This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Cmd+Shift+Enter.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("Homo.sapiens")
## Bioconductor version 3.14 (BiocManager 1.30.16), R 4.1.1 (2021-08-10)
## Warning: package(s) not installed when version(s) same as current; use `force = TRUE` to
## re-install: 'Homo.sapiens'
library(Glimma)
library(edgeR)
## Loading required package: limma
library(limma)
library(Homo.sapiens)
## Loading required package: AnnotationDbi
## Warning: package 'AnnotationDbi' was built under R version 4.1.2
## Loading required package: stats4
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
## The following object is masked from 'package:limma':
##
## plotMA
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind, colnames,
## dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
## grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
## union, unique, unsplit, which.max, which.min
## Loading required package: Biobase
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
## Loading required package: IRanges
## Loading required package: S4Vectors
## Warning: package 'S4Vectors' was built under R version 4.1.2
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
## expand.grid, I, unname
## Loading required package: OrganismDbi
## Loading required package: GenomicFeatures
## Loading required package: GenomeInfoDb
## Loading required package: GenomicRanges
## Warning: package 'GenomicRanges' was built under R version 4.1.2
## Loading required package: GO.db
##
## Loading required package: org.Hs.eg.db
##
## Loading required package: TxDb.Hsapiens.UCSC.hg19.knownGene
library(stringr)
library(knitr)
#setwd("/Users/gaohuizi/desktop/510project-gao/whitefemale")
file_wf <- c("whitefemale/WFNS1.htseq.counts",
"whitefemale/WFNS2.htseq.counts",
"whitefemale/WFNS3.htseq.counts",
"whitefemale/WFNS4.htseq.counts",
"whitefemale/WFNS5.htseq.counts",
"whitefemale/WFNS6.htseq.counts",
"whitefemale/WFNS7.htseq.counts",
"whitefemale/WFNS8.htseq.counts",
"whitefemale/WFNS9.htseq.counts",
"whitefemale/WFNS10.htseq.counts",
"whitefemale/WFNS11.htseq.counts",
"whitefemale/WFNS12.htseq.counts",
"whitefemale/WFNS13.htseq.counts",
"whitefemale/WFNS14.htseq.counts",
"whitefemale/WFNS15.htseq.counts",
"whitefemale/WFNS16.htseq.counts",
"whitefemale/WFNS17.htseq.counts",
"whitefemale/WFNS18.htseq.counts",
"whitefemale/WFNS19.htseq.counts",
"whitefemale/WFNS20.htseq.counts",
"whitefemale/WFNS21.htseq.counts",
"whitefemale/WFNS22.htseq.counts",
"whitefemale/WFNS23.htseq.counts",
"whitefemale/WFNS24.htseq.counts",
"whitefemale/WFNS25.htseq.counts",
"whitefemale/WFNS26.htseq.counts",
"whitefemale/WFNS27.htseq.counts",
"whitefemale/WFNS28.htseq.counts",
"whitefemale/WFNS29.htseq.counts",
"whitefemale/WFNS30.htseq.counts",
"whitefemale/WFNS31.htseq.counts",
"whitefemale/WFNS32.htseq.counts",
"whitefemale/WFS1.htseq.counts",
"whitefemale/WFS2.htseq.counts",
"whitefemale/WFS3.htseq.counts",
"whitefemale/WFS4.htseq.counts",
"whitefemale/WFS5.htseq.counts",
"whitefemale/WFS6.htseq.counts",
"whitefemale/WFS7.htseq.counts",
"whitefemale/WFS8.htseq.counts",
"whitefemale/WFS9.htseq.counts",
"whitefemale/WFS10.htseq.counts",
"whitefemale/WFS11.htseq.counts",
"whitefemale/WFS12.htseq.counts",
"whitefemale/WFS13.htseq.counts",
"whitefemale/WFS14.htseq.counts",
"whitefemale/WFS15.htseq.counts",
"whitefemale/WFS16.htseq.counts",
"whitefemale/WFS17.htseq.counts",
"whitefemale/WFS18.htseq.counts",
"whitefemale/WFS19.htseq.counts",
"whitefemale/WFS20.htseq.counts",
"whitefemale/WFS21.htseq.counts",
"whitefemale/WFS22.htseq.counts",
"whitefemale/WFS23.htseq.counts",
"whitefemale/WFS24.htseq.counts",
"whitefemale/WFS25.htseq.counts",
"whitefemale/WFS26.htseq.counts",
"whitefemale/WFS27.htseq.counts",
"whitefemale/WFS28.htseq.counts",
"whitefemale/WFS29.htseq.counts",
"whitefemale/WFS30.htseq.counts",
"whitefemale/WFS31.htseq.counts",
"whitefemale/WFS32.htseq.counts",
"whitefemale/WFS33.htseq.counts",
"whitefemale/WFS34.htseq.counts",
"whitefemale/WFS35.htseq.counts",
"whitefemale/WFS36.htseq.counts",
"whitefemale/WFS37.htseq.counts",
"whitefemale/WFS38.htseq.counts",
"whitefemale/WFS39.htseq.counts",
"whitefemale/WFS40.htseq.counts",
"whitefemale/WFS41.htseq.counts",
"whitefemale/WFS42.htseq.counts",
"whitefemale/WFS43.htseq.counts",
"whitefemale/WFS44.htseq.counts")
read.delim(file_wf[1], header=FALSE)
getwd()
## [1] "/Users/gaohuizi/Desktop/510project-gao"
x <- readDGE(file_wf, columns=c(1,2))
## Meta tags detected: __no_feature, __ambiguous, __too_low_aQual, __not_aligned, __alignment_not_unique
class(x)
## [1] "DGEList"
## attr(,"package")
## [1] "edgeR"
dim(x)
## [1] 60487 76
samplenames<-colnames(x)
sampleNames
## standardGeneric for "sampleNames" defined from package "Biobase"
##
## function (object)
## standardGeneric("sampleNames")
## <bytecode: 0x7fc403a41548>
## <environment: 0x7fc401f27dd0>
## Methods may be defined for arguments: object
## Use showMethods(sampleNames) for currently available ones.
colnames(x) <- samplenames
group <- c(rep("WFNS",32), rep("WFS",44))
x$samples$group <- group
x$samples
if (!require("gsubfn"))
install.packages("gsubfn")
## Loading required package: gsubfn
## Loading required package: proto
## Warning in doTryCatch(return(expr), name, parentenv, handler): unable to load shared object '/Library/Frameworks/R.framework/Resources/modules//R_X11.so':
## dlopen(/Library/Frameworks/R.framework/Resources/modules//R_X11.so, 6): Library not loaded: /opt/X11/lib/libSM.6.dylib
## Referenced from: /Library/Frameworks/R.framework/Versions/4.1/Resources/modules/R_X11.so
## Reason: image not found
## Could not load tcltk. Will use slower R code instead.
library("gsubfn")
geneid <- rownames(x)
geneid <-gsub("\\.[0-9]*$","", geneid)
head(geneid)
## [1] "ENSG00000000005" "ENSG00000000419" "ENSG00000000457" "ENSG00000000460"
## [5] "ENSG00000000938" "ENSG00000000971"
genes <- select(Homo.sapiens, keys=geneid, columns=c("SYMBOL", "TXCHROM"),
keytype="ENSEMBL")
## 'select()' returned 1:many mapping between keys and columns
head(genes)
genes <- genes[!duplicated(genes$ENSEMBL),]
