Project Part 1

Objective:- Perform a designed experiment to determine the effect of the type of ball on the distance in which the ball is thrown.

According to problem statement, we have to take the observations of distance traveled by each ball by keeping the Pin Elevation and Bungee Position both in the highest setting.

Part 1 A)

To find out the number of samples required from each type of ball, we will have to perform the pwr.anova.test

From the given experiment we have, Number of population(k)=3, mean difference with a medium effect (d)= 0.5 of the standard deviation and probability= 75%.

Hence according to effect formula and pwr.anova.test

library(pwr)
pwr.anova.test(k=3,n=NULL,f=((0.5*sqrt((3^2)-1))/(2*3)),sig.level = 0.05,power = 0.75)
## 
##      Balanced one-way analysis of variance power calculation 
## 
##               k = 3
##               n = 52.55574
##               f = 0.2357023
##       sig.level = 0.05
##           power = 0.75
## 
## NOTE: n is number in each group

From the results of pwr.anova test we conclude that, 53 samples of each type of ball should be collected to detect a mean difference with a medium effect with a probability of 75%.

Part 1 B)

Now, we need to generate Completely Randomized Design with equal or different repetition to perform a designed experiment to determine the effect of the type of ball on the distance in which the ball is thrown.

library(agricolae)
designlevel<-c("yellow ball","red ball","black ball")
experimentdesign<-design.crd(designlevel,r=53,seed=15789)
experimentdesign$book
##     plots  r designlevel
## 1     101  1  black ball
## 2     102  1    red ball
## 3     103  2    red ball
## 4     104  3    red ball
## 5     105  4    red ball
## 6     106  2  black ball
## 7     107  5    red ball
## 8     108  6    red ball
## 9     109  1 yellow ball
## 10    110  2 yellow ball
## 11    111  3 yellow ball
## 12    112  3  black ball
## 13    113  7    red ball
## 14    114  4 yellow ball
## 15    115  4  black ball
## 16    116  8    red ball
## 17    117  9    red ball
## 18    118  5  black ball
## 19    119  5 yellow ball
## 20    120  6 yellow ball
## 21    121  6  black ball
## 22    122  7  black ball
## 23    123 10    red ball
## 24    124  8  black ball
## 25    125  9  black ball
## 26    126 11    red ball
## 27    127  7 yellow ball
## 28    128 12    red ball
## 29    129  8 yellow ball
## 30    130 13    red ball
## 31    131 10  black ball
## 32    132 11  black ball
## 33    133  9 yellow ball
## 34    134 14    red ball
## 35    135 15    red ball
## 36    136 12  black ball
## 37    137 16    red ball
## 38    138 13  black ball
## 39    139 10 yellow ball
## 40    140 14  black ball
## 41    141 11 yellow ball
## 42    142 15  black ball
## 43    143 17    red ball
## 44    144 16  black ball
## 45    145 18    red ball
## 46    146 17  black ball
## 47    147 12 yellow ball
## 48    148 13 yellow ball
## 49    149 19    red ball
## 50    150 20    red ball
## 51    151 21    red ball
## 52    152 22    red ball
## 53    153 18  black ball
## 54    154 19  black ball
## 55    155 14 yellow ball
## 56    156 23    red ball
## 57    157 24    red ball
## 58    158 15 yellow ball
## 59    159 16 yellow ball
## 60    160 25    red ball
## 61    161 20  black ball
## 62    162 21  black ball
## 63    163 26    red ball
## 64    164 17 yellow ball
## 65    165 22  black ball
## 66    166 27    red ball
## 67    167 28    red ball
## 68    168 23  black ball
## 69    169 24  black ball
## 70    170 25  black ball
## 71    171 26  black ball
## 72    172 18 yellow ball
## 73    173 29    red ball
## 74    174 27  black ball
## 75    175 19 yellow ball
## 76    176 20 yellow ball
## 77    177 30    red ball
## 78    178 31    red ball
## 79    179 21 yellow ball
## 80    180 22 yellow ball
## 81    181 32    red ball
## 82    182 23 yellow ball
## 83    183 28  black ball
## 84    184 24 yellow ball
## 85    185 29  black ball
## 86    186 30  black ball
## 87    187 31  black ball
## 88    188 33    red ball
## 89    189 32  black ball
## 90    190 25 yellow ball
## 91    191 34    red ball
## 92    192 35    red ball
## 93    193 36    red ball
## 94    194 37    red ball
## 95    195 26 yellow ball
## 96    196 38    red ball
## 97    197 39    red ball
## 98    198 40    red ball
## 99    199 33  black ball
## 100   200 34  black ball
## 101   201 27 yellow ball
## 102   202 28 yellow ball
## 103   203 35  black ball
## 104   204 36  black ball
## 105   205 37  black ball
## 106   206 41    red ball
## 107   207 29 yellow ball
## 108   208 42    red ball
## 109   209 38  black ball
## 110   210 30 yellow ball
## 111   211 43    red ball
## 112   212 44    red ball
## 113   213 31 yellow ball
## 114   214 32 yellow ball
## 115   215 33 yellow ball
## 116   216 34 yellow ball
## 117   217 35 yellow ball
## 118   218 36 yellow ball
## 119   219 37 yellow ball
## 120   220 38 yellow ball
## 121   221 39 yellow ball
## 122   222 40 yellow ball
## 123   223 45    red ball
## 124   224 41 yellow ball
## 125   225 39  black ball
## 126   226 40  black ball
## 127   227 41  black ball
## 128   228 42  black ball
## 129   229 43  black ball
## 130   230 44  black ball
## 131   231 42 yellow ball
## 132   232 43 yellow ball
## 133   233 45  black ball
## 134   234 46  black ball
## 135   235 44 yellow ball
## 136   236 46    red ball
## 137   237 45 yellow ball
## 138   238 47    red ball
## 139   239 47  black ball
## 140   240 48  black ball
## 141   241 48    red ball
## 142   242 46 yellow ball
## 143   243 49    red ball
## 144   244 50    red ball
## 145   245 47 yellow ball
## 146   246 51    red ball
## 147   247 49  black ball
## 148   248 52    red ball
## 149   249 48 yellow ball
## 150   250 49 yellow ball
## 151   251 50  black ball
## 152   252 51  black ball
## 153   253 52  black ball
## 154   254 50 yellow ball
## 155   255 51 yellow ball
## 156   256 53    red ball
## 157   257 52 yellow ball
## 158   258 53 yellow ball
## 159   259 53  black ball
design<-as.data.frame(experimentdesign$book)

