#Summary & missingness tables

createTable(compareGroups(~., data=SG_df_new))
## 
## --------Summary descriptives table ---------
## 
## _______________________________ 
##                     [ALL]    N  
##                     N=79        
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Pt_Group:                    79 
##     HC           32 (40.5%)     
##     Patient      47 (59.5%)     
## Exp_Group:                   47 
##     ESC_PBO      21 (44.7%)     
##     ESC_CBX      26 (55.3%)     
## Ethnicity:                   46 
##     1            30 (65.2%)     
##     2            10 (21.7%)     
##     3             5 (10.9%)     
##     5             1 (2.17%)     
## BMI              31.6 (5.78) 45 
## Age              42.0 (12.7) 46 
## Sex:                         46 
##     1            16 (34.8%)     
##     2            30 (65.2%)     
## SII_BL            489 (230)  79 
## SII_WK8           462 (219)  47 
## SIRI_BL          1.03 (0.60) 79 
## SIRI_WK8         1.07 (0.61) 47 
## HAMD17_BL        22.5 (6.34) 46 
## HAMD17_WK8       10.0 (6.32) 43 
## Remission:                   43 
##     Non-Remitter 25 (58.1%)     
##     Remitter     18 (41.9%)     
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
missingTable(compareGroups(Exp_Group~., data=SG_df_new))
## 
## --------Missingness table by 'Exp_Group'---------
## 
## ________________________________________ 
##             ESC_PBO   ESC_CBX  p.overall 
##              N=21      N=26              
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Subject_ID 0 (0.00%) 0 (0.00%)     .     
## Pt_Group   0 (0.00%) 0 (0.00%)     .     
## Ethnicity  1 (4.76%) 0 (0.00%)   0.447   
## BMI        2 (9.52%) 0 (0.00%)   0.194   
## Age        1 (4.76%) 0 (0.00%)   0.447   
## Sex        1 (4.76%) 0 (0.00%)   0.447   
## SII_BL     0 (0.00%) 0 (0.00%)     .     
## SII_WK8    0 (0.00%) 0 (0.00%)     .     
## SIRI_BL    0 (0.00%) 0 (0.00%)     .     
## SIRI_WK8   0 (0.00%) 0 (0.00%)     .     
## HAMD17_BL  1 (4.76%) 0 (0.00%)   0.447   
## HAMD17_WK8 3 (14.3%) 1 (3.85%)   0.311   
## Remission  3 (14.3%) 1 (3.85%)   0.311   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

1 Outcome inspection (HAMD17)

mu <- ddply(SG_df_new_long, "Timepoint", summarise, grp.mean=mean(HAMD17))
ggplot(SG_df_new_long, aes(x=HAMD17))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(Timepoint ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=Timepoint),linetype="dashed")+
  labs(title="Distribution of HAMD17 by treatment timepoint", x="HAMD17", y="Count")+
  theme_gray()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(SG_df_new_long, aes(x = Timepoint, y = HAMD17))+
  geom_boxplot(aes(fill=Timepoint))+
 geom_jitter(width = 0.1)+
  facet_wrap(~Treatment)+
  theme_bw()+
  theme(legend.position = "none")+
  stat_compare_means(method="t.test")

2 Predictor variable inspection (SII)

mu <- ddply(SG_df_new_long, "Treatment", summarise, grp.mean=mean(SII))
ggplot(SG_df_new_long, aes(x=SII))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(Treatment ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=Treatment),linetype="dashed")+
  labs(title="Distribution of SII by treatment arm", x="SII", y="Count")+
  theme_gray()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

mu <- ddply(SG_df_new_long, "Timepoint", summarise, grp.mean=mean(SII))
ggplot(SG_df_new_long, aes(x=SII))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(Timepoint ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=Timepoint),linetype="dashed")+
  labs(title="Distribution of SII by timepoint", x="SII", y="Count")+
  theme_gray()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(SG_df_new_long, aes(x = Timepoint, y = SII))+
  geom_boxplot(aes(fill=Timepoint))+
 geom_jitter(width = 0.1)+
  facet_wrap(~Treatment)+
  theme_bw()+   
  theme(legend.position = "none")+
  stat_compare_means(method="t.test")

