fxdpt <- function(g,x0,m) {
# g = iterating function
# x0 = initial value
# m = number of iterations
# Start by displaying initial value
cat("n = ", 0,",", "x(n) = ", x0, "\n")
# Fixed point iteration loop
for(n in 1:m) {
x1 <- g(x0)
x0 <- x1
cat("n = ", n,",", "x(n) = ", x1, "\n") }
}
I like telling Dad jokes.
Sometimes he laughs!
\[ g(x) = x - f(x). \]
\[ f(x)=0. \]
\[ \begin{aligned} p & = p - f(p) \\ & \Leftrightarrow \\ f(p) & = 0 \end{aligned} \]
\[ \begin{aligned} f(x) &= 4 - x^2 \\ x & \in [-2,2] \end{aligned} \]
\[ \begin{aligned} g(x) & = x - f(x) \\ & = x - (4-x^2) \\ & = x^2+x-4 \end{aligned} \]
\[ f(x) = x^3+4x^2-10 \]
\[ p = 1.36523 \]
\[ \small{ \begin{aligned} f(x) &= x^3+4x^2-10 \\ g(x) & = x - \frac{f(x)}{f'(x)} \\ &= x-\frac{x^3+4x^2-10}{3x^2+8x} \end{aligned} } \]
\[ |g'(p)| = 0 \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 2.525
n = 2 , x(n) = 1.721454
n = 3 , x(n) = 1.414551
n = 4 , x(n) = 1.366381
n = 5 , x(n) = 1.365231
n = 6 , x(n) = 1.36523
n = 7 , x(n) = 1.36523
n = 8 , x(n) = 1.36523
\[ \begin{aligned} x^3+4x^2-10 &= 0 \\ x^2(x+4) &= 10 \\ x & = \sqrt{\frac{10}{4+x}} \\ x &= g(x) \end{aligned} \]
\[ 0 < |g'(p)| = k_3 < 1 \]
g <- function(x)
{sqrt(10/(4+x))}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 1.118034
n = 2 , x(n) = 1.397811
n = 3 , x(n) = 1.361104
n = 4 , x(n) = 1.365755
n = 5 , x(n) = 1.365163
n = 6 , x(n) = 1.365239
n = 7 , x(n) = 1.365229
n = 8 , x(n) = 1.36523
\[ \begin{aligned} x^3+4x^2-10 &= 0 \\ 4x^2 &= 10 - x^3 \\ x^2 & = \frac{1}{4}(\sqrt{10-x^3}) \\ x & = 0.5\sqrt{10-x^3} \\ x &= g(x) \end{aligned} \]
\[ 0 < k_3 < |g'(p)| = k_4 < 1 \]
g <- function(x)
{0.5*sqrt(10 - x^3)}
fxdpt(g,1,8)
n = 0 , x(n) = 1
n = 1 , x(n) = 1.5
n = 2 , x(n) = 1.286954
n = 3 , x(n) = 1.402541
n = 4 , x(n) = 1.345458
n = 5 , x(n) = 1.37517
n = 6 , x(n) = 1.360094
n = 7 , x(n) = 1.367847
n = 8 , x(n) = 1.363887
\[ \begin{aligned} x^3+4x^2-10 &= 0 \\ x +(x^3+4x^2-10) &= x \\ x & = x -x^3-4x^2+10 \\ x &= x - f(x) \\ x &= g(x) \end{aligned} \]
\[ |g'(p)| \gg 1 \]
g <- function(x)
{x-x^3-4*x^2+10}
fxdpt(g,1.2,8)
n = 0 , x(n) = 1.2
n = 1 , x(n) = 3.712
n = 2 , x(n) = -92.55122
n = 3 , x(n) = 758423
n = 4 , x(n) = -4.362514e+17
n = 5 , x(n) = 8.302532e+52
n = 6 , x(n) = -5.723105e+158
n = 7 , x(n) = NaN
n = 8 , x(n) = NaN
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 2.525
n = 2 , x(n) = 1.721454
n = 3 , x(n) = 1.414551
n = 4 , x(n) = 1.366381
n = 5 , x(n) = 1.365231
n = 6 , x(n) = 1.36523
n = 7 , x(n) = 1.36523