From the results of Completely Randomized Design test we generated the randomized experiment to note the observations to determine the effect of the type of ball on the distance in which the ball is thrown

Part 1 C)

Reading observations from excel file to perform anova test for completely Randomized Design

Here distance is in inches

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
excelfile<-read_excel("E:/Texas Tech/Blckboard Material/Project Part1 Data F.xlsx")
## New names:
## * `` -> ...1
dataframe<-as.data.frame(excelfile)
dataframe
##     ...1 Plots  r designlevel Observations
## 1      1   101  1  Black Ball          109
## 2      2   102  1    Red Ball          104
## 3      3   103  2    Red Ball           91
## 4      4   104  3    Red Ball           97
## 5      5   105  4    Red Ball           89
## 6      6   106  2  Black Ball           78
## 7      7   107  5    Red Ball           83
## 8      8   108  6    Red Ball           79
## 9      9   109  1 Yellow Ball           98
## 10    10   110  2 Yellow Ball          111
## 11    11   111  3 Yellow Ball          106
## 12    12   112  3  Black Ball           77
## 13    13   113  7    Red Ball           86
## 14    14   114  4 Yellow Ball          107
## 15    15   115  4  Black Ball           73
## 16    16   116  8    Red Ball           63
## 17    17   117  9    Red Ball           59
## 18    18   118  5  Black Ball           83
## 19    19   119  5 Yellow Ball          109
## 20    20   120  6 Yellow Ball           98
## 21    21   121  6  Black Ball           75
## 22    22   122  7  Black Ball           83
## 23    23   123 10    Red Ball           72
## 24    24   124  8  Black Ball           53
## 25    25   125  9  Black Ball           59
## 26    26   126 11    Red Ball           63
## 27    27   127  7 Yellow Ball           74
## 28    28   128 12    Red Ball           56
## 29    29   129  8 Yellow Ball           67
## 30    30   130 13    Red Ball           59
## 31    31   131 10  Black Ball           63
## 32    32   132 11  Black Ball           56
## 33    33   133  9 Yellow Ball           67
## 34    34   134 14    Red Ball           56
## 35    35   135 15    Red Ball           67
## 36    36   136 12  Black Ball           62
## 37    37   137 16    Red Ball           63
## 38    38   138 13  Black Ball           65
## 39    39   139 10 Yellow Ball           65
## 40    40   140 14  Black Ball           56
## 41    41   141 11 Yellow Ball           65
## 42    42   142 15  Black Ball           59
## 43    43   143 17    Red Ball           57
## 44    44   144 16  Black Ball           53
## 45    45   145 18    Red Ball           56
## 46    46   146 17  Black Ball           68
## 47    47   147 12 Yellow Ball           67
## 48    48   148 13 Yellow Ball           71
## 49    49   149 19    Red Ball           59
## 50    50   150 20    Red Ball           61
## 51    51   151 21    Red Ball           64
## 52    52   152 22    Red Ball           69
## 53    53   153 18  Black Ball           56
## 54    54   154 19  Black Ball           59
## 55    55   155 14 Yellow Ball           61
## 56    56   156 23    Red Ball           69
## 57    57   157 24    Red Ball           61
## 58    58   158 15 Yellow Ball           65
## 59    59   159 16 Yellow Ball           66
## 60    60   160 25    Red Ball           62
## 61    61   161 20  Black Ball           53
## 62    62   162 21  Black Ball           57
## 63    63   163 26    Red Ball           65
## 64    64   164 17 Yellow Ball           68
## 65    65   165 22  Black Ball           59
## 66    66   166 27    Red Ball           61
## 67    67   167 28    Red Ball           59
## 68    68   168 23  Black Ball           54
## 69    69   169 24  Black Ball           67
## 70    70   170 25  Black Ball           59
## 71    71   171 26  Black Ball           59
## 72    72   172 18 Yellow Ball           63
## 73    73   173 29    Red Ball           65