x$genes <- genes
x
## An object of class "DGEList"
## $samples
## files group lib.size
## whitefemale/WFNS1.htseq whitefemale/WFNS1.htseq.counts WFNS 50172162
## whitefemale/WFNS2.htseq whitefemale/WFNS2.htseq.counts WFNS 53737770
## whitefemale/WFNS3.htseq whitefemale/WFNS3.htseq.counts WFNS 95236738
## whitefemale/WFNS4.htseq whitefemale/WFNS4.htseq.counts WFNS 44608020
## whitefemale/WFNS5.htseq whitefemale/WFNS5.htseq.counts WFNS 82184353
## norm.factors
## whitefemale/WFNS1.htseq 1
## whitefemale/WFNS2.htseq 1
## whitefemale/WFNS3.htseq 1
## whitefemale/WFNS4.htseq 1
## whitefemale/WFNS5.htseq 1
## 71 more rows ...
##
## $counts
## Samples
## Tags whitefemale/WFNS1.htseq whitefemale/WFNS2.htseq
## ENSG00000000005.5 2 1
## ENSG00000000419.11 1128 2084
## ENSG00000000457.12 1348 513
## ENSG00000000460.15 386 708
## ENSG00000000938.11 559 659
## Samples
## Tags whitefemale/WFNS3.htseq whitefemale/WFNS4.htseq
## ENSG00000000005.5 0 0
## ENSG00000000419.11 1327 621
## ENSG00000000457.12 1032 493
## ENSG00000000460.15 1277 156
## ENSG00000000938.11 1809 515
## Samples
## Tags whitefemale/WFNS5.htseq whitefemale/WFNS6.htseq
## ENSG00000000005.5 8 16
## ENSG00000000419.11 1040 1832
## ENSG00000000457.12 670 810
## ENSG00000000460.15 151 449
## ENSG00000000938.11 3275 2597
## Samples
## Tags whitefemale/WFNS7.htseq whitefemale/WFNS8.htseq
## ENSG00000000005.5 0 2
## ENSG00000000419.11 2094 1020
## ENSG00000000457.12 1211 752
## ENSG00000000460.15 359 169
## ENSG00000000938.11 1776 561
## Samples
## Tags whitefemale/WFNS9.htseq whitefemale/WFNS10.htseq
## ENSG00000000005.5 921 7
## ENSG00000000419.11 641 714
## ENSG00000000457.12 615 440
## ENSG00000000460.15 313 59
## ENSG00000000938.11 654 1831
## Samples
## Tags whitefemale/WFNS11.htseq whitefemale/WFNS12.htseq
## ENSG00000000005.5 1 0
## ENSG00000000419.11 1418 1098
## ENSG00000000457.12 639 1255
## ENSG00000000460.15 179 613
## ENSG00000000938.11 1241 1734
## Samples
## Tags whitefemale/WFNS13.htseq whitefemale/WFNS14.htseq
## ENSG00000000005.5 0 0
## ENSG00000000419.11 2246 2337
## ENSG00000000457.12 931 1456
## ENSG00000000460.15 856 896
## ENSG00000000938.11 3833 3091
## Samples
## Tags whitefemale/WFNS15.htseq whitefemale/WFNS16.htseq
## ENSG00000000005.5 0 4
## ENSG00000000419.11 837 888
## ENSG00000000457.12 1038 589
## ENSG00000000460.15 148 104
## ENSG00000000938.11 241 1069
## Samples
## Tags whitefemale/WFNS17.htseq whitefemale/WFNS18.htseq
## ENSG00000000005.5 0 6
## ENSG00000000419.11 1272 1673
## ENSG00000000457.12 689 1163
## ENSG00000000460.15 198 615
## ENSG00000000938.11 584 1629
## Samples
## Tags whitefemale/WFNS19.htseq whitefemale/WFNS20.htseq
## ENSG00000000005.5 0 0
## ENSG00000000419.11 1072 1798
## ENSG00000000457.12 1118 310
## ENSG00000000460.15 375 162
## ENSG00000000938.11 1080 276
## Samples
## Tags whitefemale/WFNS21.htseq whitefemale/WFNS22.htseq
## ENSG00000000005.5 8 0
## ENSG00000000419.11 1916 1642
## ENSG00000000457.12 995 476
## ENSG00000000460.15 501 600
## ENSG00000000938.11 4402 909
## Samples
## Tags whitefemale/WFNS23.htseq whitefemale/WFNS24.htseq
## ENSG00000000005.5 0 18
## ENSG00000000419.11 1373 663
## ENSG00000000457.12 747 507
## ENSG00000000460.15 216 108
## ENSG00000000938.11 1589 473
## Samples
## Tags whitefemale/WFNS25.htseq whitefemale/WFNS26.htseq
## ENSG00000000005.5 1 15
## ENSG00000000419.11 1170 1220
## ENSG00000000457.12 426 876
## ENSG00000000460.15 222 250
## ENSG00000000938.11 1893 422
## Samples
## Tags whitefemale/WFNS27.htseq whitefemale/WFNS28.htseq
## ENSG00000000005.5 2 7
## ENSG00000000419.11 815 727
## ENSG00000000457.12 944 667
## ENSG00000000460.15 312 123
## ENSG00000000938.11 537 1212
## Samples
## Tags whitefemale/WFNS29.htseq whitefemale/WFNS30.htseq
## ENSG00000000005.5 4 0
## ENSG00000000419.11 1319 2450
## ENSG00000000457.12 1706 1941
## ENSG00000000460.15 407 751
## ENSG00000000938.11 1255 1376
## Samples
## Tags whitefemale/WFNS31.htseq whitefemale/WFNS32.htseq
## ENSG00000000005.5 1 2
## ENSG00000000419.11 864 2160
## ENSG00000000457.12 717 1583
## ENSG00000000460.15 181 689
## ENSG00000000938.11 908 358
## Samples
## Tags whitefemale/WFS1.htseq whitefemale/WFS2.htseq
## ENSG00000000005.5 0 2
## ENSG00000000419.11 1292 914
## ENSG00000000457.12 757 474
## ENSG00000000460.15 339 80
## ENSG00000000938.11 746 2132
## Samples
## Tags whitefemale/WFS3.htseq whitefemale/WFS4.htseq
## ENSG00000000005.5 1 10
## ENSG00000000419.11 1249 286
## ENSG00000000457.12 345 656
## ENSG00000000460.15 110 504
## ENSG00000000938.11 4762 177
## Samples
## Tags whitefemale/WFS5.htseq whitefemale/WFS6.htseq
## ENSG00000000005.5 149 0
## ENSG00000000419.11 1057 1201
## ENSG00000000457.12 709 779
## ENSG00000000460.15 339 226
## ENSG00000000938.11 884 342
## Samples
## Tags whitefemale/WFS7.htseq whitefemale/WFS8.htseq
## ENSG00000000005.5 7 1
## ENSG00000000419.11 1530 2362
## ENSG00000000457.12 973 920
## ENSG00000000460.15 196 1130
## ENSG00000000938.11 3241 746
## Samples
## Tags whitefemale/WFS9.htseq whitefemale/WFS10.htseq
## ENSG00000000005.5 1 151
## ENSG00000000419.11 1115 2527
## ENSG00000000457.12 863 3507
## ENSG00000000460.15 334 2071
## ENSG00000000938.11 423 2272
## Samples
## Tags whitefemale/WFS11.htseq whitefemale/WFS12.htseq
## ENSG00000000005.5 5 13
## ENSG00000000419.11 1003 1552
## ENSG00000000457.12 832 1505
## ENSG00000000460.15 221 261
## ENSG00000000938.11 1342 1472
## Samples
## Tags whitefemale/WFS13.htseq whitefemale/WFS14.htseq
## ENSG00000000005.5 0 2
## ENSG00000000419.11 1082 1312
## ENSG00000000457.12 926 858
## ENSG00000000460.15 330 319
## ENSG00000000938.11 488 1052
## Samples
## Tags whitefemale/WFS15.htseq whitefemale/WFS16.htseq
## ENSG00000000005.5 1 5
## ENSG00000000419.11 3565 1592
## ENSG00000000457.12 1506 1144
## ENSG00000000460.15 737 308
## ENSG00000000938.11 1543 1408
## Samples
## Tags whitefemale/WFS17.htseq whitefemale/WFS18.htseq
## ENSG00000000005.5 4 0
## ENSG00000000419.11 1974 770
## ENSG00000000457.12 2270 617
## ENSG00000000460.15 452 189
## ENSG00000000938.11 1406 917
