General Results

##          used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 297290 15.9     407500 21.8   350000 18.7
## Vcells 520128  4.0     905753  7.0   786426  6.0
## Loading required package: bbmle
## Loading required package: stats4
## Loading required package: survival
## Loading required package: caret
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.1.3
## Loading required package: ggplot2
## 
## Attaching package: 'caret'
## 
## The following object is masked from 'package:survival':
## 
##     cluster
# RUM General Results
RUM_all <- run_RUM_model(2, 1, p=1)
## [1] "Part 1 Opt-out.csv"
## initial  value 5662.208659 
## iter  10 value 2146.600613
## iter  20 value 944.734676
## final  value 944.584835 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00296    0.00017 -17.061  0.00000
## eff_3x:B       1.60184    0.18115   8.842  0.00001
## eff_2x:B       1.75546    0.18089   9.705  0.00000
## eff_1x:B       2.07542    0.18862  11.003  0.00000
## eff_1bix:B     2.10136    0.18763  11.200  0.00000
## dosead1:B      0.16243    0.10863   1.495  0.16906
## sides1:B       0.38420    0.11231   3.421  0.00762
## type1:B       -0.10512    0.10967  -0.958  0.36287
## beta.optout:B -5.41030    0.10625 -50.923  0.00000
##                          
## Log-Likelihood: -944.5848
## Iterations:      114.0000
# RRM General Results
RRM_all <- RRM_boot_opt_out_generic(data.file = "Part 1 Opt-out.csv", verbose=TRUE,
                                    seed_nbr = 1, p = 1, split_by_variable=FALSE)
## initial  value 5662.208659 
## iter  10 value 2146.600613
## iter  20 value 944.734676
## final  value 944.584835 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00296    0.00017 -17.061  0.00000
## eff_3x:B       1.60184    0.18115   8.842  0.00001
## eff_2x:B       1.75546    0.18089   9.705  0.00000
## eff_1x:B       2.07542    0.18862  11.003  0.00000
## eff_1bix:B     2.10136    0.18763  11.200  0.00000
## dosead1:B      0.16243    0.10863   1.495  0.16906
## sides1:B       0.38420    0.11231   3.421  0.00762
## type1:B       -0.10512    0.10967  -0.958  0.36287
## beta.optout:B -5.41030    0.10625 -50.923  0.00000
##                          
## Log-Likelihood: -944.5848
## Iterations:      114.0000
## Loading required package: data.table

Gender

##           used (Mb) gc trigger  (Mb) max used  (Mb)
## Ncells 1556553 83.2    2403845 128.4  2401145 128.3
## Vcells 2141456 16.4    3869736  29.6  3869736  29.6

Optim summary of RUM - By Gender

RUM_op_wtp_gender_opt_out <- lapply(variable_levels, function(lv){
    print(sprintf('Variable: %s Level: %s', variable, lv))
    data.file = 'Part 1 Opt-out.csv'
    run_RUM_model_generic(2, seed_nbr=1, variable, variable_level=lv, p=1)
})
## [1] "Variable: gender Level: 1"
## initial  value 2671.525027 
## iter  10 value 611.824183
## iter  20 value 423.837886
## iter  20 value 423.837886
## final  value 423.837886 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00316    0.00026  -12.11  0.00000
## eff_3x:B       1.24982    0.26502    4.72  0.00110
## eff_2x:B       1.38149    0.26480    5.22  0.00055
## eff_1x:B       1.80905    0.27400    6.60  0.00010
## eff_1bix:B     2.06883    0.28609    7.23  0.00005
## dosead1:B      0.17647    0.15966    1.11  0.29771
## sides1:B       0.53680    0.16715    3.21  0.01063
## type1:B       -0.30330    0.16341   -1.86  0.09641
## beta.optout:B -5.58455    0.16740  -33.36  0.00000
##                          
## Log-Likelihood: -423.8379
## Iterations:       74.0000
## [1] "Variable: gender Level: 2"
## initial  value 2986.195163 
## iter  10 value 770.105044
## iter  20 value 513.299616
## final  value 513.266728 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00294    0.00024 -12.268  0.00000
## eff_3x:B       1.92951    0.25302   7.626  0.00003
## eff_2x:B       2.14140    0.25588   8.369  0.00002
## eff_1x:B       2.35173    0.26388   8.912  0.00001
## eff_1bix:B     2.18701    0.25473   8.586  0.00001
## dosead1:B      0.14558    0.15092   0.965  0.35995
## sides1:B       0.22520    0.15541   1.449  0.18124
## type1:B        0.06424    0.15133   0.425  0.68116
## beta.optout:B -5.27593    0.13733 -38.417  0.00000
##                          
## Log-Likelihood: -513.2667
## Iterations:      109.0000
names(RUM_op_wtp_gender_opt_out) <- variable_levels
save(RUM_op_wtp_gender_opt_out, file='RUM_op_wtp_gender_opt_out.RData')