3 Predictor variable inspection (SII)

mu <- ddply(SG_df_new_long, "Treatment", summarise, grp.mean=mean(SIRI))
ggplot(SG_df_new_long, aes(x=SIRI))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(Treatment ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=Treatment),linetype="dashed")+
  labs(title="Distribution of SIRI by treatment arm", x="SIRI", y="Count")+
  theme_gray()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

mu <- ddply(SG_df_new_long, "Timepoint", summarise, grp.mean=mean(SIRI))
ggplot(SG_df_new_long, aes(x=SIRI))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(Timepoint ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=Timepoint),linetype="dashed")+
  labs(title="Distribution of SIRI by timepoint", x="SIRI", y="Count")+
  theme_gray()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(SG_df_new_long, aes(x = Timepoint, y = SIRI))+
  geom_boxplot(aes(fill=Timepoint))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~Treatment)+
  theme_bw()+
  theme(legend.position = "none")+
  stat_compare_means(method="t.test")

# Group comparison by patient status

createTable(compareGroups
            (Pt_Group ~ ., 
              data = SG_df_new, 
              method = NA), 
            hide.no = '0', 
            show.p.mul= T, 
            show.all = TRUE,
            show.ratio = TRUE)
## 
## --------Summary descriptives table by 'Pt_Group'---------
## 
## ______________________________________________________________________________________________________ 
##                       [ALL]              HC            Patient             OR        p.ratio p.overall 
##                        N=79             N=32             N=47                                          
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Exp_Group:                                                                                       .     
##     ESC_PBO         21 (44.7%)         0 (.%)         21 (44.7%)          Ref.        Ref.             
##     ESC_CBX         26 (55.3%)         0 (.%)         26 (55.3%)        . [.;.]         .              
## Ethnicity:                                                                                       .     
##     1               30 (65.2%)         0 (.%)         30 (65.2%)          Ref.        Ref.             
##     2               10 (21.7%)         0 (.%)         10 (21.7%)        . [.;.]         .              
##     3               5 (10.9%)          0 (.%)         5 (10.9%)         . [.;.]         .              
##     5               1 (2.17%)          0 (.%)         1 (2.17%)         . [.;.]         .              
## BMI                31.6 (5.78)         . (.)         31.6 (5.78)        . [.;.]         .        .     
## Age                42.0 (12.7)         . (.)         42.0 (12.7)        . [.;.]         .        .     
## Sex:                                                                                             .     
##     1               16 (34.8%)         0 (.%)         16 (34.8%)          Ref.        Ref.             
##     2               30 (65.2%)         0 (.%)         30 (65.2%)        . [.;.]         .              
## SII_BL            477 [310;627]    491 [305;611]    477 [320;640]   1.00 [1.00;1.00]  0.530    0.834   
## SII_WK8           408 [309;579]       . [.;.]       408 [309;579]       . [.;.]         .        .     
## SIRI_BL          0.85 [0.60;1.27] 0.76 [0.58;1.21] 0.98 [0.64;1.39] 1.82 [0.80;4.17]  0.154    0.201   
## SIRI_WK8         1.02 [0.62;1.38]     . [.;.]      1.02 [0.62;1.38]     . [.;.]         .        .     
## HAMD17_BL          22.5 (6.34)         . (.)         22.5 (6.34)        . [.;.]         .        .     
## HAMD17_WK8       9.00 [6.00;14.0]     . [.;.]      9.00 [6.00;14.0]     . [.;.]         .        .     
## Remission:                                                                                       .     
##     Non-Remitter    25 (58.1%)         0 (.%)         25 (58.1%)          Ref.        Ref.             
##     Remitter        18 (41.9%)         0 (.%)         18 (41.9%)        . [.;.]         .              
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Take home message: SII and SIRI levels were similar in TRBDD compared to HC’s

