INTRODUCTION

This part of the project is meant to use design of experiment tools and techniques to make optimum decisions based on statistical values. In section 1, we determinate how many samples we should collect to detect a mean difference with a medium effect and a probability of 0.75. In section 2, we collected data based on the randomized order that was generated using computer language called Rstudio to run completely randomized design (CRD function) with an alpha of 0.05 . We then proposed our layout such that our data is tabulated, neat, ranked, and well organized. In Section 3, we performed hypothesis test and checked our residuals versus fitted values and other residuals plots to make sure that nothing unusual present. Finally, we will state our findings and provide related comments and recommendations

PROBLEM STATEMENT

We performed experiment to determine the effect of the type of ball on the distance in which the ball is thrown. The Release Angle should be at 90 degrees, with the arm pulled fully back before releasing it. In order to determine the distance traveled by 3 different types of ball “Blue, red, and Yellow” we made sure that the zeros are initiated, and the rubber elasticity remain the same during our experiment.

EXPERIMENT DESCRIPTION

The following project will be completed by our group using Stratapult.
There are four discrete settings for both the Pin Elevation and Bungee Position, numbered from the bottom up. The Release Angle is a continuous variable from 90 to 180 degrees.There are additionally three types of balls that may be used. We will perform a designed experiment to determine the effect of the type of ball on the distance in which the ball is thrown.

EXPERIMENT SETUP

The Pin Elevation and Bungee Position should both be at their fourth setting, i.e. highest setting. The Release Angle should be at 90 degrees, with the arm pulled fully back before releasing. To test this hypothesis, we wish to use a completely randomized design with an alpha around 0.05.

ANALYSIS & DISCUSSION

PART I

SECTION A: HYPOTHESIS AND SAMPLE SIZE

Determine how many samples should be collected to detect a mean difference with a medium effect (i.e. 50% of the standard deviation) and a pattern of maximum variability with a probability of 75%.

Hypothesis:

The Hypothesis are:

Null Hypothesis: \(H_{0}\)= \(\mu_{y}\)=\(\mu_{r}\)=\(\mu_{b}\)

Alternative hypothesis: \(H_{a}\)= at least one \(\mu_{i}\) differs

Note: \(\mu_{y}\) = mean distance recorded using yellow ball

\(\mu_{r}\) = mean distance recorded using red ball

\(\mu_{b}\) = mean distance recorded using blue ball

library(pwr)
pwr.anova.test(k=3,n=NULL,f=0.5,sig.level=0.05,power=0.9999559)
## 
##      Balanced one-way analysis of variance power calculation 
## 
##               k = 3
##               n = 53.00039
##               f = 0.5
##       sig.level = 0.05
##           power = 0.9999559
## 
## NOTE: n is number in each group

Balanced one-way analysis of variance power calculation

Number of samples to be collected in each group is n = 53.00039

Therefore: we need to collect 53 samples for each ball type

SECTION B: RANDOMIZED RUN AND LAYOUT

Propose a layout using the number of samples from section A with randomized run order.

