Objetivo

Encontrar probabilidades de acuerdo a la distribución binomial.

Descripción

Se identifican ejercicios casos de la literatura de distribuciones de probabilidad binomial y se realizan cálculos de probabilidades, se determinan el valor esperado y se calcula la varianza y la desviación.

Los ejercicios que se presenta utilizan funciones relacionadas con la distribución binomial dbinom() pbinom(), rbinom() en algunos ejercicios del caso se utiliza la función f.prob.binom() previamente codificada y que encapsula la fórmula para determinar probabilidad binomiales.

Fundamento teórico

El experimento de lanzar al aire una moneda es un ejemplo sencillo de una importante variable aleatoria discreta llamada variable aleatoria binomial. Muchos experimentos prácticos resultan en datos similares a que salgan cara o cruz al tirar la moneda (mendenhall_introduccion_2006?)

Un experimento binomial es el que tiene estas cinco características:

  • El experimento consiste en \(n\) intentos idénticos.

  • Cada intento resulta en uno de dos resultados, el resultado uno se llama éxito, ‘S,’ y el otro se llama fracaso, ‘F.’

  • La probabilidad de éxito en un solo intento es igual a \(p\) y es igual de un intento a otro. La probabilidad de fracaso es igual a \(q= (1 - p)\).

  • Los intentos son independientes.

  • El interés es el valor de \(x\), o sea, el número de éxitos observado durante los \(n\) intentos, para \(x = 0, 1, 2, …, n.\) (mendenhall_introduccion_2006?).

Un experimento de Bernoulli puede tener como resultado un éxito con probabilidad \(p\) y un fracaso con probabilidad \(q = 1 − p\). Entonces, la distribución de probabilidad de la variable aleatoria binomial \(x\), el número de éxito \(k\) en \(n\) ensayos independientes (walpole_probabilidad_2012?):

Fórmula:

\[prob(x=k) = \binom{n}{k} \cdot p^{k} \cdot q^{(n-k)} \] Para \[x = 0,1,2,3...n\] y recordando las combinaciones cuantos éxitos \(k\) en \(n\) ensayos.\[\binom{n}{k} = \frac{n!}{k!\cdot(n-k)!}\]

El valor esperado está dado por: \[\mu = n \cdot p\]

La varianza y la desviación estándar se determinan mediante: \[\sigma^{2} = n \cdot p \cdot(1-p)\] y \[\sigma = \sqrt{\sigma^{2}}\]

En programación R, para calcular la función de probabilidad binomial para un conjunto de valores discretos, \(x\), un número de ensayos \(n\) y una probabilidad de éxito \(p\) se puede hacer uso de la función dbinom().

De semejante forma, para calcular la probabilidad acumulada de una distribución binomial se puede utilizar la función pbinom() o para calcular la probabilidad de que una variable aleatoria \(x\) que sigue una distribución binomial tome valores menores o iguales a \(x\) puedes hacer uso de la función pbinom() (rcoderbinom?).

Desarrollo

Cargar librerías

library(dplyr)
library(ggplot2)
library(mosaic) # Gráficos de distribuciones
options(scipen=999) # Notación normal
# options(scipen=1) # Notación científica

Cargar funciones

Se carga función de servicio github o de manera local

# source("../funciones/funciones.para.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/Trabajos-en-R-AD2021/main/funciones/funciones.para.distribuciones.r")

Se determina una semilla porque algunos ejercicios calculan valores aleatorios.

set.seed(2021)

Ejercicios

Tienda de ropa MartinClothingStore

Tienda de ropa MartinClothingStore (anderson_estadistica_2008?)

De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30 o 30%

  • Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad acumulada

  • Encontrar la probabilidad de que compren dos clientes

  • Encontrar la probabilidad de que compren los tres próximos clientes.

  • Encontrar la probabilidad de que sean menor o igual que dos.

  • Calcular la probabilidad de que sean mayor que dos

  • Determinar el valor esperado y su significado

  • Determinar la varianza y la desviación estándar y si significado

  • Interpretar

Probabilidad para 0,1,2,3 y tabla de distribución

Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada

  • Inicializar valores
x <- c(0,1,2,3)
n <- 3
exito <- 0.30
  • Determinar tabla de probabilidad usando la función creada y conforme a la fórmula
tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla1
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000
  • Determinar tabla de probabilidad usando función propia de los paquetes base de R dbinom()
tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
tabla2
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000

con pbinom() en lugar de cumsum()

tabla3 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla3
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000

Visualizar tabla de distribución

plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) )) 

plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) ), kind = "histogram") 

Probabilidad de que compren dos clientes

Encontrar la probabilidad de que compren dos clientes

  • Identificar la probabilidad cuando \(P(x=2)\) de la tabla.
  • Se puede usar tabla1, tabla2 o tabla3 es la misma.
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  2  es igual a :  0.189"