## Samples
## Tags whitefemale/WFS19.htseq whitefemale/WFS20.htseq
## ENSG00000000005.5 5 0
## ENSG00000000419.11 1432 1672
## ENSG00000000457.12 1258 837
## ENSG00000000460.15 456 510
## ENSG00000000938.11 606 615
## Samples
## Tags whitefemale/WFS21.htseq whitefemale/WFS22.htseq
## ENSG00000000005.5 2 24
## ENSG00000000419.11 1451 557
## ENSG00000000457.12 1330 1030
## ENSG00000000460.15 385 583
## ENSG00000000938.11 431 288
## Samples
## Tags whitefemale/WFS23.htseq whitefemale/WFS24.htseq
## ENSG00000000005.5 0 1
## ENSG00000000419.11 1280 1008
## ENSG00000000457.12 456 644
## ENSG00000000460.15 205 235
## ENSG00000000938.11 81 2964
## Samples
## Tags whitefemale/WFS25.htseq whitefemale/WFS26.htseq
## ENSG00000000005.5 0 2
## ENSG00000000419.11 2788 1003
## ENSG00000000457.12 1439 388
## ENSG00000000460.15 1701 74
## ENSG00000000938.11 1121 3617
## Samples
## Tags whitefemale/WFS27.htseq whitefemale/WFS28.htseq
## ENSG00000000005.5 1 10
## ENSG00000000419.11 1332 3310
## ENSG00000000457.12 1569 1839
## ENSG00000000460.15 303 890
## ENSG00000000938.11 1207 405
## Samples
## Tags whitefemale/WFS29.htseq whitefemale/WFS30.htseq
## ENSG00000000005.5 2 6
## ENSG00000000419.11 885 1528
## ENSG00000000457.12 823 943
## ENSG00000000460.15 164 196
## ENSG00000000938.11 592 6334
## Samples
## Tags whitefemale/WFS31.htseq whitefemale/WFS32.htseq
## ENSG00000000005.5 1 3
## ENSG00000000419.11 2298 1409
## ENSG00000000457.12 1110 546
## ENSG00000000460.15 521 437
## ENSG00000000938.11 1148 409
## Samples
## Tags whitefemale/WFS33.htseq whitefemale/WFS34.htseq
## ENSG00000000005.5 0 1
## ENSG00000000419.11 1460 1347
## ENSG00000000457.12 859 1415
## ENSG00000000460.15 480 228
## ENSG00000000938.11 1320 386
## Samples
## Tags whitefemale/WFS35.htseq whitefemale/WFS36.htseq
## ENSG00000000005.5 0 0
## ENSG00000000419.11 857 754
## ENSG00000000457.12 694 1400
## ENSG00000000460.15 254 253
## ENSG00000000938.11 2262 1108
## Samples
## Tags whitefemale/WFS37.htseq whitefemale/WFS38.htseq
## ENSG00000000005.5 0 1
## ENSG00000000419.11 1591 645
## ENSG00000000457.12 955 731
## ENSG00000000460.15 407 138
## ENSG00000000938.11 2864 185
## Samples
## Tags whitefemale/WFS39.htseq whitefemale/WFS40.htseq
## ENSG00000000005.5 2 0
## ENSG00000000419.11 1230 1570
## ENSG00000000457.12 916 341
## ENSG00000000460.15 629 253
## ENSG00000000938.11 941 326
## Samples
## Tags whitefemale/WFS41.htseq whitefemale/WFS42.htseq
## ENSG00000000005.5 1 129
## ENSG00000000419.11 1355 2988
## ENSG00000000457.12 776 1117
## ENSG00000000460.15 618 491
## ENSG00000000938.11 575 1671
## Samples
## Tags whitefemale/WFS43.htseq whitefemale/WFS44.htseq
## ENSG00000000005.5 15 4
## ENSG00000000419.11 1747 2765
## ENSG00000000457.12 1104 2658
## ENSG00000000460.15 440 577
## ENSG00000000938.11 816 1216
## 60482 more rows ...
##
## $genes
## ENSEMBL SYMBOL TXCHROM
## 1 ENSG00000000005 TNMD chrX
## 2 ENSG00000000419 DPM1 chr20
## 3 ENSG00000000457 SCYL3 chr1
## 4 ENSG00000000460 C1orf112 chr1
## 5 ENSG00000000938 FGR chr1
## 60482 more rows ...
cpm <- cpm(x)
lcpm <- cpm(x, log=TRUE)
L <- mean(x$samples$lib.size) * 1e-6
M <- median(x$samples$lib.size) * 1e-6
c(L, M)
## [1] 75.58755 68.58721
summary(lcpm)
## whitefemale/WFNS1.htseq whitefemale/WFNS2.htseq whitefemale/WFNS3.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.24008
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.24008
## Median :-4.43002 Median :-4.4717 Median :-4.75791
## Mean :-2.35879 Mean :-2.3439 Mean :-2.31935
## 3rd Qu.: 0.03284 3rd Qu.: 0.1451 3rd Qu.:-0.07328
## Max. :17.81943 Max. :18.1956 Max. :17.63510
## whitefemale/WFNS4.htseq whitefemale/WFNS5.htseq whitefemale/WFNS6.htseq
## Min. :-5.2401 Min. :-5.2401 Min. :-5.2401
## 1st Qu.:-5.2401 1st Qu.:-5.2401 1st Qu.:-5.2401
## Median :-4.3547 Median :-4.6942 Median :-4.8186
## Mean :-2.3350 Mean :-2.4737 Mean :-2.5757
## 3rd Qu.: 0.2262 3rd Qu.:-0.2486 3rd Qu.:-0.4604
## Max. :17.8626 Max. :18.2850 Max. :18.4000
## whitefemale/WFNS7.htseq whitefemale/WFNS8.htseq whitefemale/WFNS9.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.240
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.240
## Median :-4.71982 Median :-5.2401 Median :-4.530
## Mean :-2.39791 Mean :-2.4332 Mean :-2.443
## 3rd Qu.: 0.02077 3rd Qu.:-0.1648 3rd Qu.:-0.262
## Max. :18.11950 Max. :17.6035 Max. :17.858
## whitefemale/WFNS10.htseq whitefemale/WFNS11.htseq whitefemale/WFNS12.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.2401
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.2401
## Median :-4.32411 Median :-4.5157 Median :-4.5556
## Mean :-2.35926 Mean :-2.4622 Mean :-2.1385
## 3rd Qu.: 0.05027 3rd Qu.:-0.2858 3rd Qu.: 0.4936
## Max. :17.50665 Max. :17.8507 Max. :17.4972
## whitefemale/WFNS13.htseq whitefemale/WFNS14.htseq whitefemale/WFNS15.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.24008
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.24008
## Median :-4.42767 Median :-4.4792 Median :-4.51052
## Mean :-2.34135 Mean :-2.2349 Mean :-2.43437
## 3rd Qu.: 0.09332 3rd Qu.: 0.1634 3rd Qu.:-0.07494
## Max. :18.30714 Max. :17.7108 Max. :17.93567
## whitefemale/WFNS16.htseq whitefemale/WFNS17.htseq whitefemale/WFNS18.htseq
## Min. :-5.2401 Min. :-5.2401 Min. :-5.2401
## 1st Qu.:-5.2401 1st Qu.:-5.2401 1st Qu.:-5.2401
## Median :-4.4194 Median :-5.2401 Median :-4.4443
## Mean :-2.1698 Mean :-2.5921 Mean :-2.2950
## 3rd Qu.: 0.4906 3rd Qu.:-0.5892 3rd Qu.: 0.1723
## Max. :17.5787 Max. :18.1858 Max. :17.7606
## whitefemale/WFNS19.htseq whitefemale/WFNS20.htseq whitefemale/WFNS21.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.2401
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.2401
