Introdução

O primeiro passo é carregar a base de dados.

library(readr)
load("C:/Users/jheni/Base_de_dados-master/df_pokemon.RData")
head(df)
## # A tibble: 6 x 22
##      id pokemon    species_id height weight base_experience type_1 type_2 attack
##   <dbl> <chr>           <int>  <int>  <int>           <int> <chr>  <chr>   <int>
## 1     1 bulbasaur           1      7     69              64 grass  poison     49
## 2     2 ivysaur             2     10    130             142 grass  poison     62
## 3     3 venusaur            3     20   1000             236 grass  poison     82
## 4     4 charmander          4      6     85              62 fire   <NA>       52
## 5     5 charmeleon          5     11    190             142 fire   <NA>       64
## 6     6 charizard           6     17    905             240 fire   flying     84
## # ... with 13 more variables: defense <int>, hp <int>, special_attack <int>,
## #   special_defense <int>, speed <int>, color_1 <chr>, color_2 <chr>,
## #   color_f <chr>, egg_group_1 <chr>, egg_group_2 <chr>, url_image <chr>,
## #   x <dbl>, y <dbl>
str(df)
## tibble [718 x 22] (S3: tbl_df/tbl/data.frame)
##  $ id             : num [1:718] 1 2 3 4 5 6 7 8 9 10 ...
##  $ pokemon        : chr [1:718] "bulbasaur" "ivysaur" "venusaur" "charmander" ...
##  $ species_id     : int [1:718] 1 2 3 4 5 6 7 8 9 10 ...
##  $ height         : int [1:718] 7 10 20 6 11 17 5 10 16 3 ...
##  $ weight         : int [1:718] 69 130 1000 85 190 905 90 225 855 29 ...
##  $ base_experience: int [1:718] 64 142 236 62 142 240 63 142 239 39 ...
##  $ type_1         : chr [1:718] "grass" "grass" "grass" "fire" ...
##  $ type_2         : chr [1:718] "poison" "poison" "poison" NA ...
##  $ attack         : int [1:718] 49 62 82 52 64 84 48 63 83 30 ...
##  $ defense        : int [1:718] 49 63 83 43 58 78 65 80 100 35 ...
##  $ hp             : int [1:718] 45 60 80 39 58 78 44 59 79 45 ...
##  $ special_attack : int [1:718] 65 80 100 60 80 109 50 65 85 20 ...
##  $ special_defense: int [1:718] 65 80 100 50 65 85 64 80 105 20 ...
##  $ speed          : int [1:718] 45 60 80 65 80 100 43 58 78 45 ...
##  $ color_1        : chr [1:718] "#78C850" "#78C850" "#78C850" "#F08030" ...
##  $ color_2        : chr [1:718] "#A040A0" "#A040A0" "#A040A0" NA ...
##  $ color_f        : chr [1:718] "#81A763" "#81A763" "#81A763" "#F08030" ...
##  $ egg_group_1    : chr [1:718] "monster" "monster" "monster" "monster" ...
##  $ egg_group_2    : chr [1:718] "plant" "plant" "plant" "dragon" ...
##  $ url_image      : chr [1:718] "1.png" "2.png" "3.png" "4.png" ...
##  $ x              : num [1:718] 32.8 33.3 33.9 -24.4 -24.6 ...
##  $ y              : num [1:718] 17.2 16.7 16.2 30.8 30.6 ...
summary(df$base_experience)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   36.00   65.25  147.00  141.55  177.00  608.00

análise da variavel qualitativa

Aqui pegamos a variável experiência base e fizemos um gráfico de barra (barplot).