library(agricolae)
trt0<-c("Yellow","Red","Blue")
design<-design.crd(trt=trt0,r=53,seed=2000)
design$book
##     plots  r   trt0
## 1     101  1   Blue
## 2     102  1    Red
## 3     103  1 Yellow
## 4     104  2    Red
## 5     105  3    Red
## 6     106  4    Red
## 7     107  2 Yellow
## 8     108  5    Red
## 9     109  3 Yellow
## 10    110  2   Blue
## 11    111  3   Blue
## 12    112  6    Red
## 13    113  4   Blue
## 14    114  4 Yellow
## 15    115  5 Yellow
## 16    116  6 Yellow
## 17    117  7    Red
## 18    118  8    Red
## 19    119  9    Red
## 20    120  5   Blue
## 21    121  7 Yellow
## 22    122 10    Red
## 23    123  8 Yellow
## 24    124 11    Red
## 25    125  6   Blue
## 26    126 12    Red
## 27    127  7   Blue
## 28    128  9 Yellow
## 29    129 10 Yellow
## 30    130 13    Red
## 31    131 14    Red
## 32    132 15    Red
## 33    133  8   Blue
## 34    134 11 Yellow
## 35    135 12 Yellow
## 36    136 13 Yellow
## 37    137 14 Yellow
## 38    138 15 Yellow
## 39    139  9   Blue
## 40    140 16 Yellow
## 41    141 17 Yellow
## 42    142 10   Blue
## 43    143 11   Blue
## 44    144 16    Red
## 45    145 17    Red
## 46    146 12   Blue
## 47    147 18 Yellow
## 48    148 18    Red
## 49    149 19 Yellow
## 50    150 20 Yellow
## 51    151 19    Red
## 52    152 13   Blue
## 53    153 21 Yellow
## 54    154 20    Red
## 55    155 22 Yellow
## 56    156 23 Yellow
## 57    157 24 Yellow
## 58    158 21    Red
## 59    159 14   Blue
## 60    160 15   Blue
## 61    161 25 Yellow
## 62    162 16   Blue
## 63    163 22    Red
## 64    164 17   Blue
## 65    165 18   Blue
## 66    166 19   Blue
## 67    167 23    Red
## 68    168 26 Yellow
## 69    169 24    Red
## 70    170 27 Yellow
## 71    171 20   Blue
## 72    172 28 Yellow
## 73    173 25    Red
## 74    174 26    Red
## 75    175 21   Blue
## 76    176 22   Blue
## 77    177 23   Blue
## 78    178 24   Blue
## 79    179 29 Yellow
## 80    180 25   Blue
## 81    181 26   Blue
## 82    182 27   Blue
## 83    183 30 Yellow
## 84    184 28   Blue
## 85    185 29   Blue
## 86    186 27    Red
## 87    187 28    Red
## 88    188 31 Yellow
## 89    189 32 Yellow
## 90    190 33 Yellow
## 91    191 29    Red
## 92    192 34 Yellow
## 93    193 35 Yellow
## 94    194 30    Red
## 95    195 31    Red
## 96    196 36 Yellow
## 97    197 30   Blue
## 98    198 37 Yellow
## 99    199 32    Red
## 100   200 38 Yellow
## 101   201 39 Yellow
## 102   202 31   Blue
## 103   203 40 Yellow
## 104   204 33    Red
## 105   205 34    Red
## 106   206 35    Red
## 107   207 32   Blue
## 108   208 36    Red
## 109   209 41 Yellow
## 110   210 33   Blue
## 111   211 34   Blue
## 112   212 35   Blue
## 113   213 37    Red
## 114   214 42 Yellow
## 115   215 36   Blue
## 116   216 38    Red
## 117   217 39    Red
## 118   218 43 Yellow
## 119   219 44 Yellow
## 120   220 40    Red
## 121   221 45 Yellow
## 122   222 41    Red
## 123   223 37   Blue
## 124   224 38   Blue
## 125   225 46 Yellow
## 126   226 39   Blue
## 127   227 42    Red
## 128   228 40   Blue
## 129   229 41   Blue
## 130   230 43    Red
## 131   231 42   Blue
## 132   232 43   Blue
## 133   233 47 Yellow
## 134   234 44   Blue
## 135   235 48 Yellow
## 136   236 44    Red
## 137   237 49 Yellow
## 138   238 45   Blue
## 139   239 50 Yellow
## 140   240 51 Yellow
## 141   241 45    Red
## 142   242 46    Red
## 143   243 46   Blue
## 144   244 47   Blue
## 145   245 47    Red
## 146   246 48   Blue
## 147   247 52 Yellow
## 148   248 48    Red
## 149   249 49   Blue
## 150   250 49    Red
## 151   251 50    Red
## 152   252 50   Blue
## 153   253 51    Red
## 154   254 51   Blue
## 155   255 52    Red
## 156   256 53 Yellow
## 157   257 52   Blue
## 158   258 53    Red
## 159   259 53   Blue