Optim Summary of RRM - By Gender

### Income RRM Model
source('fun_avg_wtp.R')
source('RRM_boot_opt_out_generic.R')

RRM_op_wtp_gender_opt_out <- lapply(variable_levels, function(inc){
  print(sprintf('Variable: %s Level: %s', variable, inc))
  data.file = 'Part 1 Opt-out.csv'
  RRM_boot_opt_out_generic(data.file, seed_nbr=1, variable, 
                             variable_level=inc, p=1, 
                             fix_ethnicity = FALSE, split_by_variable = TRUE,
                             verbose=TRUE)
})
## [1] "Variable: gender Level: 1"
## initial  value 2671.525027 
## iter  10 value 611.824183
## iter  20 value 423.837886
## iter  20 value 423.837886
## final  value 423.837886 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00316    0.00026  -12.11  0.00000
## eff_3x:B       1.24982    0.26502    4.72  0.00110
## eff_2x:B       1.38149    0.26480    5.22  0.00055
## eff_1x:B       1.80905    0.27400    6.60  0.00010
## eff_1bix:B     2.06883    0.28609    7.23  0.00005
## dosead1:B      0.17647    0.15966    1.11  0.29771
## sides1:B       0.53680    0.16715    3.21  0.01063
## type1:B       -0.30330    0.16341   -1.86  0.09641
## beta.optout:B -5.58455    0.16740  -33.36  0.00000
##                          
## Log-Likelihood: -423.8379
## Iterations:       74.0000
## [1] "Variable: gender Level: 2"
## initial  value 2986.195163 
## iter  10 value 770.105044
## iter  20 value 513.299616
## final  value 513.266728 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00294    0.00024 -12.268  0.00000
## eff_3x:B       1.92951    0.25302   7.626  0.00003
## eff_2x:B       2.14140    0.25588   8.369  0.00002
## eff_1x:B       2.35173    0.26388   8.912  0.00001
## eff_1bix:B     2.18701    0.25473   8.586  0.00001
## dosead1:B      0.14558    0.15092   0.965  0.35995
## sides1:B       0.22520    0.15541   1.449  0.18124
## type1:B        0.06424    0.15133   0.425  0.68116
## beta.optout:B -5.27593    0.13733 -38.417  0.00000
##                          
## Log-Likelihood: -513.2667
## Iterations:      109.0000
names(RRM_op_wtp_gender_opt_out) <- variable_levels
save(RRM_op_wtp_gender_opt_out, file='RRM_op_wtp_gender_opt_out.RData')

