library(mapview)
library(sf)
## Linking to GEOS 3.9.0, GDAL 3.2.1, PROJ 7.2.1
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#Get Homelessness Data
library(sf)
library(readxl)
Homelessness <- read_excel("C:/Users/adolp/OneDrive - Significant Results/Prevention Entry HUB Report 1.xlsx")
results <- st_as_sf(Homelessness, coords=c("Longitude", "Latitude"), crs=4269,agr="constant")
results.proj<-st_transform(results,
                           crs = 2278)
#Code Homelessness Data
Homelessness$Gender <- as.factor(Homelessness$Gender)
Homelessness$Ethnicity <- as.factor(Homelessness$Ethnicity)
Homelessness$Race <- as.factor(Homelessness$Race)
Homelessness$X_LeaseInYourName <- as.factor(Homelessness$X_LeaseInYourName)
Homelessness$EvictionStatus <- as.factor(Homelessness$EvictionStatus)

Homelessness$HighestLevelOfEducation <- as.factor(Homelessness$HighestLevelOfEducation)
Homelessness$X_ExperiencedHomelessnessForOneNightOrLonger <- as.factor(Homelessness$X_ExperiencedHomelessnessForOneNightOrLonger)
Homelessness$Male <- as.factor(Homelessness$Male)
Homelessness$Female <- as.factor(Homelessness$Female)
Homelessness$MG <- as.factor(Homelessness$MG)
Homelessness$Hispanic <- as.factor(Homelessness$Hispanic)
Homelessness$Black <- as.factor(Homelessness$Black)
Homelessness$White <- as.factor(Homelessness$White)
Homelessness$`Education HS` <- as.factor(Homelessness$`Education HS`)
Homelessness$`Education BD` <- as.factor(Homelessness$`Education BD`)
Homelessness$`Education SC` <- as.factor(Homelessness$`Education SC`)
Homelessness$Eviction <- as.factor(Homelessness$Eviction)
#Summarize Homelessness Data
summary(Homelessness)
##     ClientID      Prevention_Date (Enrollment Start Date)
##  Min.   : 73927   Min.   :2021-05-14 15:32:29            
##  1st Qu.:313552   1st Qu.:2021-07-20 17:39:10            
##  Median :384333   Median :2021-08-23 16:22:13            
##  Mean   :339395   Mean   :2021-08-16 18:58:31            
##  3rd Qu.:387613   3rd Qu.:2021-09-22 15:40:25            
##  Max.   :390051   Max.   :2021-10-14 19:31:45            
##                                                          
##  X_PreventionWaitlist (added to WL)    ZipCode       Family_Size   
##  Length:512                         Min.   :78073   Min.   :1.000  
##  Class :character                   1st Qu.:78212   1st Qu.:1.000  
##  Mode  :character                   Median :78222   Median :2.000  
##                                     Mean   :78221   Mean   :2.637  
##                                     3rd Qu.:78230   3rd Qu.:4.000  
##                                     Max.   :78283   Max.   :9.000  
##                                                     NA's   :41     
##                         Gender    Male    Female  MG     
##  Female                    :375   0:379   0:137   0:508  
##  Male                      :133   1:133   1:375   1:  4  
##  Multiple Gender identities:  4                          
##                                                          
##                                                          
##                                                          
##                                                          
##                            Ethnicity                                   Race    
##  Hispanic or Latin(a)(o)(x)     :329   Hispanic or Latin(a)(o)(x)        :329  
##  Non-Hispanic/Non-Latin(a)(o)(x):177   Black, African American or African:102  
##  NA's                           :  6   White                             : 63  
##                                        Multi-Racial                      :  4  
##                                        Asian or Asian American           :  3  
##                                        (Other)                           :  4  
##                                        NA's                              :  7  
##  Hispanic    Black      White     X_AverageYearlyIncomeForFamily
##  0   :165   0   :392   0   :431   Min.   :     0                
##  1   :329   1   :102   1   : 63   1st Qu.:     0                
##  NA's: 18   NA's: 18   NA's: 18   Median : 10000                
##                                   Mean   : 12532                
##                                   3rd Qu.: 19110                
##                                   Max.   :144400                
##                                                                 
##  X_LeaseInYourName                EvictionStatus Eviction
##  0:202             Court Order           : 39    0:200   
##  1:310             Informal Notice       : 62    1:312   
##                    Notice to Vacate (NTV):207            
##                    Writ of Possession    :  4            
##                    NA's                  :200            
##                                                          
##                                                          
##                     HighestLevelOfEducation Education HS Education SC
##  Bachelor's Degree or Higher    : 26        0   :150     0   :347    
##  High School or less            :321        1   :321     1   :124    
##  Some College/Associate's Degree:124        NA's: 41     NA's: 41    
##  NA's                           : 41                                 
##                                                                      
##                                                                      
##                                                                      
##  Education BD X_ExperiencedHomelessnessForOneNightOrLonger   Longitude     
##  0   :445     0:399                                        Min.   :-98.74  
##  1   : 26     1:113                                        1st Qu.:-98.57  
##  NA's: 41                                                  Median :-98.52  
##                                                            Mean   :-98.51  
##                                                            3rd Qu.:-98.45  
##                                                            Max.   :-98.31  
##                                                                            
##     Latitude     Screening_Score   UserName           OrgName         
##  Min.   :29.15   Min.   : 0.00   Length:512         Length:512        
##  1st Qu.:29.41   1st Qu.: 9.00   Class :character   Class :character  
##  Median :29.45   Median :11.00   Mode  :character   Mode  :character  
##  Mean   :29.45   Mean   :10.15                                        
##  3rd Qu.:29.51   3rd Qu.:12.00                                        
##  Max.   :29.70   Max.   :21.00                                        
## 
#Plot Homelessness Data
mapview(results.proj)
adi<-read.csv("C:/Users/adolp/OneDrive - Significant Results/TX_2019_ADI_Census Block Group.txt", header=T)