SECTION C: DATA COLLECTION

Collect data and record observations on layout proposed in section B.

design<-as.data.frame(design)
Distance<-c(171,107,131,114,113,94,170,89,125,128,127,94,102,114,102,117,108,109,95,112,115,98,120, 110,125,
                114,131,135,124,107,109,111,123,105,107,133,124,105,115,116,103,165,162,118,102,156,127,107,125,
                107,117,101,103,88,99,103,101,95,109,102,105,99,104,119,128,165,109,117,112,124,103,114,117,111,
                163,159,143,147,131,128,171,129,129,127,129,94,103,131,117,102,87,123,102,90,97,127,102,109,98,
                99,101,102,99,87,93,97,105,97,103,101,128,129,107,135,175,125,119,138,135,116,162,121,153,154,
                122,151,123,145,147,113,125,119,114,124,108,107,125,124,115,101,105,99,113,127,123,99,116,114,
                112,102,117,102,109,99,104,89,103,125,118)
design$Distance<-Distance
experiment<-design[,-1:-8]
colnames(experiment)<-c("Order","BALL","Distance")
r<-rank(experiment$Distance,ties.method = "average")
experiment$Rank<-r
experiment$BALL<-as.factor(experiment$BALL)
str(experiment)
## 'data.frame':    159 obs. of  4 variables:
##  $ Order   : int  1 1 1 2 3 4 2 5 3 2 ...
##  $ BALL    : Factor w/ 3 levels "Blue","Red","Yellow": 1 2 3 2 2 2 3 2 3 1 ...
##  $ Distance: num  171 107 131 114 113 94 170 89 125 128 ...
##  $ Rank    : num  157.5 57 134.5 80.5 76 ...
print(experiment)
##     Order   BALL Distance  Rank
## 1       1   Blue      171 157.5
## 2       1    Red      107  57.0
## 3       1 Yellow      131 134.5
## 4       2    Red      114  80.5
## 5       3    Red      113  76.0
## 6       4    Red       94   9.0
## 7       2 Yellow      170 156.0
## 8       5    Red       89   4.5
## 9       3 Yellow      125 116.0
## 10      2   Blue      128 126.5
## 11      3   Blue      127 122.0
## 12      6    Red       94   9.0
## 13      4   Blue      102  34.5
## 14      4 Yellow      114  80.5
## 15      5 Yellow      102  34.5
## 16      6 Yellow      117  92.5
## 17      7    Red      108  61.5
## 18      8    Red      109  65.5
## 19      9    Red       95  11.5
## 20      5   Blue      112  73.0
## 21      7 Yellow      115  85.0
## 22     10    Red       98  16.5
## 23      8 Yellow      120 101.0
## 24     11    Red      110  69.0
## 25      6   Blue      125 116.0
## 26     12    Red      114  80.5
## 27      7   Blue      131 134.5
## 28      9 Yellow      135 139.0
## 29     10 Yellow      124 110.0
## 30     13    Red      107  57.0
## 31     14    Red      109  65.5
## 32     15    Red      111  70.5
## 33      8   Blue      123 105.5
## 34     11 Yellow      105  51.0
## 35     12 Yellow      107  57.0
## 36     13 Yellow      133 137.0
## 37     14 Yellow      124 110.0
## 38     15 Yellow      105  51.0
## 39      9   Blue      115  85.0
## 40     16 Yellow      116  88.0
## 41     17 Yellow      103  43.0
## 42     10   Blue      165 154.5
## 43     11   Blue      162 151.5
## 44     16    Red      118  96.5
## 45     17    Red      102  34.5
## 46     12   Blue      156 149.0
## 47     18 Yellow      127 122.0
## 48     18    Red      107  57.0
## 49     19 Yellow      125 116.0
## 50     20 Yellow      107  57.0
## 51     19    Red      117  92.5
## 52     13   Blue      101  27.0
## 53     21 Yellow      103  43.0
## 54     20    Red       88   3.0
## 55     22 Yellow       99  21.0
## 56     23 Yellow      103  43.0
## 57     24 Yellow      101  27.0
## 58     21    Red       95  11.5
## 59     14   Blue      109  65.5
## 