Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir del valor medio dado en ejercicios.
Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta \(x\) tenga algún exactamente algún valor, \(\leq\) a algún valor o \(\gt\) o \(\geq\), entre otros.
Otra variable aleatoria discreta que tiene numerosas aplicaciones prácticas es la variable aleatoria de Poisson. Su distribución de probabilidad da un buen modelo para datos que representa el número de sucesos de un evento especificado en una unidad determinada de tiempo o espacio (mendenhall_introduccion_2006?).
Los experimentos que dan valores numéricos de una variable aleatoria X, el número de resultados que ocurren durante un intervalo dado o en una región específica, se llaman experimentos de Poisson.(walpole_probabilidad_2012?)
Esta distribución, suele usarse para estimar el número de veces que sucede un hecho determinado (ocurrencias) en un intervalo de tiempo o de espacio. Por ejemplo,
La variable de interés va desde el número promedio de automóviles que llegan (llegadas) a un lavado de coches en una hora o
El número medio de reparaciones necesarias en 10 kms. de una autopista o,
El número promedio de fugas de agua en tubería en un lapso 3 meses.
El número de focos promedio que fallan en una cantidad de lote de 1000 focos.
El número medio de fugas en 100 kms.de tubería, entre otros (anderson_estadistica_2008?).
\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \] en donde:
\(f(x)\) es la función de probabilidad para valores de \(x=0,1,2,3..,n\).
\(\mu\) es el valor medio esperado en cierto lapso de tiempo. Algunas veces expresado como \(\lambda\) lambda.
\(x\) es la variable aleatoria. Es una variable aleatoria discreta \((x = 0, 1,. 2, . . . )\)
\(e\) valor constante, es la base de los logaritmos naturales \(2.71728\).
Propiedades de un evento Poisson:
Los valores de la esperanza (o media) y de la varianza para la distribución de Poisson son de la siguiente manera:
library(ggplot2)
#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/Trabajos-en-R-AD2021/main/funciones/funciones.para.distribuciones.r")
Se describen ejercicios en donde se encuentra la función de distribución
Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(anderson_estadistica_2008?)
Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.
Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;
Aquí la variable aleatoria es \(x\) número de automóviles que llegan en un lapso de 15 minutos.
Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos, \(x=5\),y se obtiene:
Inicializando variables y valores
media <- 10
x <- 5
Utilizando la función creada conforme a la fórmula
prob <- round(f.prob.poisson(media = media, x = x),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de : 0.0378"
Utilizando la función dpois()
prob2 <- round(dpois(x = 5, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de : 0.0378"
options(scipen=999) # Notación normal
tabla <- data.frame(x=0:25, f.prob.x = round(dpois(x = 0:25, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q=0:25, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.0000 0.00004539993
## 2 1 0.0005 0.00049939923
## 3 2 0.0023 0.00276939572
## 4 3 0.0076 0.01033605068
## 5 4 0.0189 0.02925268808
## 6 5 0.0378 0.06708596288
## 7 6 0.0631 0.13014142088
## 8 7 0.0901 0.22022064660
## 9 8 0.1126 0.33281967875
## 10 9 0.1251 0.45792971447
## 11 10 0.1251 0.58303975019
## 12 11 0.1137 0.69677614630
## 13 12 0.0948 0.79155647639
## 14 13 0.0729 0.86446442262
## 15 14 0.0521 0.91654152707
## 16 15 0.0347 0.95125959670
## 17 16 0.0217 0.97295839022
## 18 17 0.0128 0.98572238640
## 19 18 0.0071 0.99281349540
## 20 19 0.0037 0.99654565802
## 21 20 0.0019 0.99841173934
## 22 21 0.0009 0.99930034949
## 23 22 0.0004 0.99970426319
## 24 23 0.0002 0.99987987785
## 25 24 0.0001 0.99995305062
## 26 25 0.0000 0.99998231973
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\[P(x \leq10) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + ... + P(x=10)\]
i <- 10
tabla$f.acum[i + 1]
## [1] 0.5830398
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", tabla$f.acum[i + 1])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.583039750192985"
ppois() determina la probabilidad acumulada de una distribución Poisson.
prob <- round(ppois(q = 10, lambda = media), 4)
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", prob)
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.583"
En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.