## Median :-4.57337 Median :-5.2401 Median :-4.6701
## Mean :-2.37652 Mean :-2.6906 Mean :-2.2854
## 3rd Qu.: 0.05212 3rd Qu.:-0.7542 3rd Qu.: 0.1911
## Max. :18.23622 Max. :18.3183 Max. :17.8603
## whitefemale/WFNS22.htseq whitefemale/WFNS23.htseq whitefemale/WFNS24.htseq
## Min. :-5.240 Min. :-5.2401 Min. :-5.2401
## 1st Qu.:-5.240 1st Qu.:-5.2401 1st Qu.:-5.2401
## Median :-5.240 Median :-4.5613 Median :-4.3376
## Mean :-2.507 Mean :-2.2046 Mean :-2.4685
## 3rd Qu.:-0.390 3rd Qu.: 0.4453 3rd Qu.:-0.1886
## Max. :18.419 Max. :17.8096 Max. :18.1729
## whitefemale/WFNS25.htseq whitefemale/WFNS26.htseq whitefemale/WFNS27.htseq
## Min. :-5.2401 Min. :-5.24008 Min. :-5.2401
## 1st Qu.:-5.2401 1st Qu.:-5.24008 1st Qu.:-5.2401
## Median :-4.5747 Median :-4.48538 Median :-4.4311
## Mean :-2.4890 Mean :-2.30754 Mean :-2.2054
## 3rd Qu.:-0.3757 3rd Qu.: 0.03792 3rd Qu.: 0.3783
## Max. :17.7866 Max. :17.74987 Max. :17.8361
## whitefemale/WFNS28.htseq whitefemale/WFNS29.htseq whitefemale/WFNS30.htseq
## Min. :-5.2401 Min. :-5.2401 Min. :-5.24008
## 1st Qu.:-5.2401 1st Qu.:-5.2401 1st Qu.:-5.24008
## Median :-4.4853 Median :-4.6096 Median :-4.55642
## Mean :-2.2905 Mean :-2.2400 Mean :-2.36727
## 3rd Qu.: 0.4178 3rd Qu.: 0.3323 3rd Qu.:-0.03976
## Max. :18.1328 Max. :17.8542 Max. :18.23535
## whitefemale/WFNS31.htseq whitefemale/WFNS32.htseq whitefemale/WFS1.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.2401
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.2401
## Median :-4.54523 Median :-4.2921 Median :-4.4994
## Mean :-2.38272 Mean :-2.1605 Mean :-2.4818
## 3rd Qu.:-0.03509 3rd Qu.: 0.4633 3rd Qu.:-0.3731
## Max. :18.27184 Max. :17.6961 Max. :18.1474
## whitefemale/WFS2.htseq whitefemale/WFS3.htseq whitefemale/WFS4.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.240
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.240
## Median :-4.37161 Median :-4.5671 Median :-3.989
## Mean :-2.36678 Mean :-2.3867 Mean :-2.717
## 3rd Qu.: 0.01382 3rd Qu.:-0.1406 3rd Qu.:-0.857
## Max. :17.61455 Max. :17.4865 Max. :18.695
## whitefemale/WFS5.htseq whitefemale/WFS6.htseq whitefemale/WFS7.htseq
## Min. :-5.2401 Min. :-5.2401 Min. :-5.240077
## 1st Qu.:-5.2401 1st Qu.:-5.2401 1st Qu.:-5.240077
## Median :-4.4727 Median :-4.6251 Median :-4.782374
## Mean :-2.2927 Mean :-2.4834 Mean :-2.384327
## 3rd Qu.: 0.1905 3rd Qu.:-0.3735 3rd Qu.:-0.007851
## Max. :17.6028 Max. :17.8770 Max. :17.519844
## whitefemale/WFS8.htseq whitefemale/WFS9.htseq whitefemale/WFS10.htseq
## Min. :-5.2401 Min. :-5.240 Min. :-5.2401
## 1st Qu.:-5.2401 1st Qu.:-5.240 1st Qu.:-5.2401
## Median :-4.2678 Median :-4.560 Median :-4.6208
## Mean :-2.1810 Mean :-2.306 Mean :-2.3737
## 3rd Qu.: 0.4599 3rd Qu.: 0.192 3rd Qu.:-0.1426
## Max. :17.8385 Max. :18.116 Max. :17.8059
## whitefemale/WFS11.htseq whitefemale/WFS12.htseq whitefemale/WFS13.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.2401
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.2401
## Median :-4.73140 Median :-4.4121 Median :-4.5361
## Mean :-2.34085 Mean :-2.2220 Mean :-2.2518
## 3rd Qu.: 0.04708 3rd Qu.: 0.4377 3rd Qu.: 0.5272
## Max. :17.87827 Max. :17.7441 Max. :17.7035
## whitefemale/WFS14.htseq whitefemale/WFS15.htseq whitefemale/WFS16.htseq
## Min. :-5.2401 Min. :-5.24008 Min. :-5.2401
## 1st Qu.:-5.2401 1st Qu.:-5.24008 1st Qu.:-5.2401
## Median :-4.5640 Median :-4.78838 Median :-4.6142
## Mean :-2.1692 Mean :-2.40509 Mean :-2.2278
## 3rd Qu.: 0.5517 3rd Qu.:-0.05841 3rd Qu.: 0.4693
## Max. :17.8467 Max. :18.18542 Max. :17.7121
## whitefemale/WFS17.htseq whitefemale/WFS18.htseq whitefemale/WFS19.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.2401
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.2401
## Median :-4.53419 Median :-5.2401 Median :-4.2633
## Mean :-2.29650 Mean :-2.5535 Mean :-2.5477
## 3rd Qu.: 0.08658 3rd Qu.:-0.3891 3rd Qu.:-0.6557
## Max. :17.72512 Max. :18.1696 Max. :19.2194
## whitefemale/WFS20.htseq whitefemale/WFS21.htseq whitefemale/WFS22.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.2401
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.2401
## Median :-4.62394 Median :-4.3101 Median :-3.6568
## Mean :-2.30645 Mean :-2.2257 Mean :-2.3637
## 3rd Qu.:-0.02176 3rd Qu.: 0.4518 3rd Qu.:-0.1837
## Max. :18.00774 Max. :18.0988 Max. :19.0689
## whitefemale/WFS23.htseq whitefemale/WFS24.htseq whitefemale/WFS25.htseq
## Min. :-5.2401 Min. :-5.2401 Min. :-5.24008
## 1st Qu.:-5.2401 1st Qu.:-5.2401 1st Qu.:-5.24008
## Median :-5.2401 Median :-4.5994 Median :-4.70648
## Mean :-2.5374 Mean :-2.2495 Mean :-2.30396
## 3rd Qu.:-0.5724 3rd Qu.: 0.4413 3rd Qu.:-0.07385
## Max. :17.8981 Max. :17.9386 Max. :17.77817
## whitefemale/WFS26.htseq whitefemale/WFS27.htseq whitefemale/WFS28.htseq
## Min. :-5.24008 Min. :-5.2401 Min. :-5.240
## 1st Qu.:-5.24008 1st Qu.:-5.2401 1st Qu.:-5.240
## Median :-4.43838 Median :-4.2341 Median :-4.263
## Mean :-2.39134 Mean :-2.1987 Mean :-2.635
## 3rd Qu.:-0.04351 3rd Qu.: 0.2741 3rd Qu.:-0.927
## Max. :17.60441 Max. :17.8004 Max. :19.074
## whitefemale/WFS29.htseq whitefemale/WFS30.htseq whitefemale/WFS31.htseq
## Min. :-5.240 Min. :-5.2401 Min. :-5.24008
## 1st Qu.:-5.240 1st Qu.:-5.2401 1st Qu.:-5.24008
## Median :-5.240 Median :-4.7524 Median :-4.75048
## Mean :-2.452 Mean :-2.3087 Mean :-2.37028
## 3rd Qu.:-0.237 3rd Qu.: 0.1531 3rd Qu.: 0.07422
## Max. :18.014 Max. :17.7842 Max. :17.87255
## whitefemale/WFS32.htseq whitefemale/WFS33.htseq whitefemale/WFS34.htseq
## Min. :-5.2401 Min. :-5.24008 Min. :-5.2401
## 1st Qu.:-5.2401 1st Qu.:-5.24008 1st Qu.:-5.2401
## Median :-4.3191 Median :-4.68596 Median :-5.2401
## Mean :-2.2378 Mean :-2.37099 Mean :-2.5348
## 3rd Qu.: 0.3011 3rd Qu.:-0.06533 3rd Qu.:-0.3107
## Max. :17.7022 Max. :17.98864 Max. :17.7935
## whitefemale/WFS35.htseq whitefemale/WFS36.htseq whitefemale/WFS37.htseq
## Min. :-5.24008 Min. :-5.24008 Min. :-5.2401
## 1st Qu.:-5.24008 1st Qu.:-5.24008 1st Qu.:-5.2401
## Median :-4.60404 Median :-4.66196 Median :-4.6151
## Mean :-2.36756 Mean :-2.33730 Mean :-2.2889
## 3rd Qu.: 0.03329 3rd Qu.: 0.06173 3rd Qu.: 0.2138
## Max. :18.06670 Max. :17.80973 Max. :17.6272
## whitefemale/WFS38.htseq whitefemale/WFS39.htseq whitefemale/WFS40.htseq
## Min. :-5.2401 Min. :-5.24008 Min. :-5.2401
## 1st Qu.:-5.2401 1st Qu.:-5.24008 1st Qu.:-5.2401
## Median :-5.2401 Median :-4.62057 Median :-5.2401
## Mean :-2.5727 Mean :-2.43901 Mean :-2.5201
## 3rd Qu.:-0.5653 3rd Qu.:-0.07567 3rd Qu.:-0.4886
## Max. :17.8924 Max. :18.05029 Max. :17.8325
## whitefemale/WFS41.htseq whitefemale/WFS42.htseq whitefemale/WFS43.htseq
## Min. :-5.2401 Min. :-5.24008 Min. :-5.2401
## 1st Qu.:-5.2401 1st Qu.:-5.24008 1st Qu.:-5.2401
## Median :-4.6529 Median :-4.75179 Median :-4.5918
## Mean :-2.3713 Mean :-2.36094 Mean :-2.2394
## 3rd Qu.:-0.1043 3rd Qu.: 0.06979 3rd Qu.: 0.2416
## Max. :18.2217 Max. :17.94979 Max. :17.6199
## whitefemale/WFS44.htseq
## Min. :-5.2401
## 1st Qu.:-5.2401
## Median :-4.5866
## Mean :-2.3681
## 3rd Qu.:-0.1794
## Max. :17.8613
table(rowSums(x$counts==0)==9)