60     15   Blue      102  34.5
## 61     25 Yellow      105  51.0
## 62     16   Blue       99  21.0
## 63     22    Red      104  47.5
## 64     17   Blue      119  99.0
## 65     18   Blue      128 126.5
## 66     19   Blue      165 154.5
## 67     23    Red      109  65.5
## 68     26 Yellow      117  92.5
## 69     24    Red      112  73.0
## 70     27 Yellow      124 110.0
## 71     20   Blue      103  43.0
## 72     28 Yellow      114  80.5
## 73     25    Red      117  92.5
## 74     26    Red      111  70.5
## 75     21   Blue      163 153.0
## 76     22   Blue      159 150.0
## 77     23   Blue      143 142.0
## 78     24   Blue      147 144.5
## 79     29 Yellow      131 134.5
## 80     25   Blue      128 126.5
## 81     26   Blue      171 157.5
## 82     27   Blue      129 130.5
## 83     30 Yellow      129 130.5
## 84     28   Blue      127 122.0
## 85     29   Blue      129 130.5
## 86     27    Red       94   9.0
## 87     28    Red      103  43.0
## 88     31 Yellow      131 134.5
## 89     32 Yellow      117  92.5
## 90     33 Yellow      102  34.5
## 91     29    Red       87   1.5
## 92     34 Yellow      123 105.5
## 93     35 Yellow      102  34.5
## 94     30    Red       90   6.0
## 95     31    Red       97  14.0
## 96     36 Yellow      127 122.0
## 97     30   Blue      102  34.5
## 98     37 Yellow      109  65.5
## 99     32    Red       98  16.5
## 100    38 Yellow       99  21.0
## 101    39 Yellow      101  27.0
## 102    31   Blue      102  34.5
## 103    40 Yellow       99  21.0
## 104    33    Red       87   1.5
## 105    34    Red       93   7.0
## 106    35    Red       97  14.0
## 107    32   Blue      105  51.0
## 108    36    Red       97  14.0
## 109    41 Yellow      103  43.0
## 110    33   Blue      101  27.0
## 111    34   Blue      128 126.5
## 112    35   Blue      129 130.5
## 113    37    Red      107  57.0
## 114    42 Yellow      135 139.0
## 115    36   Blue      175 159.0
## 116    38    Red      125 116.0
## 117    39    Red      119  99.0
## 118    43 Yellow      138 141.0
## 119    44 Yellow      135 139.0
## 120    40    Red      116  88.0
## 121    45 Yellow      162 151.5
## 122    41    Red      121 102.0
## 123    37   Blue      153 147.0
## 124    38   Blue      154 148.0
## 125    46 Yellow      122 103.0
## 126    39   Blue      151 146.0
## 127    42    Red      123 105.5
## 128    40   Blue      145 143.0
## 129    41   Blue      147 144.5
## 130    43    Red      113  76.0
## 131    42   Blue      125 116.0
## 132    43   Blue      119  99.0
## 133    47 Yellow      114  80.5
## 134    44   Blue      124 110.0
## 135    48 Yellow      108  61.5
## 136    44    Red      107  57.0
## 137    49 Yellow      125 116.0
## 138    45   Blue      124 110.0
## 139    50 Yellow      115  85.0
## 140    51 Yellow      101  27.0
## 141    45    Red      105  51.0
## 142    46    Red       99  21.0
## 143    46   Blue      113  76.0
## 144    47   Blue      127 122.0
## 145    47    Red      123 105.5
## 146    48   Blue       99  21.0
## 147    52 Yellow      116  88.0
## 148    48    Red      114  80.5
## 149    49   Blue      112  73.0
## 150    49    Red      102  34.5
## 151    50    Red      117  92.5
## 152    50   Blue      102  34.5
## 153    51    Red      109  65.5
## 154    51   Blue       99  21.0
## 155    52    Red      104  47.5
## 156    53 Yellow       89   4.5
## 157    52   Blue      103  43.0
## 158    53    Red      125 116.0
## 159    53   Blue      118  96.5