Usando dbinom()

dbinom(x = 2, size = 3, prob = exito)
## [1] 0.189

Probabilidad de que compren los tres próximos clientes

Encontrar la probabilidad de que compren los tres próximos clientes

  • Identificar la probabilidad cuando \(P(x=3)\) de la tabla.
  • Se puede usar tabla1, tabla2 o tabla3 es la misma.
valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 3    0.027        1
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  3  es igual a :  0.027"

Usando dbinom()

dbinom(x = 3, size = 3, prob = exito)
## [1] 0.027

Probabilidad de que sean menor o igual que dos

Encontrar la probabilidad de que sean menor o igual que dos

  • Ahora usar la función acumulada por la pregunta
  • \(P(x=0) + P(x=1) + P(x=2)\)
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a  2  es igual a :  0.973"

Usando pbinom()

pbinom(q = 2, size = 3, prob = exito)
## [1] 0.973

Probabilidad de que sean mayor que dos

La expresión lower.tail = FALSE como atributo de la función pbinom() significa encontrar en la tabla de distribución la sumatoria de las probabilidades a partir de el valor de \(x\), o lo que es lo mismo, \(1 - prob.acum(x)\), \(1 - 0.97 = 0.27\).

pbinom(q = 2, size = 3, prob = exito, lower.tail = FALSE)
## [1] 0.027

Valor esperado

Determinar el valor esperado y su significado

  • El valor esperado de la distribución binomial

\[\mu = n \cdot p\] Siendo \(p\) el éxito de la probabilidad y \(n\) el número de experimentos

VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es:  0.9"

El valor esperado \(VE\) significa el valor medio o el valor promedio de todos valores de la distribución de probabilidad.

Varianza y desviación estándar

Determinar la varianza y la desviación estándar y su significado.

  • La varianza en la distribución binomial \[\sigma^{2} = n \cdot p \cdot(1-p)\]
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  0.63"
  • La desviación \[\sigma = \sqrt{\sigma^{2}}\]
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  0.79"

Interpretar el ejercicio

La probabilidad para cuando ningún cliente compre, solo 1 compre, 2 compren o bien 3 compren en la tienda Martin Clothing Store se obtuvo gracias a la función \(f.prob.binom\) la cual solicita que se ingrese el numero de clientes para el valor de \(x\), el total de eventos que es \(n\) y la probabilidad estimada que es \(éxito\). Como se observa en la tabla la probabilidad de que no haya clientes comprando es del 34% que haya 1 cliente comprando es del \(44%\) que haya 2 cliente es del \(97%\) y finalmente que haya 3 clientes es del \(100%\) Por su parte la probabilidad acumulada tal como se ha visto anteriormente se utiliza para conocer que probabilidad existe para los casos de <, > o = Por ejemplo en el caso de que haya menos de 3 compradores la probabilidad es del 97%. En este caso se hace uso de diferentes funciones que ya están integradas en el software R tales como: \(dbinom\), que se usa para obtener la probabilidad, \(pbinom\), que se usa para la probabilidad acumulada. El valor acumulado en este ejercicio se obtuvo mediante la formula VE= \(n\) (número de experimentos) * \(p\) (probabilidad) y como resultado del ejercicio fue del \(0.9\) la varianza se obtuvo con la formula \(Varianza = n * probabilidad * (1 – probabilidad)\) la cual arrojo una varianza del \(0.63\), la desviación se obtuvo con la formula ya conocida: \(σ=√σ²\) la cual para este caso fue de \(0.79\)

Jugador de basquetbol

Un jugador encesta con probabilidad 0.55. (noauthor_distribucion_nodate?):

  • Determinar las probabilidad de los tiros del 1 al 6 con la tabla de probabilidad

  • Determinar la probabilidad de encestar cuatro tiros \(P(x=4)\)

  • Determinar la probabilidad de encestar todos tiros o sea seis \(P(x=6)\)

  • Determinar la probabilidad de encestar al menos tres \(P(x \leq 3)\) o, \(P.acum(x = 3)\)

  • Determinar el valor esperado VE

  • Determinar la varianza y su desviación estándard

  • Interpretar el ejercicio

Tabla de probabilidad (0-6)

Se construye la tabla de probabilidades tal y como se construye usando el código de tabla3

Se inicializan valores:

x <- 0:6
n <- 6
exito <- 0.55
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##   x    f.prob.x    f.acum.x
## 1 0 0.008303766 0.008303766
## 2 1 0.060894281 0.069198047
## 3 2 0.186065859 0.255263906
## 4 3 0.303218437 0.558482344
## 5 4 0.277950234 0.836432578
## 6 5 0.135886781 0.972319359
## 7 6 0.027680641 1.000000000

