128e-04   7.272 7.32e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 431 on 966 degrees of freedom
##   (91 observations deleted due to missingness)
## Multiple R-squared:  0.0519, Adjusted R-squared:  0.05092 
## F-statistic: 52.88 on 1 and 966 DF,  p-value: 7.316e-13
## 
## [1] "p-value: 0.000312791581567045"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:refugees"
## [1] "Predicotr variable:debt_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
##  -583.3  -161.5  -138.0   -62.5 23008.6 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           432.435153 116.200805   3.721  0.00021 ***
## df[[vars$outcome[i]]]  -0.001414   0.000818  -1.728  0.08431 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1127 on 966 degrees of freedom
##   (91 observations deleted due to missingness)
## Multiple R-squared:  0.003081,   Adjusted R-squared:  0.002049 
## F-statistic: 2.986 on 1 and 966 DF,  p-value: 0.08431
## 
## [1] "p-value: 0.000818042161467335"
## [1] "TEST RESULT: Ho rejects"

Population group: non_displaced


## [1] "Population group:non_displaced"
## [1] "Predicotr variable:food_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -51743  -2433   -597    636 231562 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           5.404e+03  6.495e+01  83.205  < 2e-16 ***
## df[[vars$outcome[i]]] 5.481e-03  6.904e-04   7.939 2.25e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7711 on 10592 degrees of freedom
##   (5030 observations deleted due to missingness)
## Multiple R-squared:  0.005915,   Adjusted R-squared:  0.005821 
## F-statistic: 63.02 on 1 and 10592 DF,  p-value: 2.25e-15
## 
## [1] "p-value: 0.000690449984621469"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:non_displaced"
## [1] "Predicotr variable:water_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
##  -1295   -194   -122    -19  32361 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.384e+02  4.980e+00  27.796   <2e-16 ***
## df[[vars$outcome[i]]] 3.225e-05  5.294e-05   0.609    0.542    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 591.4 on 10597 degrees of freedom
##   (5025 observations deleted due to missingness)
## Multiple R-squared:  3.502e-05,  Adjusted R-squared:  -5.934e-05 
## F-statistic: 0.3711 on 1 and 10597 DF,  p-value: 0.5424
## 
## [1] "p-value: 5.2942955364646e-05"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:non_displaced"
## [1] "Predicotr variable:rent_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
##  -8839   -859   -541    -88 106193 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           5.608e+02  2.131e+01  26.314  < 2e-16 ***
## df[[vars$outcome[i]]] 1.181e-03  2.269e-04   5.206 1.96e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2528 on 10582 degrees of freedom
##   (5040 observations deleted due to missingness)
## Multiple R-squared:  0.002555,   Adjusted R-squared:  0.002461 
## F-statistic: 27.11 on 1 and 10582 DF,  p-value: 1.963e-07
## 
## [1] "p-value: 0.000226866669580319"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:non_displaced"
## [1] "Predicotr variable:health_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -19656  -1889   -690    692 115678 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.740e+03  7.470e+01   23.29   <2e-16 ***
## df[[vars$outcome[i]]] 1.396e-02  9.570e-04   14.59   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6245 on 4514 degrees of freedom
##   (11108 observations deleted due to missingness)
## Multiple R-squared:  0.04502,    Adjusted R-squared:  0.04481 
## F-statistic: 212.8 on 1 and 4514 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.000956961948408267"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:non_displaced"
## [1] "Predicotr variable:transportation_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -4174.5  -672.0  -234.5   343.0 30996.2 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           5.728e+02  3.327e+01  17.218  < 2e-16 ***
## df[[vars$outcome[i]]] 2.000e-03  4.560e-04   4.385 1.21e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1884 on 2323 degrees of freedom
##   (13299 observations deleted due to missingness)
## Multiple R-squared:  0.008209,   Adjusted R-squared:  0.007782 
## F-statistic: 19.23 on 1 and 2323 DF,  p-value: 1.212e-05
## 
## [1] "p-value: 0.000456047946517376"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:non_displaced"
## [1] "Predicotr variable:education_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -1357.8  -353.6  -248.1    -1.1 24496.6 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.164e+02  1.756e+01   12.33  < 2e-16 ***
## df[[vars$outcome[i]]] 8.522e-04  2.408e-04    3.54 0.000408 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 994.6 on 2323 degrees of freedom
##   (13299 observations deleted due to missingness)
## Multiple R-squared:  0.005365,   Adjusted R-squared:  0.004937 
## F-statistic: 12.53 on 1 and 2323 DF,  p-value: 0.0004085
## 
## [1] "p-value: 0.000240762183290723"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:non_displaced"
## [1] "Predicotr variable:communications_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -1515.7  -239.8  -101.5   148.9 10681.8 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.744e+02  1.051e+01  26.101  < 2e-16 ***
## df[[vars$outcome[i]]] 7.393e-04  1.442e-04   5.129 3.16e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 595.7 on 2325 degrees of freedom
##   (13297 observations deleted due to missingness)
## Multiple R-squared:  0.01119,    Adjusted R-squared:  0.01076 
## F-statistic:  26.3 on 1 and 2325 DF,  p-value: 3.16e-07
## 
## [1] "p-value: 0.000144159134177366"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:non_displaced"
## [1] "Predicotr variable:fuel_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -15933   -843   -206     94  35431 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           9.504e+02  1.485e+01   63.98   <2e-16 ***
## df[[vars$outcome[i]]] 2.280e-03  1.581e-04   14.43   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1762 on 10582 degrees of freedom
##   (5040 observations deleted due to missingness)
## Multiple R-squared:  0.01929,    Adjusted R-squared:  0.0192 
## F-statistic: 208.1 on 1 and 10582 DF,  p-value: < 2.2e-16
## 
## [1] "p-value: 0.00015806990934777"
## [1] "TEST RESULT: Ho rejects"


## [1] "Population group:non_displaced"
## [1] "Predicotr variable:debt_exp"
## [1] "Outcome variable:debt_amount"
## [1] "Summary:"
## 
## Call:
## lm(formula = df[[vars$predictor[i]]] ~ df[[vars$outcome[i]]], 
##     weights = df$weight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -18370  -1133   -739   -146 227652 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           5.627e+02  6.608e+01   8.515  < 2e-16 ***
## df[[vars$outcome[i]]] 3.962e-03  7.032e-04   5.634  1.8e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7847 on 10601 degrees of freedom
##   (5021 observations deleted due to missingness)
## Multiple R-squared:  0.002986,   Adjusted R-squared:  0.002892 
## F-statistic: 31.75 on 1 and 10601 DF,  p-value: 1.803e-08
## 
## [1] "p-value: 0.000703184040005687"
## [1] "TEST RESULT: Ho rejects"

## [[1]]
## NULL
## 
## [[2]]
## NULL
## 
## [[3]]
## NULL
## 
## [[4]]
## NULL