SECTION D:HYPOTHESIS TEST AND RESIDUAL PLOT

aov.model<-aov(Distance~BALL, data = experiment)
summary.aov(aov.model)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## BALL          2  12959    6479   22.52 2.55e-09 ***
## Residuals   156  44875     288                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(aov.model)

P-value p= 2.55e-09 is smaller than alpha of \(\alpha\)=0.05. we conclude that null hypothesis is rejected. From the plot we can see that the spread of the residuals tends to be not equal to fitted values. However, it is very close to each other.

The residual and normality plots show that the variance is approximately constant for all three treatments and the model is adequate in terms of normality (see below). This means that no corrective measures are needed, such as transformations or the like, and the initial p-value can be used for conclusions

TukeyHSD(aov.model)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Distance ~ BALL, data = experiment)
## 
## $BALL
##                  diff        lwr        upr     p adj
## Red-Blue    -22.11321 -29.909507 -14.316908 0.0000000
## Yellow-Blue -11.16981 -18.966111  -3.373511 0.0025349
## Yellow-Red   10.94340   3.147096  18.739696 0.0031834
plot(TukeyHSD(aov.model))

Tukey test for multiple comparisons of differences in means levels of Balls at 95% familty-wise confidence level. Zero is not included in the intervals therefore we reject null hypothesis.

SECTION E: PAIRWISE COMPARISONS

Since null hypothesis is rejected we performed pairwise comparisons.We reject Null hypothesis , We found out that the difference of the means differs. Therefore, the Ball_Type is significant. To illustrate this, We performed the Tukey test pairwise comparison at 95% family wise confidence level which shows that the mean of the blue ball differs from the mean of the yellow and red. It seems that the mean of the red is equal to the average mean of all treatments. We do not have enough information about the balls to make a decision on what factors affected the means. We believe that Weight, shape, material, geometry, and centeroid of each ball may be the reason of this differences. in fact, The blue ball had an irregular shape than others.another factor that could affect this experiment it was the rubber itself because it was broken and we changed. This is another factor that is related to the elasticity of the rubber which could affect the generated force that is used to throw the ball which could have an effect on the distance at which the ball is thrown.

CONCLUSION

The null hypothesis is rejected. The p-value of 2.55e-09 is less than alpha of 0.05. This means that there is a significant difference of the mean of the balls.

PART II

In continuation to the experimental studies of the Catapult, we are performing a designed experiment to determine the effect of Pin Elevation and Release Angle on distance in which the red ball is thrown when the Bungee Position is fixed at the second position.

The Settings one and three of Pin Elevation will be investigated as a fixed effect, as well as settings of the Release Angle corresponding to 110, 140, and 170 degrees as a random effect.The design is replicated three times

We identify Two factors: Factor A: Release Angle with 3 levels ( 110, 140, 170) therefore the degrees of freedom for factor A , will be i-1=3-1=2.

Factor B: Pin elevation with 2 levels ( 1 and 3) therefore the degrees of freedom for factor B, will be j-1=2-1=1.

SECTION A: MODEL EQUATION AND HYPOTHESIS

State model equation with the null and alternative hypotheses to be tested. In addition, state the level of significance that will be used in your analysis.