Income

Optim summary of RUM - By Income

RUM_op_wtp_income_opt_out <- lapply(variable_levels, function(lv){
    print(sprintf('Variable: %s Level: %s', variable, lv))
    data.file = 'Part 1 Opt-out.csv'
    run_RUM_model_generic(2, seed_nbr=1, variable, variable_level=lv, p=1)
})
## [1] "Variable: income Level: 1"
## initial  value 1765.081807 
## iter  10 value 402.028784
## iter  20 value 352.339813
## final  value 352.305537 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00251    0.00028  -8.977  0.00001
## eff_3x:B       1.48023    0.29863   4.957  0.00078
## eff_2x:B       1.48531    0.30302   4.902  0.00085
## eff_1x:B       1.72063    0.30898   5.569  0.00035
## eff_1bix:B     1.59524    0.29944   5.327  0.00048
## dosead1:B      0.19071    0.18543   1.028  0.33057
## sides1:B       0.20055    0.19502   1.028  0.33063
## type1:B       -0.11348    0.18351  -0.618  0.55164
## beta.optout:B -4.90413    0.15304 -32.046  0.00000
##                          
## Log-Likelihood: -352.3055
## Iterations:      133.0000
## [1] "Variable: income Level: 2"
## initial  value 1504.318752 
## iter  10 value 269.449081
## final  value 257.008838 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00345    0.00037  -9.306  0.00001
## eff_3x:B       1.27162    0.34949   3.639  0.00541
## eff_2x:B       1.48004    0.34505   4.289  0.00202
## eff_1x:B       1.82635    0.37019   4.934  0.00081
## eff_1bix:B     1.51251    0.35048   4.316  0.00195
## dosead1:B      0.05297    0.21272   0.249  0.80895
## sides1:B       0.42218    0.21092   2.002  0.07635
## type1:B       -0.09924    0.21906  -0.453  0.66126
## beta.optout:B -5.25694    0.19354 -27.162  0.00000
##                          
## Log-Likelihood: -257.0088
## Iterations:       79.0000
## [1] "Variable: income Level: 3"
## initial  value 1073.016643 
## iter  10 value 365.293038
## iter  20 value 154.890450
## iter  30 value 153.353076
## final  value 153.346795 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00287    0.00039  -7.290  0.00005
## eff_3x:B       2.24800    0.47642   4.719  0.00109
## eff_2x:B       2.56906    0.49396   5.201  0.00056
## eff_1x:B       2.76525    0.49822   5.550  0.00036
## eff_1bix:B     3.25294    0.50768   6.407  0.00012
## dosead1:B      0.44489    0.27509   1.617  0.14028
## sides1:B       0.55307    0.28590   1.934  0.08506
## type1:B       -0.18426    0.26843  -0.686  0.50973
## beta.optout:B -5.96138    0.30566 -19.503  0.00000
##                          
## Log-Likelihood: -153.3468
## Iterations:      113.0000
## [1] "Variable: income Level: 4"
## initial  value 1306.326052 
## iter  10 value 382.044054
## iter  20 value 149.984993
## final  value 149.923603 
## converged
##               Estimate Std. Error  t-value Pr(>|t|)
## cost:B        -0.00406    0.00048  -8.4636  0.00001
## eff_3x:B       1.88172    0.44687   4.2108  0.00227
## eff_2x:B       2.39272    0.44223   5.4105  0.00043
## eff_1x:B       2.74667    0.47941   5.7293  0.00028
## eff_1bix:B     3.28593    0.51116   6.4284  0.00012
## dosead1:B      0.02067    0.25441   0.0813  0.93702
## sides1:B       0.68039    0.27819   2.4457  0.03701
## type1:B       -0.18683    0.25314  -0.7380  0.47929
## beta.optout:B -6.56612    0.36678 -17.9020  0.00000
##                          
## Log-Likelihood: -149.9236
## Iterations:      108.0000
names(RUM_op_wtp_income_opt_out) <- variable_levels
save(RUM_op_wtp_income_opt_out, file='RUM_op_wtp_income_opt_out.RData')

