0. graphs

DV: If a Covid-19 vaccine were available today, would you get it? (Definitely would not get it = -3; Undecided = 0; Definitely would get it = +3)

wave 1: analytical x party x vaxxAttitudes

m1 <- lmer(vaxxAttitudes ~  index_ANexp.c * (party_factor) + (1|media), data = dl1)

plot_model(m1, type = "pred", terms = c("index_ANexp.c", "party_factor"), color = c("blue", "red", "purple")) + 
  ggtitle("wave 1") + 
  xlab("media analytic thinking index") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(-100, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 3 row(s) containing missing values (geom_path).

wave 2: analytical x party x vaxxAttitudes

m2 <- lmer(vaxxAttitudes ~  analytic * party_factor + (1|media), data = dl2)
## boundary (singular) fit: see ?isSingular
plot_model(m2, type = "pred", terms = c("analytic", "party_factor"), color = c("blue", "red", "purple")) + 
  ggtitle("wave 2") + 
  xlab("media analytic thinking index") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(-100, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

avg(w1 + w2): analytical x party x vaxxAttitudes

# make dataset long by media outlet
dANy <- dm %>% pivot_longer(c(index_ANexp_NYT.y, 
                              index_ANexp_WSJ.y, 
                              index_ANexp_USAT.y, 
                              index_ANexp_Fox.y, 
                              index_ANexp_CNN.y, 
                              index_ANexp_MSNBC.y, 
                              index_ANexp_NPR.y, 
                              index_ANexp_ABC.y, 
                              index_ANexp_NBC.y, 
                              index_ANexp_CBS.y, 
                              index_ANexp_PBS.y,
                              index_ANexp_AOL.y), 
                            names_to = "media", 
                            values_to = "ANexp.y")

# make dataset long by media outlet
dANx <- dm %>% pivot_longer(c(index_ANexp_NYT.x, 
                              index_ANexp_WSJ.x, 
                              index_ANexp_USAT.x, 
                              index_ANexp_Fox.x, 
                              index_ANexp_CNN.x, 
                              index_ANexp_MSNBC.x, 
                              index_ANexp_NPR.x, 
                              index_ANexp_ABC.x, 
                              index_ANexp_NBC.x, 
                              index_ANexp_CBS.x, 
                              index_ANexp_PBS.x,
                              index_ANexp_AOL.x), 
                            names_to = "media", 
                            values_to = "ANexp.x")

#put together long data set
dl <- data.frame(dANy$s3)
colnames(dl)[colnames(dl)=="dANy.s3"] <- "s3"
dl$media <- dANx$media
dl$vaxxAttitudes <- (dANx$vaxxAttitudes.x + dANy$vaxxAttitudes.y)/2
dl$ANexp <- (dANx$ANexp.x +  dANy$ANexp.y)/2
dl$ANexp.c <- dl$ANexp - mean(dl$ANexp, na.rm = T)
dl$party_factor <- dANy$party_factor.y

m2 <- lm(vaxxAttitudes ~ ANexp.c * party_factor, data = dl)

p <- plot_model(m2, type = "pred", terms = c("ANexp.c", "party_factor"), color = c("blue", "red", "purple")) + 
  ggtitle("average of wave 1 and wave 2") + 
  xlab("media analytic thinking index") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(-150, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

1. descriptive stats

A. LIWC means

wave 1

##    mediaOutlet   affect   cogproc analytic   posemo   negemo
## 1          ABC 3.920000  7.787500 79.10750 2.635000 1.232500
## 2          AOL 3.504762  6.856667 95.42000 2.103810 1.355238
## 3          CBS 3.890000  8.275000 78.76000 2.500000 1.330000
## 4          CNN 3.800000  9.780000 73.61000 2.280000 1.460000
## 5          Fox 4.390000 10.480000 60.43000 2.690000 1.650000
## 6        MSNBC 3.880000  9.930000 70.52000 2.360000 1.450000
## 7          NBC 6.590000  6.870000 80.54500 2.730000 3.810000
## 8          NPR 3.425000  9.825000 71.83000 2.125000 1.240000
## 9          NYT 3.537222  7.912222 93.49444 1.941111 1.535556
## 10         PBS 3.830000  8.970000 78.86000 2.320000 1.460000
## 11    USAToday 3.653333  8.883333 91.28000 2.206667 1.390000
## 12         WSJ 1.846000  4.416000 96.59800 1.014000 0.800000

wave 2

##    mediaOutlet   affect   cogproc analytic   posemo   negemo
## 1          ABC 3.870000  8.015000 75.97750 2.750000 1.077500
## 2          AOL 3.715455  7.033182 95.29773 2.212727 1.451364
## 3          CBS 3.760000  7.620000 84.05500 2.325000 1.395000
## 4          CNN 3.678000  9.964000 64.72000 2.404000 1.226000
## 5          Fox 4.135000 10.445000 61.09500 2.775000 1.315000
## 6        MSNBC 3.660000  9.900000 69.56000 2.380000 1.220000
## 7          NBC 6.190000  7.150000 78.12000 2.665000 3.490000
## 8          NPR 3.595000  9.865000 70.81500 2.385000 1.145000
## 9          NYT 3.607895  7.792105 93.36368 2.074737 1.466842
## 10         PBS 3.680000  9.080000 77.06000 2.410000 1.230000
## 11    USAToday 3.830000  8.490000 91.85500 2.390000 1.390000
## 12         WSJ 1.628000  4.020000 96.43200 1.002000 0.582000

B. media & affect

wave 1

wave 2

C. media & cognitive processing

wave 1

wave 2

D. media & analytic thinking

wave 1

wave 2

E. media & positive emotions

wave 1

wave 2

F. media & negative emotions

wave 1

wave 2

G. exposure sum indexes

will be 11x larger than LIWC2015 example ratings because summed

wave 1

##     index_AFexp index_CPexp index_ANexp index_PEexp index_NEexp
## M         99.65      212.03       -0.05       57.71       40.57
## SD        41.68       88.89      866.73       24.06       17.09
## Min       46.27       99.99    -1053.31       26.91       18.71
## Max      231.33      499.93     2828.51      134.53       93.57

wave 2

##     index_AFexp index_CPexp index_ANexp index_PEexp index_NEexp
## M         92.83      201.50       -0.82       56.66       35.00
## SD        39.97       86.70      839.01       24.29       15.24
## Min       45.35       99.37     -948.70       27.77       16.99
## Max      226.75      496.87     2884.71      138.87       84.94

WAVE 1

1. AFFECT

A. risk severity

risk severity ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_AFexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116697.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4067 -0.6570 -0.0235  0.6680  2.7905 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01215  0.1102  
##  Residual             1.46015  1.2084  
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.298e+00  3.253e-02  1.083e+01 132.123  < 2e-16 ***
## index_AFexp.c           3.792e-02  1.307e-03  2.521e+04  29.004  < 2e-16 ***
## pDem_Rep               -7.394e-01  1.451e-02  3.625e+04 -50.976  < 2e-16 ***
## pInd_Not               -7.788e-02  1.614e-02  3.624e+04  -4.827 1.39e-06 ***
## index_AFexp.c:pDem_Rep  2.379e-02  2.411e-03  3.618e+04   9.865  < 2e-16 ***
## index_AFexp.c:pInd_Not -5.886e-03  2.799e-03  3.624e+04  -2.103   0.0355 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDm_Rp pInd_N i_AF.:D
## indx_AFxp.c  0.015                             
## pDem_Rep     0.018  0.143                      
## pInd_Not    -0.064 -0.048  0.052               
## ind_AF.:D_R  0.026  0.168  0.049  0.077        
## ind_AF.:I_N -0.009 -0.322  0.071  0.083  0.117
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_AFexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116697.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4067 -0.6570 -0.0235  0.6680  2.7905 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01215  0.1102  
##  Residual             1.46015  1.2084  
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.642e+00  3.323e-02  1.179e+01 139.686  < 2e-16 ***
## index_AFexp.c        2.408e-02  1.564e-03  2.987e+04  15.392  < 2e-16 ***
## pDemR               -7.394e-01  1.451e-02  3.625e+04 -50.976  < 2e-16 ***
## pDemI               -2.918e-01  1.734e-02  3.625e+04 -16.827  < 2e-16 ***
## index_AFexp.c:pDemR  2.379e-02  2.411e-03  3.618e+04   9.865  < 2e-16 ***
## index_AFexp.c:pDemI  1.778e-02  2.915e-03  3.624e+04   6.100 1.07e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDemR  pDemI  i_AF.:DR
## indx_AFxp.c -0.047                              
## pDemR       -0.192  0.124                       
## pDemI       -0.160  0.098  0.370                
## indx_AF.:DR  0.027 -0.561  0.049 -0.051         
## indx_AF.:DI  0.022 -0.454 -0.048  0.024  0.301

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_AFexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116697.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4067 -0.6570 -0.0235  0.6680  2.7905 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01215  0.1102  
##  Residual             1.46015  1.2084  
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.903e+00  3.361e-02  1.233e+01 116.118   <2e-16 ***
## index_AFexp.c        4.787e-02  2.007e-03  3.328e+04  23.853   <2e-16 ***
## pRepD                7.394e-01  1.451e-02  3.625e+04  50.976   <2e-16 ***
## pRepI                4.476e-01  1.803e-02  3.624e+04  24.821   <2e-16 ***
## index_AFexp.c:pRepD -2.379e-02  2.411e-03  3.618e+04  -9.865   <2e-16 ***
## index_AFexp.c:pRepI -6.008e-03  3.175e-03  3.625e+04  -1.892   0.0584 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pRepD  pRepI  i_AF.:RD
## indx_AFxp.c  0.062                              
## pRepD       -0.242 -0.155                       
## pRepI       -0.193 -0.110  0.449                
## indx_AF.:RD -0.047 -0.764  0.049  0.088         
## indx_AF.:RI -0.036 -0.573  0.081  0.124  0.483

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_AFexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116697.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4067 -0.6570 -0.0235  0.6680  2.7905 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01215  0.1102  
##  Residual             1.46015  1.2084  
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.350e+00  3.493e-02  1.439e+01 124.534  < 2e-16 ***
## index_AFexp.c        4.186e-02  2.609e-03  3.533e+04  16.045  < 2e-16 ***
## pIndD                2.918e-01  1.734e-02  3.625e+04  16.827  < 2e-16 ***
## pIndR               -4.476e-01  1.803e-02  3.624e+04 -24.821  < 2e-16 ***
## index_AFexp.c:pIndD -1.778e-02  2.915e-03  3.624e+04  -6.100 1.07e-09 ***
## index_AFexp.c:pIndR  6.008e-03  3.175e-03  3.625e+04   1.892   0.0584 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pIndD  pIndR  i_AF.:ID
## indx_AFxp.c  0.039                              
## pIndD       -0.344 -0.086                       
## pIndR       -0.330 -0.066  0.664                
## indx_AF.:ID -0.033 -0.845  0.024  0.062         
## indx_AF.:IR -0.030 -0.776  0.061  0.124  0.690

B. worst of Covid is behind/ahead

worstBorA ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_AFexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129498.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.84605 -0.69093  0.00754  0.71394  2.23055 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.002271 0.04766 
##  Residual             2.026676 1.42361 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.693e-01  1.590e-02  1.014e+01  35.803 5.16e-12 ***
## index_AFexp.c           1.916e-02  1.493e-03  2.177e+03  12.831  < 2e-16 ***
## pDem_Rep               -9.498e-01  1.702e-02  3.608e+04 -55.800  < 2e-16 ***
## pInd_Not               -1.637e-01  1.893e-02  3.651e+04  -8.646  < 2e-16 ***
## index_AFexp.c:pDem_Rep  3.795e-02  2.825e-03  3.232e+04  13.436  < 2e-16 ***
## index_AFexp.c:pInd_Not  4.854e-03  3.286e-03  3.651e+04   1.477     0.14    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDm_Rp pInd_N i_AF.:D
## indx_AFxp.c  0.035                             
## pDem_Rep     0.044  0.138                      
## pInd_Not    -0.154 -0.046  0.054               
## ind_AF.:D_R  0.062  0.174  0.049  0.077        
## ind_AF.:I_N -0.021 -0.330  0.072  0.082  0.118
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_AFexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129498.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.84605 -0.69093  0.00754  0.71394  2.23055 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.002271 0.04766 
##  Residual             2.026676 1.42361 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.901e-01  1.778e-02  1.584e+01  55.690  < 2e-16 ***
## index_AFexp.c        1.785e-03  1.799e-03  4.212e+03   0.992    0.321    
## pDemR               -9.498e-01  1.702e-02  3.608e+04 -55.800  < 2e-16 ***
## pDemI               -3.112e-01  2.034e-02  3.647e+04 -15.302  < 2e-16 ***
## index_AFexp.c:pDemR  3.795e-02  2.825e-03  3.232e+04  13.436  < 2e-16 ***
## index_AFexp.c:pDemI  1.412e-02  3.420e-03  3.650e+04   4.129 3.65e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDemR  pDemI  i_AF.:DR
## indx_AFxp.c -0.103                              
## pDemR       -0.420  0.119                       
## pDemI       -0.351  0.096  0.369                
## indx_AF.:DR  0.059 -0.570  0.049 -0.051         
## indx_AF.:DI  0.048 -0.462 -0.049  0.023  0.300

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_AFexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129498.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.84605 -0.69093  0.00754  0.71394  2.23055 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.002271 0.04766 
##  Residual             2.026676 1.42361 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.035e-02  1.875e-02  1.958e+01   2.152   0.0441 *  
## index_AFexp.c        3.973e-02  2.329e-03  8.576e+03  17.062  < 2e-16 ***
## pRepD                9.498e-01  1.702e-02  3.608e+04  55.800  < 2e-16 ***
## pRepI                6.386e-01  2.117e-02  3.651e+04  30.167  < 2e-16 ***
## index_AFexp.c:pRepD -3.795e-02  2.825e-03  3.232e+04 -13.436  < 2e-16 ***
## index_AFexp.c:pRepI -2.383e-02  3.727e-03  3.629e+04  -6.394 1.63e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pRepD  pRepI  i_AF.:RD
## indx_AFxp.c  0.129                              
## pRepD       -0.509 -0.151                       
## pRepI       -0.408 -0.110  0.450                
## indx_AF.:RD -0.100 -0.773  0.049  0.089         
## indx_AF.:RI -0.075 -0.580  0.082  0.124  0.483

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_AFexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129498.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.84605 -0.69093  0.00754  0.71394  2.23055 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.002271 0.04766 
##  Residual             2.026676 1.42361 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.789e-01  2.181e-02  3.589e+01  31.131  < 2e-16 ***
## index_AFexp.c        1.591e-02  3.041e-03  1.835e+04   5.230 1.71e-07 ***
## pIndD                3.112e-01  2.034e-02  3.647e+04  15.302  < 2e-16 ***
## pIndR               -6.386e-01  2.117e-02  3.651e+04 -30.167  < 2e-16 ***
## index_AFexp.c:pIndD -1.412e-02  3.420e-03  3.650e+04  -4.129 3.65e-05 ***
## index_AFexp.c:pIndR  2.383e-02  3.727e-03  3.629e+04   6.394 1.63e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pIndD  pIndR  i_AF.:ID
## indx_AFxp.c  0.071                              
## pIndD       -0.646 -0.083                       
## pIndR       -0.620 -0.067  0.664                
## indx_AF.:ID -0.061 -0.851  0.023  0.062         
## indx_AF.:IR -0.056 -0.781  0.061  0.124  0.691

