library(diffloop)
library(diffloopdata)
library(ggplot2)
library(GenomicRanges)
library(ggrepel)
library(DESeq2)
library(digest)
library(edgeR)
library(limma)
#Read in loop file ##If not a mango file ## Control_HDAC_SMC3 <- loopsMake("~/Desktop/HDAC_HiChIP/")
Control_HDAC_SMC3 <- loopsMake.mango("~/Desktop/HDAC_HiChIP")
celltypes <- c("Control_SMC3", "HDAC_SMC3")
Control_HDAC_SMC3 <- updateLDGroups(Control_HDAC_SMC3, celltypes)
dim(Control_HDAC_SMC3)
## anchors interactions samples colData rowData
## 1 40390 134649 2 2 1
#Subset loops and perform mango correction
Control_HDAC_SMC3 <- subsetLoops(Control_HDAC_SMC3, Control_HDAC_SMC3@rowData$loopWidth >= 5000)
Control_HDAC_SMC3_Mango <- mangoCorrection(Control_HDAC_SMC3, FDR = 0.01)
dim(Control_HDAC_SMC3_Mango)
## anchors interactions samples colData rowData
## 1 24242 35855 2 2 3
#Filter loops based on width and minumun number of loops per sample
Control_HDAC_SMC3_Filtered <- filterLoops(Control_HDAC_SMC3_Mango, width = 5000, nreplicates = 2, nsamples = 1)
dim(Control_HDAC_SMC3_Filtered)
## anchors interactions samples colData rowData
## 1 14663 17810 2 2 3
loopMetrics(Control_HDAC_SMC3_Filtered)
## Control_SMC3 HDAC_SMC3
## unique 18947 78190
p1 <- loopDistancePlot(Control_HDAC_SMC3_Filtered)
p1
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.