## 74    74   174 27  Black Ball           58
## 75    75   175 19 Yellow Ball           63
## 76    76   176 20 Yellow Ball           71
## 77    77   177 30    Red Ball           61
## 78    78   178 31    Red Ball           64
## 79    79   179 21 Yellow Ball           69
## 80    80   180 22 Yellow Ball           73
## 81    81   181 32    Red Ball           62
## 82    82   182 23 Yellow Ball           69
## 83    83   183 28  Black Ball           61
## 84    84   184 24 Yellow Ball           76
## 85    85   185 29  Black Ball           61
## 86    86   186 30  Black Ball           61
## 87    87   187 31  Black Ball           57
## 88    88   188 33    Red Ball           68
## 89    89   189 32  Black Ball           52
## 90    90   190 25 Yellow Ball           64
## 91    91   191 34    Red Ball           51
## 92    92   192 35    Red Ball           58
## 93    93   193 36    Red Ball           56
## 94    94   194 37    Red Ball           64
## 95    95   195 26 Yellow Ball           71
## 96    96   196 38    Red Ball           54
## 97    97   197 39    Red Ball           58
## 98    98   198 40    Red Ball           60
## 99    99   199 33  Black Ball           55
## 100  100   200 34  Black Ball           48
## 101  101   201 27 Yellow Ball           69
## 102  102   202 28 Yellow Ball           63
## 103  103   203 35  Black Ball           48
## 104  104   204 36  Black Ball           56
## 105  105   205 37  Black Ball           51
## 106  106   206 41    Red Ball           61
## 107  107   207 29 Yellow Ball           56
## 108  108   208 42    Red Ball           61
## 109  109   209 38  Black Ball           52
## 110  110   210 30 Yellow Ball           67
## 111  111   211 43    Red Ball           70
## 112  112   212 44    Red Ball           63
## 113  113   213 31 Yellow Ball           68
## 114  114   214 32 Yellow Ball           67
## 115  115   215 33 Yellow Ball           79
## 116  116   216 34 Yellow Ball           62
## 117  117   217 35 Yellow Ball           74
## 118  118   218 36 Yellow Ball           72
## 119  119   219 37 Yellow Ball           69
## 120  120   220 38 Yellow Ball           64
## 121  121   221 39 Yellow Ball           68
## 122  122   222 40 Yellow Ball           65
## 123  123   223 45    Red Ball           68
## 124  124   224 41 Yellow Ball           69
## 125  125   225 39  Black Ball           53
## 126  126   226 40  Black Ball           58
## 127  127   227 41  Black Ball           47
## 128  128   228 42  Black Ball           53
## 129  129   229 43  Black Ball           57
## 130  130   230 44  Black Ball           50
## 131  131   231 42 Yellow Ball           64
## 132  132   232 43 Yellow Ball           57
## 133  133   233 45  Black Ball           56
## 134  134   234 46  Black Ball           50
## 135  135   235 44 Yellow Ball           59
## 136  136   236 46    Red Ball           59
## 137  137   237 45 Yellow Ball           61
## 138  138   238 47    Red Ball           61
## 139  139   239 47  Black Ball           62
## 140  140   240 48  Black Ball           57
## 141  141   241 48    Red Ball           69
## 142  142   242 46 Yellow Ball           56
## 143  143   243 49    Red Ball           58
## 144  144   244 50    Red Ball           56
## 145  145   245 47 Yellow Ball           63
## 146  146   246 51    Red Ball           60
## 147  147   247 49  Black Ball           55
## 148  148   248 52    Red Ball           63
## 149  149   249 48 Yellow Ball           67
## 150  150   250 49 Yellow Ball           56
## 151  151   251 50  Black Ball           59
## 152  152   252 51  Black Ball           57
## 153  153   253 52  Black Ball           62
## 154  154   254 50 Yellow Ball           53
## 155  155   255 51 Yellow Ball           59
## 156  156   256 53    Red Ball           62
## 157  157   257 52 Yellow Ball           51
## 158  158   258 53 Yellow Ball           54
## 159  159   259 53  Black Ball           57