library(dplyr)
adi_tract<-adi%>%
  mutate(trfips = substr(FIPS, 1,11))%>%
  group_by(trfips)%>%
  filter(substr(trfips, 1, 5)=="48029")%>%
  summarise(adi_st_avg=mean(as.numeric (ADI_STATERNK), na.rm=T), adi_nat_avg=mean(ADI_NATRANK, na.rm=T))%>%
  ungroup()
## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion

## Warning in mean(as.numeric(ADI_STATERNK), na.rm = T): NAs introduced by coercion
## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA

## Warning in mean.default(ADI_NATRANK, na.rm = T): argument is not numeric or
## logical: returning NA
save(adi_tract, file="C:/Users/adolp/OneDrive - Significant Results/adi_tract_avg.Rdata")
#Get neighborhood-disadvantage metrics
dat<-read.csv("C:/Users/adolp/OneDrive - Significant Results/TX_2019_ADI_Census Block Group.txt")


sub<-dat[is.na(dat$TYPE)==T,]

head(sub)
## [1] X            V1           GISJOIN      FIPS         ADI_NATRANK 
## [6] ADI_STATERNK STATE       
## <0 rows> (or 0-length row.names)
sub$zsub<-substr(sub$ZIPID, 2, 6)

library(dplyr)

 

zip_code_adi<-sub%>%

  group_by(zsub)%>%

  summarise(meanadi = mean(as.numeric(ADI_STATERNK), na.rm=T))%>%

  ungroup()
#Get Bexar County Census Data
library(tidycensus)
library(dplyr)