tabela <- table(df$base_experience)
tabela
## 
##  36  38  39  40  41  42  43  44  45  47  48  49  50  51  52  53  54  55  56  57 
##   1   1   4   4   2   3   1   4   1   2   2   5   6   2   5   5   3   6   9   3 
##  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  77  78 
##  13   8  21  19  18  12  11   9  17   7   5   3  10   7   8   1   2   2   2   2 
##  79  80  81  82  83  86  87  88  95  97 100 101 104 110 112 113 116 118 119 122 
##   1   1   1   1   1   3   2   2   1   1   3   1   1   1   1   1   2   1   5   1 
## 123 125 126 127 128 130 133 134 135 137 138 140 142 143 144 145 146 147 148 149 
##   2   1   3   1   3   4   5   3   2   6   2   4  25   1   9   6   1   8   3   4 
## 150 151 153 154 155 156 157 158 159 160 161 162 163 164 165 166 168 169 170 171 
##   1   5   1   8   2   1   1   8  10   3  10   2  10   2   9  12  12   7  10   2 
## 172 173 174 175 177 178 179 180 182 184 185 186 187 189 194 196 207 216 217 218 
##  12  16   5  16   5   4   7   6   3  12   1   1   3   4   1   1   1   4   1   3 
## 220 221 223 225 227 229 230 232 233 234 235 236 238 239 240 241 243 245 248 252 
##   1   6   1   5   4   1   2   3   2   5   1   4   3  10   4   6   4   1   2   1 
## 261 270 297 302 306 324 390 395 608 
##  18  23   1   3  11   1   1   1   1
prop.table(tabela)
## 
##          36          38          39          40          41          42 
## 0.001392758 0.001392758 0.005571031 0.005571031 0.002785515 0.004178273 
##          43          44          45          47          48          49 
## 0.001392758 0.005571031 0.001392758 0.002785515 0.002785515 0.006963788 
##          50          51          52          53          54          55 
## 0.008356546 0.002785515 0.006963788 0.006963788 0.004178273 0.008356546 
##          56          57          58          59          60          61 
## 0.012534819 0.004178273 0.018105850 0.011142061 0.029247911 0.026462396 
##          62          63          64          65          66          67 
## 0.025069638 0.016713092 0.015320334 0.012534819 0.023676880 0.009749304 
##          68          69          70          71          72          73 
## 0.006963788 0.004178273 0.013927577 0.009749304 0.011142061 0.001392758 
##          74          75          77          78          79          80 
## 0.002785515 0.002785515 0.002785515 0.002785515 0.001392758 0.001392758 
##          81          82          83          86          87          88 
## 0.001392758 0.001392758 0.001392758 0.004178273 0.002785515 0.002785515 
##          95          97         100         101         104         110 
## 0.001392758 0.001392758 0.004178273 0.001392758 0.001392758 0.001392758 
##         112         113         116         118         119         122 
## 0.001392758 0.001392758 0.002785515 0.001392758 0.006963788 0.001392758 
##         123         125         126         127         128         130 
## 0.002785515 0.001392758 0.004178273 0.001392758 0.004178273 0.005571031 
##         133         134         135         137         138         140 
## 0.006963788 0.004178273 0.002785515 0.008356546 0.002785515 0.005571031 
##         142         143         144         145         146         147 
## 0.034818942 0.001392758 0.012534819 0.008356546 0.001392758 0.011142061 
##         148         149         150         151         153         154 
## 0.004178273 0.005571031 0.001392758 0.006963788 0.001392758 0.011142061 
##         155         156         157         158         159         160 
## 0.002785515 0.001392758 0.001392758 0.011142061 0.013927577 0.004178273 
##         161         162         163         164         165         166 
## 0.013927577 0.002785515 0.013927577 0.002785515 0.012534819 0.016713092 
##         168         169         170         171         172         173 
## 0.016713092 0.009749304 0.013927577 0.002785515 0.016713092 0.022284123 
##         174         175         177         178         179         180 
## 0.006963788 0.022284123 0.006963788 0.005571031 0.009749304 0.008356546 
##         182         184         185         186         187         189 
## 0.004178273 0.016713092 0.001392758 0.001392758 0.004178273 0.005571031 
##         194         196         207         216         217         218 
## 0.001392758 0.001392758 0.001392758 0.005571031 0.001392758 0.004178273 
##         220         221         223         225         227         229 
## 0.001392758 0.008356546 0.001392758 0.006963788 0.005571031 0.001392758 
##         230         232         233         234         235         236 
## 0.002785515 0.004178273 0.002785515 0.006963788 0.001392758 0.005571031 
##         238         239         240         241         243         245 
## 0.004178273 0.013927577 0.005571031 0.008356546 0.005571031 0.001392758 
##         248         252         261         270         297         302 
## 0.002785515 0.001392758 0.025069638 0.032033426 0.001392758 0.004178273 
##         306         324         390         395         608 
## 0.015320334 0.001392758 0.001392758 0.001392758 0.001392758
barplot(tabela,col=c("#89cf51","#cf51b5"),main = "Gráfico 1 - Experiência Base",
        horiz=T,
        legend.text = rownames(tabela),
        args.legend = list(x = "topleft"))

xlin=c(0,20) 