##
## FALSE TRUE
## 60110 377
keep.exprs <- filterByExpr(x, group=group)
x <- x[keep.exprs,, keep.lib.sizes=FALSE]
dim(x)
## [1] 21559 76
lcpm.cutoff <- log2(10/M + 2/L)
library(RColorBrewer)
nsamples <- ncol(x)
col <- brewer.pal(nsamples, "Paired")
## Warning in brewer.pal(nsamples, "Paired"): n too large, allowed maximum for palette Paired is 12
## Returning the palette you asked for with that many colors
par(mfrow=c(1,2))
plot(density(lcpm[,1]), col=col[1], lwd=2, ylim=c(0,0.26), las=2, main="", xlab="")
title(main="A. Raw data", xlab="Log-cpm")
abline(v=lcpm.cutoff, lty=3)
for (i in 2:nsamples){
den <- density(lcpm[,i])
lines(den$x, den$y, col=col[i], lwd=2)
}
legend("topright", samplenames, text.col=col, bty="n")
lcpm <- cpm(x, log=TRUE)
plot(density(lcpm[,1]), col=col[1], lwd=2, ylim=c(0,0.26), las=2, main="", xlab="")
title(main="B. Filtered data", xlab="Log-cpm")
abline(v=lcpm.cutoff, lty=3)
for (i in 2:nsamples){
den <- density(lcpm[,i])
lines(den$x, den$y, col=col[i], lwd=2)
}
legend("topright", samplenames, text.col=col, bty="n")
x <- calcNormFactors(x, method = "TMM")
x$samples$norm.factors
## [1] 1.0864683 1.0995992 1.2015306 1.1281621 0.8881155 0.7931739 0.9731491
## [8] 1.0718366 0.9985034 1.0687453 1.0225463 1.3626677 0.9789331 1.1951005
## [15] 0.9891228 1.1621874 0.9212492 1.1858691 0.9970874 0.6843201 1.1593694
## [22] 0.8725546 1.1386858 0.8870856 0.9558430 1.1201807 1.2472777 1.0794770
## [29] 1.2587726 0.9945056 0.9504877 1.2709627 0.9567161 1.0505931 0.9435556
## [36] 0.3030472 1.2162580 0.9590334 1.0343686 1.2312309 1.0474225 1.0980503
## [43] 1.0394273 1.1541164 1.1565538 1.2213398 0.9839400 1.2091710 1.1262339
## [50] 0.8803225 0.4764993 1.0792561 1.1219468 0.4379288 0.9467069 1.0982377
## [57] 1.1602744 0.9763699 1.1763853 0.4965849 1.0047268 1.0428736 1.0366464
## [64] 1.1754805 1.0443877 0.8691458 1.0113301 1.0897997 1.0977749 0.9225881
## [71] 0.9617719 0.9526412 0.9968807 1.0126526 1.2075802 1.0263590
x2 <- x
x2$samples$norm.factors <- 1
x2$counts[,1] <- ceiling(x2$counts[,1]*0.05)
x2$counts[,2] <- x2$counts[,2]*5
par(mfrow=c(1,2))
lcpm <- cpm(x2, log=TRUE)
boxplot(lcpm, las=2, col=col, main="")
title(main="A. Example: Unnormalised data",ylab="Log-cpm")
x2 <- calcNormFactors(x2)
x2$samples$norm.factors
## [1] 0.06503721 5.36646401 1.21109899 1.18070024 0.95280213 0.79810587
## [7] 0.97692466 1.08663341 1.00611964 1.14645339 1.04074496 1.41406061
## [13] 1.00406207 1.18597596 1.02041104 1.26151760 0.89631605 1.20421925
## [19] 0.97918706 0.68075260 1.21567093 0.87784525 1.16410591 0.89025736
## [25] 0.94062934 1.13567928 1.29238865 1.15211264 1.27419014 0.99585286
## [31] 0.96438267 1.22867087 0.96568453 1.12350429 1.01410718 0.30953729
## [37] 1.23583326 0.93605531 1.08919564 1.21721071 1.07750424 1.11038468
## [43] 1.07563281 1.21774322 1.16767422 1.29537817 0.97966343 1.23132925
## [49] 1.13959068 0.88913916 0.49217053 1.05286285 1.13054732 0.44164091
## [55] 0.92524858 1.18581540 1.16613837 1.03178296 1.20517851 0.47713817
## [61] 0.94723947 1.11943172 1.07828090 1.20207385 1.07818732 0.83768825
## [67] 1.01888159 1.09274675 1.11513114 0.90294689 0.96835007 0.96047268
## [73] 0.98195284 1.01632319 1.26238797 1.03419695
lcpm <- cpm(x2, log=TRUE)
boxplot(lcpm, las=2, col=col, main="")
title(main="B. Example: Normalised data",ylab="Log-cpm")
lcpm <- cpm(x, log=TRUE)
par(mfrow=c(1,2))
group
## [1] "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS"
## [11] "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS"
## [21] "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS" "WFNS"
## [31] "WFNS" "WFNS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS"
## [41] "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS"
## [51] "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS"
## [61] "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS" "WFS"
## [71] "WFS" "WFS" "WFS" "WFS" "WFS" "WFS"
levels(group) <- brewer.pal(nlevels(group), "Set1")
## Warning in brewer.pal(nlevels(group), "Set1"): minimal value for n is 3, returning requested palette with 3 different levels
col.group <- as.character(group)
col.group <- c("purple","orange")[group]
plotMDS(lcpm, labels=group, col=col.group)
title(main="A. Sample groups")
glMDSPlot(lcpm,groups = group)
design <- model.matrix(~0+group)
colnames(design) <- gsub("group", "", colnames(design))
design
## WFNS WFS
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 0
## 5 1 0
## 6 1 0
## 7 1 0
## 8 1 0
## 9 1 0
## 10 1 0
## 11 1 0
## 12 1 0
## 13 1 0
## 14 1 0
## 15 1 0
## 16 1 0
## 17 1 0
## 18 1 0
## 19 1 0
## 20 1 0
## 21 1 0
## 22 1 0
## 23 1 0
## 24 1 0
## 25 1 0
## 26 1 0
## 27 1 0
## 28 1 0
## 29 1 0
## 30 1 0
## 31 1 0
## 32 1 0
## 33 0 1
## 34 0 1
## 35 0 1
## 36 0 1
## 37 0 1
## 38 0 1
## 39 0 1
## 40 0 1
## 41 0 1
## 42 0 1
## 43 0 1
## 44 0 1
## 45 0 1
## 46 0 1
## 47 0 1
## 48 0 1
## 49 0 1
## 50 0 1
## 51 0 1
## 52 0 1
## 53 0 1
## 54 0 1
## 55 0 1
## 56 0 1
## 57 0 1
## 58 0 1
## 59 0 1
## 60 0 1
## 61 0 1
## 62 0 1
## 63 0 1
## 64 0 1
## 65 0 1
## 66 0 1
## 67 0 1
## 68 0 1
## 69 0 1
## 70 0 1
## 71 0 1
## 72 0 1
## 73 0 1
## 74 0 1
## 75 0 1
## 76 0 1
## attr(,"assign")
## [1] 1 1
## attr(,"contrasts")
## attr(,"contrasts")$group
## [1] "contr.treatment"
contr.matrix <- makeContrasts(
WFNSVsWFS = WFNS-WFS,
levels = colnames(design))
contr.matrix
## Contrasts
## Levels WFNSVsWFS
## WFNS 1
## WFS -1
par(mfrow=c(1,2))
v <- voom(x, design, plot=TRUE)