4 Group comparison by treatment arm

## 
## --------Summary descriptives table by 'Exp_Group'---------
## 
## _______________________________________________________________________________________________________ 
##                        [ALL]           ESC_PBO          ESC_CBX             OR        p.ratio p.overall 
##                         N=47             N=21             N=26                                          
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Pt_Group: Patient    47 (100%)        21 (100%)        26 (100%)           Ref.        Ref.       .     
## Ethnicity:                                                                                      0.658   
##     1                30 (65.2%)       12 (60.0%)       18 (69.2%)          Ref.        Ref.             
##     2                10 (21.7%)       4 (20.0%)        6 (23.1%)         . [.;.]         .              
##     3                5 (10.9%)        3 (15.0%)        2 (7.69%)         . [.;.]         .              
##     5                1 (2.17%)        1 (5.00%)        0 (0.00%)         . [.;.]         .              
## BMI                 31.6 (5.78)      32.2 (4.89)      31.1 (6.40)    0.97 [0.87;1.07]  0.524    0.515   
## Age                 42.0 (12.7)      46.7 (13.0)      38.3 (11.3)    0.94 [0.90;0.99]  0.032    0.028   
## Sex:                                                                                            0.776   
##     1                16 (34.8%)       6 (30.0%)        10 (38.5%)          Ref.        Ref.             
##     2                30 (65.2%)       14 (70.0%)       16 (61.5%)    0.70 [0.19;2.42]  0.572            
## SII_BL             477 [320;640]    523 [357;759]    379 [296;618]   1.00 [1.00;1.00]  0.137    0.168   
## SII_WK8            408 [309;579]    399 [320;639]    415 [297;518]   1.00 [1.00;1.00]  0.196    0.386   
## SIRI_BL           0.98 [0.64;1.39] 1.06 [0.78;1.53] 0.95 [0.59;1.25] 0.60 [0.24;1.51]  0.277    0.294   
## SIRI_WK8          1.02 [0.62;1.38] 1.04 [0.73;1.69] 0.94 [0.57;1.22] 0.38 [0.13;1.11]  0.076    0.118   
## HAMD17_BL           22.5 (6.34)      21.6 (7.31)      23.1 (5.56)    1.04 [0.94;1.14]  0.447    0.472   
## HAMD17_WK8        9.00 [6.00;14.0] 11.5 [9.00;16.0] 7.00 [5.00;11.0] 0.81 [0.70;0.94]  0.007    0.001   
## Remission:                                                                                     <0.001   
##     Non-Remitter     25 (58.1%)       17 (94.4%)       8 (32.0%)           Ref.        Ref.             
##     Remitter         18 (41.9%)       1 (5.56%)        17 (68.0%)    29.6 [4.73;800]  <0.001            
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Take home message: patients in ESC_CBX arm were significantly younger, had more remitters, and lower HAMD17_WK8

5 Summary of sample by remission

createTable(compareGroups
            (Remission ~ ., 
              data = SG_df_new, 
              method = NA), 
            hide.no = '0', 
            show.p.mul= T, 
            show.all = TRUE,
            show.ratio = TRUE)
## 
## --------Summary descriptives table by 'Remission'---------
## 
## _______________________________________________________________________________________________________ 
##                        [ALL]         Non-Remitter       Remitter            OR        p.ratio p.overall 
##                         N=43             N=25             N=18                                          
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Pt_Group: Patient    43 (100%)        25 (100%)        18 (100%)           Ref.        Ref.       .     
## Exp_Group:                                                                                     <0.001   
##     ESC_PBO          18 (41.9%)       17 (68.0%)       1 (5.56%)           Ref.        Ref.             
##     ESC_CBX          25 (58.1%)       8 (32.0%)        17 (94.4%)    29.6 [4.73;800]  <0.001            
## Ethnicity:                                                                                      0.057   
##     1                27 (64.3%)       15 (62.5%)       12 (66.7%)          Ref.        Ref.             
##     2                9 (21.4%)        3 (12.5%)        6 (33.3%)         . [.;.]         .              
##     3                5 (11.9%)        5 (20.8%)        0 (0.00%)         . [.;.]         .              
##     5                1 (2.38%)        1 (4.17%)        0 (0.00%)         . [.;.]         .              
## BMI                 31.4 (5.82)      32.0 (4.85)      30.7 (7.00)    0.96 [0.86;1.07]  0.471    0.503   
## Age               40.0 [34.0;49.2] 44.0 [34.8;53.8] 37.5 [31.8;43.2] 0.97 [0.92;1.02]  0.226    0.186   
## Sex:                                                                                            1.000   
##     1                16 (38.1%)       9 (37.5%)        7 (38.9%)           Ref.        Ref.             
##     2                26 (61.9%)       15 (62.5%)       11 (61.1%)    0.94 [0.26;3.46]  0.928            
## SII_BL             443 [320;633]    494 [336;646]    436 [296;612]   1.00 [1.00;1.00]  0.570    0.649   
## SII_WK8            422 [300;606]    451 [307;639]    407 [302;539]   1.00 [1.00;1.00]  0.343    0.453   
## SIRI_BL           0.98 [0.68;1.34] 1.01 [0.78;1.38] 0.90 [0.48;1.17] 1.00 [0.39;2.53]  0.996    0.445   
## SIRI_WK8          1.02 [0.66;1.42] 1.12 [0.69;1.69] 0.94 [0.52;1.23] 0.36 [0.11;1.18]  0.091    0.143   
## HAMD17_BL           22.2 (5.87)      21.8 (5.86)      22.8 (6.00)    1.03 [0.93;1.14]  0.602    0.613   
## HAMD17_WK8        9.00 [6.00;14.0] 13.0 [10.0;16.0] 5.50 [2.25;7.00]  0.00 [0.00;.]    0.998   <0.001   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Take home message: clinical remission was significantly associated with ESC_CBX arm and lower HAMD17_WK8, but no other differences.

