R Markdown

For each function only consider its valid range as indicated in the notes when you are computing Taylor series fuction.

\[\begin{aligned} &f(x)=\frac{1}{(1-x)} \\ &f(x)=e^{x} \\ &f(x)=\ln (1+x) \end{aligned}\]

\[ f(x)=\frac{1}{(1-x)} \]

This function is not defined when \(x=1\). Derivaties and evaluation at \(x=0\).

\[ \begin{aligned} &f(x)=\frac{1}{(1-x)} \rightarrow f(0)=1 \\ &f^{\prime}(x)=\frac{1}{(1-x)^{2}} \rightarrow f^{\prime}(0)=1 \\ &f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}} \rightarrow f^{\prime \prime}(0)=2 \\ &f^{\prime \prime \prime}(x)=\frac{6}{(1-x)^{4}} \rightarrow f^{\prime \prime \prime}(0)=6 \\ &f^{4}(x)=\frac{24}{(1-x)^{5}} \rightarrow f^{4}(0)=24 \\ &f^{5}(x)=\frac{120}{(1-x)^{6}} \rightarrow f^{5}(0)=120 \end{aligned} \]

Use McClaurin Series formula:

\[ 1+\frac{1}{1 !} x^{1}+\frac{2}{2 !} x^{2}+\frac{6}{3 !} x^{3}+\frac{24}{4 !} x^{4}+\frac{120}{5 !} x^{5}+\ldots \]

Simplifies to:

\[ 1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots+x^{n} \]

In summation form:

\[ \sum_{n=0}^{\infty} x^{n} \]

\(f(x)=e^{x}\)

Derivatives and evaluation at x=0:

\[ \begin{aligned} &f(x)=e^{x} \rightarrow f(0)=1 \\ &f^{\prime}(x)=e^{x} \rightarrow f^{\prime}(0)=1 \\ &f^{\prime \prime}(x)=e^{x} \rightarrow f^{\prime \prime}(0)=1 \\ &f^{\prime \prime \prime}(x)=e^{x} \rightarrow f^{\prime \prime}(0)=1 \\ &f^{4}(x)=e^{x} \rightarrow f^{4}(0)=1 \\ &f^{5}(x)=e^{x} \rightarrow f^{5}(0)=1 \end{aligned} \]

Use McClaurin Series formula:

\[ 1+\frac{1}{1 !} x^{1}+\frac{1}{2 !} x^{2}+\frac{1}{3 !} x^{3}+\frac{1}{4 !} x^{4}+\ldots \]

This simplifies to:

\[ 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\ldots+\frac{x^{n}}{n !} \]

In summation form:

\(\sum_{n=0}^{\infty} \frac{x^{n}}{n !}\)

\[ f(x)=\ln (1+x) \]

Derivatives and evaluation at \(x=0\).

\[ \begin{aligned} &f(x)=\ln (1+x) \rightarrow f(0)=0 \\ &f^{\prime}(x)=\frac{1}{x+1} \rightarrow f^{\prime}(0)=1 \\ &f^{\prime \prime}(x)=\frac{-1}{(x+1)^{2}} \rightarrow f^{\prime \prime}(0)=-1 \\ &f^{\prime \prime \prime}(x)=\frac{2}{(x+1)^{3}} \rightarrow f^{\prime \prime \prime}(0)=2 \\ &f^{4}(x)=\frac{-6}{(x+1)^{4}} \rightarrow f^{4}(0)=-6 \\ &f^{5}(x)=\frac{24}{(x+1)^{5}} \rightarrow f^{5}(0)=-24 \end{aligned} \]

Use McClaurin Series formula:

\[ 0+\frac{1}{1 !} x^{1}-\frac{1}{2 !} x^{2}+\frac{2}{3 !} x^{3}-\frac{6}{4 !} x^{4}+\frac{24}{5 !} x^{5}+\ldots \]

Simplifies to:

\[ x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\frac{1}{5} x^{5}+\ldots(-1)^{n+1} \frac{1}{n} x^{n} \]

In summation form:

\[ \sum_{n=0}^{\infty}(-1)^{n+1} \frac{1}{n} x^{n} \]