grafico <- barplot(table(df$base_experience),col = "#7b51cf")
percentual <- prop.table(table(df$base_experience))*100
percentual
## 
##        36        38        39        40        41        42        43        44 
## 0.1392758 0.1392758 0.5571031 0.5571031 0.2785515 0.4178273 0.1392758 0.5571031 
##        45        47        48        49        50        51        52        53 
## 0.1392758 0.2785515 0.2785515 0.6963788 0.8356546 0.2785515 0.6963788 0.6963788 
##        54        55        56        57        58        59        60        61 
## 0.4178273 0.8356546 1.2534819 0.4178273 1.8105850 1.1142061 2.9247911 2.6462396 
##        62        63        64        65        66        67        68        69 
## 2.5069638 1.6713092 1.5320334 1.2534819 2.3676880 0.9749304 0.6963788 0.4178273 
##        70        71        72        73        74        75        77        78 
## 1.3927577 0.9749304 1.1142061 0.1392758 0.2785515 0.2785515 0.2785515 0.2785515 
##        79        80        81        82        83        86        87        88 
## 0.1392758 0.1392758 0.1392758 0.1392758 0.1392758 0.4178273 0.2785515 0.2785515 
##        95        97       100       101       104       110       112       113 
## 0.1392758 0.1392758 0.4178273 0.1392758 0.1392758 0.1392758 0.1392758 0.1392758 
##       116       118       119       122       123       125       126       127 
## 0.2785515 0.1392758 0.6963788 0.1392758 0.2785515 0.1392758 0.4178273 0.1392758 
##       128       130       133       134       135       137       138       140 
## 0.4178273 0.5571031 0.6963788 0.4178273 0.2785515 0.8356546 0.2785515 0.5571031 
##       142       143       144       145       146       147       148       149 
## 3.4818942 0.1392758 1.2534819 0.8356546 0.1392758 1.1142061 0.4178273 0.5571031 
##       150       151       153       154       155       156       157       158 
## 0.1392758 0.6963788 0.1392758 1.1142061 0.2785515 0.1392758 0.1392758 1.1142061 
##       159       160       161       162       163       164       165       166 
## 1.3927577 0.4178273 1.3927577 0.2785515 1.3927577 0.2785515 1.2534819 1.6713092 
##       168       169       170       171       172       173       174       175 
## 1.6713092 0.9749304 1.3927577 0.2785515 1.6713092 2.2284123 0.6963788 2.2284123 
##       177       178       179       180       182       184       185       186 
## 0.6963788 0.5571031 0.9749304 0.8356546 0.4178273 1.6713092 0.1392758 0.1392758 
##       187       189       194       196       207       216       217       218 
## 0.4178273 0.5571031 0.1392758 0.1392758 0.1392758 0.5571031 0.1392758 0.4178273 
##       220       221       223       225       227       229       230       232 
## 0.1392758 0.8356546 0.1392758 0.6963788 0.5571031 0.1392758 0.2785515 0.4178273 
##       233       234       235       236       238       239       240       241 
## 0.2785515 0.6963788 0.1392758 0.5571031 0.4178273 1.3927577 0.5571031 0.8356546 
##       243       245       248       252       261       270       297       302 
## 0.5571031 0.1392758 0.2785515 0.1392758 2.5069638 3.2033426 0.1392758 0.4178273 
##       306       324       390       395       608 
## 1.5320334 0.1392758 0.1392758 0.1392758 0.1392758
rotulo <- paste0(percentual,"%")
rotulo