Visualización de probabilidades

Dos formas de visualizar las probabilidades

plotDist(dist = "binom", size=n, prob=exito,xlab = paste("Variables ",min(tabla$x),"-",max(tabla$x) )) 

plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")

Probabilidad de encestar cuatro tiros

Calcular la probabilidad de encestar cuatro tiros \(P(x=4)\)

dbinom(x = 4, size = n, prob = exito)
## [1] 0.2779502

Probabilidad de encestar todos los tiros

Determinar la probabilidad de encestar todos tiros o sea seis \(P(x=6)\)

dbinom(x = 6, size = n, prob = exito)
## [1] 0.02768064

Probabilidad de encestar al menos tres

Usando la función pbinom()

pbinom(q = 3, size = n, prob = exito)
## [1] 0.5584823

o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.

valor.x <- 3
la.probabilidad <- filter(tabla, x == valor.x) 
la.probabilidad
##   x  f.prob.x  f.acum.x
## 1 3 0.3032184 0.5584823

Valor esperado

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  3.3"

El valor esperado de 3.3 significa que es lo que se espera encestar en promedio de los \(n=\) 6 tiros.

Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  1.48"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  1.22"

De el valor esperado 3.3 hay una desviación aproximada de 1.2186058 hacia arriba o hacia abajo.

Recuperación de un paciente

La probabilidad de que un paciente se recupere de una rara enfermedad sanguínea es \(0.4\). Si se sabe que \(15\) personas contraen tal enfermedad,

  • Determine tabla de probabilidad de 1 al 15

  • Visualizar la gráfica de probabilidades

  • ¿Cuál es la probabilidad de que sobrevivan al menos diez,

  • ¿Cuál es la probabilidad de que sobrevivan de tres a ocho?, y

  • ¿Cuál es la probabilidad de que sobrevivan exactamente cinco?

  • ¿Cuál es el valor esperado ‘VE’ o la esperanza media?

  • ¿Cual es la varianza y la desviación estándar?

  • ¿Cómo se comportarían las probabilidades para un experimento de 100 personas?

  • Interpretación del ejercicio (walpole_probabilidad_2012?).

Tabla de distribución

Inicializar valores

x <- 0:15
n <- 15
exito <- 0.40

Se construye la tabla de probabilidades con las funciones construidas que se encuentran en enlace citado al principi del documento y con la función cumsum() para el acumulado de la probabilidad.

tabla <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla
##     x       f.prob.x    f.acum.x
## 1   0 0.000470184985 0.000470185
## 2   1 0.004701849846 0.005172035
## 3   2 0.021941965947 0.027114001
## 4   3 0.063387901624 0.090501902
## 5   4 0.126775803249 0.217277706
## 6   5 0.185937844765 0.403215550
## 7   6 0.206597605294 0.609813156
## 8   7 0.177083661681 0.786896817
## 9   8 0.118055774454 0.904952592
## 10  9 0.061214105272 0.966166697
## 11 10 0.024485642109 0.990652339
## 12 11 0.007419891548 0.998072231
## 13 12 0.001648864788 0.999721096
## 14 13 0.000253671506 0.999974767
## 15 14 0.000024159191 0.999998926
## 16 15 0.000001073742 1.000000000

Gráfica de probabilidades

La gráfica se presenta con la función plot() que requiere las coordenadas de x & y siendo estás las variables aleatorias discretas y las probabilidades respectivamente.

plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")

Probabilidad de que sobrevivan al menos diez

Se requiere la suma de las probabilidades endonde \(P(\leq 10)\) o bien \(P(x=0) + P(x=1) + P(x=2) ... + P(x=10)\) o mediante la función acumulada de la probabilidad.\(F(x=10)\). Como se necesita la probabilidad acumulada entonces se usa pbinom().

x = 10
prob <- pbinom(q = x, size = n, prob = exito)
paste ("La probabilidad de que se enfermen menos que diez es: ", prob, " o el ", round(prob * 100, 2), "%") 
## [1] "La probabilidad de que se enfermen menos que diez es:  0.990652339224576  o el  99.07 %"

La probabilidad de que sobrevivan de tres a ocho

Se requiere el valor acumulado entre tres y ocho es decir, \(F(x=8) - F(x=2)\) , o sumar las probabilidades de tres a ocho \(P(x=3) + P(x=4) + P(x=5) + P(x=6)+ P(x=6)+P(x=7)+P(x=8)\)

Se usa la resta usando la función pbinom()

x1 = 2  #
x2 = 8
prob <- pbinom(q = x2, size = n, prob = exito) - pbinom(q = x1, size = n, prob = exito) 
paste ("La probabilidad de que se enfermen de tres a ocho es: ", prob, " o el ", round(prob * 100, 2), "%")
## [1] "La probabilidad de que se enfermen de tres a ocho es:  0.877838591066112  o el  87.78 %"