C. vaccine attitudes

vaxAttitudes ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_AFexp.c * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 157160.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2234 -0.6998  0.0548  0.8911  1.5926 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01932  0.139   
##  Residual             4.33993  2.083   
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.854e-01  4.179e-02  1.069e+01  11.614 2.13e-07 ***
## index_AFexp.c           4.943e-02  2.237e-03  1.484e+04  22.100  < 2e-16 ***
## pDem_Rep               -8.675e-01  2.494e-02  3.646e+04 -34.784  < 2e-16 ***
## pInd_Not                5.777e-01  2.771e-02  3.647e+04  20.850  < 2e-16 ***
## index_AFexp.c:pDem_Rep  4.375e-02  4.144e-03  3.617e+04  10.558  < 2e-16 ***
## index_AFexp.c:pInd_Not -5.207e-03  4.809e-03  3.647e+04  -1.083    0.279    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDm_Rp pInd_N i_AF.:D
## indx_AFxp.c  0.019                             
## pDem_Rep     0.025  0.142                      
## pInd_Not    -0.085 -0.047  0.053               
## ind_AF.:D_R  0.034  0.170  0.048  0.077        
## ind_AF.:I_N -0.012 -0.323  0.071  0.082  0.118
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_AFexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157160.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2234 -0.6998  0.0548  0.8911  1.5926 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01932  0.139   
##  Residual             4.33993  2.083   
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.110e+00  4.339e-02  1.242e+01  25.579 4.06e-12 ***
## index_AFexp.c        2.583e-02  2.677e-03  2.126e+04   9.651  < 2e-16 ***
## pDemR               -8.675e-01  2.494e-02  3.646e+04 -34.784  < 2e-16 ***
## pDemI               -1.011e+00  2.977e-02  3.648e+04 -33.973  < 2e-16 ***
## index_AFexp.c:pDemR  4.375e-02  4.144e-03  3.617e+04  10.558  < 2e-16 ***
## index_AFexp.c:pDemI  2.708e-02  5.006e-03  3.648e+04   5.410 6.35e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDemR  pDemI  i_AF.:DR
## indx_AFxp.c -0.063                              
## pDemR       -0.252  0.124                       
## pDemI       -0.211  0.099  0.369                
## indx_AF.:DR  0.035 -0.562  0.048 -0.051         
## indx_AF.:DI  0.029 -0.455 -0.049  0.024  0.300

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_AFexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157160.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2234 -0.6998  0.0548  0.8911  1.5926 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01932  0.139   
##  Residual             4.33993  2.083   
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.422e-01  4.425e-02  1.344e+01   5.474 9.48e-05 ***
## index_AFexp.c        6.958e-02  3.446e-03  2.801e+04  20.194  < 2e-16 ***
## pRepD                8.675e-01  2.494e-02  3.646e+04  34.784  < 2e-16 ***
## pRepI               -1.440e-01  3.099e-02  3.647e+04  -4.646 3.40e-06 ***
## index_AFexp.c:pRepD -4.375e-02  4.144e-03  3.617e+04 -10.558  < 2e-16 ***
## index_AFexp.c:pRepI -1.667e-02  5.457e-03  3.647e+04  -3.054  0.00226 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pRepD  pRepI  i_AF.:RD
## indx_AFxp.c  0.081                              
## pRepD       -0.316 -0.154                       
## pRepI       -0.253 -0.110  0.450                
## indx_AF.:RD -0.062 -0.766  0.048  0.088         
## indx_AF.:RI -0.046 -0.575  0.081  0.124  0.484

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_AFexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157160.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2234 -0.6998  0.0548  0.8911  1.5926 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01932  0.139   
##  Residual             4.33993  2.083   
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.828e-02  4.716e-02  1.733e+01   2.084  0.05224 .  
## index_AFexp.c        5.292e-02  4.477e-03  3.338e+04  11.820  < 2e-16 ***
## pIndD                1.011e+00  2.977e-02  3.648e+04  33.973  < 2e-16 ***
## pIndR                1.440e-01  3.099e-02  3.647e+04   4.646 3.40e-06 ***
## index_AFexp.c:pIndD -2.708e-02  5.006e-03  3.648e+04  -5.410 6.35e-08 ***
## index_AFexp.c:pIndR  1.667e-02  5.457e-03  3.647e+04   3.054  0.00226 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pIndD  pIndR  i_AF.:ID
## indx_AFxp.c  0.049                              
## pIndD       -0.437 -0.085                       
## pIndR       -0.419 -0.066  0.664                
## indx_AF.:ID -0.041 -0.846  0.024  0.062         
## indx_AF.:IR -0.038 -0.777  0.061  0.124  0.689

2. COGNITIVE PROCESSING

A. risk3

risk3 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134711.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91051 -0.77924 -0.05241  0.62888  2.32507 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001474 0.03839 
##  Residual             2.339729 1.52962 
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.500e+00  1.403e-02  1.181e+01 320.840  < 2e-16 ***
## index_ANexp.c           2.587e-03  8.528e-05  2.191e+04  30.334  < 2e-16 ***
## pDem_Rep               -1.364e+00  1.837e-02  3.650e+04 -74.255  < 2e-16 ***
## pInd_Not                1.448e-01  2.038e-02  3.650e+04   7.107 1.21e-12 ***
## index_ANexp.c:pDem_Rep  3.289e-03  1.760e-04  3.155e+04  18.686  < 2e-16 ***
## index_ANexp.c:pInd_Not -8.931e-04  2.029e-04  3.650e+04  -4.401 1.08e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.049                             
## pDem_Rep     0.056  0.145                      
## pInd_Not    -0.184 -0.044  0.057               
## ind_AN.:D_R  0.090  0.192  0.062  0.093        
## ind_AN.:I_N -0.026 -0.345  0.088  0.091  0.125
## Warning: Removed 60 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134711.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91051 -0.77924 -0.05241  0.62888  2.32507 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001474 0.03839 
##  Residual             2.339729 1.52962 
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.230e+00  1.644e-02  2.227e+01  318.14  < 2e-16 ***
## index_ANexp.c        6.477e-04  1.058e-04  1.913e+04    6.12 9.53e-10 ***
## pDemR               -1.364e+00  1.837e-02  3.650e+04  -74.25  < 2e-16 ***
## pDemI               -8.270e-01  2.187e-02  3.650e+04  -37.81  < 2e-16 ***
## index_ANexp.c:pDemR  3.289e-03  1.760e-04  3.155e+04   18.69  < 2e-16 ***
## index_ANexp.c:pDemI  2.537e-03  2.108e-04  3.647e+04   12.04  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.134                              
## pDemR       -0.488  0.121                       
## pDemI       -0.410  0.102  0.367                
## indx_AN.:DR  0.080 -0.597  0.062 -0.061         
## indx_AN.:DI  0.066 -0.491 -0.059  0.021  0.297

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134711.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91051 -0.77924 -0.05241  0.62888  2.32507 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001474 0.03839 
##  Residual             2.339729 1.52962 
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.865e+00  1.769e-02  2.987e+01  218.53  < 2e-16 ***
## index_ANexp.c        3.936e-03  1.412e-04  3.280e+04   27.88  < 2e-16 ***
## pRepD                1.364e+00  1.837e-02  3.650e+04   74.25  < 2e-16 ***
## pRepI                5.373e-01  2.283e-02  3.650e+04   23.54  < 2e-16 ***
## index_ANexp.c:pRepD -3.289e-03  1.760e-04  3.155e+04  -18.69  < 2e-16 ***
## index_ANexp.c:pRepI -7.511e-04  2.311e-04  3.622e+04   -3.25  0.00115 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.174                              
## pRepD       -0.585 -0.168                       
## pRepI       -0.471 -0.135  0.453                
## indx_AN.:RD -0.139 -0.799  0.062  0.108         
## indx_AN.:RI -0.106 -0.607  0.101  0.144  0.491

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134711.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91051 -0.77924 -0.05241  0.62888  2.32507 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001474 0.03839 
##  Residual             2.339729 1.52962 
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.403e+00  2.130e-02  6.282e+01  206.69  < 2e-16 ***
## index_ANexp.c        3.185e-03  1.837e-04  3.518e+04   17.34  < 2e-16 ***
## pIndD                8.270e-01  2.187e-02  3.650e+04   37.81  < 2e-16 ***
## pIndR               -5.373e-01  2.283e-02  3.650e+04  -23.54  < 2e-16 ***
## index_ANexp.c:pIndD -2.537e-03  2.108e-04  3.647e+04  -12.04  < 2e-16 ***
## index_ANexp.c:pIndR  7.511e-04  2.311e-04  3.622e+04    3.25  0.00115 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.084                              
## pIndD       -0.710 -0.083                       
## pIndR       -0.681 -0.077  0.663                
## indx_AN.:ID -0.072 -0.865  0.021  0.067         
## indx_AN.:IR -0.066 -0.792  0.065  0.144  0.686

B. risk4

risk4 ~ index * party + (1 | media)

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127484.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1963 -0.6262  0.0913  0.7309  1.5414 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.115e+00  7.838e-03  3.641e+04 652.543  < 2e-16 ***
## index_ANexp.c           4.990e-04  7.672e-05  3.641e+04   6.504 7.93e-11 ***
## pDem_Rep               -4.498e-01  1.672e-02  3.641e+04 -26.904  < 2e-16 ***
## pInd_Not                7.818e-02  1.860e-02  3.641e+04   4.203 2.64e-05 ***
## index_ANexp.c:pDem_Rep  2.980e-04  1.591e-04  3.641e+04   1.873   0.0611 .  
## index_ANexp.c:pInd_Not -2.498e-04  1.852e-04  3.641e+04  -1.349   0.1773    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.081                             
## pDem_Rep     0.089  0.141                      
## pInd_Not    -0.304 -0.044  0.056               
## ind_AN.:D_R  0.145  0.199  0.063  0.091        
## ind_AN.:I_N -0.043 -0.351  0.087  0.092  0.123 
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning: Removed 60 row(s) containing missing values (geom_path).

1. simple effects for dems

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127484.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1963 -0.6262  0.0913  0.7309  1.5414 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.365e+00  1.106e-02  3.641e+04 485.219  < 2e-16 ***
## index_ANexp.c        2.675e-04  9.506e-05  3.641e+04   2.815  0.00489 ** 
## pDemR               -4.498e-01  1.672e-02  3.641e+04 -26.904  < 2e-16 ***
## pDemI               -3.031e-01  1.996e-02  3.641e+04 -15.186  < 2e-16 ***
## index_ANexp.c:pDemR  2.980e-04  1.591e-04  3.641e+04   1.873  0.06110 .  
## index_ANexp.c:pDemI  3.988e-04  1.923e-04  3.641e+04   2.074  0.03811 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.178                              
## pDemR       -0.661  0.118                       
## pDemI       -0.554  0.098  0.366                
## indx_AN.:DR  0.106 -0.597  0.063 -0.059         
## indx_AN.:DI  0.088 -0.494 -0.058  0.023  0.295  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

2. simple effects for reps

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127484.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1963 -0.6262  0.0913  0.7309  1.5414 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.915e+00  1.254e-02  3.641e+04 391.958  < 2e-16 ***
## index_ANexp.c        5.656e-04  1.276e-04  3.641e+04   4.431 9.40e-06 ***
## pRepD                4.498e-01  1.672e-02  3.641e+04  26.904  < 2e-16 ***
## pRepI                1.467e-01  2.082e-02  3.641e+04   7.049 1.84e-12 ***
## index_ANexp.c:pRepD -2.980e-04  1.591e-04  3.641e+04  -1.873   0.0611 .  
## index_ANexp.c:pRepI  1.008e-04  2.103e-04  3.641e+04   0.479   0.6318    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.221                              
## pRepD       -0.750 -0.166                       
## pRepI       -0.602 -0.133  0.452                
## indx_AN.:RD -0.177 -0.802  0.063  0.107         
## indx_AN.:RI -0.134 -0.607  0.101  0.144  0.487  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

3. simple effects for indep

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127484.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1963 -0.6262  0.0913  0.7309  1.5414 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.062e+00  1.661e-02  3.641e+04 304.682  < 2e-16 ***
## index_ANexp.c        6.664e-04  1.672e-04  3.641e+04   3.986 6.75e-05 ***
## pIndD                3.031e-01  1.996e-02  3.641e+04  15.186  < 2e-16 ***
## pIndR               -1.467e-01  2.082e-02  3.641e+04  -7.049 1.84e-12 ***
## index_ANexp.c:pIndD -3.988e-04  1.923e-04  3.641e+04  -2.074   0.0381 *  
## index_ANexp.c:pIndR -1.008e-04  2.103e-04  3.641e+04  -0.479   0.6318    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.099                              
## pIndD       -0.832 -0.083                       
## pIndR       -0.798 -0.079  0.664                
## indx_AN.:ID -0.086 -0.869  0.023  0.069         
## indx_AN.:IR -0.079 -0.795  0.066  0.144  0.691  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

C. risk5

risk5 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148304.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8829 -0.8749 -0.1762  0.7573  2.3876 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003372 0.05807 
##  Residual             3.450072 1.85744 
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.302e+00  1.976e-02  1.152e+01 167.140  < 2e-16 ***
## index_ANexp.c           2.912e-03  1.038e-04  2.673e+04  28.046  < 2e-16 ***
## pDem_Rep               -3.852e-01  2.235e-02  3.636e+04 -17.235  < 2e-16 ***
## pInd_Not               -4.638e-01  2.477e-02  3.635e+04 -18.723  < 2e-16 ***
## index_ANexp.c:pDem_Rep  1.322e-03  2.142e-04  3.359e+04   6.172 6.84e-10 ***
## index_ANexp.c:pInd_Not  2.821e-04  2.466e-04  3.636e+04   1.144    0.253    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.042                             
## pDem_Rep     0.047  0.145                      
## pInd_Not    -0.159 -0.043  0.056               
## ind_AN.:D_R  0.077  0.188  0.061  0.093        
## ind_AN.:I_N -0.022 -0.343  0.087  0.090  0.124
## Warning: Removed 60 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148304.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8829 -0.8749 -0.1762  0.7573  2.3876 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003372 0.05807 
##  Residual             3.450072 1.85744 
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.341e+00  2.235e-02  1.888e+01 149.472  < 2e-16 ***
## index_ANexp.c        2.344e-03  1.293e-04  2.445e+04  18.130  < 2e-16 ***
## pDemR               -3.852e-01  2.235e-02  3.636e+04 -17.235  < 2e-16 ***
## pDemI                2.712e-01  2.660e-02  3.636e+04  10.195  < 2e-16 ***
## index_ANexp.c:pDemR  1.322e-03  2.142e-04  3.359e+04   6.172 6.84e-10 ***
## index_ANexp.c:pDemI  3.787e-04  2.564e-04  3.635e+04   1.477     0.14    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.120                              
## pDemR       -0.438  0.121                       
## pDemI       -0.368  0.102  0.368                
## indx_AN.:DR  0.072 -0.599  0.061 -0.060         
## indx_AN.:DI  0.059 -0.492 -0.058  0.020  0.298

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148304.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8829 -0.8749 -0.1762  0.7573  2.3876 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003372 0.05807 
##  Residual             3.450072 1.85744 
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.956e+00  2.370e-02  2.386e+01 124.733  < 2e-16 ***
## index_ANexp.c        3.666e-03  1.715e-04  3.432e+04  21.375  < 2e-16 ***
## pRepD                3.852e-01  2.235e-02  3.636e+04  17.235  < 2e-16 ***
## pRepI                6.564e-01  2.774e-02  3.635e+04  23.665  < 2e-16 ***
## index_ANexp.c:pRepD -1.322e-03  2.142e-04  3.359e+04  -6.172 6.84e-10 ***
## index_ANexp.c:pRepI -9.430e-04  2.807e-04  3.622e+04  -3.359 0.000783 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.157                              
## pRepD       -0.530 -0.168                       
## pRepI       -0.427 -0.134  0.453                
## indx_AN.:RD -0.125 -0.797  0.061  0.107         
## indx_AN.:RI -0.095 -0.606  0.100  0.143  0.490