##   [1] "0.139275766016713%" "0.139275766016713%" "0.557103064066852%"
##   [4] "0.557103064066852%" "0.278551532033426%" "0.417827298050139%"
##   [7] "0.139275766016713%" "0.557103064066852%" "0.139275766016713%"
##  [10] "0.278551532033426%" "0.278551532033426%" "0.696378830083565%"
##  [13] "0.835654596100279%" "0.278551532033426%" "0.696378830083565%"
##  [16] "0.696378830083565%" "0.417827298050139%" "0.835654596100279%"
##  [19] "1.25348189415042%"  "0.417827298050139%" "1.81058495821727%" 
##  [22] "1.1142061281337%"   "2.92479108635097%"  "2.64623955431755%" 
##  [25] "2.50696378830084%"  "1.67130919220056%"  "1.53203342618384%" 
##  [28] "1.25348189415042%"  "2.36768802228412%"  "0.974930362116992%"
##  [31] "0.696378830083565%" "0.417827298050139%" "1.39275766016713%" 
##  [34] "0.974930362116992%" "1.1142061281337%"   "0.139275766016713%"
##  [37] "0.278551532033426%" "0.278551532033426%" "0.278551532033426%"
##  [40] "0.278551532033426%" "0.139275766016713%" "0.139275766016713%"
##  [43] "0.139275766016713%" "0.139275766016713%" "0.139275766016713%"
##  [46] "0.417827298050139%" "0.278551532033426%" "0.278551532033426%"
##  [49] "0.139275766016713%" "0.139275766016713%" "0.417827298050139%"
##  [52] "0.139275766016713%" "0.139275766016713%" "0.139275766016713%"
##  [55] "0.139275766016713%" "0.139275766016713%" "0.278551532033426%"
##  [58] "0.139275766016713%" "0.696378830083565%" "0.139275766016713%"
##  [61] "0.278551532033426%" "0.139275766016713%" "0.417827298050139%"
##  [64] "0.139275766016713%" "0.417827298050139%" "0.557103064066852%"
##  [67] "0.696378830083565%" "0.417827298050139%" "0.278551532033426%"
##  [70] "0.835654596100279%" "0.278551532033426%" "0.557103064066852%"
##  [73] "3.48189415041783%"  "0.139275766016713%" "1.25348189415042%" 
##  [76] "0.835654596100279%" "0.139275766016713%" "1.1142061281337%"  
##  [79] "0.417827298050139%" "0.557103064066852%" "0.139275766016713%"
##  [82] "0.696378830083565%" "0.139275766016713%" "1.1142061281337%"  
##  [85] "0.278551532033426%" "0.139275766016713%" "0.139275766016713%"
##  [88] "1.1142061281337%"   "1.39275766016713%"  "0.417827298050139%"
##  [91] "1.39275766016713%"  "0.278551532033426%" "1.39275766016713%" 
##  [94] "0.278551532033426%" "1.25348189415042%"  "1.67130919220056%" 
##  [97] "1.67130919220056%"  "0.974930362116992%" "1.39275766016713%" 
## [100] "0.278551532033426%" "1.67130919220056%"  "2.22841225626741%" 
## [103] "0.696378830083565%" "2.22841225626741%"  "0.696378830083565%"
## [106] "0.557103064066852%" "0.974930362116992%" "0.835654596100279%"
## [109] "0.417827298050139%" "1.67130919220056%"  "0.139275766016713%"
## [112] "0.139275766016713%" "0.417827298050139%" "0.557103064066852%"
## [115] "0.139275766016713%" "0.139275766016713%" "0.139275766016713%"
## [118] "0.557103064066852%" "0.139275766016713%" "0.417827298050139%"
## [121] "0.139275766016713%" "0.835654596100279%" "0.139275766016713%"
## [124] "0.696378830083565%" "0.557103064066852%" "0.139275766016713%"
## [127] "0.278551532033426%" "0.417827298050139%" "0.278551532033426%"
## [130] "0.696378830083565%" "0.139275766016713%" "0.557103064066852%"
## [133] "0.417827298050139%" "1.39275766016713%"  "0.557103064066852%"
## [136] "0.835654596100279%" "0.557103064066852%" "0.139275766016713%"
## [139] "0.278551532033426%" "0.139275766016713%" "2.50696378830084%" 
## [142] "3.2033426183844%"   "0.139275766016713%" "0.417827298050139%"
## [145] "1.53203342618384%"  "0.139275766016713%" "0.139275766016713%"
## [148] "0.139275766016713%" "0.139275766016713%"
text(grafico, 0, rotulo,cex=1,pos=3,col = "white")

Histograma

Aqui fizemos o histograma, no qual é possivel observar que 257 pokemons têm um experiência base entre zero e cem e ao longo do gráfico essa frequÊncia vai diminuindo. Além disso, através do resumo encontramos a mediana dessa variável em 147 de experiência base com um mínimo de 36 e máximo de 608 como podemos ver no gráfico. Também podemos observar a média da experiência base como 141,55.

hist(df$base_experience)

hist(df$base_experience, col="tomato", border= "red", main= "Histograma", xlab= "Experiência Base", labels= TRUE, ylab= "frequência")

Conclusão

O gráfico Histograma é um facilitador para encontrarmos os valores como média, mediana, valor mínimo e valor máximo.