Question 14.3

A manufacturing engineer is studying the dimension- al variability of a particular component that is produced on three machines. Each machine has two spindles, and four components are randomly selected from each spindle. The results follow. Analyze the data, assuming that machines and spindles are fixed factors.

Ho: \(\alpha_{i} = 0\) - Null Hypothesis

Ha: \(\alpha_{i} \ne 0\) - Alternative Hypothesis

Ho: \(\beta_{j} = 0\) - Null Hypothesis

Ha: \(\beta_{j} \ne 0\) - Alternative Hypothesis

Model Equation \(y_{ijk} = \mu + \alpha_i + \beta_{j(i)}+\epsilon_{ijk}\)

## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
Data from experiment
machine spindle obs
1 1 12
1 2 8
1 1 9
1 2 9
1 1 11
1 2 10
1 1 12
1 2 8
2 1 14
2 2 12
2 1 15
2 2 10
2 1 13
2 2 11
2 1 14
2 2 13
3 1 14
3 2 16
3 1 10
3 2 15
3 1 12
3 2 15
3 1 11
3 2 14

Analysis of Variance

## Analysis of Variance Table
## 
## Response: obs
##                 Df Sum Sq Mean Sq F value    Pr(>F)    
## machine          2  55.75 27.8750  1.9114 0.2915630    
## machine:spindle  3  43.75 14.5833  9.9057 0.0004428 ***
## Residual        18  26.50  1.4722                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the result values of “Prob > F” less than 0.0500 indicate model terms are significant. In this case the nested spindle in machine is the significant model term Hence, there is a significant effect on dimensional variability due to the nested spindle in machine factor.


machine<-rep(c(rep(seq(1:3),each=8)),1)
spindle<-c(rep(seq(1:2),12))
obs<-c(12,8,9,9,11,10,12,8,14,12,15,10,13,11,14,13,14,16,10,15,12,15,11,14)
machine<-as.fixed(machine)
spindle<-as.random(spindle)
length(spindle)
library(GAD)
model<-lm(obs~machine+spindle%in%machine)
gad(model)

data.frame(machine,spindle,obs)