##
## Balanced one-way analysis of variance power calculation
##
## k = 3
## n = 52.55574
## f = 0.2357023
## sig.level = 0.05
## power = 0.75
##
## NOTE: n is number in each group
## Df Sum Sq Mean Sq F value Pr(>F)
## ind 2 0.044 0.02222 0.25 0.779
## Residuals 156 13.861 0.08885
The model equation for a full factorial model is:
\(y_{ijk}=\mu+\alpha_i+\beta_j+\alpha\beta_{ij}+\epsilon_{ijk}\)
Hypotheses:
\(H_O: \alpha_i=0\)
\(H_a: \alpha_i \neq 0\)
\(H_O: \sigma_{\beta}^2=0\)
\(H_a: \\sigma_{\beta}^2\neq 0\)
\(H_O: \sigma_{\alpha\beta}^2=0\)
\(H_a: \\sigma_{\alpha\beta}^2\neq 0\)
| Factor | Low Level(-1) | High Level(+1) |
|---|---|---|
| Pin Elevation | Position 1 | Position 3 |
| Bungee Position | Position 2 | Position 3 |
| Release Angle | 140 degrees | 170 degrees |
| Ball Type | Yellow | Red |