Optim Summary of RRM - By Income

### Income RRM Model
source('fun_avg_wtp.R')
source('RRM_boot_opt_out_generic.R')

RRM_op_wtp_income_opt_out <- lapply(variable_levels, function(inc){
  print(sprintf('Variable: %s Level: %s', variable, inc))
  data.file = 'Part 1 Opt-out.csv'
  RRM_boot_opt_out_generic(data.file, seed_nbr=1, variable, 
                             variable_level=inc, p=1, 
                             fix_ethnicity = FALSE, split_by_variable = TRUE,
                             verbose=TRUE)
})
## [1] "Variable: income Level: 1"
## initial  value 1765.081807 
## iter  10 value 402.028784
## iter  20 value 352.339813
## final  value 352.305537 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00251    0.00028  -8.977  0.00001
## eff_3x:B       1.48023    0.29863   4.957  0.00078
## eff_2x:B       1.48531    0.30302   4.902  0.00085
## eff_1x:B       1.72063    0.30898   5.569  0.00035
## eff_1bix:B     1.59524    0.29944   5.327  0.00048
## dosead1:B      0.19071    0.18543   1.028  0.33057
## sides1:B       0.20055    0.19502   1.028  0.33063
## type1:B       -0.11348    0.18351  -0.618  0.55164
## beta.optout:B -4.90413    0.15304 -32.046  0.00000
##                          
## Log-Likelihood: -352.3055
## Iterations:      133.0000
## [1] "Variable: income Level: 2"
## initial  value 1504.318752 
## iter  10 value 269.449081
## final  value 257.008838 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00345    0.00037  -9.306  0.00001
## eff_3x:B       1.27162    0.34949   3.639  0.00541
## eff_2x:B       1.48004    0.34505   4.289  0.00202
## eff_1x:B       1.82635    0.37019   4.934  0.00081
## eff_1bix:B     1.51251    0.35048   4.316  0.00195
## dosead1:B      0.05297    0.21272   0.249  0.80895
## sides1:B       0.42218    0.21092   2.002  0.07635
## type1:B       -0.09924    0.21906  -0.453  0.66126
## beta.optout:B -5.25694    0.19354 -27.162  0.00000
##                          
## Log-Likelihood: -257.0088
## Iterations:       79.0000
## [1] "Variable: income Level: 3"
## initial  value 1073.016643 
## iter  10 value 365.293038
## iter  20 value 154.890450
## iter  30 value 153.353076
## final  value 153.346795 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00287    0.00039  -7.290  0.00005
## eff_3x:B       2.24800    0.47642   4.719  0.00109
## eff_2x:B       2.56906    0.49396   5.201  0.00056
## eff_1x:B       2.76525    0.49822   5.550  0.00036
## eff_1bix:B     3.25294    0.50768   6.407  0.00012
## dosead1:B      0.44489    0.27509   1.617  0.14028
## sides1:B       0.55307    0.28590   1.934  0.08506
## type1:B       -0.18426    0.26843  -0.686  0.50973
## beta.optout:B -5.96138    0.30566 -19.503  0.00000
##                          
## Log-Likelihood: -153.3468
## Iterations:      113.0000
## [1] "Variable: income Level: 4"
## initial  value 1306.326052 
## iter  10 value 382.044054
## iter  20 value 149.984993
## final  value 149.923603 
## converged
##               Estimate Std. Error  t-value Pr(>|t|)
## cost:B        -0.00406    0.00048  -8.4636  0.00001
## eff_3x:B       1.88172    0.44687   4.2108  0.00227
## eff_2x:B       2.39272    0.44223   5.4105  0.00043
## eff_1x:B       2.74667    0.47941   5.7293  0.00028
## eff_1bix:B     3.28593    0.51116   6.4284  0.00012
## dosead1:B      0.02067    0.25441   0.0813  0.93702
## sides1:B       0.68039    0.27819   2.4457  0.03701
## type1:B       -0.18683    0.25314  -0.7380  0.47929
## beta.optout:B -6.56612    0.36678 -17.9020  0.00000
##                          
## Log-Likelihood: -149.9236
## Iterations:      108.0000
names(RRM_op_wtp_income_opt_out) <- variable_levels
save(RRM_op_wtp_income_opt_out, file='RRM_op_wtp_income_opt_out.RData')

Ethnicity

##           used (Mb) gc trigger  (Mb) max used  (Mb)
## Ncells 1557195 83.2    2403845 128.4  2401145 128.3
## Vcells 2144407 16.4    3869736  29.6  3869736  29.6