6 Group comparison by treatment timepoint

createTable(compareGroups
            (Timepoint ~ ., 
              data = SG_df_new_long, 
              method = NA), 
            hide.no = '0', 
            show.ratio=TRUE, 
            show.p.mul= T)
## 
## --------Summary descriptives table by 'Timepoint'---------
## 
## ________________________________________________________________________________ 
##                 Baseline          Week 8             OR        p.ratio p.overall 
##                   N=79             N=47                                          
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Pt_Group:                                                               <0.001   
##     HC         32 (40.5%)       0 (0.00%)           Ref.        Ref.             
##     TRBDD      47 (59.5%)       47 (100%)         . [.;.]         .              
## Treatment:                                                              <0.001   
##     ESC_CBX    26 (32.9%)       26 (55.3%)          Ref.        Ref.             
##     ESC_PBO    21 (26.6%)       21 (44.7%)        . [.;.]         .              
##     HC         32 (40.5%)       0 (0.00%)         . [.;.]         .              
## Ethnicity:                                                               1.000   
##     1          30 (65.2%)       30 (65.2%)          Ref.        Ref.             
##     2          10 (21.7%)       10 (21.7%)    1.00 [0.36;2.82]  1.000            
##     3          5 (10.9%)        5 (10.9%)     1.00 [0.25;4.08]  1.000            
##     5          1 (2.17%)        1 (2.17%)     1.00 [0.02;40.2]  1.000            
## BMI         30.7 [27.7;35.7] 30.7 [27.7;35.7] 1.00 [0.93;1.07]  1.000    1.000   
## Age         40.0 [34.0;49.5] 40.0 [34.0;49.5] 1.00 [0.97;1.03]  1.000    1.000   
## Sex:                                                                     1.000   
##     1          16 (34.8%)       16 (34.8%)          Ref.        Ref.             
##     2          30 (65.2%)       30 (65.2%)    1.00 [0.42;2.39]  1.000            
## SII          477 [310;627]    408 [309;579]   1.00 [1.00;1.00]  0.516    0.446   
## SIRI        0.85 [0.60;1.27] 1.02 [0.62;1.38] 1.12 [0.62;2.04]  0.707    0.639   
## HAMD17        22.5 (6.34)      10.0 (6.32)    0.74 [0.66;0.84] <0.001   <0.001   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
createTable(compareGroups
            (Timepoint ~ ., 
              data = SG_df_new_long, 
              method = NA,
               subset = Treatment == "ESC_PBO"), 
            hide.no = '0', 
            show.ratio=TRUE, 
            show.p.mul= T)
## 
## --------Summary descriptives table by 'Timepoint'---------
## 
## _______________________________________________________________________________________ 
##                        Baseline          Week 8             OR        p.ratio p.overall 
##                          N=21             N=21                                          
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Pt_Group: TRBDD       21 (100%)        21 (100%)           Ref.        Ref.       .     