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148304.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8829 -0.8749 -0.1762  0.7573  2.3876 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003372 0.05807 
##  Residual             3.450072 1.85744 
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.613e+00  2.774e-02  4.481e+01 130.208  < 2e-16 ***
## index_ANexp.c        2.723e-03  2.233e-04  3.567e+04  12.196  < 2e-16 ***
## pIndD               -2.712e-01  2.660e-02  3.636e+04 -10.195  < 2e-16 ***
## pIndR               -6.564e-01  2.774e-02  3.635e+04 -23.665  < 2e-16 ***
## index_ANexp.c:pIndD -3.787e-04  2.564e-04  3.635e+04  -1.477 0.139577    
## index_ANexp.c:pIndR  9.430e-04  2.807e-04  3.622e+04   3.359 0.000783 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.077                              
## pIndD       -0.662 -0.082                       
## pIndR       -0.635 -0.077  0.662                
## indx_AN.:ID -0.067 -0.864  0.020  0.067         
## indx_AN.:IR -0.061 -0.792  0.065  0.143  0.685

D. risk severity

risk severity ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116719
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3056 -0.6493 -0.0220  0.6772  2.7994 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005599 0.07483 
##  Residual             1.461175 1.20879 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.298e+00  2.265e-02  1.096e+01 189.809  < 2e-16 ***
## index_CPexp.c           1.778e-02  6.222e-04  2.552e+04  28.584  < 2e-16 ***
## pDem_Rep               -7.439e-01  1.450e-02  3.625e+04 -51.301  < 2e-16 ***
## pInd_Not               -7.851e-02  1.615e-02  3.624e+04  -4.861 1.17e-06 ***
## index_CPexp.c:pDem_Rep  1.163e-02  1.218e-03  3.532e+04   9.551  < 2e-16 ***
## index_CPexp.c:pInd_Not -4.322e-03  1.425e-03  3.624e+04  -3.033  0.00242 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.022                             
## pDem_Rep     0.026  0.134                      
## pInd_Not    -0.092 -0.050  0.053               
## ind_CP.:D_R  0.038  0.160  0.046  0.080        
## ind_CP.:I_N -0.014 -0.352  0.074  0.087  0.101

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116719
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3056 -0.6493 -0.0220  0.6772  2.7994 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005599 0.07483 
##  Residual             1.461175 1.20879 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.644e+00  2.364e-02  1.303e+01 196.440  < 2e-16 ***
## index_CPexp.c        1.054e-02  7.706e-04  3.064e+04  13.682  < 2e-16 ***
## pDemR               -7.439e-01  1.450e-02  3.625e+04 -51.301  < 2e-16 ***
## pDemI               -2.934e-01  1.735e-02  3.625e+04 -16.912  < 2e-16 ***
## index_CPexp.c:pDemR  1.163e-02  1.218e-03  3.532e+04   9.551  < 2e-16 ***
## index_CPexp.c:pDemI  1.014e-02  1.492e-03  3.625e+04   6.794 1.11e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.068                              
## pDemR       -0.270  0.117                       
## pDemI       -0.225  0.096  0.369                
## indx_CP.:DR  0.041 -0.599  0.046 -0.055         
## indx_CP.:DI  0.033 -0.480 -0.052  0.026  0.312

2. simple effects for reps

  riskSeverity
Predictors Estimates CI p
(Intercept) 3.90 3.85 – 3.95 <0.001
index_CPexp.c 0.02 0.02 – 0.02 <0.001
pRepD 0.74 0.72 – 0.77 <0.001
pRepI 0.45 0.42 – 0.49 <0.001
index_CPexp.c * pRepD -0.01 -0.01 – -0.01 <0.001
index_CPexp.c * pRepI -0.00 -0.00 – 0.00 0.352
Random Effects
σ2 1.46
τ00 media 0.01
ICC 0.00
N media 12
Observations 36256
Marginal R2 / Conditional R2 0.105 / 0.109
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116719
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3056 -0.6493 -0.0220  0.6772  2.7994 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005599 0.07483 
##  Residual             1.461175 1.20879 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.900e+00  2.417e-02  1.423e+01 161.380   <2e-16 ***
## index_CPexp.c        2.217e-02  9.759e-04  3.153e+04  22.720   <2e-16 ***
## pRepD                7.439e-01  1.450e-02  3.625e+04  51.301   <2e-16 ***
## pRepI                4.504e-01  1.805e-02  3.624e+04  24.955   <2e-16 ***
## index_CPexp.c:pRepD -1.163e-02  1.218e-03  3.532e+04  -9.551   <2e-16 ***
## index_CPexp.c:pRepI -1.493e-03  1.605e-03  3.623e+04  -0.930    0.352    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.087                              
## pRepD       -0.336 -0.149                       
## pRepI       -0.269 -0.113  0.449                
## indx_CP.:RD -0.067 -0.775  0.046  0.090         
## indx_CP.:RI -0.050 -0.578  0.083  0.129  0.469

3. simple effects for indep

  riskSeverity
Predictors Estimates CI p
(Intercept) 4.35 4.30 – 4.40 <0.001
index_CPexp.c 0.02 0.02 – 0.02 <0.001
pIndD 0.29 0.26 – 0.33 <0.001
pIndR -0.45 -0.49 – -0.42 <0.001
index_CPexp.c * pIndD -0.01 -0.01 – -0.01 <0.001
index_CPexp.c * pIndR 0.00 -0.00 – 0.00 0.352
Random Effects
σ2 1.46
τ00 media 0.01
ICC 0.00
N media 12
Observations 36256
Marginal R2 / Conditional R2 0.105 / 0.109
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116719
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3056 -0.6493 -0.0220  0.6772  2.7994 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005599 0.07483 
##  Residual             1.461175 1.20879 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.351e+00  2.598e-02  1.900e+01 167.463  < 2e-16 ***
## index_CPexp.c        2.068e-02  1.310e-03  3.560e+04  15.785  < 2e-16 ***
## pIndD                2.934e-01  1.735e-02  3.625e+04  16.912  < 2e-16 ***
## pIndR               -4.504e-01  1.805e-02  3.624e+04 -24.955  < 2e-16 ***
## index_CPexp.c:pIndD -1.014e-02  1.492e-03  3.625e+04  -6.794 1.11e-11 ***
## index_CPexp.c:pIndR  1.493e-03  1.605e-03  3.623e+04   0.930    0.352    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.055                              
## pIndD       -0.463 -0.085                       
## pIndR       -0.444 -0.074  0.665                
## indx_CP.:ID -0.047 -0.857  0.026  0.066         
## indx_CP.:IR -0.043 -0.794  0.066  0.129  0.693

E. worst of Covid is behind/ahead

worstBorA ~ index * party + (1 |media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129506.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.83476 -0.69079  0.01103  0.71389  2.22704 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001022 0.03197 
##  Residual             2.027245 1.42381 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.699e-01  1.220e-02  1.104e+01  46.715 4.87e-14 ***
## index_CPexp.c           8.693e-03  7.147e-04  3.167e+03  12.164  < 2e-16 ***
## pDem_Rep               -9.533e-01  1.702e-02  3.624e+04 -56.026  < 2e-16 ***
## pInd_Not               -1.628e-01  1.895e-02  3.651e+04  -8.591  < 2e-16 ***
## index_CPexp.c:pDem_Rep  1.929e-02  1.421e-03  2.009e+04  13.571  < 2e-16 ***
## index_CPexp.c:pInd_Not  1.564e-03  1.673e-03  3.651e+04   0.935     0.35    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.047                             
## pDem_Rep     0.057  0.130                      
## pInd_Not    -0.200 -0.050  0.054               
## ind_CP.:D_R  0.083  0.163  0.045  0.080        
## ind_CP.:I_N -0.031 -0.359  0.074  0.086  0.101

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129506.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.83476 -0.69079  0.01103  0.71389  2.22704 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001022 0.03197 
##  Residual             2.027245 1.42381 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.929e-01  1.457e-02  2.240e+01  68.157  < 2e-16 ***
## index_CPexp.c       -4.356e-04  8.901e-04  6.421e+03  -0.489    0.625    
## pDemR               -9.533e-01  1.702e-02  3.624e+04 -56.026  < 2e-16 ***
## pDemI               -3.139e-01  2.034e-02  3.650e+04 -15.430  < 2e-16 ***
## index_CPexp.c:pDemR  1.929e-02  1.421e-03  2.009e+04  13.571  < 2e-16 ***
## index_CPexp.c:pDemI  8.081e-03  1.750e-03  3.631e+04   4.618 3.89e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.129                              
## pDemR       -0.513  0.114                       
## pDemI       -0.429  0.094  0.368                
## indx_CP.:DR  0.078 -0.605  0.045 -0.056         
## indx_CP.:DI  0.063 -0.485 -0.053  0.025  0.309

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129506.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.83476 -0.69079  0.01103  0.71389  2.22704 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001022 0.03197 
##  Residual             2.027245 1.42381 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.954e-02  1.573e-02  3.043e+01   2.514   0.0175 *  
## index_CPexp.c        1.885e-02  1.132e-03  7.517e+03  16.652  < 2e-16 ***
## pRepD                9.533e-01  1.702e-02  3.624e+04  56.026  < 2e-16 ***
## pRepI                6.394e-01  2.118e-02  3.651e+04  30.184  < 2e-16 ***
## index_CPexp.c:pRepD -1.929e-02  1.421e-03  2.009e+04 -13.571  < 2e-16 ***
## index_CPexp.c:pRepI -1.121e-02  1.883e-03  3.516e+04  -5.953 2.65e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.155                              
## pRepD       -0.607 -0.146                       
## pRepI       -0.487 -0.113  0.450                
## indx_CP.:RD -0.121 -0.780  0.045  0.090         
## indx_CP.:RI -0.090 -0.583  0.083  0.129  0.468

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129506.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.83476 -0.69079  0.01103  0.71389  2.22704 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001022 0.03197 
##  Residual             2.027245 1.42381 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.790e-01  1.928e-02  6.885e+01  35.209  < 2e-16 ***
## index_CPexp.c        7.645e-03  1.530e-03  2.435e+04   4.995 5.92e-07 ***
## pIndD                3.139e-01  2.034e-02  3.650e+04  15.430  < 2e-16 ***
## pIndR               -6.394e-01  2.118e-02  3.651e+04 -30.184  < 2e-16 ***
## index_CPexp.c:pIndD -8.081e-03  1.750e-03  3.631e+04  -4.618 3.89e-06 ***
## index_CPexp.c:pIndR  1.121e-02  1.883e-03  3.516e+04   5.953 2.65e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.085                              
## pIndD       -0.731 -0.083                       
## pIndR       -0.702 -0.075  0.665                
## indx_CP.:ID -0.073 -0.861  0.025  0.066         
## indx_CP.:IR -0.068 -0.799  0.065  0.129  0.696

F. vaccine attitudes

vaxAttitudes ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 157195
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13867 -0.69937  0.05088  0.88896  1.55529 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008481 0.09209 
##  Residual             4.344499 2.08435 
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.849e-01  2.904e-02  1.094e+01  16.698 3.94e-09 ***
## index_CPexp.c           2.256e-02  1.065e-03  1.506e+04  21.184  < 2e-16 ***
## pDem_Rep               -8.741e-01  2.494e-02  3.646e+04 -35.050  < 2e-16 ***
## pInd_Not                5.782e-01  2.774e-02  3.647e+04  20.842  < 2e-16 ***
## index_CPexp.c:pDem_Rep  2.093e-02  2.092e-03  3.322e+04  10.008  < 2e-16 ***
## index_CPexp.c:pInd_Not -3.058e-03  2.449e-03  3.647e+04  -1.249    0.212    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.029                             
## pDem_Rep     0.035  0.133                      
## pInd_Not    -0.123 -0.050  0.054               
## ind_CP.:D_R  0.051  0.163  0.045  0.080        
## ind_CP.:I_N -0.019 -0.353  0.074  0.086  0.102

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157195
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13867 -0.69937  0.05088  0.88896  1.55529 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008481 0.09209 
##  Residual             4.344499 2.08435 
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.113e+00  3.130e-02  1.475e+01  35.556 1.04e-15 ***
## index_CPexp.c        1.108e-02  1.319e-03  2.241e+04   8.403  < 2e-16 ***
## pDemR               -8.741e-01  2.494e-02  3.646e+04 -35.050  < 2e-16 ***
## pDemI               -1.015e+00  2.979e-02  3.648e+04 -34.076  < 2e-16 ***
## index_CPexp.c:pDemR  2.093e-02  2.092e-03  3.322e+04  10.008  < 2e-16 ***
## index_CPexp.c:pDemI  1.353e-02  2.563e-03  3.647e+04   5.276 1.32e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.089                              
## pDemR       -0.350  0.117                       
## pDemI       -0.293  0.096  0.368                
## indx_CP.:DR  0.053 -0.599  0.045 -0.056         
## indx_CP.:DI  0.043 -0.481 -0.052  0.025  0.311

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157195
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13867 -0.69937  0.05088  0.88896  1.55529 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008481 0.09209 
##  Residual             4.344499 2.08435 
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.387e-01  3.248e-02  1.712e+01   7.347 1.09e-06 ***
## index_CPexp.c        3.201e-02  1.676e-03  2.410e+04  19.104  < 2e-16 ***
## pRepD                8.741e-01  2.494e-02  3.646e+04  35.050  < 2e-16 ***
## pRepI               -1.411e-01  3.102e-02  3.647e+04  -4.550 5.39e-06 ***
## index_CPexp.c:pRepD -2.093e-02  2.092e-03  3.322e+04 -10.008  < 2e-16 ***
## index_CPexp.c:pRepI -7.408e-03  2.760e-03  3.635e+04  -2.685  0.00727 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.110                              
## pRepD       -0.431 -0.148                       
## pRepI       -0.346 -0.113  0.450                
## indx_CP.:RD -0.086 -0.777  0.045  0.090         
## indx_CP.:RI -0.064 -0.580  0.083  0.129  0.470

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157195
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13867 -0.69937  0.05088  0.88896  1.55529 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008481 0.09209 
##  Residual             4.344499 2.08435 
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.754e-02  3.635e-02  2.685e+01   2.683  0.01232 *  
## index_CPexp.c        2.460e-02  2.249e-03  3.419e+04  10.939  < 2e-16 ***
## pIndD                1.015e+00  2.979e-02  3.648e+04  34.076  < 2e-16 ***
## pIndR                1.411e-01  3.102e-02  3.647e+04   4.550 5.39e-06 ***
## index_CPexp.c:pIndD -1.353e-02  2.563e-03  3.647e+04  -5.276 1.32e-07 ***
## index_CPexp.c:pIndR  7.408e-03  2.760e-03  3.635e+04   2.685  0.00727 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.066                              
## pIndD       -0.568 -0.084                       
## pIndR       -0.545 -0.074  0.664                
## indx_CP.:ID -0.057 -0.858  0.025  0.066         
## indx_CP.:IR -0.053 -0.795  0.065  0.129  0.693