Here Observations in excel file are numbers and designlevel is factor

excelfile$Observations<-as.numeric(excelfile$Observations)
excelfile$designlevel<-as.factor(excelfile$designlevel)

Now we will plot the boxplot to simultaneously compare the data

boxplot(excelfile$Observations~excelfile$designlevel,main="Comparing Boxplot for Blackball, Redball and Yellowball", col=c("gray60","red","yellow"))

From the boxplot, it appears that Redball readings are distributed or more spread out when compared with Blackball and Redball and variances are fairly constant.

Now to estimate how a quantitative dependent variable changes according to the levels of one or more categorical independent variables we will perform anova test

Part 1 D)

To test the hypothesis, we will first define the hypothesis.

Null Hypothesis : \(H_o : \mu_1 = \mu_2 = \mu_3 = .... \mu_i = \mu\)

Alternative Hypothesis : \(H_a\) : At least one of the \(\mu_i\) differs

aov.model<-aov(excelfile$Observations~excelfile$designlevel,data = dataframe)
summary(aov.model)
##                        Df Sum Sq Mean Sq F value   Pr(>F)    
## excelfile$designlevel   2   2440  1219.8    8.49 0.000316 ***
## Residuals             156  22413   143.7                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the results of anova test we get p-value as 0.000316. As the p-value is lesser than \(\alpha\) = 0.05, we conclude that we reject the null hypothesis and atleast one mean is different

Now, to check assumptions of the our model, we will plot residuals of aov.model

plot(aov.model,col="darkred")

From the residual normal plot we can conclude that observations are fairly distributed along the straight normal line but in the end they start deviating from the line

From residual plots we can conclude that variance are not constant and widely spread

Hence to stabilize the normality and variance we will do the data transformation using boxcox

library("MASS")
boxcox(aov.model)

From the boxcox plot we can conclude that the 95% confidence interval range intersect at -1.65. Hence value of lambda is taken as -1.65

lambda = -1.65
dataframe2<-dataframe
dataframe2$Observations<-(dataframe2$Observations)^lambda
dataframe2$Observations
##   [1] 0.0004347567 0.0004697805 0.0005855739 0.0005270194 0.0006074443
##   [6] 0.0007551686 0.0006815868 0.0007394610 0.0005181756 0.0004219073
##  [11] 0.0004552451 0.0007714190 0.0006428025 0.0004482464 0.0008423979
##  [16] 0.0010742073 0.0011970001 0.0006815868 0.0004347567 0.0005181756
##  [21] 0.0008056546 0.0006815868 0.0008617899 0.0014287124 0.0011970001
##  [26] 0.0010742073 0.0008236973 0.0013046372 0.0009704576 0.0011970001
##  [31] 0.0010742073 0.0013046372 0.0009704576 0.0013046372 0.0009704576
##  [36] 0.0011029446 0.0010742073 0.0010202180 0.0010202180 0.0013046372
##  [41] 0.0010202180 0.0011970001 0.0012670872 0.0014287124 0.0013046372
##  [46] 0.0009470225 0.0009704576 0.0008819089 0.0011970001 0.0011329370
##  [51] 0.0010466538 0.0009244832 0.0013046372 0.0011970001 0.0011329370
##  [56] 0.0009244832 0.0011329370 0.0010202180 0.0009948383 0.0011029446
##  [61] 0.0014287124 0.0012670872 0.0010202180 0.0009470225 0.0011970001
##  [66] 0.0011329370 0.0011970001 0.0013853206 0.0009704576 0.0011970001
##  [71] 0.0011970001 0.0010742073 0.0010202180 0.0012312431 0.0010742073
##  [76] 0.0008819089 0.0011329370 0.0010466538 0.0009244832 0.0008423979
##  [81] 0.0011029446 0.0009244832 0.0011329370 0.0007882384 0.0011329370
##  [86] 0.0011329370 0.0012670872 0.0009470225 0.0014743293 0.0010466538
##  [91] 0.0015223314 0.0012312431 0.0013046372 0.0010466538 0.0008819089
##  [96] 0.0013853206 0.0012312431 0.0011642612 0.0013440071 0.0016824879
## [101] 0.0009244832 0.0010742073 0.0016824879 0.0013046372 0.0015223314
## [106] 0.0011329370 0.0013046372 0.0011329370 0.0014743293 0.0009704576
## [111] 0.0009027931 0.0010742073 0.0009470225 0.0009704576 0.0007394610
## [116] 0.0011029446 0.0008236973 0.0008617899 0.0009244832 0.0010466538
## [121] 0.0009470225 0.0010202180 0.0009470225 0.0009244832 0.0014287124
## [126] 0.0012312431 0.0017419614 0.0014287124 0.0012670872 0.0015728941
## [131] 0.0010466538 0.0012670872 0.0013046372 0.0015728941 0.0011970001
## [136] 0.0011970001 0.0011329370 0.0011329370 0.0011029446 0.0012670872
## [141] 0.0009244832 0.0013046372 0.0012312431 0.0013046372 0.0010742073
## [146] 0.0011642612 0.0013440071 0.0010742073 0.0009704576 0.0013046372
## [151] 0.0011970001 0.0012670872 0.0011029446 0.0014287124 0.0011970001
## [156] 0.0011029446 0.0015223314 0.0013853206 0.0012670872