Se comprueba sumando las probabilidades de tres a ocho

sum(dbinom(x = 3:8, size = n, prob = exito))
## [1] 0.8778386

o sumando los renglones de las probabilidades de tres a ocho de la tabla de probabilidad.

sum(filter(tabla, x %in% 3:8) %>%
  select(f.prob.x))
## [1] 0.8778386

La probabilidad de que sobrevivan exactamente cinco

Aquí se calcula la probabilidad con la función dbinom() cuando \(P(x=5)\)

x = 5
prob <- dbinom(x = x, size = n, prob = exito)
paste ("La probabilidad de que se enfermen menos que diez es: ", prob, " o el ", round(prob * 100, 2), "%") 
## [1] "La probabilidad de que se enfermen menos que diez es:  0.185937844764672  o el  18.59 %"

Se comprueba la probabilidad extrayendo con la función filter() el registro de la tabla de distribución cuando \(x==10\).

filter(tabla, x==5)
##   x  f.prob.x  f.acum.x
## 1 5 0.1859378 0.4032156

Valor esperado

Se determina el valor medio o el valor esperado de la tabla de distribución.

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  6"

Se espera que se recuperen 6 en promedio

Varianza y desviación

Se calcula la varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  3.6"

Se determina la desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  1.9"

Siendo la desviación una medida de variabilidad significa que tanto estarían las probabilidades por encima o por debajo del valor esperado.

Probabilidades para un experimento de 100 personas

Con la función de aleatoriedad rbinom() se calculan las probabilidades de una muestra de \(100\), con ello las proporciones o frecuencias relativas siendo los elementos de la función \(n\) la cantidad de experimentos que serían \(100\), size el tamaño del estudio original es decir \(15\) y prob la probabilidad de éxito.

La variable llamada variables contiene los valores aleatorios de la muestra y la frecuencia es la cantidad de ocasiones de cada variable aleatoria.

muestra <- 100
variables <- rbinom(n = muestra, size = n, prob = exito)
variables
##   [1]  6  7  7  5  7  7  7  5  8 10  3  8  6  6  8  5  6  8  9  6  4  9  5  5  6
##  [26]  9  9  8  9  8  3  9  9  8  6  5  9  5  9  6  4  8  6  9  4  8  8  2  3  8
##  [51]  6  7  3  6  5  4  6  5  8  7  2  6  3  5  8  4  3  7  5  3  3  7  4  9  3
##  [76]  6  6  5  7 11  6  6  9  7  5  5 10  8  6  5  4  7  9  6  5  8  7  7  7  7
frecuencia = table(variables)
frecuencia
## variables
##  2  3  4  5  6  7  8  9 10 11 
##  2  9  7 16 19 16 15 13  2  1

Las probabilidades relativas de la muestra

probs <- prop.table(frecuencia)
probs
## variables
##    2    3    4    5    6    7    8    9   10   11 
## 0.02 0.09 0.07 0.16 0.19 0.16 0.15 0.13 0.02 0.01
tablaexp <- data.frame(x=1:length(frecuencia), f.prob.x = as.vector(probs), f.acum.x = cumsum(as.vector(probs)))
tablaexp
##     x f.prob.x f.acum.x
## 1   1     0.02     0.02
## 2   2     0.09     0.11
## 3   3     0.07     0.18
## 4   4     0.16     0.34
## 5   5     0.19     0.53
## 6   6     0.16     0.69
## 7   7     0.15     0.84
## 8   8     0.13     0.97
## 9   9     0.02     0.99
## 10 10     0.01     1.00

Visualizando las probabilidades del experimento

A partir de la nueva tabla del experimento se compara con la tabla original en dos gráficas

Con la función par(mfrow=c(1,2)) se puede ver dos gráficas tipo plot() al mismo tiempo en el mismo renglón.

par(mfrow=c(1,2))
plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = "X", ylab= "f(x)", main = "15 pacientes")
plot(x = tablaexp$x, y=tablaexp$f.prob.x, type = "h", xlab = "X", ylab= "f(x)", xlim = c(0,15), ylim = range(0, 0.20), main="Simulando 100 pacientes")

¿Cómo se comportan las probabilidades del estudio con 15 y del experimento o simulación con 100 pacientes?, muy similares las probabilidades.

Aprobar un examen

Un estudio refleja que al aplicar un examen de estadística la probabilidad de aprobar (éxito) es del \(60%\). Se pide lo siguiente:

  • Encuentre la tabla de distribución binomial para 30 estudiantes que presentan el examen

  • ¿Cuál es la probabilidad de que aprueben 5 alumnos?

  • ¿Cuál es la probabilidad de que aprueben 10 alumnos?