Optim summary of RUM - By Ethnicity

RUM_op_wtp_ethnic_opt_out <- lapply(variable_levels, function(lv){
    print(sprintf('Variable: %s Level: %s', variable, lv))
    data.file = 'Part 1 Opt-out.csv'
    run_RUM_model_generic(2, seed_nbr=1, variable, variable_level=lv, p=1, fix_ethnicity=TRUE)
})
## [1] "Variable: ethnic Level: 1"
## 
##    1    2    3    4 
## 3042  468  216  360 
## initial  value 4269.942483 
## iter  10 value 1503.022145
## iter  20 value 658.107712
## final  value 658.041469 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00322    0.00021 -15.244  0.00000
## eff_3x:B       1.69844    0.21381   7.944  0.00002
## eff_2x:B       1.75126    0.21536   8.132  0.00002
## eff_1x:B       2.24558    0.22796   9.851  0.00000
## eff_1bix:B     2.39500    0.22595  10.600  0.00000
## dosead1:B      0.23076    0.13085   1.764  0.11164
## sides1:B       0.34630    0.13268   2.610  0.02827
## type1:B        0.02763    0.12926   0.214  0.83551
## beta.optout:B -5.60841    0.13327 -42.084  0.00000
##                          
## Log-Likelihood: -658.0415
## Iterations:      119.0000
## [1] "Variable: ethnic Level: 2"
## 
##    1    2    3    4 
## 3042  468  216  360 
## initial  value 624.238037 
## iter  10 value 152.747346
## iter  20 value 117.845730
## iter  20 value 117.845730
## final  value 117.845730 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B         -0.0027    0.00051  -5.317  0.00048
## eff_3x:B        0.6973    0.51949   1.342  0.21241
## eff_2x:B        1.3969    0.54367   2.569  0.03022
## eff_1x:B        1.6155    0.48154   3.355  0.00846
## eff_1bix:B      1.9784    0.56674   3.491  0.00682
## dosead1:B       0.2889    0.30859   0.936  0.37366
## sides1:B        0.5549    0.35046   1.583  0.14780
## type1:B        -1.0779    0.34971  -3.082  0.01309
## beta.optout:B  -5.1495    0.28349 -18.165  0.00000
##                          
## Log-Likelihood: -117.8457
## Iterations:       70.0000
## [1] "Variable: ethnic Level: 3"
## 
##    1    2    3    4 
## 3042  468  216  360 
## initial  value 305.284022 
## iter  10 value 105.761885
## iter  20 value 41.140444
## iter  30 value 40.870282
## iter  30 value 40.870282
## final  value 40.866108 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00382    0.00089  -4.294  0.00201
## eff_3x:B       1.36234    1.04976   1.298  0.22664
## eff_2x:B       2.28405    0.78563   2.907  0.01739
## eff_1x:B       2.20589    1.01056   2.183  0.05691
## eff_1bix:B     1.63746    0.93426   1.753  0.11356
## dosead1:B     -0.28208    0.53408  -0.528  0.61017
## sides1:B       1.15388    0.55816   2.067  0.06866
## type1:B       -1.14243    0.57361  -1.992  0.07759
## beta.optout:B -6.25260    0.63275  -9.882  0.00000
##                          
## Log-Likelihood: -40.86611
## Iterations:     130.00000
## [1] "Variable: ethnic Level: 4"
## 
##    1    2    3    4 
## 3042  468  216  360 
## initial  value 453.744449 
## iter  10 value 112.546675
## iter  20 value 96.749765
## final  value 96.742084 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00282     0.0006  -4.716  0.00110
## eff_3x:B       2.24971     0.6206   3.625  0.00553
## eff_2x:B       2.50594     0.6643   3.772  0.00440
## eff_1x:B       2.20364     0.7511   2.934  0.01665
## eff_1bix:B     1.40622     0.5782   2.432  0.03784
## dosead1:B     -0.24257     0.3779  -0.642  0.53694
## sides1:B       0.50339     0.3847   1.308  0.22315
## type1:B        0.48357     0.3891   1.243  0.24531
## beta.optout:B -4.63256     0.2664 -17.389  0.00000
##                          
## Log-Likelihood: -96.74208
## Iterations:      96.00000
names(RUM_op_wtp_ethnic_opt_out) <- variable_levels
save(RUM_op_wtp_ethnic_opt_out, file='RUM_op_wtp_ethnic_opt_out.RData')