n = 8 , x(n) = 1.36523
\[ \small{ \begin{aligned} f(x) &= x^3+4x^2-10 \\ g(x) & = x - \frac{f(x)}{f'(x)} \\ &= x-\frac{x^3+4x^2-10}{3x^2+8x} \end{aligned} } \]
\[ |g'(p)| = 0 \]
\[ |g'(p)| = 0 \]
\[ \small{ \begin{aligned} f(x) &= 0 \Rightarrow \\ g(x) & = x - \frac{f(x)}{f'(x)} \\ g'(x) & = 1 - \frac{f'(x)f'(x)-f(x)f''(x)}{\left[f'(x)\right]^2} \\ & = \frac{f(x)f''(x)}{\left[f'(x)\right]^2} \\ \\ g'(p) &= 0, \,\, \text{since $~f(p)=0$} \end{aligned} } \]
\[ \small{ f(x) = f(x_n) + f'(x_n)(x-x_n) + \frac{f''(c)}{2}(x-x_n)^2}, \,\, c \in [x_n,x] \]
\[ \small{ \begin{aligned} 0 &\cong f(x_n) + f'(x_n)(p-x_n) \\ p-x_n &\cong -\frac{f(x_n)}{f'(x_n)} \\ p & \cong x_n - \frac{f(x_n)}{f'(x_n)} \\ x_{n+1} & = x_n - \frac{f(x_n)}{f'(x_n)} = g(x_n) \end{aligned} } \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 2.525
n = 2 , x(n) = 1.721454
n = 3 , x(n) = 1.414551
n = 4 , x(n) = 1.366381
n = 5 , x(n) = 1.365231
n = 6 , x(n) = 1.36523
n = 7 , x(n) = 1.36523
n = 8 , x(n) = 1.36523
\[ \small{ \begin{aligned} f(x) &= \cos(x) \\ g(x) & = x - \frac{f(x)}{f'(x)} \\ & = x - \frac{\cos(x)}{(-\sin(x))} \\ & = x + \cot(x) \end{aligned} } \]
\[ |g'(p)| = 0 \]
g <- function(x)
{x+cos(x)/sin(x)}
fxdpt(g,0.5,8)
n = 0 , x(n) = 0.5
n = 1 , x(n) = 2.330488
n = 2 , x(n) = 1.380623
n = 3 , x(n) = 1.573123
n = 4 , x(n) = 1.570796
n = 5 , x(n) = 1.570796
n = 6 , x(n) = 1.570796
n = 7 , x(n) = 1.570796
n = 8 , x(n) = 1.570796
g <- function(x)
{x+cos(x)/sin(x)}
fxdpt(g,0.3,8)
n = 0 , x(n) = 0.3
n = 1 , x(n) = 3.532728
n = 2 , x(n) = 5.957659
n = 3 , x(n) = 2.994993
n = 4 , x(n) = -3.777389
n = 5 , x(n) = -5.132347
n = 6 , x(n) = -4.685825
n = 7 , x(n) = -4.712395
n = 8 , x(n) = -4.712389
\[ \small{ f(x) = \cos(x), \,\, g(x) = x + \frac{\cos(x)}{\sin(x)} } \]
\[ \small{ f(x) = \cos(x), \,\, g(x) = x + \frac{\cos(x)}{\sin(x)} } \]
\[ \small{ \begin{aligned} g(x) &= x - \frac{f(x)}{f'(x)} \end{aligned} } \]
\[ \small{ \begin{aligned} f'(x_n) & = 0 \\ f'(p) & = 0 \\ |p - x_0 | & \gg 0 \end{aligned} } \]
\[ \small{ \begin{aligned} g(x) &= x - \frac{f(x)}{f'(x)} \end{aligned} } \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,-2.7,8)
n = 0 , x(n) = -2.7
n = 1 , x(n) = -0.762963
n = 2 , x(n) = -2.625483
n = 3 , x(n) = -4.244654
n = 4 , x(n) = -3.527627
n = 5 , x(n) = -3.07526
n = 6 , x(n) = -2.742458
n = 7 , x(n) = -1.873374
n = 8 , x(n) = -2.442309
\[ \small{ \begin{aligned} g(x) &= x - \frac{f(x)}{f'(x)} \end{aligned} } \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,-2.8,8)
