Yijk= \(\mu+\alpha_i+\beta_j(i)+\epsilon_ijk\)
where \(\alpha\) is process
and \(\beta\) is batch
Null Hypothesis:- \(\alpha(i)\) = 0 for all i
alternate Hypothesis:- \(\alpha(i)\) Not equal to 0 for some i
Null Hypothesis:- \(\sigma^2\beta\) = 0
alternate Hypothesis:- \(\sigma^2\beta\) Not equal to 0
Process<-c(rep(1,12),rep(2,12),rep(3,12))
batch<-rep(c(rep(1,3),rep(2,3),rep(3,3),rep(4,3)),3)
Observation<-c(25,30,26,19,28,20,15,17,14,15,16,13,19,17,14,23,24,21,18,21,17,35,27,25,14,15,20,35,21,24,38,54,50,25,29,33)
dat<-data.frame(Process,batch,Observation)
library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
Process<-as.fixed(Process)
batch<-as.random(batch)
model<-lm(Observation~Process+batch%in%Process)
gad(model)
## Analysis of Variance Table
##
## Response: Observation
## Df Sum Sq Mean Sq F value Pr(>F)
## Process 2 676.06 338.03 1.4643 0.2815
## Process:batch 9 2077.58 230.84 12.2031 5.477e-07 ***
## Residual 24 454.00 18.92
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Conclusion:- As the value of Process:batch is 5.477e-07 which is lesser than \(\alpha\) = 0.05, hence we conclude that batch has significant effects on the process