Optim Summary of RRM - By Ethnicity

### Income RRM Model
source('fun_avg_wtp.R')
source('RRM_boot_opt_out_generic.R')

RRM_op_wtp_ethnic_opt_out <- lapply(variable_levels, function(inc){
  print(sprintf('Variable: %s Level: %s', variable, inc))
  data.file = 'Part 1 Opt-out.csv'
  RRM_boot_opt_out_generic(data.file, seed_nbr=1, variable, 
                             variable_level=inc, p=1, 
                             fix_ethnicity = TRUE, split_by_variable = TRUE,
                             verbose=TRUE)
})
## [1] "Variable: ethnic Level: 1"
## 
##    1    2    3    4 
## 3042  468  216  360 
## initial  value 4269.942483 
## iter  10 value 1503.022145
## iter  20 value 658.107712
## final  value 658.041469 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00322    0.00021 -15.244  0.00000
## eff_3x:B       1.69844    0.21381   7.944  0.00002
## eff_2x:B       1.75126    0.21536   8.132  0.00002
## eff_1x:B       2.24558    0.22796   9.851  0.00000
## eff_1bix:B     2.39500    0.22595  10.600  0.00000
## dosead1:B      0.23076    0.13085   1.764  0.11164
## sides1:B       0.34630    0.13268   2.610  0.02827
## type1:B        0.02763    0.12926   0.214  0.83551
## beta.optout:B -5.60841    0.13327 -42.084  0.00000
##                          
## Log-Likelihood: -658.0415
## Iterations:      119.0000
## [1] "Variable: ethnic Level: 2"
## 
##    1    2    3    4 
## 3042  468  216  360 
## initial  value 624.238037 
## iter  10 value 152.747346
## iter  20 value 117.845730
## iter  20 value 117.845730
## final  value 117.845730 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B         -0.0027    0.00051  -5.317  0.00048
## eff_3x:B        0.6973    0.51949   1.342  0.21241
## eff_2x:B        1.3969    0.54367   2.569  0.03022
## eff_1x:B        1.6155    0.48154   3.355  0.00846
## eff_1bix:B      1.9784    0.56674   3.491  0.00682
## dosead1:B       0.2889    0.30859   0.936  0.37366
## sides1:B        0.5549    0.35046   1.583  0.14780
## type1:B        -1.0779    0.34971  -3.082  0.01309
## beta.optout:B  -5.1495    0.28349 -18.165  0.00000
##                          
## Log-Likelihood: -117.8457
## Iterations:       70.0000
## [1] "Variable: ethnic Level: 3"
## 
##    1    2    3    4 
## 3042  468  216  360 
## initial  value 305.284022 
## iter  10 value 105.761885
## iter  20 value 41.140444
## iter  30 value 40.870282
## iter  30 value 40.870282
## final  value 40.866108 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00382    0.00089  -4.294  0.00201
## eff_3x:B       1.36234    1.04976   1.298  0.22664
## eff_2x:B       2.28405    0.78563   2.907  0.01739
## eff_1x:B       2.20589    1.01056   2.183  0.05691
## eff_1bix:B     1.63746    0.93426   1.753  0.11356
## dosead1:B     -0.28208    0.53408  -0.528  0.61017
## sides1:B       1.15388    0.55816   2.067  0.06866
## type1:B       -1.14243    0.57361  -1.992  0.07759
## beta.optout:B -6.25260    0.63275  -9.882  0.00000
##                          
## Log-Likelihood: -40.86611
## Iterations:     130.00000
## [1] "Variable: ethnic Level: 4"
## 
##    1    2    3    4 
## 3042  468  216  360 
## initial  value 453.744449 
## iter  10 value 112.546675
## iter  20 value 96.749765
## final  value 96.742084 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00282     0.0006  -4.716  0.00110
## eff_3x:B       2.24971     0.6206   3.625  0.00553
## eff_2x:B       2.50594     0.6643   3.772  0.00440
## eff_1x:B       2.20364     0.7511   2.934  0.01665
## eff_1bix:B     1.40622     0.5782   2.432  0.03784
## dosead1:B     -0.24257     0.3779  -0.642  0.53694
## sides1:B       0.50339     0.3847   1.308  0.22315
## type1:B        0.48357     0.3891   1.243  0.24531
## beta.optout:B -4.63256     0.2664 -17.389  0.00000
##                          
## Log-Likelihood: -96.74208
## Iterations:      96.00000
names(RRM_op_wtp_ethnic_opt_out) <- variable_levels
save(RRM_op_wtp_ethnic_opt_out, file='RRM_op_wtp_ethnic_opt_out.RData')