## Treatment: ESC_PBO    21 (100%)        21 (100%)           Ref.        Ref.       .     
## Ethnicity:                                                                      1.000   
##     1                 12 (60.0%)       12 (60.0%)          Ref.        Ref.             
##     2                 4 (20.0%)        4 (20.0%)     1.00 [0.18;5.42]  1.000            
##     3                 3 (15.0%)        3 (15.0%)     1.00 [0.14;6.90]  1.000            
##     5                 1 (5.00%)        1 (5.00%)     1.00 [0.02;42.1]  1.000            
## BMI                  32.2 (4.89)      32.2 (4.89)    1.00 [0.87;1.14]  1.000    1.000   
## Age                47.0 [35.0;59.5] 47.0 [35.0;59.5] 1.00 [0.95;1.05]  1.000    1.000   
## Sex:                                                                            1.000   
##     1                 6 (30.0%)        6 (30.0%)           Ref.        Ref.             
##     2                 14 (70.0%)       14 (70.0%)    1.00 [0.25;4.06]  1.000            
## SII                 523 [357;759]    399 [320;639]   1.00 [1.00;1.00]  0.490    0.473   
## SIRI               1.06 [0.78;1.53] 1.04 [0.73;1.69] 1.06 [0.44;2.53]  0.899    0.910   
## HAMD17             22.0 [17.2;25.0] 11.5 [9.00;16.0] 0.84 [0.74;0.95]  0.005    0.001   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
createTable(compareGroups
            (Timepoint ~ ., 
              data = SG_df_new_long, 
              method = NA,
               subset = Treatment == "ESC_CBX"), 
            hide.no = '0', 
            show.ratio=TRUE, 
            show.p.mul= T)
## 
## --------Summary descriptives table by 'Timepoint'---------
## 
## _______________________________________________________________________________________ 
##                        Baseline          Week 8             OR        p.ratio p.overall 
##                          N=26             N=26                                          
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Pt_Group: TRBDD       26 (100%)        26 (100%)           Ref.        Ref.       .     
## Treatment: ESC_CBX    26 (100%)        26 (100%)           Ref.        Ref.       .     
## Ethnicity:                                                                      1.000   
##     1                 18 (69.2%)       18 (69.2%)          Ref.        Ref.             
##     2                 6 (23.1%)        6 (23.1%)     1.00 [0.26;3.88]  1.000            
##     3                 2 (7.69%)        2 (7.69%)     1.00 [0.10;10.5]  1.000            
## BMI                29.7 [27.0;35.2] 29.7 [27.0;35.2] 1.00 [0.92;1.09]  1.000    1.000   
## Age                37.5 [31.0;43.2] 37.5 [31.0;43.2] 1.00 [0.95;1.05]  1.000    1.000   
## Sex:                                                                            1.000   
##     1                 10 (38.5%)       10 (38.5%)          Ref.        Ref.             
##     2                 16 (61.5%)       16 (61.5%)    1.00 [0.32;3.13]  1.000            
## SII                 379 [296;618]    415 [297;518]   1.00 [1.00;1.00]  0.609    0.840   
## SIRI               0.95 [0.59;1.25] 0.94 [0.57;1.22] 0.72 [0.25;2.04]  0.536    0.869   
## HAMD17               23.1 (5.56)      7.52 (5.08)    0.48 [0.27;0.86]  0.013   <0.001   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Take home message: no significant within-group differences by treatment timepoint

7 Reduced model: inspecting normality of residuals

Rcoef_list <- list()
beta_list<-list()
se_list<-list()
t_list<-list()
p_list<-list()
var_list<-list()

sg_bx_trans_vars<-SG_df_new %>% dplyr::select(contains("SII"), contains("SIRI")) %>% names() %>% sort()