Model Equation

\(Y_{ijkl}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijkl}\)

Hypothesis:

NUll Hypothesis: \(\alpha\beta_{ij} = 0\) For all {i,j}

Alternative Hypothesis: \(\alpha\beta_{ij} \neq 0\) for some {i,j}

NUll Hypothesis:\(\alpha_i = 0\)

Alternative Hypothesis: \(\alpha_i \neq 0\)

NUll Hypothesis: \(\beta_j=0\)

Alternative Hypothesis: \(\beta_j\neq0\)

SECTION B: RANDOMIZED DESIGN AND LAYOUT

Proposed layout with a randomized run order

trt0<- c(2,3)
design<- design.ab(trt=trt0,r=3,design ="crd",seed=1000)
design$book
##    plots r A B
## 1    101 1 1 1
## 2    102 1 1 3
## 3    103 1 2 3
## 4    104 2 1 1
## 5    105 2 1 3
## 6    106 2 2 3
## 7    107 1 1 2
## 8    108 3 2 3
## 9    109 3 1 3
## 10   110 1 2 2
## 11   111 1 2 1
## 12   112 2 2 2
## 13   113 2 2 1
## 14   114 3 2 2
## 15   115 2 1 2
## 16   116 3 1 1
## 17   117 3 1 2
## 18   118 3 2 1

SECTION C: DATA COLLECTION

Data Collection and observations recording on the layout proposed.

obs<-c(27,27,28,42,42,40,59,55,59,
       21,30,31,52,47,48,88,83,86)

SECTION D:HYPOTHESIS TEST

library(GAD)
Release_Angle<-c(rep(110,3),rep(140,3),rep(170,3))
Pin_Elevation<-c(rep(1,9),rep(3,9))
obs<-c(27,27,28,42,42,40,59,55,59,
       21,30,31,52,47,48,88,83,86)
data.frame(Release_Angle,Pin_Elevation,obs)
##    Release_Angle Pin_Elevation obs
## 1            110             1  27
## 2            110             1  27
## 3            110             1  28
## 4            140             1  42
## 5            140             1  42
## 6            140             1  40
## 7            170             1  59
## 8            170             1  55
## 9            170             1  59
## 10           110             3  21
## 11           110             3  30
## 12           110             3  31
## 13           140             3  52
## 14           140             3  47
## 15           140             3  48
## 16           170             3  88
## 17           170             3  83
## 18           170             3  86
Release_Angle<-as.random(Release_Angle)
Pin_Elevation<-as.fixed(Pin_Elevation)

datpr<-data.frame(Release_Angle,Pin_Elevation,obs)
modelpr<-aov(obs~Release_Angle+Pin_Elevation+Release_Angle*Pin_Elevation, data=datpr)
GAD::gad(modelpr)
## Analysis of Variance Table
## 
## Response: obs
##                             Df Sum Sq Mean Sq  F value    Pr(>F)    
## Release_Angle                2 5971.4 2985.72 353.5724 2.159e-11 ***
## Pin_Elevation                1  636.1  636.06   2.0253    0.2907    
## Release_Angle:Pin_Elevation  2  628.1  314.06  37.1908 7.187e-06 ***
## Residual                    12  101.3    8.44                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(modelpr) 
##                             Df Sum Sq Mean Sq F value   Pr(>F)    
## Release_Angle                2   5971  2985.7  353.57 2.16e-11 ***
## Pin_Elevation                1    636   636.1   75.32 1.62e-06 ***
## Release_Angle:Pin_Elevation  2    628   314.1   37.19 7.19e-06 ***
## Residuals                   12    101     8.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(modelpr)

Interaction Plot:

interaction.plot(datpr$Release_Angle,datpr$Pin_Elevation,datpr$obs)

CONCLUSION

The p-value is less than alpha=0.05 , we reject null hypothesis. Significant Factors are: Release_Angle, Pin_Elevation, and two way interaction Release_Angle:Pin_Elevation

From the plot we can see that the spread of the residuals tends to be equal to fitted values. The residual and normality plots show that the variance is approximately constant for our experiment and the model is adequate in terms of normality (see below).