Age Group

##           used (Mb) gc trigger  (Mb) max used  (Mb)
## Ncells 1557429 83.2    2403845 128.4  2403845 128.4
## Vcells 2145843 16.4    4143222  31.7  4143222  31.7

Optim summary of RUM - By Age

RUM_op_wtp_age_opt_out <- lapply(variable_levels, function(lv){
    print(sprintf('Variable: %s Level: %s', variable, lv))
    data.file = 'Part 1 Opt-out.csv'
    run_RUM_model_generic(2, seed_nbr=1, variable, variable_level=lv, p=1, fix_age=TRUE)
})
## [1] "Variable: age_group Level: 1"
## 
##    1    2    3 
## 1044 1638 1404 
## initial  value 1396.709180 
## iter  10 value 269.068602
## iter  20 value 244.075410
## final  value 244.058570 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00348    0.00039  -8.889  0.00001
## eff_3x:B       2.14818    0.41044   5.234  0.00054
## eff_2x:B       2.58478    0.42878   6.028  0.00020
## eff_1x:B       2.18745    0.41618   5.256  0.00052
## eff_1bix:B     1.79972    0.41131   4.376  0.00178
## dosead1:B      0.06303    0.22321   0.282  0.78406
## sides1:B       0.32471    0.25841   1.257  0.24055
## type1:B        0.15647    0.23603   0.663  0.52398
## beta.optout:B -5.04396    0.18245 -27.646  0.00000
##                          
## Log-Likelihood: -244.0586
## Iterations:      111.0000
## [1] "Variable: age_group Level: 2"
## 
##    1    2    3 
## 1044 1638 1404 
## initial  value 2289.914317 
## iter  10 value 639.890834
## final  value 356.776574 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00336     0.0003  -11.25  0.00000
## eff_3x:B       1.30452     0.2792    4.67  0.00117
## eff_2x:B       1.46503     0.2813    5.21  0.00056
## eff_1x:B       2.02496     0.2992    6.77  0.00008
## eff_1bix:B     2.24768     0.2943    7.64  0.00003
## dosead1:B      0.42410     0.1837    2.31  0.04629
## sides1:B       0.43193     0.1810    2.39  0.04079
## type1:B       -0.20918     0.1823   -1.15  0.28084
## beta.optout:B -5.56791     0.1784  -31.20  0.00000
##                          
## Log-Likelihood: -356.7766
## Iterations:       86.0000
## [1] "Variable: age_group Level: 3"
## 
##    1    2    3 
## 1044 1638 1404 
## initial  value 1966.608226 
## iter  10 value 393.357769
## final  value 325.947490 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00256    0.00027  -9.563  0.00001
## eff_3x:B       1.66045    0.30740   5.402  0.00043
## eff_2x:B       1.68981    0.29322   5.763  0.00027
## eff_1x:B       2.14615    0.31629   6.785  0.00008
## eff_1bix:B     2.18528    0.31808   6.870  0.00007
## dosead1:B      0.06238    0.18258   0.342  0.74046
## sides1:B       0.37734    0.18104   2.084  0.06680
## type1:B       -0.12870    0.17948  -0.717  0.49152
## beta.optout:B -5.57859    0.19372 -28.797  0.00000
##                          
## Log-Likelihood: -325.9475
## Iterations:       87.0000
names(RUM_op_wtp_age_opt_out) <- variable_levels
save(RUM_op_wtp_age_opt_out, file='RUM_op_wtp_age_opt_out.RData')