3. ANALYTIC THINKING

A. risk3

risk3 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134841.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91607 -0.76870  0.00131  0.68094  2.32163 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008355 0.0914  
##  Residual             2.347901 1.5323  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.493e+00  2.775e-02  1.097e+01 161.933  < 2e-16 ***
## index_CPexp.c           2.274e-02  7.861e-04  2.465e+04  28.921  < 2e-16 ***
## pDem_Rep               -1.380e+00  1.833e-02  3.650e+04 -75.266  < 2e-16 ***
## pInd_Not                1.348e-01  2.039e-02  3.649e+04   6.609 3.91e-11 ***
## index_CPexp.c:pDem_Rep  2.444e-02  1.539e-03  3.542e+04  15.877  < 2e-16 ***
## index_CPexp.c:pInd_Not -9.535e-03  1.801e-03  3.650e+04  -5.295 1.19e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.022                             
## pDem_Rep     0.027  0.135                      
## pInd_Not    -0.094 -0.050  0.054               
## ind_CP.:D_R  0.040  0.163  0.046  0.080        
## ind_CP.:I_N -0.015 -0.351  0.074  0.086  0.102
## Warning: Removed 9 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134841.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91607 -0.76870  0.00131  0.68094  2.32163 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008355 0.0914  
##  Residual             2.347901 1.5323  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.228e+00  2.904e-02  1.316e+01 180.003  < 2e-16 ***
## index_CPexp.c        7.368e-03  9.719e-04  3.015e+04   7.582 3.51e-14 ***
## pDemR               -1.380e+00  1.833e-02  3.650e+04 -75.266  < 2e-16 ***
## pDemI               -8.246e-01  2.190e-02  3.650e+04 -37.653  < 2e-16 ***
## index_CPexp.c:pDemR  2.444e-02  1.539e-03  3.542e+04  15.877  < 2e-16 ***
## index_CPexp.c:pDemI  2.176e-02  1.884e-03  3.650e+04  11.545  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.071                              
## pDemR       -0.277  0.118                       
## pDemI       -0.232  0.097  0.368                
## indx_CP.:DR  0.042 -0.598  0.046 -0.056         
## indx_CP.:DI  0.034 -0.479 -0.052  0.025  0.311

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134841.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91607 -0.76870  0.00131  0.68094  2.32163 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008355 0.0914  
##  Residual             2.347901 1.5323  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.848e+00  2.974e-02  1.448e+01 129.386   <2e-16 ***
## index_CPexp.c        3.181e-02  1.235e-03  3.117e+04  25.749   <2e-16 ***
## pRepD                1.380e+00  1.833e-02  3.650e+04  75.266   <2e-16 ***
## pRepI                5.551e-01  2.280e-02  3.649e+04  24.340   <2e-16 ***
## index_CPexp.c:pRepD -2.444e-02  1.539e-03  3.542e+04 -15.877   <2e-16 ***
## index_CPexp.c:pRepI -2.686e-03  2.029e-03  3.647e+04  -1.323    0.186    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.090                              
## pRepD       -0.346 -0.150                       
## pRepI       -0.277 -0.114  0.450                
## indx_CP.:RD -0.069 -0.776  0.046  0.090         
## indx_CP.:RI -0.052 -0.579  0.083  0.129  0.470

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134841.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91607 -0.76870  0.00131  0.68094  2.32163 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008355 0.0914  
##  Residual             2.347901 1.5323  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.403e+00  3.207e-02  1.957e+01 137.310   <2e-16 ***
## index_CPexp.c        2.912e-02  1.655e-03  3.574e+04  17.596   <2e-16 ***
## pIndD                8.246e-01  2.190e-02  3.650e+04  37.653   <2e-16 ***
## pIndR               -5.551e-01  2.280e-02  3.649e+04 -24.340   <2e-16 ***
## index_CPexp.c:pIndD -2.176e-02  1.884e-03  3.650e+04 -11.545   <2e-16 ***
## index_CPexp.c:pIndR  2.686e-03  2.029e-03  3.647e+04   1.323    0.186    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.055                              
## pIndD       -0.473 -0.085                       
## pIndR       -0.454 -0.074  0.664                
## indx_CP.:ID -0.047 -0.857  0.025  0.065         
## indx_CP.:IR -0.044 -0.794  0.065  0.129  0.693

B. risk4

risk4 ~ index * party + (1 | media)

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127473
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1981 -0.6291  0.0868  0.7410  1.5396 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.114e+00  7.816e-03  3.641e+04 654.282  < 2e-16 ***
## index_CPexp.c           4.317e-03  6.733e-04  3.641e+04   6.411 1.46e-10 ***
## pDem_Rep               -4.535e-01  1.663e-02  3.641e+04 -27.269  < 2e-16 ***
## pInd_Not                7.640e-02  1.858e-02  3.641e+04   4.113 3.91e-05 ***
## index_CPexp.c:pDem_Rep  1.694e-03  1.375e-03  3.641e+04   1.232   0.2179    
## index_CPexp.c:pInd_Not -2.974e-03  1.639e-03  3.641e+04  -1.814   0.0696 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.071                             
## pDem_Rep     0.086  0.120                      
## pInd_Not    -0.308 -0.050  0.054               
## ind_CP.:D_R  0.125  0.162  0.044  0.079        
## ind_CP.:I_N -0.049 -0.375  0.074  0.087  0.099 
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning: Removed 9 row(s) containing missing values (geom_path).

1. simple effects for dems

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127473
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1981 -0.6291  0.0868  0.7410  1.5396 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.366e+00  1.103e-02  3.641e+04 486.644  < 2e-16 ***
## index_CPexp.c        2.488e-03  8.497e-04  3.641e+04   2.928  0.00341 ** 
## pDemR               -4.535e-01  1.663e-02  3.641e+04 -27.269  < 2e-16 ***
## pDemI               -3.031e-01  1.994e-02  3.641e+04 -15.204  < 2e-16 ***
## index_CPexp.c:pDemR  1.694e-03  1.375e-03  3.641e+04   1.232  0.21795    
## index_CPexp.c:pDemI  3.821e-03  1.713e-03  3.641e+04   2.230  0.02575 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.161                              
## pDemR       -0.663  0.107                       
## pDemI       -0.553  0.089  0.367                
## indx_CP.:DR  0.100 -0.618  0.044 -0.055         
## indx_CP.:DI  0.080 -0.496 -0.053  0.026  0.306  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

2. simple effects for reps

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127473
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1981 -0.6291  0.0868  0.7410  1.5396 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.912e+00  1.245e-02  3.641e+04 394.599  < 2e-16 ***
## index_CPexp.c        4.182e-03  1.081e-03  3.641e+04   3.868  0.00011 ***
## pRepD                4.535e-01  1.663e-02  3.641e+04  27.269  < 2e-16 ***
## pRepI                1.503e-01  2.076e-02  3.641e+04   7.242 4.52e-13 ***
## index_CPexp.c:pRepD -1.694e-03  1.375e-03  3.641e+04  -1.232  0.21795    
## index_CPexp.c:pRepI  2.127e-03  1.839e-03  3.641e+04   1.156  0.24755    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.186                              
## pRepD       -0.749 -0.140                       
## pRepI       -0.600 -0.112  0.449                
## indx_CP.:RD -0.147 -0.786  0.044  0.088         
## indx_CP.:RI -0.110 -0.588  0.082  0.129  0.462  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

3. simple effects for indep

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127473
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1981 -0.6291  0.0868  0.7410  1.5396 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.062e+00  1.661e-02  3.641e+04 304.751  < 2e-16 ***
## index_CPexp.c        6.309e-03  1.488e-03  3.641e+04   4.240 2.24e-05 ***
## pIndD                3.031e-01  1.994e-02  3.641e+04  15.204  < 2e-16 ***
## pIndR               -1.503e-01  2.076e-02  3.641e+04  -7.242 4.52e-13 ***
## index_CPexp.c:pIndD -3.821e-03  1.713e-03  3.641e+04  -2.230   0.0258 *  
## index_CPexp.c:pIndR -2.127e-03  1.839e-03  3.641e+04  -1.156   0.2475    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.097                              
## pIndD       -0.833 -0.081                       
## pIndR       -0.800 -0.078  0.667                
## indx_CP.:ID -0.085 -0.868  0.026  0.068         
## indx_CP.:IR -0.079 -0.809  0.066  0.129  0.703  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

C. risk5

risk5 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148399.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8366 -0.8773 -0.1620  0.7669  2.3876 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01297  0.1139  
##  Residual             3.45919  1.8599  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.298e+00  3.450e-02  1.096e+01  95.609  < 2e-16 ***
## index_CPexp.c           2.566e-02  9.554e-04  2.530e+04  26.861  < 2e-16 ***
## pDem_Rep               -4.047e-01  2.229e-02  3.636e+04 -18.159  < 2e-16 ***
## pInd_Not               -4.709e-01  2.478e-02  3.635e+04 -19.006  < 2e-16 ***
## index_CPexp.c:pDem_Rep  8.632e-03  1.872e-03  3.539e+04   4.612 4.01e-06 ***
## index_CPexp.c:pInd_Not -2.467e-04  2.187e-03  3.635e+04  -0.113     0.91    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.022                             
## pDem_Rep     0.026  0.134                      
## pInd_Not    -0.092 -0.049  0.053               
## ind_CP.:D_R  0.039  0.161  0.046  0.080        
## ind_CP.:I_N -0.014 -0.350  0.074  0.086  0.101
## Warning: Removed 9 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148399.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8366 -0.8773 -0.1620  0.7669  2.3876 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01298  0.1139  
##  Residual             3.45919  1.8599  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.345e+00  3.605e-02  1.306e+01  92.803  < 2e-16 ***
## index_CPexp.c        2.127e-02  1.184e-03  3.055e+04  17.959  < 2e-16 ***
## pDemR               -4.047e-01  2.229e-02  3.636e+04 -18.159  < 2e-16 ***
## pDemI                2.685e-01  2.662e-02  3.636e+04  10.086  < 2e-16 ***
## index_CPexp.c:pDemR  8.632e-03  1.872e-03  3.539e+04   4.612 4.01e-06 ***
## index_CPexp.c:pDemI  4.562e-03  2.290e-03  3.636e+04   1.992   0.0464 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.069                              
## pDemR       -0.272  0.117                       
## pDemI       -0.228  0.096  0.369                
## indx_CP.:DR  0.041 -0.599  0.046 -0.055         
## indx_CP.:DI  0.033 -0.481 -0.052  0.024  0.312

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148399.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8366 -0.8773 -0.1620  0.7669  2.3876 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01297  0.1139  
##  Residual             3.45919  1.8599  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.941e+00  3.687e-02  1.429e+01  79.767  < 2e-16 ***
## index_CPexp.c        2.990e-02  1.500e-03  3.148e+04  19.929  < 2e-16 ***
## pRepD                4.047e-01  2.229e-02  3.636e+04  18.159  < 2e-16 ***
## pRepI                6.733e-01  2.770e-02  3.635e+04  24.304  < 2e-16 ***
## index_CPexp.c:pRepD -8.632e-03  1.872e-03  3.539e+04  -4.612 4.01e-06 ***
## index_CPexp.c:pRepI -4.069e-03  2.464e-03  3.633e+04  -1.651   0.0987 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.087                              
## pRepD       -0.339 -0.149                       
## pRepI       -0.272 -0.113  0.450                
## indx_CP.:RD -0.068 -0.775  0.046  0.090         
## indx_CP.:RI -0.051 -0.579  0.083  0.129  0.470

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148399.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8366 -0.8773 -0.1620  0.7669  2.3876 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01298  0.1139  
##  Residual             3.45919  1.8599  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.614e+00  3.964e-02  1.910e+01  91.171   <2e-16 ***
## index_CPexp.c        2.583e-02  2.010e-03  3.567e+04  12.849   <2e-16 ***
## pIndD               -2.685e-01  2.662e-02  3.636e+04 -10.086   <2e-16 ***
## pIndR               -6.733e-01  2.770e-02  3.635e+04 -24.304   <2e-16 ***
## index_CPexp.c:pIndD -4.562e-03  2.290e-03  3.636e+04  -1.992   0.0464 *  
## index_CPexp.c:pIndR  4.069e-03  2.464e-03  3.633e+04   1.651   0.0987 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.054                              
## pIndD       -0.465 -0.084                       
## pIndR       -0.446 -0.073  0.664                
## indx_CP.:ID -0.046 -0.856  0.024  0.065         
## indx_CP.:IR -0.043 -0.794  0.065  0.129  0.692

D. risk severity

risk severity ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116627.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3571 -0.6639 -0.0211  0.6702  2.7900 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001196 0.03459 
##  Residual             1.457532 1.20728 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.302e+00  1.208e-02  1.163e+01 355.964  < 2e-16 ***
## index_ANexp.c           2.005e-03  6.759e-05  2.482e+04  29.657  < 2e-16 ***
## pDem_Rep               -7.317e-01  1.454e-02  3.625e+04 -50.319  < 2e-16 ***
## pInd_Not               -7.211e-02  1.615e-02  3.624e+04  -4.465 8.04e-06 ***
## index_ANexp.c:pDem_Rep  1.637e-03  1.393e-04  3.272e+04  11.752  < 2e-16 ***
## index_ANexp.c:pInd_Not -2.921e-04  1.607e-04  3.625e+04  -1.817   0.0692 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.045                             
## pDem_Rep     0.050  0.144                      
## pInd_Not    -0.170 -0.045  0.056               
## ind_AN.:D_R  0.082  0.189  0.062  0.092        
## ind_AN.:I_N -0.024 -0.345  0.087  0.092  0.124
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116627.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3571 -0.6639 -0.0211  0.6702  2.7900 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001196 0.03459 
##  Residual             1.457532 1.20728 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.644e+00  1.387e-02  2.015e+01 334.905  < 2e-16 ***
## index_ANexp.c        1.089e-03  8.407e-05  2.228e+04  12.959  < 2e-16 ***
## pDemR               -7.317e-01  1.454e-02  3.625e+04 -50.319  < 2e-16 ***
## pDemI               -2.937e-01  1.734e-02  3.625e+04 -16.941  < 2e-16 ***
## index_ANexp.c:pDemR  1.637e-03  1.393e-04  3.272e+04  11.752  < 2e-16 ***
## index_ANexp.c:pDemI  1.111e-03  1.671e-04  3.623e+04   6.648 3.02e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.125                              
## pDemR       -0.459  0.120                       
## pDemI       -0.385  0.101  0.368                
## indx_AN.:DR  0.075 -0.599  0.062 -0.060         
## indx_AN.:DI  0.061 -0.491 -0.058  0.022  0.298

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116627.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3571 -0.6639 -0.0211  0.6702  2.7900 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001196 0.03459 
##  Residual             1.457532 1.20728 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.912e+00  1.478e-02  2.602e+01 264.673   <2e-16 ***
## index_ANexp.c        2.727e-03  1.116e-04  3.364e+04  24.438   <2e-16 ***
## pRepD                7.317e-01  1.454e-02  3.625e+04  50.319   <2e-16 ***
## pRepI                4.379e-01  1.808e-02  3.624e+04  24.228   <2e-16 ***
## index_ANexp.c:pRepD -1.637e-03  1.393e-04  3.272e+04 -11.752   <2e-16 ***
## index_ANexp.c:pRepI -5.265e-04  1.829e-04  3.607e+04  -2.878    0.004 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.164                              
## pRepD       -0.553 -0.167                       
## pRepI       -0.445 -0.134  0.452                
## indx_AN.:RD -0.131 -0.797  0.062  0.107         
## indx_AN.:RI -0.099 -0.605  0.100  0.144  0.490