sa_acs<-get_acs(geography = "tract",
                state="TX",
                county = "Bexar", 
                year = 2019,
                variables=c( "DP05_0001E", "DP03_0009P", "DP03_0062E", "DP03_0119PE",
                           "DP05_0001E","DP02_0009PE","DP02_0008PE","DP02_0040E","DP02_0038E",
                            "DP02_0066PE","DP02_0067PE","DP02_0080PE","DP02_0092PE",
                        "DP03_0005PE","DP03_0028PE","DP03_0062E","DP03_0099PE","DP03_0101PE",
                            "DP03_0119PE","DP04_0046PE","DP05_0072PE","DP05_0073PE",
                            "DP05_0066PE", "DP05_0072PE", "DP02_0113PE") ,
                geometry = T, output = "wide")
## Getting data from the 2015-2019 5-year ACS
## Downloading feature geometry from the Census website.  To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## Using the ACS Data Profile
## Using the ACS Data Profile
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=                                                                     |   1%
  |                                                                            
  |=                                                                     |   2%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |===                                                                   |   5%
  |                                                                            
  |====                                                                  |   5%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |=====                                                                 |   7%
  |                                                                            
  |=====                                                                 |   8%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |=======                                                               |   9%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |========                                                              |  11%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |=========                                                             |  13%
  |                                                                            
  |=========                                                             |  14%
  |                                                                            
  |==========                                                            |  14%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |===========                                                           |  15%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |============                                                          |  17%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |=============                                                         |  18%
  |                                                                            
  |=============                                                         |  19%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |===============                                                       |  21%
  |                                                                            
  |===============                                                       |  22%
  |                                                                            
  |================                                                      |  23%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |=================                                                     |  25%
  |                                                                            
  |==================                                                    |  25%
  |                                                                            
  |==================                                                    |  26%
  |                                                                            
  |===================                                                   |  27%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |====================                                                  |  29%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |========================                                              |  34%
  |                                                                            
  |========================                                              |  35%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |==========================                                            |  37%
  |                                                                            
  |==========================                                            |  38%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |===========================                                           |  39%
  |                                                                            
  |============================                                          |  39%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |============================                                          |  41%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |=============================                                         |  42%
  |                                                                            
  |==============================                                        |  42%
  |                                                                            
  |==============================                                        |  43%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |===============================                                       |  45%
  |                                                                            
  |================================                                      |  45%
  |                                                                            
  |================================                                      |  46%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |=================================                                     |  48%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |==================================                                    |  49%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |===================================                                   |  51%
  |                                                                            
  |====================================                                  |  51%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=====================================                                 |  52%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=====================================                                 |  54%
  |                                                                            
  |======================================                                |  54%
  |                                                                            
  |======================================                                |  55%
  |                                                                            
  |=======================================                               |  55%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |========================================                              |  57%
  |                                                                            
  |========================================                              |  58%
  |                                                                            
  |=========================================                             |  58%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |===========================================                           |  61%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |============================================                          |  62%
  |                                                                            
  |============================================                          |  63%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |==============================================                        |  65%
  |                                                                            
  |==============================================                        |  66%
  |                                                                            
  |===============================================                       |  66%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |================================================                      |  69%
  |                                                                            
  |=================================================                     |  69%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |==================================================                    |  71%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |===================================================                   |  72%
  |                                                                            
  |===================================================                   |  73%
  |                                                                            
  |====================================================                  |  74%
  |                                                                            
  |====================================================                  |  75%
  |                                                                            
  |=====================================================                 |  75%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |======================================================                |  77%
  |                                                                            
  |======================================================                |  78%
  |                                                                            
  |=======================================================               |  78%
  |                                                                            
  |=======================================================               |  79%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |========================================================              |  81%
  |                                                                            
  |=========================================================             |  81%
  |                                                                            
  |=========================================================             |  82%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |==========================================================            |  83%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |===========================================================           |  85%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |============================================================          |  86%
  |                                                                            
  |=============================================================         |  87%
  |                                                                            
  |=============================================================         |  88%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |==============================================================        |  89%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |===============================================================       |  91%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |=================================================================     |  92%
  |                                                                            
  |=================================================================     |  93%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |==================================================================    |  95%
  |                                                                            
  |===================================================================   |  95%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |====================================================================  |  98%
  |                                                                            
  |===================================================================== |  98%
  |                                                                            
  |===================================================================== |  99%
  |                                                                            
  |======================================================================| 100%
#Select Demographic Variables
sa_acs2<-sa_acs%>%
  mutate(totpop= DP05_0001E, pwhite=DP05_0072PE, 
         pblack=DP05_0073PE , phisp=DP05_0066PE,
         phsormore=DP02_0066PE,punemp=DP03_0009PE, medhhinc=DP03_0062E,
         ppov=DP03_0119PE)%>%
  dplyr::select(GEOID, totpop, pblack, pwhite, phisp, punemp, medhhinc, ppov)