Regla de tres:
\[ 10 = 15\] \[ ? = 3\]
Entonces, la probabilidad de \(x=4\) llegadas en un lapso de 3 minutos con \(μ = 2\) está dada por la siguiente nueva función de probabilidad de Poisson.
\[ \mu = 2 \]
\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]
Entonces ….
media <- 2
x <- 4
prob <- round(dpois(x = 4, lambda = media),4)
paste("La probabilidad cuando x = 4 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 4 y media igual a 2 es del: 9.02 %"
Regresando a la media \(\mu = 10 \text{ o }\lambda = 10\) , entonces la esperanza media es igual a: \(10\)
La varianza es igual a \(10\)
La raiz cuadrada de \(\sqrt{10}\)
sqrt(media)
## [1] 1.414214
Por medio de la función \(f.prob.poisson\) la cual opera con un valor medio dado en el ejercicio se quiere conocer cual es la probabilidad de que lleguen exactamente 5 autos a un auto lavado en un lapso de 15 minutos lo cual da una probabilidad del \(0.3\) % Este resultado se obtiene de igual manera usando la función d poisson que ya esta integrada en el software y para esta hay que ingresar la palabra \(dpois()\) a continuacion te pide ingresar el valor de \(x\) que corresponde a la variable discreta aleatoria y \(lambda\) que corresponde al valor medio. Para el caso del ejercicio si quisiéramos saber que probabilidad hay de que \(x=2\) esto sería del \(23\) % pero que pasa cuando \(x<=10\) la probabilidad ahora seria la sumatoria de las probabilidades desde \(x=0\) hasta \(x=10\) y su probabilidad seria la acumulada que corresponde al \(58\) % esta probabilidad se obtuvo usando la función \(ppois()\) que en lugar de x pedirá \(q\) e igual el valor medio.
La varianza como ya se sabe es de \(10\) debido a que el mismo ejercicio te lo proporciona y su desviación estándar se obtiene sacando la raíz al valor de la varianza que en este caso es de \(1.41\).
En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es \(0.005\) y los accidentes son independientes entre sí (walpole_probabilidad_2012?).
¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?
Se multiplica la cantidad la de dias por su probabilidad para encontrar la media. Esta media será el parámetro para la distribución Poisson.
n <- 400
prob <- 0.005
media <- n * prob
media
## [1] 2
La variable aleatoria son los días desde \(x=0\)…hasta \(x=n\)
tabla <- data.frame(x=0:10, f.prob.x = round(dpois(x = 0:10, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:10, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.1353 0.1353353
## 2 1 0.2707 0.4060058
## 3 2 0.2707 0.6766764
## 4 3 0.1804 0.8571235
## 5 4 0.0902 0.9473470
## 6 5 0.0361 0.9834364
## 7 6 0.0120 0.9954662
## 8 7 0.0034 0.9989033
## 9 8 0.0009 0.9997626
## 10 9 0.0002 0.9999535
## 11 10 0.0000 0.9999917
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\(P(x=1)\)
Recordar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor \(x+1\) en la tabla:
i <- 1
prob <- tabla$f.prob.x[i+1]
paste("La probabilidad del valor de x=1 es: ", prob)
## [1] "La probabilidad del valor de x=1 es: 0.2707"
paste("La probabilidad del valor de x=1 es: ", round(dpois(x = 1, lambda = media), 4))
## [1] "La probabilidad del valor de x=1 es: 0.2707"
i <- 3
prob <- round(tabla$f.acum.x[i+1],4)
paste("La probabilidad del valor de x<=3 es: ", prob)
## [1] "La probabilidad del valor de x<=3 es: 0.8571"
paste("La probabilidad acumlada del valor de x<=3 es: ", round(ppois(q = 3, lambda = media, lower.tail = TRUE), 4))
## [1] "La probabilidad acumlada del valor de x<=3 es: 0.8571"
En este ejercicio se pide conocer la probabilidad de que en una fabrica donde casi no suceden accidentes se conozca la probabilidad de que 1 accidente ocurriera en un día cualquiera que este fuera. Se conocen los datos del numero total de días que son \(400\) y la probabilidad de que un accidente ocurra que es \(0.005\) por lo consiguiente habrá que conocer la media y para esto se usa la formula \(n*p\) lo que es \(media= 2\) a partir de aquí se construye una tabla donde se ingresa \(x\) que es una variable discreta aleatoria y se le da el valor de 10 debido a que después de este numero los decimales son demasiados y la cantidad se hace muy pequeña en la probabilidad. La probabilidad de que en un periodo de 400 días la probabilidad de que ocurra en un accidente es del \(27.07\) % Ahora la probabilidad acumulada cuando se refiere a que un accidente se repita en 3 días es del \(85.71\) %
Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con \(\lambda = 5\) (walpole_probabilidad_2012?).
