require(ggplot2)
## Loading required package: ggplot2
require(reshape2)
## Loading required package: reshape2
data(iris)
Tr <- ggplot(data = iris, aes(x = Sepal.Width, y = Sepal.Length,
color = Species))
Tr + geom_point() +
# facet_grid(.~ Species) +
scale_color_manual(values = c(versicolor = 'red', setosa ='orange',
virginica = 'blue'))
scale continuous is on continuous data
Tr <- ggplot(data = iris, aes(x = Sepal.Width, y = Sepal.Length,
color = Sepal.Length))
Tr + geom_point() +
scale_color_continuous(low = 'blue', high = 'red')
head(melt(iris))
## Using Species as id variables
## Species variable value
## 1 setosa Sepal.Length 5.1
## 2 setosa Sepal.Length 4.9
## 3 setosa Sepal.Length 4.7
## 4 setosa Sepal.Length 4.6
## 5 setosa Sepal.Length 5.0
## 6 setosa Sepal.Length 5.4
ggplot(data = melt(iris)) +
geom_histogram(aes(x = value, fill = variable), binwidth = 0.2) +
facet_grid(Species ~ variable) +
theme_bw() +
theme(legend.position = 'top', title = element_text(size = 20,
color = 'orange',
angle = 23)) +
theme(axis.text.x = element_text(size = 12, angle = 90, vjust = 0.5))
## Using Species as id variables
ThorstenTheme <- theme_bw(18) + theme(title = element_text(family = 'Monaco', size = 22),
legend.position = 'none')
# you can then save this theme and next time
ggplot(data = melt(iris)) +
geom_histogram(aes(x = value, fill = variable), binwidth = 0.2) +
facet_grid(Species ~ variable) +
ThorstenTheme
## Using Species as id variables
m <- matrix(rpois(200, 76), ncol = 10)
rownames(m) <- letters[1:20]
colnames(m) <- letters[1:10]
head(melt(m))
## Var1 Var2 value
## 1 a a 73
## 2 b a 89
## 3 c a 78
## 4 d a 70
## 5 e a 60
## 6 f a 87
ggplot(melt(m)) + geom_bin2d(aes(x = Var1, y = Var2, fill = value))
Grouping is used when you do not use colour or shape, since they imply grouping.
ggplot(iris, aes(x = Petal.Width, y = Petal.Length, colour = Species)) + geom_point( ) + geom_line()