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116627.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3571 -0.6639 -0.0211  0.6702  2.7900 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001196 0.03459 
##  Residual             1.457532 1.20728 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.350e+00  1.754e-02  5.159e+01 248.012  < 2e-16 ***
## index_ANexp.c        2.200e-03  1.456e-04  3.537e+04  15.114  < 2e-16 ***
## pIndD                2.937e-01  1.734e-02  3.625e+04  16.941  < 2e-16 ***
## pIndR               -4.379e-01  1.808e-02  3.624e+04 -24.228  < 2e-16 ***
## index_ANexp.c:pIndD -1.111e-03  1.671e-04  3.623e+04  -6.648 3.02e-11 ***
## index_ANexp.c:pIndR  5.265e-04  1.829e-04  3.607e+04   2.878    0.004 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.081                              
## pIndD       -0.684 -0.084                       
## pIndR       -0.656 -0.078  0.664                
## indx_AN.:ID -0.070 -0.864  0.022  0.068         
## indx_AN.:IR -0.065 -0.792  0.066  0.144  0.687

E. worst of Covid is behind/ahead

worstBorA ~ index * party + (1 | media)

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129420
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.82054 -0.69215  0.01106  0.71760  2.26207 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             2.022    1.422   
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.751e-01  7.990e-03  3.651e+04  71.975  < 2e-16 ***
## index_ANexp.c           1.045e-03  7.820e-05  3.651e+04  13.369  < 2e-16 ***
## pDem_Rep               -9.417e-01  1.707e-02  3.651e+04 -55.172  < 2e-16 ***
## pInd_Not               -1.542e-01  1.894e-02  3.651e+04  -8.138 4.15e-16 ***
## index_ANexp.c:pDem_Rep  2.644e-03  1.624e-04  3.651e+04  16.280  < 2e-16 ***
## index_ANexp.c:pInd_Not  3.915e-04  1.886e-04  3.651e+04   2.076   0.0379 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.080                             
## pDem_Rep     0.090  0.142                      
## pInd_Not    -0.301 -0.043  0.057               
## ind_AN.:D_R  0.146  0.201  0.063  0.092        
## ind_AN.:I_N -0.042 -0.349  0.088  0.091  0.124 
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129420
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.82054 -0.69215  0.01106  0.71760  2.26207 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             2.022    1.422   
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.950e-01  1.128e-02  3.651e+04  88.194  < 2e-16 ***
## index_ANexp.c       -1.474e-04  9.688e-05  3.651e+04  -1.521    0.128    
## pDemR               -9.417e-01  1.707e-02  3.651e+04 -55.172  < 2e-16 ***
## pDemI               -3.167e-01  2.033e-02  3.651e+04 -15.576  < 2e-16 ***
## index_ANexp.c:pDemR  2.644e-03  1.624e-04  3.651e+04  16.280  < 2e-16 ***
## index_ANexp.c:pDemI  9.306e-04  1.959e-04  3.651e+04   4.751 2.03e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.179                              
## pDemR       -0.661  0.118                       
## pDemI       -0.555  0.099  0.367                
## indx_AN.:DR  0.107 -0.596  0.063 -0.059         
## indx_AN.:DI  0.089 -0.495 -0.059  0.021  0.295  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

2. simple effects for reps

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129420
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.82054 -0.69215  0.01106  0.71760  2.26207 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             2.022    1.422   
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.338e-02  1.281e-02  3.651e+04   4.168 3.08e-05 ***
## index_ANexp.c        2.497e-03  1.304e-04  3.651e+04  19.152  < 2e-16 ***
## pRepD                9.417e-01  1.707e-02  3.651e+04  55.172  < 2e-16 ***
## pRepI                6.250e-01  2.121e-02  3.651e+04  29.461  < 2e-16 ***
## index_ANexp.c:pRepD -2.644e-03  1.624e-04  3.651e+04 -16.280  < 2e-16 ***
## index_ANexp.c:pRepI -1.713e-03  2.144e-04  3.651e+04  -7.992 1.36e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.222                              
## pRepD       -0.750 -0.166                       
## pRepI       -0.604 -0.134  0.453                
## indx_AN.:RD -0.178 -0.803  0.063  0.107         
## indx_AN.:RI -0.135 -0.608  0.101  0.143  0.488  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

3. simple effects for indep

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129420
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.82054 -0.69215  0.01106  0.71760  2.26207 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             2.022    1.422   
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.784e-01  1.691e-02  3.651e+04  40.110  < 2e-16 ***
## index_ANexp.c        7.832e-04  1.702e-04  3.651e+04   4.601 4.22e-06 ***
## pIndD                3.167e-01  2.033e-02  3.651e+04  15.576  < 2e-16 ***
## pIndR               -6.250e-01  2.121e-02  3.651e+04 -29.461  < 2e-16 ***
## index_ANexp.c:pIndD -9.306e-04  1.959e-04  3.651e+04  -4.751 2.03e-06 ***
## index_ANexp.c:pIndR  1.713e-03  2.144e-04  3.651e+04   7.992 1.36e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.098                              
## pIndD       -0.832 -0.081                       
## pIndR       -0.797 -0.078  0.663                
## indx_AN.:ID -0.085 -0.869  0.021  0.068         
## indx_AN.:IR -0.077 -0.794  0.064  0.143  0.690  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

F. vaccine attitudes

vaxAttitudes ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 157095
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.16892 -0.72030  0.06035  0.88465  1.53268 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001451 0.03809 
##  Residual             4.332658 2.08150 
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.906e-01  1.606e-02  1.211e+01  30.556 7.81e-13 ***
## index_ANexp.c           2.660e-03  1.157e-04  1.515e+04  22.995  < 2e-16 ***
## pDem_Rep               -8.538e-01  2.500e-02  3.645e+04 -34.147  < 2e-16 ***
## pInd_Not                5.861e-01  2.773e-02  3.648e+04  21.132  < 2e-16 ***
## index_ANexp.c:pDem_Rep  2.802e-03  2.390e-04  2.721e+04  11.724  < 2e-16 ***
## index_ANexp.c:pInd_Not -1.568e-04  2.761e-04  3.648e+04  -0.568     0.57    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.058                             
## pDem_Rep     0.066  0.144                      
## pInd_Not    -0.219 -0.044  0.057               
## ind_AN.:D_R  0.107  0.194  0.061  0.092        
## ind_AN.:I_N -0.031 -0.346  0.087  0.091  0.125
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157095
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.16892 -0.72030  0.06035  0.88465  1.53268 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001451 0.03809 
##  Residual             4.332658 2.08150 
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.111e+00  1.985e-02  2.825e+01  55.965  < 2e-16 ***
## index_ANexp.c        1.207e-03  1.435e-04  1.253e+04   8.407  < 2e-16 ***
## pDemR               -8.538e-01  2.500e-02  3.645e+04 -34.147  < 2e-16 ***
## pDemI               -1.013e+00  2.977e-02  3.648e+04 -34.029  < 2e-16 ***
## index_ANexp.c:pDemR  2.802e-03  2.390e-04  2.721e+04  11.724  < 2e-16 ***
## index_ANexp.c:pDemI  1.558e-03  2.869e-04  3.639e+04   5.431 5.62e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.151                              
## pDemR       -0.550  0.120                       
## pDemI       -0.462  0.101  0.367                
## indx_AN.:DR  0.090 -0.597  0.061 -0.060         
## indx_AN.:DI  0.074 -0.492 -0.059  0.021  0.296

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157095
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.16892 -0.72030  0.06035  0.88465  1.53268 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001451 0.03809 
##  Residual             4.332658 2.08150 
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.571e-01  2.175e-02  4.071e+01  11.822 9.64e-15 ***
## index_ANexp.c        4.009e-03  1.917e-04  2.924e+04  20.910  < 2e-16 ***
## pRepD                8.538e-01  2.500e-02  3.645e+04  34.147  < 2e-16 ***
## pRepI               -1.591e-01  3.106e-02  3.647e+04  -5.124 3.01e-07 ***
## index_ANexp.c:pRepD -2.802e-03  2.390e-04  2.721e+04 -11.724  < 2e-16 ***
## index_ANexp.c:pRepI -1.244e-03  3.143e-04  3.581e+04  -3.959 7.53e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.191                              
## pRepD       -0.647 -0.167                       
## pRepI       -0.521 -0.134  0.453                
## indx_AN.:RD -0.153 -0.800  0.061  0.107         
## indx_AN.:RI -0.116 -0.607  0.100  0.143  0.490

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157095
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.16892 -0.72030  0.06035  0.88465  1.53268 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001451 0.03809 
##  Residual             4.332658 2.08150 
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.795e-02  2.709e-02  9.800e+01   3.616 0.000475 ***
## index_ANexp.c        2.765e-03  2.498e-04  3.372e+04  11.068  < 2e-16 ***
## pIndD                1.013e+00  2.977e-02  3.648e+04  34.029  < 2e-16 ***
## pIndR                1.591e-01  3.106e-02  3.647e+04   5.124 3.01e-07 ***
## index_ANexp.c:pIndD -1.558e-03  2.869e-04  3.639e+04  -5.431 5.62e-08 ***
## index_ANexp.c:pIndR  1.244e-03  3.143e-04  3.581e+04   3.959 7.53e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.089                              
## pIndD       -0.760 -0.082                       
## pIndR       -0.728 -0.077  0.663                
## indx_AN.:ID -0.077 -0.866  0.021  0.067         
## indx_AN.:IR -0.071 -0.792  0.065  0.143  0.687

G. vulnerable worker

vulnWorker ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 149744.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4474 -0.7719 -0.2699  0.7617  2.5603 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0001612 0.0127  
##  Residual             3.5282298 1.8784  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df  t value Pr(>|t|)    
## (Intercept)            -1.153e+00  1.117e-02  1.274e+01 -103.187   <2e-16 ***
## index_ANexp.c           1.361e-03  1.035e-04  6.649e+03   13.142   <2e-16 ***
## pDem_Rep                9.587e-01  2.255e-02  3.639e+04   42.521   <2e-16 ***
## pInd_Not               -6.392e-02  2.502e-02  3.651e+04   -2.554   0.0106 *  
## index_ANexp.c:pDem_Rep -1.747e-04  2.148e-04  1.719e+04   -0.814   0.4159    
## index_ANexp.c:pInd_Not  1.367e-04  2.491e-04  3.649e+04    0.549   0.5832    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.076                             
## pDem_Rep     0.085  0.143                      
## pInd_Not    -0.285 -0.043  0.057               
## ind_AN.:D_R  0.138  0.199  0.063  0.092        
## ind_AN.:I_N -0.040 -0.348  0.088  0.091  0.124
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 149744.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4474 -0.7719 -0.2699  0.7617  2.5603 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0001612 0.0127  
##  Residual             3.5282298 1.8784  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df  t value Pr(>|t|)    
## (Intercept)         -1.653e+00  1.535e-02  4.515e+01 -107.719   <2e-16 ***
## index_ANexp.c        1.493e-03  1.283e-04  5.145e+03   11.637   <2e-16 ***
## pDemR                9.587e-01  2.255e-02  3.639e+04   42.521   <2e-16 ***
## pDemI                5.433e-01  2.686e-02  3.649e+04   20.229   <2e-16 ***
## index_ANexp.c:pDemR -1.747e-04  2.148e-04  1.719e+04   -0.814    0.416    
## index_ANexp.c:pDemI -2.241e-04  2.587e-04  3.614e+04   -0.866    0.386    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.175                              
## pDemR       -0.642  0.119                       
## pDemI       -0.539  0.100  0.367                
## indx_AN.:DR  0.104 -0.597  0.063 -0.060         
## indx_AN.:DI  0.086 -0.494 -0.059  0.021  0.295

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 149744.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4474 -0.7719 -0.2699  0.7617  2.5603 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0001612 0.01269 
##  Residual             3.5282298 1.87836 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -6.946e-01  1.731e-02  7.311e+01 -40.128  < 2e-16 ***
## index_ANexp.c        1.319e-03  1.724e-04  2.002e+04   7.649 2.11e-14 ***
## pRepD               -9.587e-01  2.255e-02  3.639e+04 -42.521  < 2e-16 ***
## pRepI               -4.154e-01  2.802e-02  3.651e+04 -14.825  < 2e-16 ***
## index_ANexp.c:pRepD  1.747e-04  2.148e-04  1.719e+04   0.814    0.416    
## index_ANexp.c:pRepI -4.934e-05  2.833e-04  3.425e+04  -0.174    0.862    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.217                              
## pRepD       -0.733 -0.167                       
## pRepI       -0.590 -0.134  0.453                
## indx_AN.:RD -0.174 -0.802  0.063  0.108         
## indx_AN.:RI -0.132 -0.608  0.101  0.143  0.488

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 149744.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4474 -0.7719 -0.2699  0.7617  2.5603 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0001612 0.0127  
##  Residual             3.5282298 1.8784  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -1.110e+00  2.264e-02  2.140e+02 -49.033  < 2e-16 ***
## index_ANexp.c        1.269e-03  2.250e-04  2.888e+04   5.641  1.7e-08 ***
## pIndD               -5.433e-01  2.686e-02  3.649e+04 -20.229  < 2e-16 ***
## pIndR                4.154e-01  2.802e-02  3.651e+04  14.825  < 2e-16 ***
## index_ANexp.c:pIndD  2.241e-04  2.587e-04  3.614e+04   0.866    0.386    
## index_ANexp.c:pIndR  4.934e-05  2.833e-04  3.425e+04   0.174    0.862    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.096                              
## pIndD       -0.821 -0.081                       
## pIndR       -0.787 -0.078  0.663                
## indx_AN.:ID -0.084 -0.868  0.021  0.068         
## indx_AN.:IR -0.076 -0.794  0.065  0.143  0.689

4. POSITIVE EMOTIONS

A. risk3

risk3 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_PEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134772.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.94290 -0.77463 -0.00079  0.67903  2.32769 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01217  0.1103  
##  Residual             2.34372  1.5309  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.494e+00  3.299e-02  1.089e+01 136.235  < 2e-16 ***
## index_PEexp.c           8.661e-02  2.896e-03  2.482e+04  29.907  < 2e-16 ***
## pDem_Rep               -1.374e+00  1.832e-02  3.650e+04 -75.013  < 2e-16 ***
## pInd_Not                1.348e-01  2.037e-02  3.649e+04   6.615 3.76e-11 ***
## index_PEexp.c:pDem_Rep  8.984e-02  5.549e-03  3.616e+04  16.191  < 2e-16 ***
## index_PEexp.c:pInd_Not -3.187e-02  6.459e-03  3.649e+04  -4.934 8.07e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.018                             
## pDem_Rep     0.023  0.139                      
## pInd_Not    -0.079 -0.049  0.054               
## ind_PE.:D_R  0.033  0.158  0.045  0.080        
## ind_PE.:I_N -0.012 -0.338  0.074  0.085  0.104

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_PEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134772.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.94290 -0.77463 -0.00079  0.67903  2.32769 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01217  0.1103  
##  Residual             2.34372  1.5309  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.225e+00  3.408e-02  1.241e+01 153.328   <2e-16 ***
## index_PEexp.c        3.118e-02  3.562e-03  3.015e+04   8.753   <2e-16 ***
## pDemR               -1.374e+00  1.832e-02  3.650e+04 -75.013   <2e-16 ***
## pDemI               -8.219e-01  2.188e-02  3.650e+04 -37.562   <2e-16 ***
## index_PEexp.c:pDemR  8.984e-02  5.549e-03  3.616e+04  16.191   <2e-16 ***
## index_PEexp.c:pDemI  7.679e-02  6.759e-03  3.650e+04  11.362   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.060                              
## pDemR       -0.236  0.122                       
## pDemI       -0.197  0.099  0.369                
## indx_PE.:DR  0.035 -0.588  0.045 -0.055         
## indx_PE.:DI  0.029 -0.473 -0.052  0.023  0.311