sa_acs2<-st_transform(sa_acs2, crs = 2278)
sa_trol<-st_cast(sa_acs2, "MULTILINESTRING")
spjoin<-merge(sa_acs2, adi_tract, by.y = "trfips" , by.x = "GEOID")
spjoin2<-st_join(results.proj, spjoin)
library(lme4)
## Loading required package: Matrix
library(lmerTest)
## Warning: package 'lmerTest' was built under R version 4.1.2
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(arm)
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## arm (Version 1.11-2, built: 2020-7-27)
## Working directory is C:/Users/adolp/OneDrive/Desktop
#Distribution of DVs
attach(spjoin2)
hist(Eviction)

hist(X_ExperiencedHomelessnessForOneNightOrLonger)

hist(Screening_Score)

Model1 <- lm(Eviction ~  (GEOID), spjoin2)
anova (Model1)
## Analysis of Variance Table
## 
## Response: Eviction
##            Df Sum Sq Mean Sq F value Pr(>F)
## GEOID     196 50.367 0.25697   1.132 0.1643
## Residuals 315 71.508 0.22701
#Model MultiLevel Logistic Regression: DV = Eviction Status
#Null Model
Model1 <- glm(Eviction ~ as.factor(GEOID), family = binomial, spjoin2)
anova (Model1, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: Eviction
## 
## Terms added sequentially (first to last)
## 
## 
##                   Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
## NULL                                511     685.08              
## as.factor(GEOID) 196   273.99       315     411.09 0.0001964 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Hierarchical Model 
Model1a<-glmer(Eviction~(1|GEOID),
           data=spjoin2, family = binomial, na.action=na.omit)
arm::display(Model1a,
             detail=T)
## glmer(formula = Eviction ~ (1 | GEOID), data = spjoin2, family = binomial, 
##     na.action = na.omit)
##             coef.est coef.se z value Pr(>|z|)
## (Intercept) 0.47     0.10    4.54    0.00    
## 
## Error terms:
##  Groups   Name        Std.Dev.
##  GEOID    (Intercept) 0.48    
##  Residual             1.00    
## ---
## number of obs: 512, groups: GEOID, 197
## AIC = 686.1, DIC = 586.2
## deviance = 634.1
#Hierarchical Model 
Model1b<-glmer(Eviction~scale (Male) + scale (Hispanic) + scale (Black) + scale (X_AverageYearlyIncomeForFamily) + scale (X_LeaseInYourName) + scale (`Education HS`) + scale (`Education BD`) + (1|GEOID),
           data=spjoin2, family = binomial, na.action=na.omit)
## boundary (singular) fit: see ?isSingular
arm::display(Model1b,
             detail=T)
## glmer(formula = Eviction ~ scale(Male) + scale(Hispanic) + scale(Black) + 
##     scale(X_AverageYearlyIncomeForFamily) + scale(X_LeaseInYourName) + 
##     scale(`Education HS`) + scale(`Education BD`) + (1 | GEOID), 
##     data = spjoin2, family = binomial, na.action = na.omit)
##                                       coef.est coef.se z value Pr(>|z|)
## (Intercept)                             32.82  2074.30    0.02    0.99 
## scale(Male)                             -8.59  1209.27   -0.01    0.99 
## scale(Hispanic)                          9.59  2088.05    0.00    1.00 
## scale(Black)                            -1.01  2076.60    0.00    1.00 
## scale(X_AverageYearlyIncomeForFamily)    0.65     0.55    1.18    0.24 
## scale(X_LeaseInYourName)                40.45  1957.18    0.02    0.98 
## scale(`Education HS`)                   -0.45     0.73   -0.63    0.53 
## scale(`Education BD`)                   -4.14   878.75    0.00    1.00 
## 
## Error terms:
##  Groups   Name        Std.Dev.
##  GEOID    (Intercept) 0.00    
##  Residual             1.00    
## ---
## number of obs: 458, groups: GEOID, 191
## AIC = 35.1, DIC = 17.1
## deviance = 17.1
#anova(Model1a, Model1b)