Now, to check assumptions of the our transformed data, we will perform aov analysis and plot residuals of new aov.model named as aov.model1

aov.model1<-aov(dataframe2$Observations~dataframe2$designlevel,data = dataframe2)
summary(aov.model1)
##                         Df    Sum Sq   Mean Sq F value   Pr(>F)    
## dataframe2$designlevel   2 1.687e-06 8.433e-07   14.12 2.32e-06 ***
## Residuals              156 9.319e-06 5.970e-08                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(aov.model1,col="darkred")

## hat values (leverages) are all = 0.01886792
##  and there are no factor predictors; no plot no. 5

From the results of anova test we get p-value of transformed data is 2.32e-06. As the p-value is lesser than \(\alpha\) = 0.05, we conclude that we reject the null hypothesis and atleast one mean is different

From the residual normal plot we can conclude that observations are fairly distributed along the straight normal line but in the end they start deviating from the line

From residual plots we can conclude that variance are stabilized and are fairly constant

Part 1 E)

To compute the honest significant differences we will now perform the TukeyHSD test

library(agricolae)
tukeyHSD<-TukeyHSD(aov.model1)
tukeyHSD
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = dataframe2$Observations ~ dataframe2$designlevel, data = dataframe2)
## 
## $`dataframe2$designlevel`
##                                 diff           lwr           upr     p adj
## Red Ball-Black Ball    -1.593910e-04 -0.0002717385 -4.704343e-05 0.0028299
## Yellow Ball-Black Ball -2.490472e-04 -0.0003613947 -1.366997e-04 0.0000015
## Yellow Ball-Red Ball   -8.965624e-05 -0.0002020038  2.269129e-05 0.1454391
plot(tukeyHSD, col="darkred")

According to the graph of TukeyHSD test, we conclude that mean of group of “Blackball and Redball” and “Yellowball and Blackball” does not fall in zero confidence interval, hence there is significant difference in the mean of readings in that group.

Part 1 F)

As three balls have different material as well as physical characteristics, hence distance traveled by each ball is different and hence there is significant difference in means.

Also, another important factor is the way of data collection and the rubber band. From our observation as the rubber band gets used, its tension decreases and hence it impact the distance travelled by the ball.

Our recommendation is to collect the data in controlled standard environment to get accurate results

Project Part 2

Part 2 A)

Model Equation for two factor interaction:

\(Y_{ijk} = \mu_i + \alpha_i + \beta_j + \alpha\beta_{ij} + \epsilon_{ijk}\)

Where

\(\alpha_i\) is Main Effects of Factor A (pin elevation)

\(\beta_j\) is Main Effects of Factor B (Release Angle)

\(\alpha\beta_{ij}\) is Interaction effects of Factors A and Factors B

Hypothesis to be tested

Null Hypothesis(Ho): \(\alpha_i=0\) For all i

Alternative Hypothesis(Ha): \(\alpha_i\neq0\) For some i

Null Hypothesis(Ho): \(\sigma^2\beta =0\)

Alternative Hypothesis(Ha): \(\sigma^2\beta\neq0\)

Null Hypothesis(Ho): \(\sigma^2\alpha\beta=0\)

Alternative Hypothesis(Ha):\(\alpha\beta_{ij}\neq0\)

we will test first highest order interaction effects hypothesis

Null Hypothesis(Ho): \(\sigma^2\alpha\beta=0\)

Alternative Hypothesis(Ha):\(\alpha\beta_{ij}\neq0\)