Optim Summary of RRM - By Age

### Income RRM Model
source('fun_avg_wtp.R')
source('RRM_boot_opt_out_generic.R')

RRM_op_wtp_age_opt_out <- lapply(variable_levels, function(inc){
  print(sprintf('Variable: %s Level: %s', variable, inc))
  data.file = 'Part 1 Opt-out.csv'
  RRM_boot_opt_out_generic(data.file, seed_nbr=1, variable, 
                             variable_level=inc, p=1, 
                             fix_age = TRUE, split_by_variable = TRUE,
                             verbose=TRUE)
})
## [1] "Variable: age_group Level: 1"
## 
##    1    2    3 
## 1044 1638 1404 
## initial  value 1396.709180 
## iter  10 value 269.068602
## iter  20 value 244.075410
## final  value 244.058570 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00348    0.00039  -8.889  0.00001
## eff_3x:B       2.14818    0.41044   5.234  0.00054
## eff_2x:B       2.58478    0.42878   6.028  0.00020
## eff_1x:B       2.18745    0.41618   5.256  0.00052
## eff_1bix:B     1.79972    0.41131   4.376  0.00178
## dosead1:B      0.06303    0.22321   0.282  0.78406
## sides1:B       0.32471    0.25841   1.257  0.24055
## type1:B        0.15647    0.23603   0.663  0.52398
## beta.optout:B -5.04396    0.18245 -27.646  0.00000
##                          
## Log-Likelihood: -244.0586
## Iterations:      111.0000
## [1] "Variable: age_group Level: 2"
## 
##    1    2    3 
## 1044 1638 1404 
## initial  value 2289.914317 
## iter  10 value 639.890834
## final  value 356.776574 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00336     0.0003  -11.25  0.00000
## eff_3x:B       1.30452     0.2792    4.67  0.00117
## eff_2x:B       1.46503     0.2813    5.21  0.00056
## eff_1x:B       2.02496     0.2992    6.77  0.00008
## eff_1bix:B     2.24768     0.2943    7.64  0.00003
## dosead1:B      0.42410     0.1837    2.31  0.04629
## sides1:B       0.43193     0.1810    2.39  0.04079
## type1:B       -0.20918     0.1823   -1.15  0.28084
## beta.optout:B -5.56791     0.1784  -31.20  0.00000
##                          
## Log-Likelihood: -356.7766
## Iterations:       86.0000
## [1] "Variable: age_group Level: 3"
## 
##    1    2    3 
## 1044 1638 1404 
## initial  value 1966.608226 
## iter  10 value 393.357769
## final  value 325.947490 
## converged
##               Estimate Std. Error t-value Pr(>|t|)
## cost:B        -0.00256    0.00027  -9.563  0.00001
## eff_3x:B       1.66045    0.30740   5.402  0.00043
## eff_2x:B       1.68981    0.29322   5.763  0.00027
## eff_1x:B       2.14615    0.31629   6.785  0.00008
## eff_1bix:B     2.18528    0.31808   6.870  0.00007
## dosead1:B      0.06238    0.18258   0.342  0.74046
## sides1:B       0.37734    0.18104   2.084  0.06680
## type1:B       -0.12870    0.17948  -0.717  0.49152
## beta.optout:B -5.57859    0.19372 -28.797  0.00000
##                          
## Log-Likelihood: -325.9475
## Iterations:       87.0000
names(RRM_op_wtp_age_opt_out) <- variable_levels
save(RRM_op_wtp_age_opt_out, file='RRM_op_wtp_age_opt_out.RData')