data_605_hw14

This week, we’ll work out some Taylor Series expansions of popular functions.

For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion.

Taylor Series Expansion

part I

\[f(x) = \frac{1}{(1-x)}\] Let’s begin with first, second and third derivative…

\[f'(x) = \frac{1}{(1-x)^2}\] \[f''(x) = \frac{2}{(1-x)^3}\] \[f'''(x) = \frac{6}{(1-x)^4}\]

\[\frac{1}{(1-x)} = \frac{1}{(1-a)} + \frac{\frac{1}{(1-a)^2}}{1!}(x-a) + \frac{\frac{2}{(1-a)^3}}{2!}(x-a)^2 + \frac{\frac{6}{(1-a)^4}}{3!}(x-a)^3 + \frac{\frac{24}{(1-a)^5}}{4!}(x-a)^4 +\ ...\]

If we centered it at \(a=0\)

\[\frac{1}{(1-x)} = \frac{1}{(1-0)} + \frac{\frac{1}{(1-0)^2}}{1!}(x-0) + \frac{\frac{2}{(1-0)^3}}{2!}(x-0)^2 + \frac{\frac{6}{(1-0)^4}}{3!}(x-0)^3 + \frac{\frac{24}{(1-0)^5}}{4!}(x-0)^4 +\ ...\]

To simplify

\[\frac{1}{(1-x)} = 1 + \frac{1}{1!}(x) + \frac{2}{2!}(x)^2 + \frac{6}{3!}(x)^3 + \frac{24}{4!}(x)^4 +\ ...\] \[\frac{1}{(1-x)} = 1 + x + x^2 + x^3 + x^4 +\ ...\] The Taylor Series expansion results in

\[f(x) = \frac{1}{(1-x)} = \sum_{n=0}^{\infty}x^n\]

part II

\[f(x) = e^x\]

The derivative of \(e^x\) is always \(e^x\)

\[f'(x) = e^x\]

\[f''(x) = e^x\]

\[f'''(x) = e^x\]

\[f^{(4)}(x) = e^x\]

That means, if centered at x = 0,

\[f'(0) = e^x = 1\]

\[f''(0) = e^x = 1\]

\[f'''(0) = e^x = 1\]

So,

\[e^x = e^a + \frac{e^a}{1!}(x-a) + \frac{e^a}{2!}(x-a)^2 + \frac{e^a}{3!}(x-a)^3 + \frac{e^a}{4!}(x-a)^4 +\ ...\]

Let’s center at 0

\[e^x = e^0 + \frac{e^0}{1!}(x-0) + \frac{e^0}{2!}(x-0)^2 + \frac{e^0}{3!}(x-0)^3 + \frac{e^0}{4!}(x-0)^4 +\ ...\]

To simplify,

\[e^x = 1 + \frac{1}{1!}(x) + \frac{1}{2!}(x)^2 + \frac{1}{3!}(x)^3 + \frac{1}{4!}(x)^4 +\ ...\]

\[e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} +\ ...\]

And the Taylor Series expansion results in

\[f(x) = e^x = \sum_{n=0}^{\infty}\frac{x^n}{n!}\]

Part III

\[f(x) = \ln(1+x)\]

Let’s take the first few derivatives,

\[f'(x) = \frac{1}{1+x}\]

\[f''(x) = -\frac{1}{(1+x)^2}\]

\[f'''(x) = \frac{2}{(1+x)^3}\]

\[f^{(4)}(x) = -\frac{6}{(1+x)^4}\]

Then, we get

\[\ln(1+x) = \ln(1+a) + \frac{\frac{1}{1+a}}{1!}(x-a) + \frac{-\frac{1}{(1+a)^2}}{2!}(x-a)^2 + \frac{\frac{2}{(1+a)^3}}{3!}(x-a)^3 + \frac{-\frac{6}{(1+a)^4}}{4!}(x-a)^4 +\ ...\]

Again, let’s center at 0 \(a=0\)

\[\ln(1+x) = \ln(1+0) + \frac{\frac{1}{1+0}}{1!}(x-0) + \frac{-\frac{1}{(1+0)^2}}{2!}(x-0)^2 + \frac{\frac{2}{(1+0)^3}}{3!}(x-0)^3 + \frac{-\frac{6}{(1+0)^4}}{4!}(x-0)^4 +\ ...\]

We can simplify above into

\[\ln(1+x) = \ln(1) + \frac{1}{1!}(x) - \frac{1}{2!}(x)^2 + \frac{2}{3!}(x)^3 - \frac{6}{4!}(x)^4 +\\ ...\]

\[\ln(1+x) = 0 + x - \frac{x^2}{2!} + \frac{2x^3}{3!} - \frac{6x^4}{4!} +\ ...\]

\[\ln(1+x) = 0 + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} +\ ...\]

\[\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} +\ ...\]

Thus, the Taylor Series expansion results in

\[f(x) = \ln(1+x) = \sum_{n=1}^{\infty}\frac{(-1)^{(n+1)}x^n}{n}\]