 for (x in sg_bx_trans_vars) {
  LM1 <-  lm(substitute(HAMD17_WK8 ~ 
                          Sex+
                          Age+
                          BMI+
                          Ethnicity+
                          Exp_Group+
                          HAMD17_BL+
                          i, list(i = as.name(x))), data = SG_df_new) 
  Rcoef_list[[x]]<- summary(LM1)$r.squared[1]
  beta_list[[x]]<-summary(LM1)$coefficients[8,1] 
  se_list[[x]]<-summary(LM1)$coefficients[8,2] 
  t_list[[x]]<-summary(LM1)$coefficients[8,3] 
  p_list[[x]]<-summary(LM1)$coefficients[8,4] 
  var_list[[x]]<-x
  plot(LM1, which=2, main=x)
 }

do.call(rbind, Map(data.frame,
                   Beta=beta_list,
                   t_test=t_list,
                   SE=se_list,
                   p_value=p_list,
                   R_coeff=Rcoef_list)) %>% 
  knitr::kable(digits=2) 
Beta t_test SE p_value R_coeff
SII_BL -5.03 -2.70 1.86 0.01 0.47
SII_WK8 -4.34 -2.35 1.85 0.03 0.47
SIRI_BL -5.06 -2.69 1.88 0.01 0.46
SIRI_WK8 -4.24 -2.19 1.93 0.04 0.46

8 Modelling HAMD17_WK8 by SII_BL

SII_model<-lm(HAMD17_WK8~Sex+Age+BMI+Ethnicity+Exp_Group+HAMD17_BL+SII_BL, data=SG_df_new)
summary(SII_model)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ Sex + Age + BMI + Ethnicity + Exp_Group + 
##     HAMD17_BL + SII_BL, data = SG_df_new)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8469 -3.0236 -0.4004  2.5441 12.5266 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      13.715142   7.239820   1.894   0.0672 .
## Sex2             -1.706205   1.967459  -0.867   0.3923  
## Age               0.080664   0.074785   1.079   0.2888  
## BMI              -0.085822   0.156051  -0.550   0.5862  
## Ethnicity2       -2.485789   2.186288  -1.137   0.2640  
## Ethnicity3        0.450344   2.783369   0.162   0.8725  
## Ethnicity5       15.939055   6.197756   2.572   0.0150 *
## Exp_GroupESC_CBX -5.028521   1.862032  -2.701   0.0110 *
## HAMD17_BL         0.064833   0.163512   0.397   0.6944  
## SII_BL           -0.003522   0.004201  -0.838   0.4081  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.29 on 32 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4666, Adjusted R-squared:  0.3166 
## F-statistic: 3.111 on 9 and 32 DF,  p-value: 0.008442
SII_model<-lm(HAMD17_WK8~Exp_Group+HAMD17_BL+SII_BL, data=SG_df_new)
summary(SII_model)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ Exp_Group + HAMD17_BL + SII_BL, data = SG_df_new)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.217 -4.391 -1.222  2.762 14.851 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)   
## (Intercept)      11.646889   4.398438   2.648  0.01163 * 
## Exp_GroupESC_CBX -6.297679   1.820112  -3.460  0.00132 **
## HAMD17_BL         0.115995   0.153095   0.758  0.45320   
## SII_BL           -0.001051   0.003818  -0.275  0.78459   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.717 on 39 degrees of freedom
##   (36 observations deleted due to missingness)
## Multiple R-squared:  0.2412, Adjusted R-squared:  0.1828 
## F-statistic: 4.132 on 3 and 39 DF,  p-value: 0.0123
SII_model<-lm(HAMD17_WK8~Exp_Group+HAMD17_BL+SII_BL*Age, data=SG_df_new)
summary(SII_model)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ Exp_Group + HAMD17_BL + SII_BL * Age, 
##     data = SG_df_new)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.1130 -2.9734 -0.8435  3.5895  9.1012 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      26.2085118  7.2287810   3.626 0.000885 ***
## Exp_GroupESC_CBX -4.6999379  1.6856282  -2.788 0.008412 ** 
## HAMD17_BL        -0.0815423  0.1432295  -0.569 0.572680    
## SII_BL           -0.0342591  0.0098524  -3.477 0.001341 ** 
## Age              -0.2795007  0.1267641  -2.205 0.033936 *  
## SII_BL:Age        0.0008386  0.0002255   3.719 0.000678 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.886 on 36 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4882, Adjusted R-squared:  0.4171 
## F-statistic: 6.868 on 5 and 36 DF,  p-value: 0.0001365
plot(SII_model, which=c(2,6))