  • ¿Cuál es la probabilidad de que aprueben 15 o menos alumnos?

  • ¿Cuál es la probabilidad de que aprueben entre 10 y 20 alumnos?

  • ¿Cuál es la probabilidad de que aprueben mas de 25 alumnos?

  • Determinar el valor esperado VE y su significado.

  • Determinar la varianza y su desviación estándard y su significado.

Tabla de distribución binomial

Se incializan valores

x <- 0:30
n <- 30
exito <- 0.60

Se construye la tabla

tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x             f.prob.x             f.acum.x
## 1   0 0.000000000001152922 0.000000000001152922
## 2   1 0.000000000051881468 0.000000000053034389
## 3   2 0.000000001128421923 0.000000001181456312
## 4   3 0.000000015797906917 0.000000016979363229
## 5   4 0.000000159953807533 0.000000176933170762
## 6   5 0.000001247639698760 0.000001424572869522
## 7   6 0.000007797748117251 0.000009222320986774
## 8   7 0.000040102704603007 0.000049325025589781
## 9   8 0.000172942913600469 0.000222267939190250
## 10  9 0.000634124016535054 0.000856391955725303
## 11 10 0.001997490652085418 0.002853882607810724
## 12 11 0.005447701778414773 0.008301584386225485
## 13 12 0.012938291723735080 0.021239876109960601
## 14 13 0.026871836656988245 0.048111712766948846
## 15 14 0.048945131053800175 0.097056843820749084
## 16 15 0.078312209686080117 0.175369053506829159
## 17 16 0.110126544871050142 0.285495598377879189
## 18 17 0.136038673076003175 0.421534271453882614
## 19 18 0.147375229165670141 0.568909500619552144
## 20 19 0.139618638156950664 0.708528138776503003
## 21 20 0.115185376479484264 0.823713515255987683
## 22 21 0.082275268913917302 0.905988784169904804
## 23 22 0.050487096833540038 0.956475881003445050
## 24 23 0.026341094000107985 0.982816975003552917
## 25 24 0.011524228625047248 0.994341203628600123
## 26 25 0.004148722305017007 0.998489925933617184
## 27 26 0.001196746818754908 0.999686672752372107
## 28 27 0.000265943737501089 0.999952616489873214
## 29 28 0.000042740957812675 0.999995357447685862
## 30 29 0.000004421478394415 0.999999778926080274
## 31 30 0.000000221073919721 1.000000000000000000

Visualizar la tabla de distribución

plot(x=tabla$x, y=tabla$f.prob.x, 
     type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")

Probabilidad de que aprueben 15 o menos alumnos

Se calcula la probabilidad de \(P(x=0) + P(x=1) + P(x=2) ... + P(15)\) o la probabilidad acumulada cuando \(F(x=15)\)

prob <- pbinom(q = 15, size = n, prob = exito)
paste("La probabilidad de que aprueben 15 o menos es de ", prob)
## [1] "La probabilidad de que aprueben 15 o menos es de  0.175369053506829"

Probabilidad de que aprueben entre 10 y 20 alumnos

Se calcula la probabilidad acumulada de \(F(x=20) - F(x=10)\)

prob <- pbinom(q = 20, size = n, prob = exito) - pbinom(q = 10, size = n, prob = exito)
paste ("La probabilidad de que aprueben entre 10 y 20 estudiantes es de: ", prob)
## [1] "La probabilidad de que aprueben entre 10 y 20 estudiantes es de:  0.820859632648177"
# Se comprueba sumando los valores
sum(tabla$f.prob.x[11:21])
## [1] 0.8228571

Probabilidad de que aprueben mas de 25 alumnos

Se debe calcular \(P(x\geq26)\) o restar del el valor acumulado de 25 a 1. \(1 - F(x=26)\)

Con pbinom() y con lower.tail() = TRUE se encuentra la probabilidad.

prob <- pbinom(q = 25, size = n, prob = exito, lower.tail = FALSE)
paste ("La probabilidad de que aprueben mas de 25 alumnos es de ", prob)
## [1] "La probabilidad de que aprueben mas de 25 alumnos es de  0.00151007406638281"
# Se puede comprobar sumando los renglones 27 al 31 de la tabla
sum(tabla$f.prob.x[27:31])
## [1] 0.001510074

Valor esperado

El valor esperado es la cantidad de alumnos que aprueben el examen.

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  18"

Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  7.2"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  2.68"

La desviación como parte de la varianza significa la cantidad de alumnos que puede variar con respecto al valor medio \(VE\) previamente calculado.

Autobuses contaminantes

Suponga que un grupo de agentes de tránsito sale a una vía principal para revisar el estado de los autobuses de transporte intermunicipal. De datos históricos se sabe que un 10% de los camiones generan una mayor cantidad de humo de la permitida. En cada jornada los agentes revisan siempre 18 unidades (autobuses), asuma que el estado de un autobus es independiente del estado de los otros buses. (hernández2021?).