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_PEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134772.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.94290 -0.77463 -0.00079  0.67903  2.32769 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01217  0.1103  
##  Residual             2.34372  1.5309  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.851e+00  3.467e-02  1.330e+01  111.06   <2e-16 ***
## index_PEexp.c        1.210e-01  4.497e-03  3.260e+04   26.91   <2e-16 ***
## pRepD                1.374e+00  1.832e-02  3.650e+04   75.01   <2e-16 ***
## pRepI                5.524e-01  2.278e-02  3.649e+04   24.25   <2e-16 ***
## index_PEexp.c:pRepD -8.984e-02  5.549e-03  3.616e+04  -16.19   <2e-16 ***
## index_PEexp.c:pRepI -1.305e-02  7.290e-03  3.650e+04   -1.79   0.0735 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.077                              
## pRepD       -0.296 -0.152                       
## pRepI       -0.238 -0.113  0.450                
## indx_PE.:RD -0.059 -0.768  0.045  0.089         
## indx_PE.:RI -0.044 -0.576  0.082  0.127  0.473

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_PEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134772.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.94290 -0.77463 -0.00079  0.67903  2.32769 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01217  0.1103  
##  Residual             2.34372  1.5309  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.403e+00  3.668e-02  1.667e+01  120.03   <2e-16 ***
## index_PEexp.c        1.080e-01  5.966e-03  3.564e+04   18.10   <2e-16 ***
## pIndD                8.219e-01  2.188e-02  3.650e+04   37.56   <2e-16 ***
## pIndR               -5.524e-01  2.278e-02  3.649e+04  -24.25   <2e-16 ***
## index_PEexp.c:pIndD -7.679e-02  6.759e-03  3.650e+04  -11.36   <2e-16 ***
## index_PEexp.c:pIndR  1.305e-02  7.290e-03  3.650e+04    1.79   0.0735 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.047                              
## pIndD       -0.413 -0.085                       
## pIndR       -0.396 -0.071  0.664                
## indx_PE.:ID -0.040 -0.850  0.023  0.064         
## indx_PE.:IR -0.037 -0.788  0.063  0.127  0.690

B. risk4

risk4 ~ index * party + (1 | media)

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_PEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127463.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1962 -0.6266  0.0913  0.7391  1.5437 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.114e+00  7.813e-03  3.641e+04 654.481  < 2e-16 ***
## index_PEexp.c           1.580e-02  2.423e-03  3.641e+04   6.520 7.13e-11 ***
## pDem_Rep               -4.527e-01  1.662e-02  3.641e+04 -27.232  < 2e-16 ***
## pInd_Not                7.699e-02  1.857e-02  3.641e+04   4.146 3.39e-05 ***
## index_PEexp.c:pDem_Rep  6.740e-03  4.970e-03  3.641e+04   1.356    0.175    
## index_PEexp.c:pInd_Not -8.908e-03  5.886e-03  3.641e+04  -1.513    0.130    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.070                             
## pDem_Rep     0.086  0.119                      
## pInd_Not    -0.308 -0.048  0.054               
## ind_PE.:D_R  0.124  0.164  0.044  0.078        
## ind_PE.:I_N -0.047 -0.369  0.073  0.085  0.101 
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular

1. simple effects for dems

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_PEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127463.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1962 -0.6266  0.0913  0.7391  1.5437 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.365e+00  1.102e-02  3.641e+04 486.794  < 2e-16 ***
## index_PEexp.c        9.490e-03  3.067e-03  3.641e+04   3.095  0.00197 ** 
## pDemR               -4.527e-01  1.662e-02  3.641e+04 -27.232  < 2e-16 ***
## pDemI               -3.033e-01  1.993e-02  3.641e+04 -15.218  < 2e-16 ***
## index_PEexp.c:pDemR  6.740e-03  4.970e-03  3.641e+04   1.356  0.17506    
## index_PEexp.c:pDemI  1.228e-02  6.154e-03  3.641e+04   1.995  0.04605 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.159                              
## pDemR       -0.663  0.106                       
## pDemI       -0.553  0.088  0.367                
## indx_PE.:DR  0.098 -0.617  0.044 -0.054         
## indx_PE.:DI  0.079 -0.498 -0.053  0.025  0.307  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

2. simple effects for reps

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_PEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127463.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1962 -0.6266  0.0913  0.7391  1.5437 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.913e+00  1.244e-02  3.641e+04 394.790  < 2e-16 ***
## index_PEexp.c        1.623e-02  3.911e-03  3.641e+04   4.149 3.34e-05 ***
## pRepD                4.527e-01  1.662e-02  3.641e+04  27.232  < 2e-16 ***
## pRepI                1.493e-01  2.075e-02  3.641e+04   7.197 6.29e-13 ***
## index_PEexp.c:pRepD -6.740e-03  4.970e-03  3.641e+04  -1.356    0.175    
## index_PEexp.c:pRepI  5.537e-03  6.616e-03  3.641e+04   0.837    0.403    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.185                              
## pRepD       -0.749 -0.138                       
## pRepI       -0.600 -0.111  0.449                
## indx_PE.:RD -0.145 -0.787  0.044  0.087         
## indx_PE.:RI -0.109 -0.591  0.082  0.127  0.465  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

3. simple effects for indep

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_PEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127463.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1962 -0.6266  0.0913  0.7391  1.5437 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.062e+00  1.661e-02  3.641e+04 304.804  < 2e-16 ***
## index_PEexp.c        2.177e-02  5.336e-03  3.641e+04   4.080 4.52e-05 ***
## pIndD                3.033e-01  1.993e-02  3.641e+04  15.218  < 2e-16 ***
## pIndR               -1.493e-01  2.075e-02  3.641e+04  -7.197 6.29e-13 ***
## index_PEexp.c:pIndD -1.228e-02  6.154e-03  3.641e+04  -1.995    0.046 *  
## index_PEexp.c:pIndR -5.537e-03  6.616e-03  3.641e+04  -0.837    0.403    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.095                              
## pIndD       -0.833 -0.079                       
## pIndR       -0.800 -0.076  0.667                
## indx_PE.:ID -0.082 -0.867  0.025  0.066         
## indx_PE.:IR -0.077 -0.807  0.064  0.127  0.699  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

C. risk5

risk5 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_PEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148386
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7623 -0.8800 -0.1570  0.7707  2.3990 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01867  0.1366  
##  Residual             3.45829  1.8596  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.298e+00  4.080e-02  1.088e+01  80.832  < 2e-16 ***
## index_PEexp.c           9.487e-02  3.522e-03  2.525e+04  26.936  < 2e-16 ***
## pDem_Rep               -4.016e-01  2.229e-02  3.636e+04 -18.016  < 2e-16 ***
## pInd_Not               -4.707e-01  2.477e-02  3.635e+04 -19.003  < 2e-16 ***
## index_PEexp.c:pDem_Rep  2.957e-02  6.749e-03  3.605e+04   4.381 1.18e-05 ***
## index_PEexp.c:pInd_Not  3.957e-03  7.851e-03  3.635e+04   0.504    0.614    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.018                             
## pDem_Rep     0.022  0.138                      
## pInd_Not    -0.078 -0.049  0.053               
## ind_PE.:D_R  0.032  0.155  0.045  0.079        
## ind_PE.:I_N -0.012 -0.337  0.073  0.084  0.103

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_PEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148386
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7623 -0.8800 -0.1570  0.7707  2.3990 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01867  0.1366  
##  Residual             3.45829  1.8596  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.343e+00  4.212e-02  1.236e+01  79.381  < 2e-16 ***
## index_PEexp.c        8.139e-02  4.343e-03  3.041e+04  18.741  < 2e-16 ***
## pDemR               -4.016e-01  2.229e-02  3.636e+04 -18.016  < 2e-16 ***
## pDemI                2.698e-01  2.662e-02  3.636e+04  10.137  < 2e-16 ***
## index_PEexp.c:pDemR  2.957e-02  6.749e-03  3.605e+04   4.381 1.18e-05 ***
## index_PEexp.c:pDemI  1.083e-02  8.221e-03  3.636e+04   1.317    0.188    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.059                              
## pDemR       -0.233  0.121                       
## pDemI       -0.195  0.098  0.370                
## indx_PE.:DR  0.035 -0.590  0.045 -0.055         
## indx_PE.:DI  0.028 -0.474 -0.052  0.023  0.312

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_PEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148386
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7623 -0.8800 -0.1570  0.7707  2.3990 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01867  0.1366  
##  Residual             3.45829  1.8596  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.942e+00  4.282e-02  1.320e+01  68.703  < 2e-16 ***
## index_PEexp.c        1.110e-01  5.462e-03  3.270e+04  20.315  < 2e-16 ***
## pRepD                4.016e-01  2.229e-02  3.636e+04  18.016  < 2e-16 ***
## pRepI                6.715e-01  2.769e-02  3.635e+04  24.250  < 2e-16 ***
## index_PEexp.c:pRepD -2.957e-02  6.749e-03  3.605e+04  -4.381 1.18e-05 ***
## index_PEexp.c:pRepI -1.874e-02  8.858e-03  3.635e+04  -2.116   0.0344 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.075                              
## pRepD       -0.291 -0.151                       
## pRepI       -0.234 -0.112  0.450                
## indx_PE.:RD -0.057 -0.767  0.045  0.089         
## indx_PE.:RI -0.043 -0.576  0.082  0.126  0.472

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_PEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148386
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7623 -0.8800 -0.1570  0.7707  2.3990 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01867  0.1366  
##  Residual             3.45829  1.8596  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.613e+00  4.523e-02  1.643e+01  79.892   <2e-16 ***
## index_PEexp.c        9.222e-02  7.251e-03  3.556e+04  12.719   <2e-16 ***
## pIndD               -2.698e-01  2.662e-02  3.636e+04 -10.137   <2e-16 ***
## pIndR               -6.715e-01  2.769e-02  3.635e+04 -24.250   <2e-16 ***
## index_PEexp.c:pIndD -1.083e-02  8.221e-03  3.636e+04  -1.317   0.1878    
## index_PEexp.c:pIndR  1.874e-02  8.858e-03  3.635e+04   2.116   0.0344 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.046                              
## pIndD       -0.407 -0.085                       
## pIndR       -0.391 -0.070  0.664                
## indx_PE.:ID -0.039 -0.850  0.023  0.063         
## indx_PE.:IR -0.037 -0.788  0.063  0.126  0.690

D. risk severity

risk severity ~ indexes * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_PEexp.c) * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 116676.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2844 -0.6511 -0.0284  0.6710  2.8007 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008194 0.09052 
##  Residual             1.459607 1.20814 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.298e+00  2.700e-02  1.089e+01 159.190  < 2e-16 ***
## index_PEexp.c           6.688e-02  2.293e-03  2.577e+04  29.161  < 2e-16 ***
## pDem_Rep               -7.404e-01  1.450e-02  3.625e+04 -51.073  < 2e-16 ***
## pInd_Not               -7.836e-02  1.614e-02  3.624e+04  -4.856 1.21e-06 ***
## index_PEexp.c:pDem_Rep  4.221e-02  4.390e-03  3.596e+04   9.615  < 2e-16 ***
## index_PEexp.c:pInd_Not -1.259e-02  5.115e-03  3.624e+04  -2.461   0.0139 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.018                             
## pDem_Rep     0.022  0.138                      
## pInd_Not    -0.077 -0.050  0.052               
## ind_PE.:D_R  0.032  0.155  0.045  0.079        
## ind_PE.:I_N -0.012 -0.339  0.073  0.085  0.102

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_PEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116676.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2844 -0.6511 -0.0284  0.6710  2.8007 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008194 0.09052 
##  Residual             1.459607 1.20814 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.643e+00  2.784e-02  1.231e+01 166.747  < 2e-16 ***
## index_PEexp.c        4.162e-02  2.825e-03  3.069e+04  14.731  < 2e-16 ***
## pDemR               -7.404e-01  1.450e-02  3.625e+04 -51.073  < 2e-16 ***
## pDemI               -2.919e-01  1.734e-02  3.625e+04 -16.830  < 2e-16 ***
## index_PEexp.c:pDemR  4.221e-02  4.390e-03  3.596e+04   9.615  < 2e-16 ***
## index_PEexp.c:pDemI  3.369e-02  5.355e-03  3.625e+04   6.291 3.19e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.058                              
## pDemR       -0.229  0.121                       
## pDemI       -0.191  0.098  0.369                
## indx_PE.:DR  0.034 -0.590  0.045 -0.055         
## indx_PE.:DI  0.027 -0.474 -0.051  0.024  0.312

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157153.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13927 -0.71634  0.05963  0.88731  1.55918 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01269  0.1126  
##  Residual             4.34000  2.0833  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.418e-01  3.749e-02  1.498e+01   6.450 1.10e-05 ***
## index_PEexp.c        1.223e-01  6.102e-03  2.683e+04  20.046  < 2e-16 ***
## pRepD                8.698e-01  2.493e-02  3.646e+04  34.886  < 2e-16 ***
## pRepI               -1.434e-01  3.100e-02  3.647e+04  -4.626 3.75e-06 ***
## index_PEexp.c:pRepD -7.991e-02  7.544e-03  3.534e+04 -10.593  < 2e-16 ***
## index_PEexp.c:pRepI -2.879e-02  9.916e-03  3.645e+04  -2.903  0.00369 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.095                              
## pRepD       -0.373 -0.150                       
## pRepI       -0.299 -0.112  0.450                
## indx_PE.:RD -0.073 -0.769  0.044  0.089         
## indx_PE.:RI -0.055 -0.577  0.082  0.127  0.472

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_PEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116676.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2844 -0.6511 -0.0284  0.6710  2.8007 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008194 0.09052 
##  Residual             1.459607 1.20814 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.351e+00  2.985e-02  1.627e+01 145.753  < 2e-16 ***
## index_PEexp.c        7.531e-02  4.725e-03  3.552e+04  15.938  < 2e-16 ***
## pIndD                2.919e-01  1.734e-02  3.625e+04  16.830  < 2e-16 ***
## pIndR               -4.486e-01  1.804e-02  3.624e+04 -24.872  < 2e-16 ***
## index_PEexp.c:pIndD -3.369e-02  5.355e-03  3.625e+04  -6.291 3.19e-10 ***
## index_PEexp.c:pIndR  8.519e-03  5.769e-03  3.625e+04   1.477     0.14    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.047                              
## pIndD       -0.402 -0.086                       
## pIndR       -0.386 -0.071  0.665                
## indx_PE.:ID -0.040 -0.850  0.024  0.065         
## indx_PE.:IR -0.037 -0.788  0.064  0.127  0.691

E. worst of Covid is behind/ahead

worstBorA ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_PEexp.c) * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129484.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.84285 -0.68133  0.02035  0.72368  2.23007 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001513 0.0389  
##  Residual             2.026295 1.4235  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.699e-01  1.377e-02  1.062e+01  41.378 4.43e-13 ***
## index_PEexp.c           3.315e-02  2.628e-03  2.699e+03  12.613  < 2e-16 ***
## pDem_Rep               -9.509e-01  1.702e-02  3.618e+04 -55.879  < 2e-16 ***
## pInd_Not               -1.627e-01  1.894e-02  3.651e+04  -8.589  < 2e-16 ***
## index_PEexp.c:pDem_Rep  7.056e-02  5.135e-03  2.698e+04  13.741  < 2e-16 ***
## index_PEexp.c:pInd_Not  7.879e-03  6.004e-03  3.651e+04   1.312    0.189    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.040                             
## pDem_Rep     0.051  0.133                      
## pInd_Not    -0.177 -0.049  0.054               
## ind_PE.:D_R  0.073  0.159  0.044  0.079        
## ind_PE.:I_N -0.027 -0.346  0.074  0.084  0.103