media <- 5
tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:20, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.00673795 0.006737947
## 2 1 0.03368973 0.040427682
## 3 2 0.08422434 0.124652019
## 4 3 0.14037390 0.265025915
## 5 4 0.17546737 0.440493285
## 6 5 0.17546737 0.615960655
## 7 6 0.14622281 0.762183463
## 8 7 0.10444486 0.866628326
## 9 8 0.06527804 0.931906365
## 10 9 0.03626558 0.968171943
## 11 10 0.01813279 0.986304731
## 12 11 0.00824218 0.994546908
## 13 12 0.00343424 0.997981148
## 14 13 0.00132086 0.999302010
## 15 14 0.00047174 0.999773746
## 16 15 0.00015725 0.999930992
## 17 16 0.00004914 0.999980131
## 18 17 0.00001445 0.999994584
## 19 18 0.00000401 0.999998598
## 20 19 0.00000106 0.999999655
## 21 20 0.00000026 0.999999919
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\[P(X \leq 3)\]
\[P(X=0) + P(X=1) + P(X=2) + P(X=3)\]
i <- 3
prob <- tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5 %"
\[ 1 - P(X \leq 1) \] \[ 1 - (P(X=0) + P(x=1))\]
i <- 1
prob <- 1 - tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
En el caso del fabricante de automóviles nos ofrece el dato de la media y a partir de este debemos formar la probabilidad para lo cual definimos un periodo de tiempo donde veamos reflejada una cantidad adecuada de decimales en la probabilidad, para este ejercicio se uso la cantidad 20 de autos y se conoce que la probabilidad de que un auto sufra un accidente en un año es de \(0.33\) % a diferencia de que la cantidad de automóviles sean 4 donde su probabilidad de sufrir un accidente es de \(17.54\) %
En el ejercicio se busca conocer que ocurre cuando la cantidad de autos sea menor o igual a 3 es decir \(x<=3\) y para esto se hace una sumatoria de las probabilidades \(P(X=0)+P(X=1)0+P(X=2)+P(X=3)\) o lo que es lo mismo conocer la probabilidad acumulada que como se lee en la tabla proporcionada en el ejercicio es del \(26.50\) % y esta probabilidad aumenta cuando se habla de cual es la probabilidad de que mas de un carro sufra un accidente en un año con un \(95.95\) %
Suponga que, en promedio, \(1 \text { persona en }1000\)
comete un error numérico al preparar su declaración de impuestos. Si se seleccionan \(10,000\) formas al azar y se examinan, encuentre la probabilidad de que \(6, 7 \text { u } 8\) de las formas contengan un error.(walpole2007?). Ejercicio 5.65, Pág. 165.
\[ P(x=6:8) = P(x=6) + P(x=7) + P(x=8) \]
prob <- 1 / 1000
media <- prob * 10000
tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8), f.acum.x = round(ppois(q = 0:20, lambda = media),8))
tabla
## x f.prob.x f.acum.x
## 1 0 0.00004540 0.00004540
## 2 1 0.00045400 0.00049940
## 3 2 0.00227000 0.00276940
## 4 3 0.00756665 0.01033605
## 5 4 0.01891664 0.02925269
## 6 5 0.03783327 0.06708596
## 7 6 0.06305546 0.13014142
## 8 7 0.09007923 0.22022065
## 9 8 0.11259903 0.33281968
## 10 9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174
\[ P(x \text { de 6 a }8) = P(x=6) + P(x=7) + P(x=8) \]
Se suman las probabilidades
paste(round(dpois(x = 6, lambda = media),4), "+", round(dpois(x = 7, lambda = media),4), "+"
, round(dpois(x = 8, lambda = media),4))
## [1] "0.0631 + 0.0901 + 0.1126"
prob <- sum(dpois(x = 6:8, lambda = media))
paste("La probabilidad del valor de x de 6 a 8 es: ", round((prob * 100),4), "%")
## [1] "La probabilidad del valor de x de 6 a 8 es: 26.5734 %"
En el ejercicio se describen valores iniciales para la situación donde se supone que de una persona de 1000 tienen algún error numérico en su declaración fiscal y se seleccionan 10,000 formas de manera aleatoria y a partir de aquí se quiere conocer la probabilidad que existe de que en 6, 7, u 8 de las formas exista un error numérico. para conocer este dato se debe hacer una sumatoria de probabilidades y esta se lleva a cabo con la función \(dpois()\) ingresando en el valor de \(x\) cada uno de los valores buscados y sumarlos \(x=6\) su prob. es \(0.0631\) cuando \(x=7\) la prob. es \(0.0901\) y cuando \(x=8\) su prob. es \(0.1126\) y la sumatoria de estas es del \(26.57\) %
Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,.
Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2006. Introducción a La Probabilidad y Estadística. 13a Edición.
Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.