  • Construir la tabla de distribución

  • Visualizar la densidad o las probabilidades para cada variable discreta

  • Calcular la probabilidad de que se encuentren exactamente 2 buses que generan una mayor cantidad de humo de la permitida.

  • Calcular la probabilidad de que el número de autobuses que sobrepasan el límite de generación de gases sea al menos 4.

  • Calcular la probabilidad de que existan MAS DE TRES (a partir de CUATRO) autobuses que emitan gases por encima de lo permitido en la norma

  • Calcular el valor esperado.

  • Calcular la varianza y la desviación.

  • Generar una muestra aleatoria de 100 valores y comparar las frecuencias relativas con las probabilidad originales.

  • Interpretar el caso.

Construir la tabla de distribución

Se inicializan variables

x <- 0:18
n <- 18
exito <- 0.10

Se construye la tabla de distribución con dbimom() y dbinom().

tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x             f.prob.x  f.acum.x
## 1   0 0.150094635296999152 0.1500946
## 2   1 0.300189270593998137 0.4502839
## 3   2 0.283512088894331660 0.7337960
## 4   3 0.168007163789233555 0.9018032
## 5   4 0.070002984912180641 0.9718061
## 6   5 0.021778706417122911 0.9935848
## 7   6 0.005243021915233281 0.9988279
## 8   7 0.000998670840996817 0.9998265
## 9   8 0.000152574711818958 0.9999791
## 10  9 0.000018836384175180 0.9999980
## 11 10 0.000001883638417518 0.9999998
## 12 11 0.000000152213205456 1.0000000
## 13 12 0.000000009865670724 1.0000000
## 14 13 0.000000000505931832 1.0000000
## 15 14 0.000000000020076660 1.0000000
## 16 15 0.000000000000594864 1.0000000
## 17 16 0.000000000000012393 1.0000000
## 18 17 0.000000000000000162 1.0000000
## 19 18 0.000000000000000001 1.0000000

Visualizar probabilidades

Se muestran las probabilidades de cada variable discreta usando directamente la función plot()

plot(x=tabla$x, y=tabla$f.prob.x, 
     type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")

Probabilidad de que se encuentren exactamente 2 buses

x <- 2
prob <- dbinom(x = x, size = n, prob = exito)
paste ("La probabilidad de encontrar dos camiones contaminantes es de : ", prob)
## [1] "La probabilidad de encontrar dos camiones contaminantes es de :  0.283512088894332"

Probabilidad de menos de cuatro autobuses

Se requiere encontrar la probabilidad de cuando la variables tenga valores entre cero y cuatro. \(P(x=0) + P(x=1) + P(x=2) + P(x=3) + P(x=4)\) o lo que es lo mismo \(P(x\leq 4)\) o en términos de probabilidad acumulada \(F(x=4)\).

x <- 4
prob <- pbinom(q = x, size = n, prob = exito)
paste ("La probabilidad de encontrar menos de cuatro camiones es de: ", prob)
## [1] "La probabilidad de encontrar menos de cuatro camiones es de:  0.971806143486743"

Probabilidad de MAS de tres autobuses

Se requiere encontrar la probabilidad de cuando la variables tenga valores entre cuatro y dieciocho. \(P(x=4) + P(x=5) + P(x=6) + P(x=7) ... + ...P(x=18)\) o lo que es lo mismo \(P(x \geq 3)\) o en términos de probabilidad acumulada \(F(x=18) - F(x=4)\).

x1 <- 4
x2 <- 18
prob <- pbinom(q = x2, size = n, prob = exito) - pbinom(q = x1, size = n, prob = exito)  
paste ("La probabilidad de encontrar menos de cuatro camiones es de: ", prob)
## [1] "La probabilidad de encontrar menos de cuatro camiones es de:  0.0281938565132567"

Se puede encontrar usando la expresión lower.tail = FALSE

pbinom(q = 4, size = n, prob = exito, lower.tail = FALSE)
## [1] 0.02819386

Valor esperado

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  1.8"

El valor esperado de 1.8 significa el valor medio de camiones que se pueden encontrar que contaminan

Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  1.62"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  1.27"

La varianza y de manera más específica la desviación significa que tanto varía (se aleja o se acerca) con respeto al valor medio o valor esperado \(VE\) el número de autobuses con probabilidad de encontrarse con partículas contaminantes.

Valores aleatorios

Se utiliza la función rbinom() para simular un estudio y generar valores aleatorios conforme a la distribución binomial.