#Model MultiLevel Logistic Regression: DV = Experienced Homelessness 
#Null Model
Model2 <- glm(X_ExperiencedHomelessnessForOneNightOrLonger ~ as.factor(GEOID), family = binomial, spjoin2)
anova (Model2, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: X_ExperiencedHomelessnessForOneNightOrLonger
## 
## Terms added sequentially (first to last)
## 
## 
##                   Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL                                511     540.46         
## as.factor(GEOID) 196   221.07       315     319.39   0.1058
#Not Significant
#Hierarchical Model 
Model2a<-glm(X_ExperiencedHomelessnessForOneNightOrLonger~ scale (Male) + scale (Hispanic) + scale (Black) + scale (X_AverageYearlyIncomeForFamily) + scale (X_LeaseInYourName) + scale (`Education HS`) + scale (`Education BD`), data=spjoin2, family = binomial)
arm::display(Model2a,
             detail=T)
## glm(formula = X_ExperiencedHomelessnessForOneNightOrLonger ~ 
##     scale(Male) + scale(Hispanic) + scale(Black) + scale(X_AverageYearlyIncomeForFamily) + 
##         scale(X_LeaseInYourName) + scale(`Education HS`) + scale(`Education BD`), 
##     family = binomial, data = spjoin2)
##                                       coef.est coef.se z value Pr(>|z|)
## (Intercept)                            -1.23     0.12  -10.16    0.00  
## scale(Male)                            -0.02     0.12   -0.17    0.86  
## scale(Hispanic)                         0.16     0.18    0.92    0.36  
## scale(Black)                            0.29     0.17    1.70    0.09  
## scale(X_AverageYearlyIncomeForFamily)  -0.04     0.11   -0.32    0.75  
## scale(X_LeaseInYourName)               -0.69     0.11   -6.05    0.00  
## scale(`Education HS`)                  -0.01     0.12   -0.11    0.91  
## scale(`Education BD`)                  -0.29     0.18   -1.61    0.11  
## ---
##   n = 458, k = 8
##   residual deviance = 459.1, null deviance = 502.7 (difference = 43.6)
#Model MultiLevel Logistic Regression: DV = Homelessness Risk Score
#Null Model
Model3 <- lm(Screening_Score ~ as.factor(GEOID), spjoin2)
anova (Model3)
## Analysis of Variance Table
## 
## Response: Screening_Score
##                   Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(GEOID) 196 2481.3  12.660  0.9271 0.7177
## Residuals        315 4301.5  13.656
#Not Significant
Model3 <- lm(Screening_Score ~ scale (Male) + scale (Hispanic) + scale (Black) + scale (X_AverageYearlyIncomeForFamily) + scale (X_LeaseInYourName) + scale (`Education HS`) + scale (`Education BD`), data=spjoin2)
           
arm::display(Model3,
             detail=T)
## lm(formula = Screening_Score ~ scale(Male) + scale(Hispanic) + 
##     scale(Black) + scale(X_AverageYearlyIncomeForFamily) + scale(X_LeaseInYourName) + 
##     scale(`Education HS`) + scale(`Education BD`), data = spjoin2)
##                                       coef.est coef.se t value Pr(>|t|)
## (Intercept)                           10.69     0.13   80.36    0.00   
## scale(Male)                           -0.58     0.13   -4.33    0.00   
## scale(Hispanic)                        0.49     0.19    2.55    0.01   
## scale(Black)                           0.43     0.19    2.28    0.02   
## scale(X_AverageYearlyIncomeForFamily) -0.30     0.13   -2.23    0.03   
## scale(X_LeaseInYourName)               0.87     0.14    6.35    0.00   
## scale(`Education HS`)                  0.35     0.14    2.51    0.01   
## scale(`Education BD`)                 -0.38     0.15   -2.58    0.01   
## ---
## n = 458, k = 8
## residual sd = 2.82, R-Squared = 0.17