#Subgroup analysis

mod_PBO<-lm(HAMD17_WK8~HAMD17_BL+SII_BL*Age, data=SG_df_new_PBO)
summary(mod_PBO)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ HAMD17_BL + SII_BL * Age, data = SG_df_new_PBO)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.7275 -3.0296 -0.7293  3.7273  7.9895 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 24.7174303 14.6901538   1.683   0.1183  
## HAMD17_BL   -0.0102055  0.2280685  -0.045   0.9650  
## SII_BL      -0.0365582  0.0203096  -1.800   0.0970 .
## Age         -0.3144870  0.2531744  -1.242   0.2379  
## SII_BL:Age   0.0009503  0.0004174   2.277   0.0419 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.216 on 12 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.5139, Adjusted R-squared:  0.3518 
## F-statistic: 3.171 on 4 and 12 DF,  p-value: 0.05388
mod_CBX<-lm(HAMD17_WK8~HAMD17_BL+SII_BL*Age, data=SG_df_new_CBX)
summary(mod_CBX)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ HAMD17_BL + SII_BL * Age, data = SG_df_new_CBX)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.3116 -2.3769 -0.8257  3.6661  8.7459 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 21.0628303  8.6671997   2.430   0.0246 *
## HAMD17_BL   -0.1103184  0.1993014  -0.554   0.5860  
## SII_BL      -0.0274848  0.0127549  -2.155   0.0435 *
## Age         -0.2182576  0.1591229  -1.372   0.1854  
## SII_BL:Age   0.0005816  0.0003307   1.759   0.0939 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.945 on 20 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.2114, Adjusted R-squared:  0.05368 
## F-statistic:  1.34 on 4 and 20 DF,  p-value: 0.2897

Take home message: low depressive severity (post-treatment) is predicted by PBO arm, and lower SII (baseline) amongst pts with higher age

9 Modelling HAMD17_WK8 by SIRI_BL

SIRI_model<-lm(HAMD17_WK8~Sex+Age+BMI+Ethnicity+Exp_Group+HAMD17_BL+SIRI_BL, data=SG_df_new)
summary(SIRI_model)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ Sex + Age + BMI + Ethnicity + Exp_Group + 
##     HAMD17_BL + SIRI_BL, data = SG_df_new)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.9137 -3.0266 -0.5317  2.6736 12.6592 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      13.90132    7.58632   1.832   0.0762 .
## Sex2             -1.99844    1.89570  -1.054   0.2997  
## Age               0.09202    0.07307   1.259   0.2170  
## BMI              -0.09775    0.16057  -0.609   0.5470  
## Ethnicity2       -2.88073    2.34326  -1.229   0.2279  
## Ethnicity3        0.06538    2.80374   0.023   0.9815  
## Ethnicity5       14.12885    5.89719   2.396   0.0226 *
## Exp_GroupESC_CBX -5.05550    1.88062  -2.688   0.0113 *
## HAMD17_BL         0.05112    0.16769   0.305   0.7624  
## SIRI_BL          -1.20602    1.55649  -0.775   0.4441  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.298 on 32 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.4649, Adjusted R-squared:  0.3145 
## F-statistic:  3.09 on 9 and 32 DF,  p-value: 0.008781
SIRI_model<-lm(HAMD17_WK8~Exp_Group+HAMD17_BL+SIRI_BL, data=SG_df_new)
summary(SIRI_model)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ Exp_Group + HAMD17_BL + SIRI_BL, data = SG_df_new)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.297 -4.349 -1.190  2.801 14.518 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)       11.7299     4.7338   2.478  0.01765 * 
## Exp_GroupESC_CBX  -6.2734     1.8075  -3.471  0.00128 **
## HAMD17_BL          0.1071     0.1629   0.658  0.51458   
## SIRI_BL           -0.3775     1.4767  -0.256  0.79959   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.718 on 39 degrees of freedom
##   (36 observations deleted due to missingness)
## Multiple R-squared:  0.241,  Adjusted R-squared:  0.1826 
## F-statistic: 4.127 on 3 and 39 DF,  p-value: 0.01236
SIRI_model<-lm(HAMD17_WK8~Exp_Group+HAMD17_BL*SIRI_BL, data=SG_df_new)
summary(SIRI_model)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ Exp_Group + HAMD17_BL * SIRI_BL, data = SG_df_new)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -8.492 -3.640 -1.241  2.689 13.015 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        32.3231     7.1674   4.510 6.06e-05 ***
## Exp_GroupESC_CBX   -5.4085     1.6079  -3.364  0.00177 ** 
## HAMD17_BL          -0.9779     0.3392  -2.883  0.00644 ** 
## SIRI_BL           -20.2259     5.7722  -3.504  0.00119 ** 
## HAMD17_BL:SIRI_BL   1.0791     0.3058   3.529  0.00111 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.027 on 38 degrees of freedom
##   (36 observations deleted due to missingness)
## Multiple R-squared:  0.4283, Adjusted R-squared:  0.3682 
## F-statistic: 7.118 on 4 and 38 DF,  p-value: 0.0002221
plot(SIRI_model, which=c(2,6))