El estudio o la simulación se hace con un experimento de 100 camiones, a partir del estudio previo de 18 camiones.

n.muestra <- 100
muestra <- rbinom(n = n.muestra, size = n, prob = exito)
muestra
##   [1] 1 1 0 3 2 1 1 1 1 2 2 1 2 2 1 2 0 1 0 0 2 1 1 2 2 1 1 3 2 1 1 1 2 2 4 0 1
##  [38] 4 0 1 1 5 2 1 0 1 4 3 0 2 1 0 1 2 0 2 3 1 2 2 1 1 1 2 0 3 3 1 1 2 0 3 2 0
##  [75] 0 1 1 0 2 2 3 1 1 2 2 1 3 2 2 1 2 0 1 2 1 4 1 2 0 2

Calculando frecuencias relativas

Con la función table() se determina la frecuencia y con prop.table() se encuentra la frecuencia relativa.

table(muestra)
## muestra
##  0  1  2  3  4  5 
## 17 38 31  9  4  1
data.frame(prob = prop.table(table(muestra)))
##   prob.muestra prob.Freq
## 1            0      0.17
## 2            1      0.38
## 3            2      0.31
## 4            3      0.09
## 5            4      0.04
## 6            5      0.01

Se observa que los mayores valores probabilísticos está entre 1 y 3, entonces la muestra se relaciona con los valores probabilísticos del origen de los datos.

Interpretración

Jugador de Basquetbol

En este caso se obtiene la probabilidad de x y la probabilidad acumulada usando la función \(pbinom\) la cual nos solicita las siguientes variables: \(x\), el tamaño o \(n\) y la probabilidad o \(éxito\), dicho caso nos pide determinar las probabilidades del 1 al 6 refiriéndose con la serie de números a los tiros que hace el jugador de basquetbol con un éxito del 55%, dicha tabla muestra valores los siguientes valores:

x <- 0:6
n <- 6
exito <- 0.55
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##   x    f.prob.x    f.acum.x
## 1 0 0.008303766 0.008303766
## 2 1 0.060894281 0.069198047
## 3 2 0.186065859 0.255263906
## 4 3 0.303218437 0.558482344
## 5 4 0.277950234 0.836432578
## 6 5 0.135886781 0.972319359
## 7 6 0.027680641 1.000000000

La probabilidad cuando x=4 es del 27%, la probabilidad de encestar los 6 tiros es también del 27%, y de encestar al menos 3 es del 55% debido a que habla de una probabilidad acumulada. El valor esperado de este ejercicio es de 3.3 canastas encestadas en 6 intentos y la varianza y desviación es 1.48 y 1.22 respectivamente.

Recuperación de un paciente

Para este caso se solicita realizar una tabla con probabilidades de x y probabilidades acumuladas de x donde se tiene un numero de experimentos de \(15\) y un éxito del \(40%\) por ciento, para lo cual se hizo de la siguiente manera:

x <- 0:15
n <- 15
exito <- 0.40
tabla <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla
##     x       f.prob.x    f.acum.x
## 1   0 0.000470184985 0.000470185
## 2   1 0.004701849846 0.005172035
## 3   2 0.021941965947 0.027114001
## 4   3 0.063387901624 0.090501902
## 5   4 0.126775803249 0.217277706
## 6   5 0.185937844765 0.403215550
## 7   6 0.206597605294 0.609813156
## 8   7 0.177083661681 0.786896817
## 9   8 0.118055774454 0.904952592
## 10  9 0.061214105272 0.966166697
## 11 10 0.024485642109 0.990652339
## 12 11 0.007419891548 0.998072231
## 13 12 0.001648864788 0.999721096
## 14 13 0.000253671506 0.999974767
## 15 14 0.000024159191 0.999998926
## 16 15 0.000001073742 1.000000000

La grafica se obtuvo con la función $plot$ que solicita las coordenadas de x siendo las variables discretas y las probabilidades. Después de realizado esto se pide conocer las probabilidades de que sobrevivan al menos 10 personas a una enfermedad sanguínea lo cual se obtiene con la probabilidad acumulada y es del 99.07%. La probabilidad de que sobrevivan de 3 a 8 se obtiene sumando desde la probabilidad x=3 hasta x=8 y da como resultado 87.8%. Para la probabilidad de que sobrevivan 5 es del 18.59% lo cual se comprueba mediante el uso de la función filtro que pide la tabla y el valor solicitado x==5. El valor esperado para este caso es $6$ la varianza es $3.6$ y la desviación estándar es $1.9$