v
## An object of class "EList"
## $genes
## ENSEMBL SYMBOL TXCHROM
## 2 ENSG00000000419 DPM1 chr20
## 3 ENSG00000000457 SCYL3 chr1
## 4 ENSG00000000460 C1orf112 chr1
## 5 ENSG00000000938 FGR chr1
## 6 ENSG00000000971 CFH chr1
## 21554 more rows ...
##
## $targets
## files group lib.size
## whitefemale/WFNS1.htseq whitefemale/WFNS1.htseq.counts WFNS 54462510
## whitefemale/WFNS2.htseq whitefemale/WFNS2.htseq.counts WFNS 58887213
## whitefemale/WFNS3.htseq whitefemale/WFNS3.htseq.counts WFNS 114297236
## whitefemale/WFNS4.htseq whitefemale/WFNS4.htseq.counts WFNS 50284300
## whitefemale/WFNS5.htseq whitefemale/WFNS5.htseq.counts WFNS 72952233
## norm.factors
## whitefemale/WFNS1.htseq 1.0864683
## whitefemale/WFNS2.htseq 1.0995992
## whitefemale/WFNS3.htseq 1.2015306
## whitefemale/WFNS4.htseq 1.1281621
## whitefemale/WFNS5.htseq 0.8881155
## 71 more rows ...
##
## $E
## Samples
## Tags whitefemale/WFNS1.htseq whitefemale/WFNS2.htseq
## ENSG00000000419.11 4.372999 5.145603
## ENSG00000000457.12 4.629948 3.124338
## ENSG00000000460.15 2.827133 3.588742
## ENSG00000000938.11 3.360803 3.485346
## ENSG00000000971.14 5.100473 3.921826
## Samples
## Tags whitefemale/WFNS3.htseq whitefemale/WFNS4.htseq
## ENSG00000000419.11 3.537849 3.627574
## ENSG00000000457.12 3.175279 3.294870
## ENSG00000000460.15 3.482461 1.637983
## ENSG00000000938.11 3.984729 3.357792
## ENSG00000000971.14 6.106326 7.217076
## Samples
## Tags whitefemale/WFNS5.htseq whitefemale/WFNS6.htseq
## ENSG00000000419.11 3.834181 4.375313
## ENSG00000000457.12 3.200213 3.198384
## ENSG00000000460.15 1.054294 2.347893
## ENSG00000000938.11 5.488619 4.878623
## ENSG00000000971.14 7.091383 5.625993
## Samples
## Tags whitefemale/WFNS7.htseq whitefemale/WFNS8.htseq
## ENSG00000000419.11 4.628903 4.195708
## ENSG00000000457.12 3.839092 3.756195
## ENSG00000000460.15 2.086361 1.605789
## ENSG00000000938.11 4.391335 3.333790
## ENSG00000000971.14 5.850213 7.606919
## Samples
## Tags whitefemale/WFNS9.htseq whitefemale/WFNS10.htseq
## ENSG00000000419.11 3.435025 3.9724725
## ENSG00000000457.12 3.375334 3.2746805
## ENSG00000000460.15 2.402041 0.3865001
## ENSG00000000938.11 3.463969 5.3304923
## ENSG00000000971.14 7.552469 6.3318702
## Samples
## Tags whitefemale/WFNS11.htseq whitefemale/WFNS12.htseq
## ENSG00000000419.11 4.581996 3.696450
## ENSG00000000457.12 3.432647 3.889178
## ENSG00000000460.15 1.599686 2.856051
## ENSG00000000938.11 4.389715 4.355435
## ENSG00000000971.14 7.201876 6.089362
## Samples
## Tags whitefemale/WFNS13.htseq whitefemale/WFNS14.htseq
## ENSG00000000419.11 4.522043 4.169955
## ENSG00000000457.12 3.251991 3.487494
## ENSG00000000460.15 3.130889 2.787364
## ENSG00000000938.11 5.293026 4.573295
## ENSG00000000971.14 5.728012 6.434082
## Samples
## Tags whitefemale/WFNS15.htseq whitefemale/WFNS16.htseq
## ENSG00000000419.11 3.883044 3.955818
## ENSG00000000457.12 4.193384 3.363938
## ENSG00000000460.15 1.387418 0.867949
## ENSG00000000938.11 2.088978 4.223311
## ENSG00000000971.14 6.620828 7.840565
## Samples
## Tags whitefemale/WFNS17.htseq whitefemale/WFNS18.htseq
## ENSG00000000419.11 4.877965 3.781463
## ENSG00000000457.12 3.993922 3.257066
## ENSG00000000460.15 2.197511 2.338426
## ENSG00000000938.11 3.755575 3.743024
## ENSG00000000971.14 3.762961 6.067429
## Samples
## Tags whitefemale/WFNS19.htseq whitefemale/WFNS20.htseq
## ENSG00000000419.11 4.065306 5.453379
## ENSG00000000457.12 4.125894 2.919251
## ENSG00000000460.15 2.551213 1.985097
## ENSG00000000938.11 4.076028 2.751937
## ENSG00000000971.14 5.857108 3.831860
## Samples
## Tags whitefemale/WFNS21.htseq whitefemale/WFNS22.htseq
## ENSG00000000419.11 4.406237 5.268830
## ENSG00000000457.12 3.461256 3.483485
## ENSG00000000460.15 2.472085 3.817173
## ENSG00000000938.11 5.606086 4.416082
## ENSG00000000971.14 7.137754 5.351609
## Samples
## Tags whitefemale/WFNS23.htseq whitefemale/WFNS24.htseq
## ENSG00000000419.11 4.262478 4.105662
## ENSG00000000457.12 3.384766 3.718974
## ENSG00000000460.15 1.597060 1.493261
## ENSG00000000938.11 4.473194 3.618930
## ENSG00000000971.14 5.785194 6.945877
## Samples
## Tags whitefemale/WFNS25.htseq whitefemale/WFNS26.htseq
## ENSG00000000419.11 4.247930 4.309830
## ENSG00000000457.12 2.791422 3.832184
## ENSG00000000460.15 1.852682 2.025241
## ENSG00000000938.11 4.941860 2.779381
## ENSG00000000971.14 4.407616 5.769316
## Samples
## Tags whitefemale/WFNS27.htseq whitefemale/WFNS28.htseq
## ENSG00000000419.11 3.702555 3.616986
## ENSG00000000457.12 3.914421 3.492807
## ENSG00000000460.15 2.318727 1.058550
## ENSG00000000938.11 3.101135 4.353952
## ENSG00000000971.14 5.823194 6.188167
## Samples
## Tags whitefemale/WFNS29.htseq whitefemale/WFNS30.htseq
## ENSG00000000419.11 3.927207 4.305967
## ENSG00000000457.12 4.298256 3.970063
## ENSG00000000460.15 2.232088 2.600736
## ENSG00000000938.11 3.855478 3.473896
## ENSG00000000971.14 7.459607 5.129089
## Samples
## Tags whitefemale/WFNS31.htseq whitefemale/WFNS32.htseq
## ENSG00000000419.11 3.897446 4.388438
## ENSG00000000457.12 3.628559 3.940190
## ENSG00000000460.15 1.645550 2.740695
## ENSG00000000938.11 3.969067 1.797118
## ENSG00000000971.14 5.213521 7.614391
## Samples
## Tags whitefemale/WFS1.htseq whitefemale/WFS2.htseq
## ENSG00000000419.11 4.585004 4.2503450
## ENSG00000000457.12 3.814158 3.3037699
## ENSG00000000460.15 2.656324 0.7444225
## ENSG00000000938.11 3.793054 5.4718357
## ENSG00000000971.14 6.730225 5.2340835
## Samples
## Tags whitefemale/WFS3.htseq whitefemale/WFS4.htseq
## ENSG00000000419.11 4.3813233 2.791960
## ENSG00000000457.12 2.5267300 3.988220
## ENSG00000000460.15 0.8820907 3.608279
## ENSG00000000938.11 6.3116915 2.101244
## ENSG00000000971.14 6.0500196 