Here we know, I=2, J=3 and k=3

Level of significance at which we are testing the hypothesis is 0.05

Notations

Factor A (pin elevation)

Pin position 1(bottom) is denoted by “1”

Pin position 3(top) is denoted by “2”

Also, for Factor B (Release Angle)

Release angle of 110 degree is denoted by “1”

Release angle of 140 degree is denoted by “2”

Release angle of 170 degree is denoted by “3”

Part 2 B)

Now, we need to generate Completely Randomized Design with equal or different repetition to perform a designed experiment to determine the effect of the release angle and pin position on the experiment.

library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
library(agricolae)
treat<-c(2,3)
d<-design.ab(treat,3,design = "crd",seed= 1111644)
design<-d$book
design
##    plots r A B
## 1    101 1 1 2
## 2    102 1 1 3
## 3    103 2 1 3
## 4    104 2 1 2
## 5    105 1 2 2
## 6    106 3 1 3
## 7    107 1 2 1
## 8    108 2 2 2
## 9    109 1 2 3
## 10   110 1 1 1
## 11   111 3 2 2
## 12   112 2 2 1
## 13   113 2 2 3
## 14   114 2 1 1
## 15   115 3 1 1
## 16   116 3 2 3
## 17   117 3 2 1
## 18   118 3 1 2

Part 2 C)

Collecting the data according to the randomized generated design

factorA <-c("1","1","1","1","2","1","2","2","2","1","2","2","2","1","1","2","2","1")
factorB <-c("2","3","3","2","2","3","1","2","3","1","2","1","3","1","1","3","1","2")
observations <- c(37,54,60,45,49,49,30,53,67,30,49,33,63,33,29,72,35,51)
df<- data.frame(factorA,factorB,observations)

According to the problem statement we have been told to investigate the settings “1” and “3” of Pin Elevation as the fixed effects and settings of the Release Angle corresponding to “110”, “140”, and “170” degrees as a random effects

df$factorA <- as.fixed(df$factorA)
df$factorB <- as.random(df$factorB)
df
##    factorA factorB observations
## 1        1       2           37
## 2        1       3           54
## 3        1       3           60
## 4        1       2           45
## 5        2       2           49
## 6        1       3           49
## 7        2       1           30
## 8        2       2           53
## 9        2       3           67
## 10       1       1           30
## 11       2       2           49
## 12       2       1           33
## 13       2       3           63
## 14       1       1           33
## 15       1       1           29
## 16       2       3           72
## 17       2       1           35
## 18       1       2           51

Part 2 D)

Now to test the hypothesis we will perform the ANOVA test and gad(model)

model<- aov(observations~factorA+factorB+factorA*factorB,data = df)
GAD::gad(model)
## Analysis of Variance Table
## 
## Response: observations
##                 Df Sum Sq Mean Sq F value    Pr(>F)    
## factorA          1  220.5  220.50  4.7419    0.1613    
## factorB          2 2556.8 1278.39 66.1236 3.315e-07 ***
## factorA:factorB  2   93.0   46.50  2.4052    0.1323    
## Residual        12  232.0   19.33                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the results of the ANOVA and gad model test, the p-value of interaction of factorA and FactorB is 0.1323. As p-value is greater than the alpha 0.05, we conclude that we failed to reject the null hypothesis.Hence we conclude that interaction is not significant

p-value of Factor A is 0.1613

p-value of Factor B is 3.315e-07

To get better idea about the interaction effects of FactorA and FactorB we will plot interaction plots

interaction.plot(factorA, factorB,observations, type = "l", ylab = "obs", xlab = "FactorA", main = "Interaction Plot", col = c("darkred", "black"))

From interaction plots we can see that the interaction is not significant

Now we will perform the ANOVA Test and gad model without considering the interaction

model1 <- aov(observations~factorA+factorB,data = df)
GAD::gad(model1)
## Analysis of Variance Table
## 
## Response: observations
##          Df Sum Sq Mean Sq F value   Pr(>F)    
## factorA   1  220.5  220.50  9.4985 0.008118 ** 
## factorB   2 2556.8 1278.39 55.0691 2.32e-07 ***
## Residual 14  325.0   23.21                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the results of the ANOVA and gad model test, the p-value of factorA and factorB is 0.008118 and 2.32e-07 respectively. As p-value is lower than the alpha 0.05, we conclude that we reject the null hypothesis and main effects are significant.

plot(model,col="darkred")

From the residual plot we can conclude that the our data is normally distributed except few out liners

From residuals vs fitted plots we can see that variances are widely spread, hence we conclude that variances are not constant

Project Part 3

Part 3 A)

Model Equation for four factor interaction:

\(Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k+ \delta_l+ \alpha\beta_ij + \alpha\gamma_ik+ \beta\gamma_jk + \alpha\delta_il+ \beta\delta_jl+ \gamma\delta_kl+ \alpha\beta\gamma_ijk + \alpha\beta\delta_ijl + \alpha\gamma\delta_ikl + \beta\gamma\delta_jkl + \alpha\beta\gamma\delta_ijkl + \epsilon_ijkl\)

Where

\(\alpha_i\) is Main Effects of Factor A (pin elevation)

\(\beta_j\) is Main Effects of Factor B (Bungee Position)

\(\gamma_k\) is Main Effects of Factor C (Release Angle)

\(\delta_l\) is Main Effects of Factor D (Ball Type)

\(\alpha\beta_ij\) is Interaction effects of Factors A and Factors B

\(\alpha\gamma_ik\) is Interaction effects of Factors A and Factors C

\(\beta\gamma_jk\) is Interaction effects of Factors B and Factors C

\(\alpha\delta_il\) is Interaction effects of Factors A and Factors D

\(\beta\delta_jl\) is Interaction effects of Factors B and Factors D

\(\gamma\delta_kl\) is Interaction effects of Factors C and Factors D

\(\alpha\beta\gamma_ijk\) is Interaction effects of Factors A, Factors B and Factors C

\(\alpha\beta\delta_ijl\) is Interaction effects of Factors A, Factors B and Factors D

\(\alpha\gamma\delta_ikl\) is Interaction effects of Factors A, Factors C and Factors D

\(\beta\gamma\delta_jkl\) is Interaction effects of Factors B, Factors C and Factors D

\(\alpha\beta\gamma\delta_ijkl\) is Interaction effects of Factors A, Factors B, Factors C and Factors D

\(\epsilon_ijkl\) is error

Part 3 B)

library(GAD)
library(agricolae)
treat<-c(2,2,2,2)
d<-design.ab(treat,1,design = "crd",seed= 1111644)
design<-d$book
design
##    plots r A B C D
## 1    101 1 1 2 1 1
## 2    102 1 2 2 2 1
## 3    103 1 1 2 2 1
## 4    104 1 1 2 2 2
## 5    105 1 1 2 1 2
## 6    106 1 2 1 1 1
## 7    107 1 2 1 2 2
## 8    108 1 2 2 1 1
## 9    109 1 1 1 1 2
## 10   110 1 1 1 1 1
## 11   111 1 2 2 1 2
## 12   112 1 2 1 1 2
## 13   113 1 1 1 2 1
## 14   114 1 2 2 2 2
## 15   115 1 1 1 2 2
## 16   116 1 2 1 2 1
library(DoE.base)
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths
A<-c(-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,1)
B<-c(1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1)
C<-c(-1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1)
D<-c(-1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,-1)
obs<-c(34,68,48,40,30,42,57,43,33,27,42,37,37,57,38,66)
dat<-data.frame(A,B,C,D,obs)
dat
##     A  B  C  D obs
## 1  -1  1 -1 -1  34
## 2   1  1  1 -1  68
## 3  -1  1  1 -1  48
## 4  -1  1  1  1  40
## 5  -1  1 -1  1  30
## 6   1 -1 -1 -1  42
## 7   1 -1  1  1  57
## 8   1  1 -1 -1  43
## 9  -1 -1 -1  1  33
## 10 -1 -1 -1 -1  27
## 11  1  1 -1  1  42
## 12  1 -1 -1  1  37
## 13 -1 -1  1 -1  37
## 14  1  1  1  1  57
## 15 -1 -1  1  1  38
## 16  1 -1  1 -1  66
model<-lm(obs~A*B*C*D,data = dat)
coef(model)
## (Intercept)           A           B           C           D         A:B 
##     43.6875      7.8125      1.5625      7.6875     -1.9375     -0.5625 
##         A:C         B:C         A:D         B:D         C:D       A:B:C 
##      2.8125      0.3125     -1.3125     -1.0625     -1.4375     -0.8125 
##       A:B:D       A:C:D       B:C:D     A:B:C:D 
##      1.3125     -0.3125     -0.3125     -0.4375
halfnormal(model)
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] A C

model1<-aov(obs~A+C+A*C,data = dat)

summary(model1)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## A            1  976.6   976.6  51.230 1.15e-05 ***
## C            1  945.6   945.6  49.603 1.35e-05 ***
## A:C          1  126.6   126.6   6.639   0.0242 *  
## Residuals   12  228.7    19.1                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the results of halfnormal plot we can conclude that factors A and C seems to be significant.