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_PEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129484.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.84285 -0.68133  0.02035  0.72368  2.23007 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001513 0.0389  
##  Residual             2.026295 1.4235  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.917e-01  1.591e-02  1.887e+01  62.334  < 2e-16 ***
## index_PEexp.c        4.667e-04  3.258e-03  5.512e+03   0.143    0.886    
## pDemR               -9.509e-01  1.702e-02  3.618e+04 -55.879  < 2e-16 ***
## pDemI               -3.128e-01  2.034e-02  3.649e+04 -15.378  < 2e-16 ***
## index_PEexp.c:pDemR  7.056e-02  5.135e-03  2.698e+04  13.741  < 2e-16 ***
## index_PEexp.c:pDemI  2.740e-02  6.282e-03  3.645e+04   4.362 1.29e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.118                              
## pDemR       -0.470  0.117                       
## pDemI       -0.393  0.096  0.368                
## indx_PE.:DR  0.071 -0.597  0.044 -0.055         
## indx_PE.:DI  0.057 -0.480 -0.052  0.023  0.310

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_PEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129484.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.84285 -0.68133  0.02035  0.72368  2.23007 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001513 0.0389  
##  Residual             2.026295 1.4235  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.080e-02  1.698e-02  2.447e+01   2.403   0.0242 *  
## index_PEexp.c        7.103e-02  4.125e-03  8.531e+03  17.216  < 2e-16 ***
## pRepD                9.509e-01  1.702e-02  3.618e+04  55.879  < 2e-16 ***
## pRepI                6.381e-01  2.117e-02  3.651e+04  30.136  < 2e-16 ***
## index_PEexp.c:pRepD -7.056e-02  5.135e-03  2.698e+04 -13.741  < 2e-16 ***
## index_PEexp.c:pRepI -4.316e-02  6.769e-03  3.591e+04  -6.376 1.84e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.143                              
## pRepD       -0.562 -0.148                       
## pRepI       -0.451 -0.112  0.450                
## indx_PE.:RD -0.111 -0.774  0.044  0.089         
## indx_PE.:RI -0.083 -0.581  0.082  0.127  0.471

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_PEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129484.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.84285 -0.68133  0.02035  0.72368  2.23007 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001513 0.0389  
##  Residual             2.026295 1.4235  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.789e-01  2.031e-02  5.019e+01  33.424  < 2e-16 ***
## index_PEexp.c        2.787e-02  5.515e-03  2.171e+04   5.053 4.38e-07 ***
## pIndD                3.128e-01  2.034e-02  3.649e+04  15.378  < 2e-16 ***
## pIndR               -6.381e-01  2.117e-02  3.651e+04 -30.136  < 2e-16 ***
## index_PEexp.c:pIndD -2.740e-02  6.282e-03  3.645e+04  -4.362 1.29e-05 ***
## index_PEexp.c:pIndR  4.316e-02  6.769e-03  3.591e+04   6.376 1.84e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.079                              
## pIndD       -0.694 -0.083                       
## pIndR       -0.666 -0.072  0.665                
## indx_PE.:ID -0.068 -0.855  0.023  0.064         
## indx_PE.:IR -0.063 -0.793  0.063  0.127  0.693

F. vaccine attitudes

vaxAttitudes ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 157153.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13927 -0.71634  0.05963  0.88731  1.55918 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01269  0.1126  
##  Residual             4.34000  2.0833  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.859e-01  3.455e-02  1.081e+01   14.06 2.73e-08 ***
## index_PEexp.c           8.606e-02  3.924e-03  1.530e+04   21.93  < 2e-16 ***
## pDem_Rep               -8.698e-01  2.493e-02  3.646e+04  -34.89  < 2e-16 ***
## pInd_Not                5.783e-01  2.772e-02  3.647e+04   20.86  < 2e-16 ***
## index_PEexp.c:pDem_Rep  7.991e-02  7.544e-03  3.534e+04   10.59  < 2e-16 ***
## index_PEexp.c:pInd_Not -1.116e-02  8.789e-03  3.647e+04   -1.27    0.204    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.023                             
## pDem_Rep     0.030  0.137                      
## pInd_Not    -0.103 -0.049  0.054               
## ind_PE.:D_R  0.043  0.158  0.044  0.079        
## ind_PE.:I_N -0.016 -0.340  0.073  0.084  0.104

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157153.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13927 -0.71634  0.05963  0.88731  1.55918 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01269  0.1126  
##  Residual             4.34000  2.0833  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.112e+00  3.646e-02  1.341e+01  30.486 8.82e-14 ***
## index_PEexp.c        4.242e-02  4.835e-03  2.249e+04   8.774  < 2e-16 ***
## pDemR               -8.698e-01  2.493e-02  3.646e+04 -34.886  < 2e-16 ***
## pDemI               -1.013e+00  2.978e-02  3.648e+04 -34.026  < 2e-16 ***
## index_PEexp.c:pDemR  7.991e-02  7.544e-03  3.534e+04  10.593  < 2e-16 ***
## index_PEexp.c:pDemI  5.112e-02  9.198e-03  3.648e+04   5.558 2.75e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.076                              
## pDemR       -0.300  0.121                       
## pDemI       -0.251  0.098  0.369                
## indx_PE.:DR  0.045 -0.590  0.044 -0.055         
## indx_PE.:DI  0.036 -0.475 -0.052  0.023  0.311

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157153.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13927 -0.71634  0.05963  0.88731  1.55918 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01269  0.1126  
##  Residual             4.34000  2.0833  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.418e-01  3.749e-02  1.498e+01   6.450 1.10e-05 ***
## index_PEexp.c        1.223e-01  6.102e-03  2.683e+04  20.046  < 2e-16 ***
## pRepD                8.698e-01  2.493e-02  3.646e+04  34.886  < 2e-16 ***
## pRepI               -1.434e-01  3.100e-02  3.647e+04  -4.626 3.75e-06 ***
## index_PEexp.c:pRepD -7.991e-02  7.544e-03  3.534e+04 -10.593  < 2e-16 ***
## index_PEexp.c:pRepI -2.879e-02  9.916e-03  3.645e+04  -2.903  0.00369 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.095                              
## pRepD       -0.373 -0.150                       
## pRepI       -0.299 -0.112  0.450                
## indx_PE.:RD -0.073 -0.769  0.044  0.089         
## indx_PE.:RI -0.055 -0.577  0.082  0.127  0.472

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157153.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13927 -0.71634  0.05963  0.88731  1.55918 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01269  0.1126  
##  Residual             4.34000  2.0833  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.842e-02  4.088e-02  2.118e+01   2.408  0.02524 *  
## index_PEexp.c        9.354e-02  8.110e-03  3.392e+04  11.534  < 2e-16 ***
## pIndD                1.013e+00  2.978e-02  3.648e+04  34.026  < 2e-16 ***
## pIndR                1.434e-01  3.100e-02  3.647e+04   4.626 3.75e-06 ***
## index_PEexp.c:pIndD -5.112e-02  9.198e-03  3.648e+04  -5.558 2.75e-08 ***
## index_PEexp.c:pIndR  2.879e-02  9.916e-03  3.645e+04   2.903  0.00369 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.058                              
## pIndD       -0.504 -0.085                       
## pIndR       -0.484 -0.071  0.664                
## indx_PE.:ID -0.049 -0.851  0.023  0.064         
## indx_PE.:IR -0.046 -0.789  0.063  0.127  0.691

G. vulnerable worker

vulnerable worker ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ (index_PEexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 149769.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3831 -0.7708 -0.2496  0.7603  2.5652 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003331 0.05771 
##  Residual             3.531389 1.87920 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            -1.154e+00  1.971e-02  1.049e+01 -58.572 1.55e-14 ***
## index_PEexp.c           4.183e-02  3.485e-03  3.596e+03  12.003  < 2e-16 ***
## pDem_Rep                9.501e-01  2.247e-02  3.628e+04  42.289  < 2e-16 ***
## pInd_Not               -6.400e-02  2.500e-02  3.651e+04  -2.560   0.0105 *  
## index_PEexp.c:pDem_Rep -1.032e-02  6.784e-03  2.920e+04  -1.521   0.1284    
## index_PEexp.c:pInd_Not  6.884e-03  7.927e-03  3.651e+04   0.868   0.3851    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.037                             
## pDem_Rep     0.047  0.134                      
## pInd_Not    -0.163 -0.049  0.054               
## ind_PE.:D_R  0.067  0.159  0.045  0.079        
## ind_PE.:I_N -0.025 -0.345  0.074  0.084  0.103

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ (index_PEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 149769.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3831 -0.7708 -0.2496  0.7603  2.5652 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003331 0.05771 
##  Residual             3.531389 1.87920 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -1.651e+00  2.234e-02  1.728e+01 -73.894   <2e-16 ***
## index_PEexp.c        4.926e-02  4.314e-03  7.137e+03  11.417   <2e-16 ***
## pDemR                9.501e-01  2.247e-02  3.628e+04  42.289   <2e-16 ***
## pDemI                5.391e-01  2.685e-02  3.650e+04  20.075   <2e-16 ***
## index_PEexp.c:pDemR -1.032e-02  6.784e-03  2.920e+04  -1.521    0.128    
## index_PEexp.c:pDemI -1.204e-02  8.294e-03  3.647e+04  -1.452    0.147    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.112                              
## pDemR       -0.442  0.118                       
## pDemI       -0.369  0.096  0.368                
## indx_PE.:DR  0.066 -0.595  0.045 -0.055         
## indx_PE.:DI  0.053 -0.479 -0.052  0.023  0.310

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ (index_PEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 149769.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3831 -0.7708 -0.2496  0.7603  2.5652 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003331 0.05771 
##  Residual             3.531389 1.87920 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -7.004e-01  2.367e-02  2.178e+01 -29.591  < 2e-16 ***
## index_PEexp.c        3.894e-02  5.459e-03  1.075e+04   7.134 1.04e-12 ***
## pRepD               -9.501e-01  2.247e-02  3.628e+04 -42.289  < 2e-16 ***
## pRepI               -4.111e-01  2.795e-02  3.651e+04 -14.706  < 2e-16 ***
## index_PEexp.c:pRepD  1.032e-02  6.784e-03  2.920e+04   1.521    0.128    
## index_PEexp.c:pRepI -1.726e-03  8.938e-03  3.610e+04  -0.193    0.847    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.136                              
## pRepD       -0.532 -0.149                       
## pRepI       -0.427 -0.112  0.450                
## indx_PE.:RD -0.105 -0.772  0.045  0.089         
## indx_PE.:RI -0.079 -0.580  0.082  0.127  0.471

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157153.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13927 -0.71634  0.05963  0.88731  1.55918 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01269  0.1126  
##  Residual             4.34000  2.0833  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.842e-02  4.088e-02  2.118e+01   2.408  0.02524 *  
## index_PEexp.c        9.354e-02  8.110e-03  3.392e+04  11.534  < 2e-16 ***
## pIndD                1.013e+00  2.978e-02  3.648e+04  34.026  < 2e-16 ***
## pIndR                1.434e-01  3.100e-02  3.647e+04   4.626 3.75e-06 ***
## index_PEexp.c:pIndD -5.112e-02  9.198e-03  3.648e+04  -5.558 2.75e-08 ***
## index_PEexp.c:pIndR  2.879e-02  9.916e-03  3.645e+04   2.903  0.00369 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.058                              
## pIndD       -0.504 -0.085                       
## pIndR       -0.484 -0.071  0.664                
## indx_PE.:ID -0.049 -0.851  0.023  0.064         
## indx_PE.:IR -0.046 -0.789  0.063  0.127  0.691

5. NEGATIVE EMOTIONS

A. risk3

risk3 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_NEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134912.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.12446 -0.78339  0.05861  0.73302  2.37875 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03548  0.1884  
##  Residual             2.35205  1.5336  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.488e+00  5.505e-02  1.072e+01  81.533 2.54e-16 ***
## index_NEexp.c           1.080e-01  3.793e-03  2.217e+04  28.466  < 2e-16 ***
## pDem_Rep               -1.377e+00  1.833e-02  3.650e+04 -75.094  < 2e-16 ***
## pInd_Not                1.336e-01  2.037e-02  3.649e+04   6.558 5.52e-11 ***
## index_NEexp.c:pDem_Rep  9.323e-02  6.285e-03  3.650e+04  14.834  < 2e-16 ***
## index_NEexp.c:pInd_Not -2.441e-02  7.237e-03  3.649e+04  -3.373 0.000743 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.010                             
## pDem_Rep     0.014  0.148                      
## pInd_Not    -0.048 -0.041  0.052               
## ind_NE.:D_R  0.017  0.195  0.052  0.067        
## ind_NE.:I_N -0.005 -0.284  0.062  0.072  0.141

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_NEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134912.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.12446 -0.78339  0.05861  0.73302  2.37875 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03548  0.1884  
##  Residual             2.35205  1.5336  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.221e+00  5.571e-02  1.124e+01  93.715   <2e-16 ***
## index_NEexp.c        5.330e-02  4.251e-03  2.731e+04  12.538   <2e-16 ***
## pDemR               -1.377e+00  1.833e-02  3.650e+04 -75.094   <2e-16 ***
## pDemI               -8.219e-01  2.189e-02  3.650e+04 -37.543   <2e-16 ***
## index_NEexp.c:pDemR  9.323e-02  6.285e-03  3.650e+04  14.834   <2e-16 ***
## index_NEexp.c:pDemI  7.103e-02  7.473e-03  3.649e+04   9.504   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.033                              
## pDemR       -0.144  0.128                       
## pDemI       -0.121  0.095  0.370                
## indx_NE.:DR  0.016 -0.487  0.052 -0.040         
## indx_NE.:DI  0.013 -0.402 -0.038  0.023  0.284

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_NEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134912.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.12446 -0.78339  0.05861  0.73302  2.37875 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03548  0.1884  
##  Residual             2.35205  1.5336  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.844e+00  5.607e-02  1.154e+01  68.549  < 2e-16 ***
## index_NEexp.c        1.465e-01  5.619e-03  3.188e+04  26.079  < 2e-16 ***
## pRepD                1.377e+00  1.833e-02  3.650e+04  75.094  < 2e-16 ***
## pRepI                5.548e-01  2.277e-02  3.649e+04  24.370  < 2e-16 ***
## index_NEexp.c:pRepD -9.323e-02  6.285e-03  3.650e+04 -14.834  < 2e-16 ***
## index_NEexp.c:pRepI -2.220e-02  8.286e-03  3.650e+04  -2.679  0.00738 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.044                              
## pRepD       -0.183 -0.155                       
## pRepI       -0.147 -0.099  0.449                
## indx_NE.:RD -0.033 -0.750  0.052  0.081         
## indx_NE.:RI -0.024 -0.557  0.074  0.109  0.502