6.467394
## Samples
## Tags whitefemale/WFS5.htseq whitefemale/WFS6.htseq
## ENSG00000000419.11 4.014932 4.140712
## ENSG00000000457.12 3.439149 3.516496
## ENSG00000000460.15 2.375758 1.733458
## ENSG00000000938.11 3.757208 2.330051
## ENSG00000000971.14 5.300806 4.209871
## Samples
## Tags whitefemale/WFS7.htseq whitefemale/WFS8.htseq
## ENSG00000000419.11 3.8704131 4.614548
## ENSG00000000457.12 3.2176629 3.254724
## ENSG00000000460.15 0.9090113 3.551195
## ENSG00000000938.11 4.9530716 2.952448
## ENSG00000000971.14 5.7391293 6.960819
## Samples
## Tags whitefemale/WFS9.htseq whitefemale/WFS10.htseq
## ENSG00000000419.11 4.087030 4.030253
## ENSG00000000457.12 3.717607 4.502985
## ENSG00000000460.15 2.349417 3.743218
## ENSG00000000938.11 2.689773 3.876822
## ENSG00000000971.14 6.161846 4.699917
## Samples
## Tags whitefemale/WFS11.htseq whitefemale/WFS12.htseq
## ENSG00000000419.11 3.433773 3.788907
## ENSG00000000457.12 3.164254 3.744556
## ENSG00000000460.15 1.254111 1.219197
## ENSG00000000938.11 3.853654 3.712581
## ENSG00000000971.14 5.609358 5.596992
## Samples
## Tags whitefemale/WFS13.htseq whitefemale/WFS14.htseq
## ENSG00000000419.11 3.963087 4.088731
## ENSG00000000457.12 3.738583 3.476304
## ENSG00000000460.15 2.251442 2.050301
## ENSG00000000938.11 2.815150 3.770234
## ENSG00000000971.14 5.409190 6.383138
## Samples
## Tags whitefemale/WFS15.htseq whitefemale/WFS16.htseq
## ENSG00000000419.11 5.140630 4.243590
## ENSG00000000457.12 3.897726 3.767014
## ENSG00000000460.15 2.867240 1.875639
## ENSG00000000938.11 3.932731 4.066456
## ENSG00000000971.14 5.564592 4.690324
## Samples
## Tags whitefemale/WFS17.htseq whitefemale/WFS18.htseq
## ENSG00000000419.11 3.872901 4.164243
## ENSG00000000457.12 4.074424 3.844887
## ENSG00000000460.15 1.747404 2.140646
## ENSG00000000938.11 3.383524 4.416156
## ENSG00000000971.14 5.438000 6.648231
## Samples
## Tags whitefemale/WFS19.htseq whitefemale/WFS20.htseq
## ENSG00000000419.11 4.270080 4.450671
## ENSG00000000457.12 4.083250 3.452826
## ENSG00000000460.15 2.620232 2.738647
## ENSG00000000938.11 3.030125 3.008495
## ENSG00000000971.14 6.848397 5.528128
## Samples
## Tags whitefemale/WFS21.htseq whitefemale/WFS22.htseq
## ENSG00000000419.11 3.955674 3.493498
## ENSG00000000457.12 3.830098 4.379799
## ENSG00000000460.15 2.042933 3.559259
## ENSG00000000938.11 2.205562 2.543097
## ENSG00000000971.14 5.521292 5.443138
## Samples
## Tags whitefemale/WFS23.htseq whitefemale/WFS24.htseq
## ENSG00000000419.11 4.9654653 3.764938
## ENSG00000000457.12 3.4774448 3.118980
## ENSG00000000460.15 2.3259683 1.666526
## ENSG00000000938.11 0.9917019 5.320516
## ENSG00000000971.14 4.5476084 5.599722
## Samples
## Tags whitefemale/WFS25.htseq whitefemale/WFS26.htseq
## ENSG00000000419.11 4.832118 4.3379146
## ENSG00000000457.12 3.878197 2.9688605
## ENSG00000000460.15 4.119436 0.5862583
## ENSG00000000938.11 3.518059 6.1878670
## ENSG00000000971.14 6.326516 5.7172002
## Samples
## Tags whitefemale/WFS27.htseq whitefemale/WFS28.htseq
## ENSG00000000419.11 3.333902 5.419161
## ENSG00000000457.12 3.570071 4.571426
## ENSG00000000460.15 1.199535 3.524800
## ENSG00000000938.11 3.191789 2.389886
## ENSG00000000971.14 5.103253 6.640433
## Samples
## Tags whitefemale/WFS29.htseq whitefemale/WFS30.htseq
## ENSG00000000419.11 4.502275 3.964409
## ENSG00000000457.12 4.397551 3.268387
## ENSG00000000460.15 2.073870 1.004894
## ENSG00000000938.11 3.922598 6.015523
## ENSG00000000971.14 5.398865 7.132970
## Samples
## Tags whitefemale/WFS31.htseq whitefemale/WFS32.htseq
## ENSG00000000419.11 4.568024 4.828815
## ENSG00000000457.12 3.518540 3.461925
## ENSG00000000460.15 2.428070 3.140987
## ENSG00000000938.11 3.567082 3.045567
## ENSG00000000971.14 5.843842 4.331466
## Samples
## Tags whitefemale/WFS33.htseq whitefemale/WFS34.htseq
## ENSG00000000419.11 4.116730 4.433441
## ENSG00000000457.12 3.351837 4.504468
## ENSG00000000460.15 2.512876 1.873422
## ENSG00000000938.11 3.971352 2.631696
## ENSG00000000971.14 6.476484 5.942570
## Samples
## Tags whitefemale/WFS35.htseq whitefemale/WFS36.htseq
## ENSG00000000419.11 3.636685 3.175682
## ENSG00000000457.12 3.332523 4.068031
## ENSG00000000460.15 1.884214 1.602147
## ENSG00000000938.11 5.036394 3.730698
## ENSG00000000971.14 6.608118 6.045842
## Samples
## Tags whitefemale/WFS37.htseq whitefemale/WFS38.htseq
## ENSG00000000419.11 4.381474 3.874335
## ENSG00000000457.12 3.645414 4.054775
## ENSG00000000460.15 2.415958 1.653803
## ENSG00000000938.11 5.229370 2.075337
## ENSG00000000971.14 6.318358 4.618879
## Samples
## Tags whitefemale/WFS39.htseq whitefemale/WFS40.htseq
## ENSG00000000419.11 4.183755 5.390527
## ENSG00000000457.12 3.758718 3.189260
## ENSG00000000460.15 3.216789 2.759360
## ENSG00000000938.11 3.797544 3.124457
## ENSG00000000971.14 6.571683 6.980685
## Samples
## Tags whitefemale/WFS41.htseq whitefemale/WFS42.htseq
## ENSG00000000419.11 4.178003 4.977085
## ENSG00000000457.12 3.374236 3.557938
## ENSG00000000460.15 3.046023 2.372927
## ENSG00000000938.11 2.942066 4.138807
## ENSG00000000971.14 6.303922 6.424552
## Samples
## Tags whitefemale/WFS43.htseq whitefemale/WFS44.htseq
## ENSG00000000419.11 4.442303 4.353617
## ENSG00000000457.12 3.780404 4.296689
## ENSG00000000460.15 2.454225 2.093969
## ENSG00000000938.11 3.344536 3.168813
## ENSG00000000971.14 6.113781 5.832901
## 21554 more rows ...
##
## $weights
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1.976821 2.026294 2.319106 1.923732 2.149424 2.238567 2.219834 1.991974