Aprobar un examen

Se tiene que para este caso el éxito de aprobar un examen es del 60% y se pide obtener la tabla de distribución binomial para 30 estudiantes lo cual se hace de la siguiente manera

x <- 0:30
n <- 30
exito <- 0.60
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x             f.prob.x             f.acum.x
## 1   0 0.000000000001152922 0.000000000001152922
## 2   1 0.000000000051881468 0.000000000053034389
## 3   2 0.000000001128421923 0.000000001181456312
## 4   3 0.000000015797906917 0.000000016979363229
## 5   4 0.000000159953807533 0.000000176933170762
## 6   5 0.000001247639698760 0.000001424572869522
## 7   6 0.000007797748117251 0.000009222320986774
## 8   7 0.000040102704603007 0.000049325025589781
## 9   8 0.000172942913600469 0.000222267939190250
## 10  9 0.000634124016535054 0.000856391955725303
## 11 10 0.001997490652085418 0.002853882607810724
## 12 11 0.005447701778414773 0.008301584386225485
## 13 12 0.012938291723735080 0.021239876109960601
## 14 13 0.026871836656988245 0.048111712766948846
## 15 14 0.048945131053800175 0.097056843820749084
## 16 15 0.078312209686080117 0.175369053506829159
## 17 16 0.110126544871050142 0.285495598377879189
## 18 17 0.136038673076003175 0.421534271453882614
## 19 18 0.147375229165670141 0.568909500619552144
## 20 19 0.139618638156950664 0.708528138776503003
## 21 20 0.115185376479484264 0.823713515255987683
## 22 21 0.082275268913917302 0.905988784169904804
## 23 22 0.050487096833540038 0.956475881003445050
## 24 23 0.026341094000107985 0.982816975003552917
## 25 24 0.011524228625047248 0.994341203628600123
## 26 25 0.004148722305017007 0.998489925933617184
## 27 26 0.001196746818754908 0.999686672752372107
## 28 27 0.000265943737501089 0.999952616489873214
## 29 28 0.000042740957812675 0.999995357447685862
## 30 29 0.000004421478394415 0.999999778926080274
## 31 30 0.000000221073919721 1.000000000000000000

La probabilidad de que 15 o menos alumnos aprueben un examen es de \(17.53%\) por ciento. La probabilidad de que aprueben entre \(10\) y \(20\) se obtuvo mediante la formula \(F(x=10) - F(x=20)\) lo cual da como resultado una probabilidad del \(82%\) por ciento. Para calcular la probabilidad cuando aprueban mas de 25 alumnos osease \(P(x=>26)\) se obtiene restando \(1\) a \(P(x=26)\) lo que da como resultado \(0.01\) por ciento. La media de este caso es de \(18\) la varianza es de \(7.2\) y su desviación estándar es de \(2.68\).

Autobuses contaminantes

El caso de los autobuses dice que históricamente se sabe que el 10% de los camiones contaminan mas que el resto y que los agentes de vialidad revisan siempre la cantidad de 18 camiones para lo cual se pie que se construya una tabla de distribución a partir de estos datos la cual se hace con las funciones \(dbinom\) y \(pbinom\)

x <- 0:18
n <- 18
exito <- 0.10
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x             f.prob.x  f.acum.x
## 1   0 0.150094635296999152 0.1500946
## 2   1 0.300189270593998137 0.4502839
## 3   2 0.283512088894331660 0.7337960
## 4   3 0.168007163789233555 0.9018032
## 5   4 0.070002984912180641 0.9718061
## 6   5 0.021778706417122911 0.9935848
## 7   6 0.005243021915233281 0.9988279
## 8   7 0.000998670840996817 0.9998265
## 9   8 0.000152574711818958 0.9999791
## 10  9 0.000018836384175180 0.9999980
## 11 10 0.000001883638417518 0.9999998
## 12 11 0.000000152213205456 1.0000000
## 13 12 0.000000009865670724 1.0000000
## 14 13 0.000000000505931832 1.0000000
## 15 14 0.000000000020076660 1.0000000
## 16 15 0.000000000000594864 1.0000000
## 17 16 0.000000000000012393 1.0000000
## 18 17 0.000000000000000162 1.0000000
## 19 18 0.000000000000000001 1.0000000

También, se pide que mediante la función \(plot\) se muestre la gráfica con las variables discretas y las probabilidades

plot(x=tabla$x, y=tabla$f.prob.x, 
     type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")

Ahora bien, se pide ver que probabilidad existe de que se encuentren 2 camiones contaminantes y el resultado es del \(28.31\) por ciento. Cuando la probabilidad se refiere a encontrar menos de 4 camiones es de \(97\) por ciento, pero la probabilidad de encontrar mas de 3 camiones contaminantes es de \(0.28\) por ciento. El valor esperado para este ejercicio fue de \(1.8\) la varianza es de \(1.62\) y su desviación de \(1.27\)

Referencias bibliográficas

Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,. “La Distribución Binomial o de Bernoulli.” n.d. https://www.profesor10demates.com/2014/04/la-distribucion-binomial-o-de-bernoulli_3.html. Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2006. Introducción a La Probabilidad y Estadística. 13a Edición. Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.