Part 3 C)

Model Equation of significant factor

\(Y_{ik} = \mu + \alpha_i + \gamma_k+ \alpha\gamma_ik + \epsilon_ik\)

Where

\(\alpha_i\) is Main Effects of Factor A (pin elevation)

\(\gamma_k\) is Main Effects of Factor C (Release Angle)

\(\alpha\gamma_ik\) is Interaction effects of Factors A and Factors C

\(\epsilon_ijkl\) is error

Part 3 D)

Testing higher level interaction hypothesis first

Hypothesis to be tested first

Null Hypothesis(H0)= Interaction effect of Factor A and C is significant

Alternate Hypothesis(Ha)= Interaction effect of Factor A, and C is not significant

From the results of the ANOVA table, the p-value of interaction of factor A and Factor C is 0.0242. As p-value is lesser than the alpha 0.05, we conclude that we reject the null hypothesis. Hence we conclude that interaction is significant

As we rejected the null hypothesis for interaction we must stop exploration on the associated factors

According to the ANOVA table, the p-value for factor A is 1.15e-05 and for factor C is 1.35e-05.

ALL CODE

library(pwr)
pwr.anova.test(k=3,n=NULL,f=((0.5*sqrt((3^2)-1))/(2*3)),sig.level = 0.05,power = 0.75)

library(agricolae)
designlevel<-c("yellow ball","red ball","black ball")
experimentdesign<-design.crd(designlevel,r=53,seed=15789)
experimentdesign$book
design<-as.data.frame(experimentdesign$book)

library(readxl)
excelfile<-read_excel("E:/Texas Tech/Blckboard Material/Project Part1 Data F.xlsx")
dataframe<-as.data.frame(excelfile)
dataframe

excelfile$Observations<-as.numeric(excelfile$Observations)
excelfile$designlevel<-as.factor(excelfile$designlevel)

boxplot(excelfile$Observations~excelfile$designlevel,main="Comparing Boxplot for Blackball, Redball and Yellowball", col=c("gray60","red","yellow"))

aov.model<-aov(excelfile$Observations~excelfile$designlevel,data = dataframe)
summary(aov.model)

plot(aov.model,col="darkred")

library("MASS")
boxcox(aov.model)

lambda = -1.65
dataframe2<-dataframe
dataframe2$Observations<-(dataframe2$Observations)^lambda
dataframe2$Observations

aov.model1<-aov(dataframe2$Observations~dataframe2$designlevel,data = dataframe2)
summary(aov.model1)
plot(aov.model1,col="darkred")

library(agricolae)
tukeyHSD<-TukeyHSD(aov.model1)
tukeyHSD
plot(tukeyHSD, col="darkred")

library(GAD)
library(agricolae)
treat<-c(2,3)
d<-design.ab(treat,3,design = "crd",seed= 1111644)
design<-d$book
design
factorA <-c("1","1","1","1","2","1","2","2","2","1","2","2","2","1","1","2","2","1")
factorB <-c("2","3","3","2","2","3","1","2","3","1","2","1","3","1","1","3","1","2")
observations <- c(37,54,60,45,49,49,30,53,67,30,49,33,63,33,29,72,35,51)
df<- data.frame(factorA,factorB,observations)
df$factorA <- as.fixed(df$factorA)
df$factorB <- as.random(df$factorB)
df
model <- aov(observations~factorA+factorB+factorA*factorB,data = df)
GAD::gad(model)
interaction.plot(factorA, factorB,observations, type = "l", ylab = "obs", xlab = "FactorA", main = "Interaction Plot", col = c("darkred", "black"))
model1 <- aov(observations~factorA+factorB,data = df)
GAD::gad(model1)
plot(model,col="darkred")

library(GAD)
library(agricolae)
treat<-c(2,2,2,2)
d<-design.ab(treat,1,design = "crd",seed= 1111644)
design<-d$book
design
library(DoE.base)
A<-c(-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,1)
B<-c(1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1)
C<-c(-1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1)
D<-c(-1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,-1)
obs<-c(34,68,48,40,30,42,57,43,33,27,42,37,37,57,38,66)
dat<-data.frame(A,B,C,D,obs)
dat
model<-lm(obs~A*B*C*D,data = dat)
coef(model)
halfnormal(model)

model1<-aov(obs~A+C+A*C,data = dat)

summary(model1)

Acknowledgement

Our group would like to thank Dr. Timothy Matis for his help and guidance at every stage of project. We would also like to thank Mr. Pritom Mondal for helping and guiding us.

References used

Design of Experiments course material provided by Dr. Timothy Matis.

Montgomery, Douglas C.Design and Analysis of Experiments United Kingdom, Wiley, 2013.

https://www.rstudio.com/resources/cheatsheets/