## [2,] 1.675162 1.730710 2.159680 1.616887 1.884906 2.011277 1.984288 1.690784
## [3,] 1.098148 1.130736 1.498791 1.066533 1.232093 1.336346 1.312198 1.107186
## [4,] 1.861535 1.915969 2.270294 1.804956 2.053323 2.160819 2.138094 1.877731
## [5,] 2.356300 2.349675 2.243295 2.360088 2.324853 2.293906 2.301674 2.354407
## [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]
## [1,] 2.030656 1.854612 2.029763 2.220258 2.275005 2.343136 2.004246 2.009425
## [2,] 1.735951 1.546899 1.734877 1.984939 2.073532 2.218884 1.704312 1.710499
## [3,] 1.133924 1.030241 1.133271 1.312740 1.397608 1.587363 1.115002 1.118574
## [4,] 1.920665 1.732636 1.919703 2.138607 2.208504 2.309291 1.891745 1.897826
## [5,] 2.349065 2.362925 2.349190 2.301497 2.275243 2.214607 2.352787 2.352052
## [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]
## [1,] 1.818740 2.333803 2.078042 1.7818005 2.248181 1.807768 2.139095 1.7351532
## [2,] 1.511871 2.190439 1.792493 1.4762379 2.025342 1.501186 1.870871 1.4351166
## [3,] 1.012624 1.542016 1.168730 0.9951156 1.349986 1.007226 1.222312 0.9752781
## [4,] 1.696426 2.291942 1.971786 1.6585396 2.173560 1.685365 2.041559 1.6127448
## [5,] 2.360890 2.229223 2.341210 2.3585789 2.289610 2.360204 2.327506 2.3550314
## [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32]
## [1,] 2.053800 2.053138 2.064061 2.030462 2.230619 2.336756 2.017266 2.293516
## [2,] 1.763848 1.763048 1.776269 1.735717 2.000637 2.198204 1.719883 2.104938
## [3,] 1.150884 1.150398 1.158428 1.133782 1.326065 1.554570 1.124146 1.431353
## [4,] 1.945607 1.944893 1.956682 1.920455 2.151170 2.298135 1.906256 2.232200
## [5,] 2.345859 2.345950 2.344008 2.349093 2.297188 2.225198 2.350944 2.264377
## [,33] [,34] [,35] [,36] [,37] [,38] [,39] [,40]
## [1,] 1.972227 1.897175 2.039911 1.790498 2.093895 2.115180 2.299673 2.271806
## [2,] 1.713619 1.631474 1.792068 1.526034 1.853383 1.882761 2.147495 2.104061
## [3,] 1.119508 1.073622 1.167482 1.019033 1.209087 1.229528 1.482237 1.428949
## [4,] 1.696068 1.613742 1.774206 1.509099 1.835778 1.864808 2.134272 2.090579
## [5,] 2.362867 2.358202 2.359811 2.342043 2.354853 2.351420 2.293224 2.307269
## [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48]
## [1,] 2.095706 2.359851 2.258888 2.316079 2.125158 2.181128 2.287984 2.218742
## [2,] 1.855843 2.304763 2.082345 2.184131 1.896497 1.965850 2.128885 2.021252
## [3,] 1.210798 1.759267 1.405101 1.530414 1.239180 1.295685 1.459283 1.344789
## [4,] 1.838210 2.299069 2.067004 2.172521 1.878502 1.949381 2.115805 2.006470
## [5,] 2.354562 2.212632 2.313132 2.280258 2.349825 2.338785 2.299622 2.328140
## [,49] [,50] [,51] [,52] [,53] [,54] [,55] [,56]
## [1,] 2.348793 1.816970 2.161349 2.177458 2.261394 1.916375 1.784026 2.160904
## [2,] 2.260122 1.552691 1.940385 1.960155 2.086948 1.653164 1.519620 1.939844
## [3,] 1.659878 1.032400 1.274592 1.290960 1.409701 1.085345 1.015806 1.274145
## [4,] 2.251739 1.535387 1.924183 1.943746 2.071564 1.635137 1.502775 1.923647
## [5,] 2.243580 2.347222 2.343532 2.339839 2.311990 2.359499 2.340782 2.343634
## [,57] [,58] [,59] [,60] [,61] [,62] [,63] [,64]
## [1,] 2.276952 1.917991 2.346118 2.182418 1.7484477 2.277032 2.273448 1.917649
## [2,] 2.111943 1.654993 2.253434 1.967854 1.4871607 2.112066 2.106575 1.654606
## [3,] 1.438542 1.086331 1.645409 1.297348 0.9996819 1.438692 1.432005 1.086122
## [4,] 2.098993 1.636941 2.244935 1.951365 1.4707631 2.099115 2.093589 1.636559
## [5,] 2.304950 2.359608 2.247602 2.338415 2.3337419 2.304914 2.306528 2.359585
## [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72]
## [1,] 2.219364 2.064094 2.121567 2.215745 2.176644 1.833846 2.112020 1.7174149
## [2,] 2.022100 1.819463 1.891627 2.017167 1.959032 1.569437 1.878381 1.4588959
## [3,] 1.345611 1.185761 1.235702 1.340831 1.290029 1.040908 1.226479 0.9861099
## [4,] 2.007310 1.802260 1.873568 2.002423 1.942635 1.552190 1.860479 1.4428751
## [5,] 2.327966 2.358691 2.350398 2.328977 2.340047 2.350482 2.351927 2.3237325
## [,73] [,74] [,75] [,76]
## [1,] 2.166010 2.266241 2.199030 2.349297
## [2,] 1.946061 2.095555 1.993757 2.261384
## [3,] 1.279286 1.418635 1.318901 1.662620
## [4,] 1.929800 2.080403 1.976996 2.252995
## [5,] 2.342466 2.309787 2.333682 2.242824
## 21554 more rows ...
##
## $design
## WFNS WFS
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 0
## 5 1 0
## 71 more rows ...
vfit <- lmFit(v, design)
vfit <- contrasts.fit(vfit, contrasts=contr.matrix)
efit <- eBayes(vfit)
plotSA(efit, main="Final model: Mean-variance trend")
summary(decideTests(efit))
## WFNSVsWFS
## Down 0
## NotSig 21559
## Up 0
tfit <- treat(vfit, lfc=1)
dt <- decideTests(tfit)
summary(dt)
## WFNSVsWFS
## Down 0
## NotSig 21559
## Up 0
de.common <- which(dt[,1]!=0)
length(de.common)
## [1] 0
head(tfit$genes$SYMBOL[de.common], n=76)
## character(0)
vennDiagram(dt[,1], circle.col=c("turquoise", "salmon"))
write.fit(tfit, dt, file="results.txt")
WFNS.vs.WFS <- topTreat(tfit, coef=1, n=Inf)
head(WFNS.vs.WFS)
plotMD(tfit, column=1, status=dt[,1], main=colnames(tfit)[1],
xlim=c(-8,13))
glMDPlot(tfit, coef=1, status=dt, main=colnames(tfit)[1],
side.main="ENSEMBL", counts=lcpm, groups=group, launch=TRUE)
if (!require("gplots"))
install.packages("gplots")
## Loading required package: gplots
##
## Attaching package: 'gplots'
## The following object is masked from 'package:IRanges':
##
## space
## The following object is masked from 'package:S4Vectors':
##
## space
## The following object is masked from 'package:stats':
##
## lowess
library("gplots")
# get heatmap of log-CPM values
library(gplots)
WFNS.vs.WFS.topgenes <- WFNS.vs.WFS$ENSEMBL[1:50]
i <- which(v$genes$ENSEMBL %in% WFNS.vs.WFS.topgenes)
mycol <- colorpanel(1000,"blue","white","red")
par(cex.main=0.8,mar=c(1,1,1,1))
heatmap.2(lcpm[i,], scale="row", labRow=v$genes$SYMBOL[i], labCol=group, col=mycol, cexRow=1,cexCol=0.2, margins = c(8,6), main="HeatMap")