#subgroup analysis

mod_PBO<-lm(HAMD17_WK8~HAMD17_BL*SIRI_BL, data=SG_df_new_PBO)
summary(mod_PBO)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ HAMD17_BL * SIRI_BL, data = SG_df_new_PBO)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.6504 -2.9974 -0.8465  2.4163 12.3178 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)   
## (Intercept)        39.1160    10.6675   3.667  0.00254 **
## HAMD17_BL          -1.3944     0.5145  -2.710  0.01691 * 
## SIRI_BL           -27.5875     8.4249  -3.275  0.00554 **
## HAMD17_BL:SIRI_BL   1.5239     0.4469   3.410  0.00423 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.017 on 14 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.4806, Adjusted R-squared:  0.3693 
## F-statistic: 4.319 on 3 and 14 DF,  p-value: 0.02363
mod_CBX<-lm(HAMD17_WK8~HAMD17_BL*SIRI_BL, data=SG_df_new_CBX)
summary(mod_CBX)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ HAMD17_BL * SIRI_BL, data = SG_df_new_CBX)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.4201 -3.4461 -0.8804  2.5984  8.6024 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)        21.5205     9.9040   2.173   0.0414 *
## HAMD17_BL          -0.6475     0.4591  -1.411   0.1730  
## SIRI_BL           -13.3246     8.1356  -1.638   0.1164  
## HAMD17_BL:SIRI_BL   0.6569     0.4323   1.520   0.1435  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.103 on 21 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1184, Adjusted R-squared:  -0.007585 
## F-statistic: 0.9398 on 3 and 21 DF,  p-value: 0.4391

Take home message: low depressive severity (post-treatment) is predicted by PBO arm, and also lower SIRI (baseline) amongst pts with higher baseline depression. The interaction effect appears to be carried mainly by PBO_ESC group.

10 Final model tables and graphics

tab_model(SII_model, SIRI_model)
  HAMD 17 WK 8 HAMD 17 WK 8
Predictors Estimates CI p Estimates CI p
(Intercept) 26.21 11.55 – 40.87 0.001 32.32 17.81 – 46.83 <0.001
Exp_Group [ESC_CBX] -4.70 -8.12 – -1.28 0.008 -5.41 -8.66 – -2.15 0.002
HAMD17_BL -0.08 -0.37 – 0.21 0.573 -0.98 -1.66 – -0.29 0.006
SII_BL -0.03 -0.05 – -0.01 0.001
Age -0.28 -0.54 – -0.02 0.034
SII_BL * Age 0.00 0.00 – 0.00 0.001
SIRI_BL -20.23 -31.91 – -8.54 0.001
HAMD17_BL * SIRI_BL 1.08 0.46 – 1.70 0.001
Observations 42 43
R2 / R2 adjusted 0.488 / 0.417 0.428 / 0.368
interact_plot(SII_model, pred = SII_BL, modx = Age, jitter=0.1, plot.points = TRUE,  main.title = "The effect of SII_BL on HAMD17_WK8 depends on age")

interact_plot(SIRI_model, pred = SIRI_BL, modx = HAMD17_BL, jitter=0.1, plot.points = TRUE,  main.title = "The effect of SIRI_BL on HAMD17_WK8 depends on HAMD17_BL")