n = 0 , x(n) = -2.8
n = 1 , x(n) = -2.271429
n = 2 , x(n) = -2.673034
n = 3 , x(n) = 7.485308
n = 4 , x(n) = 4.70637
n = 5 , x(n) = 2.949942
n = 6 , x(n) = 1.934381
n = 7 , x(n) = 1.477257
n = 8 , x(n) = 1.370916
\[ \small{ \begin{aligned} g(x) &= x + \frac{f(x)}{f'(x)} \end{aligned} } \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,-2.9,8)
n = 0 , x(n) = -2.9
n = 1 , x(n) = -2.531034
n = 2 , x(n) = -3.103542
n = 3 , x(n) = -2.767878
n = 4 , x(n) = -2.100915
n = 5 , x(n) = -2.554597
n = 6 , x(n) = -3.21517
n = 7 , x(n) = -2.858506
n = 8 , x(n) = -2.449547
\[ \small{ \begin{aligned} g(x) &= x - \frac{f(x)}{f'(x)} \end{aligned} } \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,-3.0,8)
n = 0 , x(n) = -3
n = 1 , x(n) = -2.666667
n = 2 , x(n) = Inf
n = 3 , x(n) = NaN
n = 4 , x(n) = NaN
n = 5 , x(n) = NaN
n = 6 , x(n) = NaN
n = 7 , x(n) = NaN
n = 8 , x(n) = NaN
\[ \small{ \begin{aligned} f(x) &= e^x - x - 1, \,\, p = 0 \\ f(p) & = f'(p) = 0 \end{aligned} } \]
\[ \small{ \begin{aligned} g_1(x) &= x - \frac{f(x)}{f'(x)} \\ g_2(x) &= x - \frac{f(x)f'(x)}{\left[f'(x)\right]^2-f(x)f''(x)} \\ \end{aligned} } \]
\[ \small{ \begin{aligned} g_1'(p) & \neq 0 \\ g_2'(p) &= 0 \end{aligned} } \]
\[ \small{ \begin{aligned} g_1(x) &= x - \frac{f(x)}{f'(x)} \\ x_n & = g_1(x_{n-1}) \end{aligned} } \]
g <- function(x)
{x-(exp(x)-x-1)/(exp(x)-1)}
fxdpt(g,0.8,8)
n = 0 , x(n) = 0.8
n = 1 , x(n) = 0.452773
n = 2 , x(n) = 0.243412
n = 3 , x(n) = 0.1266386
n = 4 , x(n) = 0.06465538
n = 5 , x(n) = 0.03267603
n = 6 , x(n) = 0.01642699
n = 7 , x(n) = 0.008235981
n = 8 , x(n) = 0.004123643
\[ \small{ \begin{aligned} f(x) &= e^x - x - 1, \,\, p = 0 \\ f(p) & = f'(p) = 0 \end{aligned} } \]
\[ \small{ \begin{aligned} g_1(x) &= x - \frac{f(x)}{f'(x)} \\ g_2(x) &= x - \frac{f(x)f'(x)}{\left[f'(x)\right]^2-f(x)f''(x)} \\ \end{aligned} } \]
\[ \small{ \begin{aligned} g_1'(p) & \neq 0 \\ g_2'(p) &= 0 \end{aligned} } \]
\[ x_n = g_2(x_{n-1}) \]
g <- function(x)
{x-(exp(x)-x-1)*(exp(x)-1)/((exp(x)-1)^2-(exp(x)-x-1)*exp(x))}
fxdpt(g,0.8,8)
n = 0 , x(n) = 0.8
n = 1 , x(n) = -0.139855
n = 2 , x(n) = -0.003111746
n = 3 , x(n) = -1.612155e-06
n = 4 , x(n) = -2.867545e-10
n = 5 , x(n) = -2.867545e-10
n = 6 , x(n) = -2.867545e-10
n = 7 , x(n) = -2.867545e-10
n = 8 , x(n) = -2.867545e-10
\[ \small{ \begin{aligned} g_1(x) &= x - \frac{f(x)}{f'(x)} \\ x_n & = g_1(x_{n-1}) \end{aligned} } \]
\[ \small{ \begin{aligned} f'(x_n) & = 0 \\ f'(p) & = 0 \\ |p - x_0 | & \gg 0 \end{aligned} } \]