We started by exploring the highest order interaction(\(\alpha\beta_{ij}\)). We observed that the two factor interaction effect is significant under Ho is true. This means that we should stop exploration of the associated factors and we generated the interaction plot of the factors A (Pin_Elevation),B (Bungee_Position), and A:B (Pin_Elevation:Bungee_Position) interaction as shown above. the interaction plot shows that the means of the data are equal at the low level of the release angle.The difference of the means increases significantly at high level of the release angle.

Part III

2k Factorial Design

we are Performing a designed experiment to determine the effect of the available factors of Pin Elevation (A), Bungee Position (B), Release Angle(C), and Ball Type (D) on distance in which a ball is thrown. we will Design this experiment as a single replicate of a 24 factorial design with the low and high level of the factors being as follows:

Factor Low Level (-1) High Level (+1)
A :Pin Elevation Position 1 Position 3
B :Bungee Position Position 2 Position 3
C :Release Angle 140 degrees 170 degrees
D :Ball Type Yellow Red

SECTION A: RANDOMIZED DESIGN AND LAYOUT

Propose a data collection layout with a randomized run order**

trt0<-c(rep(2,4))
design<-design.ab(trt=trt0,r=1,design="crd", seed=2000)
design$book
##    plots r A B C D
## 1    101 1 2 2 2 1
## 2    102 1 2 2 1 1
## 3    103 1 1 1 1 2
## 4    104 1 1 2 1 2
## 5    105 1 2 2 1 2
## 6    106 1 1 2 2 2
## 7    107 1 1 2 1 1
## 8    108 1 1 1 2 1
## 9    109 1 2 1 1 2
## 10   110 1 1 1 1 1
## 11   111 1 2 2 2 2
## 12   112 1 1 2 2 1
## 13   113 1 2 1 1 1
## 14   114 1 1 1 2 2
## 15   115 1 2 1 2 1
## 16   116 1 2 1 2 2

SECTION B: DATA COLLECTION

obs3<-c(121,99,31,49,55,61,41,34,45,34,133,67,51,37,125,73)

SECTION C: MODEL EQUATION

State model equation and determine what factors/interactions appear to be significant

Model Equation

\(Y_{ijkl}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\gamma_k\) +\(\lambda_l\) + \(\alpha\beta_{ij}\) +\(\alpha\gamma_{ik}\) +\(\alpha\lambda_{il}\)+ \(\beta\gamma_{jk}\)+\(\beta\lambda_{jl}\)+\(\gamma\lambda_{kl}\)+ \(\alpha\beta\gamma_{ijk}\)+\(\alpha\beta\lambda_{ijl}\)+\(\beta\gamma\lambda_{jkl}\)+ \(\alpha\beta\gamma\lambda_{ijkl}\)+ \(\epsilon_{ijklm}\)

Significant factors and interactions including plots

library(DoE.base)
A<-c(1,1,-1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1)
B<-c(1,1,-1,1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,-1)
C<-c(1,-1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,1,1)
D<-c(-1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,1)
obs3<-c(121,99,31,49,55,61,41,34,45,34,133,67,51,37,125,73)
dat<-data.frame(A,B,C,D,obs3)
dat
##     A  B  C  D obs3
## 1   1  1  1 -1  121
## 2   1  1 -1 -1   99
## 3  -1 -1 -1  1   31
## 4  -1  1 -1  1   49
## 5   1  1 -1  1   55
## 6  -1  1  1  1   61
## 7  -1  1 -1 -1   41
## 8  -1 -1  1 -1   34
## 9   1 -1 -1  1   45
## 10 -1 -1 -1 -1   34
## 11  1  1  1  1  133
## 12 -1  1  1 -1   67
## 13  1 -1 -1 -1   51
## 14 -1 -1  1  1   37
## 15  1 -1  1 -1  125
## 16  1 -1  1  1   73
mod1<-lm(obs3~A*B*C*D,data = dat)
coef(mod1)
## (Intercept)           A           B           C           D         A:B 
##      66.000      21.750      12.250      15.375      -5.500       2.000 
##         A:C         B:C         A:D         B:D         C:D       A:B:C 
##       9.875       1.875      -5.750       1.750       0.125      -2.125 
##       A:B:D       A:C:D       B:C:D     A:B:C:D 
##       1.500       1.125       5.125       7.625
halfnormal(mod1)

From the half Normal Plot: We obtain that Factors: A, C,and B are the significant Factors THerefore our new model equation after we pull up all significant factors is as follow:

\(Y_{ijkl}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\gamma_k\) + \(\alpha\beta_{ij}\) +\(\alpha\gamma_{ik}\) + \(\beta\gamma_{jk}\)+\(\alpha\beta\gamma_{ijk}\)+ \(\epsilon_{ijkl}\)

## WE pull up significant factors A, C, B and their interactions.
mod3<-lm(obs3~A+B+C+A*B+A*C+B*C,data = dat)
coef(mod3)
## (Intercept)           A           B           C         A:B         A:C 
##      66.000      21.750      12.250      15.375       2.000       9.875 
##         B:C 
##       1.875
halfnormal(mod3)
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] A   C   B   A:C e8

summary(mod3)
## 
## Call:
## lm.default(formula = obs3 ~ A + B + C + A * B + A * C + B * C, 
##     data = dat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.875  -5.375   0.000   3.688  28.125 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   66.000      4.201  15.711 7.54e-08 ***
## A             21.750      4.201   5.177 0.000581 ***
## B             12.250      4.201   2.916 0.017142 *  
## C             15.375      4.201   3.660 0.005236 ** 
## A:B            2.000      4.201   0.476 0.645356    
## A:C            9.875      4.201   2.351 0.043256 *  
## B:C            1.875      4.201   0.446 0.665902    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.8 on 9 degrees of freedom
## Multiple R-squared:  0.8586, Adjusted R-squared:  0.7644 
## F-statistic: 9.109 on 6 and 9 DF,  p-value: 0.002102

SECTION D: ANOVA

After using insignificant factors/interactions to create an error term, perform ANOVA to determine a final model equation using an alpha \(\alpha\)= 0.05.

mod4<-aov(obs3~A+B+C+A*B+A*C+B*C,data = dat)
summary(mod4)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## A            1   7569    7569  26.806 0.000581 ***
## B            1   2401    2401   8.503 0.017142 *  
## C            1   3782    3782  13.395 0.005236 ** 
## A:B          1     64      64   0.227 0.645356    
## A:C          1   1560    1560   5.526 0.043256 *  
## B:C          1     56      56   0.199 0.665902    
## Residuals    9   2541     282                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model equation will be:

\(Y_{ijkl}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\gamma_k\) +\(\alpha\gamma_{ik}\)+ \(\epsilon_{ijkl}\)

\(Y_{ijkl}\)= 66.00 + 21.750 A+ 12.250 B+15.375 C+ 9.875 A*C+ 4.201

interaction.plot(dat$A,dat$C,dat$obs3)

CONCLUSION

Model is significant becuase p-value=0.006251 is less than alpha of 0.05 The F-value of 9.109 indicates that the model is significant. The distance is affected by Factors Pin elevation, Release Angle and Boungee Position and Pin elevation:Release angle interaction. we observed that the main effects of the interaction of A:C (Pin elevation:Release angle) is not vital as other factors. Additionally, the interaction plot shows that the mean of the data shift down at lower level.

From the ANOVA analysis we observe that Factors A (Pin_Elevation), and C(Release_Angle) are the most significant( at 0.001 sign level), factor B (Bungee_Position) is significant at 0.05 significance level with p value of 0.017142. Lastly interaction A:C (Pin elevation:Release angle) is merely significant at 0.05 level with p-value of 0.043256 therefore its effect can be ignored.