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_NEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134912.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.12446 -0.78339  0.05861  0.73302  2.37875 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03548  0.1884  
##  Residual             2.35205  1.5336  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.399e+00  5.734e-02  1.263e+01  76.705  < 2e-16 ***
## index_NEexp.c        1.243e-01  6.953e-03  3.448e+04  17.881  < 2e-16 ***
## pIndD                8.219e-01  2.189e-02  3.650e+04  37.543  < 2e-16 ***
## pIndR               -5.548e-01  2.277e-02  3.649e+04 -24.370  < 2e-16 ***
## index_NEexp.c:pIndD -7.103e-02  7.473e-03  3.649e+04  -9.504  < 2e-16 ***
## index_NEexp.c:pIndR  2.220e-02  8.286e-03  3.650e+04   2.679  0.00738 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.026                              
## pIndD       -0.265 -0.083                       
## pIndR       -0.254 -0.050  0.664                
## indx_NE.:ID -0.022 -0.829  0.023  0.053         
## indx_NE.:IR -0.019 -0.741  0.051  0.109  0.686

B. risk4

risk4 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_NEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127473.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2310 -0.6299  0.0882  0.7487  1.5294 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0004366 0.02089 
##  Residual             1.9380989 1.39216 
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.113e+00  9.854e-03  5.096e+00 518.911 3.10e-13 ***
## index_NEexp.c           1.797e-02  2.955e-03  6.287e+01   6.081 7.77e-08 ***
## pDem_Rep               -4.542e-01  1.658e-02  2.855e+04 -27.396  < 2e-16 ***
## pInd_Not                7.845e-02  1.854e-02  3.641e+04   4.232 2.32e-05 ***
## index_NEexp.c:pDem_Rep  9.151e-03  5.675e-03  2.052e+04   1.613    0.107    
## index_NEexp.c:pInd_Not -7.487e-03  6.584e-03  3.640e+04  -1.137    0.255    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.050                             
## pDem_Rep     0.069  0.117                      
## pInd_Not    -0.246 -0.037  0.053               
## ind_NE.:D_R  0.083  0.212  0.050  0.066        
## ind_NE.:I_N -0.027 -0.327  0.063  0.072  0.139

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_NEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127473.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2310 -0.6299  0.0882  0.7487  1.5294 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0004365 0.02089 
##  Residual             1.9380989 1.39216 
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.366e+00  1.253e-02  1.322e+01 428.299  < 2e-16 ***
## index_NEexp.c        1.093e-02  3.471e-03  1.405e+02   3.148  0.00201 ** 
## pDemR               -4.542e-01  1.658e-02  2.855e+04 -27.396  < 2e-16 ***
## pDemI               -3.056e-01  1.990e-02  3.521e+04 -15.357  < 2e-16 ***
## index_NEexp.c:pDemR  9.151e-03  5.675e-03  2.052e+04   1.613  0.10685    
## index_NEexp.c:pDemI  1.206e-02  6.798e-03  3.622e+04   1.774  0.07602 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.118                              
## pDemR       -0.582  0.098                       
## pDemI       -0.484  0.078  0.367                
## indx_NE.:DR  0.065 -0.550  0.050 -0.041         
## indx_NE.:DI  0.054 -0.457 -0.040  0.023  0.283

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_NEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127473.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2310 -0.6299  0.0882  0.7487  1.5294 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0004365 0.02089 
##  Residual             1.9380989 1.39216 
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.912e+00  1.379e-02  1.938e+01 356.105  < 2e-16 ***
## index_NEexp.c        2.008e-02  4.751e-03  3.506e+02   4.226 3.03e-05 ***
## pRepD                4.542e-01  1.658e-02  2.855e+04  27.396  < 2e-16 ***
## pRepI                1.487e-01  2.071e-02  3.641e+04   7.181 7.08e-13 ***
## index_NEexp.c:pRepD -9.151e-03  5.675e-03  2.052e+04  -1.613    0.107    
## index_NEexp.c:pRepI  2.911e-03  7.522e-03  3.485e+04   0.387    0.699    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.150                              
## pRepD       -0.674 -0.131                       
## pRepI       -0.538 -0.097  0.448                
## indx_NE.:RD -0.119 -0.792  0.050  0.079         
## indx_NE.:RI -0.089 -0.594  0.074  0.109  0.499

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_NEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127473.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2310 -0.6299  0.0882  0.7487  1.5294 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0004365 0.02089 
##  Residual             1.9380989 1.39216 
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.061e+00  1.765e-02  5.235e+01 286.744  < 2e-16 ***
## index_NEexp.c        2.299e-02  6.059e-03  9.667e+02   3.794 0.000157 ***
## pIndD                3.056e-01  1.990e-02  3.521e+04  15.357  < 2e-16 ***
## pIndR               -1.487e-01  2.071e-02  3.641e+04  -7.181 7.08e-13 ***
## index_NEexp.c:pIndD -1.206e-02  6.798e-03  3.622e+04  -1.774 0.076022 .  
## index_NEexp.c:pIndR -2.911e-03  7.522e-03  3.485e+04  -0.387 0.698709    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.075                              
## pIndD       -0.784 -0.071                       
## pIndR       -0.752 -0.059  0.667                
## indx_NE.:ID -0.064 -0.860  0.023  0.054         
## indx_NE.:IR -0.058 -0.776  0.051  0.109  0.690

C. risk5

risk5 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_NEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148526.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9730 -0.8898 -0.1722  0.7792  2.5083 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.05092  0.2256  
##  Residual             3.47079  1.8630  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.297e+00  6.597e-02  1.071e+01  49.978  4.9e-14 ***
## index_NEexp.c           1.156e-01  4.611e-03  2.154e+04  25.062  < 2e-16 ***
## pDem_Rep               -4.117e-01  2.231e-02  3.636e+04 -18.452  < 2e-16 ***
## pInd_Not               -4.673e-01  2.476e-02  3.635e+04 -18.870  < 2e-16 ***
## index_NEexp.c:pDem_Rep  4.133e-02  7.638e-03  3.636e+04   5.411  6.3e-08 ***
## index_NEexp.c:pInd_Not  7.199e-03  8.795e-03  3.635e+04   0.819    0.413    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.010                             
## pDem_Rep     0.014  0.146                      
## pInd_Not    -0.049 -0.040  0.051               
## ind_NE.:D_R  0.017  0.192  0.052  0.066        
## ind_NE.:I_N -0.005 -0.284  0.062  0.071  0.139

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_NEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148526.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9730 -0.8898 -0.1722  0.7792  2.5083 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.05092  0.2256  
##  Residual             3.47079  1.8630  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.349e+00  6.679e-02  1.125e+01  50.136 1.38e-14 ***
## index_NEexp.c        9.726e-02  5.181e-03  2.681e+04  18.775  < 2e-16 ***
## pDemR               -4.117e-01  2.231e-02  3.636e+04 -18.452  < 2e-16 ***
## pDemI                2.615e-01  2.663e-02  3.636e+04   9.817  < 2e-16 ***
## index_NEexp.c:pDemR  4.133e-02  7.638e-03  3.636e+04   5.411 6.30e-08 ***
## index_NEexp.c:pDemI  1.347e-02  9.089e-03  3.635e+04   1.482    0.138    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.033                              
## pDemR       -0.147  0.127                       
## pDemI       -0.123  0.095  0.371                
## indx_NE.:DR  0.016 -0.489  0.052 -0.040         
## indx_NE.:DI  0.013 -0.404 -0.038  0.023  0.286

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_NEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148526.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9730 -0.8898 -0.1722  0.7792  2.5083 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.05092  0.2256  
##  Residual             3.47079  1.8630  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.937e+00  6.723e-02  1.155e+01  43.683 3.42e-14 ***
## index_NEexp.c        1.386e-01  6.819e-03  3.148e+04  20.324  < 2e-16 ***
## pRepD                4.117e-01  2.231e-02  3.636e+04  18.452  < 2e-16 ***
## pRepI                6.731e-01  2.768e-02  3.635e+04  24.321  < 2e-16 ***
## index_NEexp.c:pRepD -4.133e-02  7.638e-03  3.636e+04  -5.411 6.30e-08 ***
## index_NEexp.c:pRepI -2.787e-02  1.006e-02  3.635e+04  -2.769  0.00563 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.044                              
## pRepD       -0.186 -0.154                       
## pRepI       -0.149 -0.098  0.449                
## indx_NE.:RD -0.033 -0.749  0.052  0.080         
## indx_NE.:RI -0.025 -0.556  0.074  0.108  0.501

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_NEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148526.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9730 -0.8898 -0.1722  0.7792  2.5083 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.05092  0.2256  
##  Residual             3.47079  1.8630  
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.610e+00  6.880e-02  1.267e+01  52.472 3.36e-16 ***
## index_NEexp.c        1.107e-01  8.450e-03  3.422e+04  13.104  < 2e-16 ***
## pIndD               -2.615e-01  2.663e-02  3.636e+04  -9.817  < 2e-16 ***
## pIndR               -6.731e-01  2.768e-02  3.635e+04 -24.321  < 2e-16 ***
## index_NEexp.c:pIndD -1.347e-02  9.089e-03  3.635e+04  -1.482  0.13844    
## index_NEexp.c:pIndR  2.787e-02  1.006e-02  3.635e+04   2.769  0.00563 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.026                              
## pIndD       -0.268 -0.082                       
## pIndR       -0.257 -0.049  0.663                
## indx_NE.:ID -0.022 -0.828  0.023  0.052         
## indx_NE.:IR -0.019 -0.742  0.051  0.108  0.686

D. risk severity

risk severity ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_NEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116794.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5397 -0.6468 -0.0222  0.6769  2.7560 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02355  0.1534  
##  Residual             1.46397  1.2099  
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.296e+00  4.481e-02  1.073e+01  95.865  < 2e-16 ***
## index_NEexp.c           8.291e-02  3.002e-03  2.306e+04  27.620  < 2e-16 ***
## pDem_Rep               -7.443e-01  1.450e-02  3.625e+04 -51.317  < 2e-16 ***
## pInd_Not               -7.724e-02  1.613e-02  3.624e+04  -4.788 1.69e-06 ***
## index_NEexp.c:pDem_Rep  4.818e-02  4.969e-03  3.625e+04   9.697  < 2e-16 ***
## index_NEexp.c:pInd_Not -8.612e-03  5.728e-03  3.624e+04  -1.503    0.133    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.010                             
## pDem_Rep     0.013  0.146                      
## pInd_Not    -0.047 -0.041  0.051               
## ind_NE.:D_R  0.016  0.192  0.052  0.066        
## ind_NE.:I_N -0.005 -0.285  0.062  0.072  0.139

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_NEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116794.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5397 -0.6468 -0.0222  0.6769  2.7560 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02355  0.1534  
##  Residual             1.46397  1.2099  
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.643e+00  4.532e-02  1.123e+01 102.434  < 2e-16 ***
## index_NEexp.c        5.598e-02  3.370e-03  2.796e+04  16.613  < 2e-16 ***
## pDemR               -7.443e-01  1.450e-02  3.625e+04 -51.317  < 2e-16 ***
## pDemI               -2.949e-01  1.735e-02  3.625e+04 -17.001  < 2e-16 ***
## index_NEexp.c:pDemR  4.818e-02  4.969e-03  3.625e+04   9.697  < 2e-16 ***
## index_NEexp.c:pDemI  3.270e-02  5.918e-03  3.624e+04   5.525 3.31e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.031                              
## pDemR       -0.141  0.127                       
## pDemI       -0.117  0.095  0.371                
## indx_NE.:DR  0.015 -0.488  0.052 -0.040         
## indx_NE.:DI  0.013 -0.403 -0.038  0.024  0.285

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_NEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116794.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5397 -0.6468 -0.0222  0.6769  2.7560 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02355  0.1534  
##  Residual             1.46397  1.2099  
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.898e+00  4.560e-02  1.151e+01  85.491   <2e-16 ***
## index_NEexp.c        1.042e-01  4.438e-03  3.211e+04  23.469   <2e-16 ***
## pRepD                7.443e-01  1.450e-02  3.625e+04  51.317   <2e-16 ***
## pRepI                4.494e-01  1.802e-02  3.624e+04  24.937   <2e-16 ***
## index_NEexp.c:pRepD -4.818e-02  4.969e-03  3.625e+04  -9.697   <2e-16 ***
## index_NEexp.c:pRepI -1.548e-02  6.553e-03  3.624e+04  -2.362   0.0182 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.042                              
## pRepD       -0.178 -0.154                       
## pRepI       -0.142 -0.098  0.448                
## indx_NE.:RD -0.032 -0.749  0.052  0.080         
## indx_NE.:RI -0.024 -0.556  0.074  0.109  0.501

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_NEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116794.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5397 -0.6468 -0.0222  0.6769  2.7560 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02355  0.1534  
##  Residual             1.46397  1.2099  
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.348e+00  4.659e-02  1.254e+01  93.323  < 2e-16 ***
## index_NEexp.c        8.868e-02  5.504e-03  3.448e+04  16.111  < 2e-16 ***
## pIndD                2.949e-01  1.735e-02  3.625e+04  17.001  < 2e-16 ***
## pIndR               -4.494e-01  1.802e-02  3.624e+04 -24.937  < 2e-16 ***
## index_NEexp.c:pIndD -3.270e-02  5.918e-03  3.624e+04  -5.525 3.31e-08 ***
## index_NEexp.c:pIndR  1.548e-02  6.553e-03  3.624e+04   2.362   0.0182 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.026                              
## pIndD       -0.258 -0.083                       
## pIndR       -0.248 -0.050  0.664                
## indx_NE.:ID -0.021 -0.828  0.024  0.053         
## indx_NE.:IR -0.019 -0.742  0.051  0.109  0.687

E. worst of Covid is behind/ahead

worstBorA ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c) * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129547.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.88594 -0.68842  0.01109  0.71401  2.21101 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004998 0.0707  
##  Residual             2.029245 1.4245  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.661e-01  2.191e-02  9.571e+00  25.842 3.55e-10 ***
## index_NEexp.c           4.295e-02  3.415e-03  1.726e+03  12.575  < 2e-16 ***
## pDem_Rep               -9.526e-01  1.701e-02  3.605e+04 -56.011  < 2e-16 ***
## pInd_Not               -1.678e-01  1.892e-02  3.651e+04  -8.871  < 2e-16 ***
## index_NEexp.c:pDem_Rep  6.956e-02  5.826e-03  3.609e+04  11.940  < 2e-16 ***
## index_NEexp.c:pInd_Not  1.020e-02  6.720e-03  3.651e+04   1.518    0.129    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.023                             
## pDem_Rep     0.032  0.141                      
## pInd_Not    -0.112 -0.040  0.052               
## ind_NE.:D_R  0.039  0.197  0.051  0.066        
## ind_NE.:I_N -0.012 -0.292  0.062  0.072  0.140
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129547.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.88594 -0.68842  0.01109  0.71401  2.21101 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004998 0.0707  
##  Residual             2.029245 1.4245  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.870e-01  2.330e-02  1.224e+01  42.361 1.18e-14 ***
## index_NEexp.c        1.154e-02  3.862e-03  3.234e+03   2.987 0.002841 ** 
## pDemR               -9.526e-01  1.701e-02  3.605e+04 -56.011  < 2e-16 ***
## pDemI               -3.085e-01  2.033e-02  3.648e+04 -15.176  < 2e-16 ***
## index_NEexp.c:pDemR  6.956e-02  5.826e-03  3.609e+04  11.940  < 2e-16 ***
## index_NEexp.c:pDemI  2.458e-02  6.941e-03  3.651e+04   3.541 0.000398 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.071                              
## pDemR       -0.321  0.122                       
## pDemI       -0.268  0.092  0.370                
## indx_NE.:DR  0.035 -0.500  0.051 -0.040         
## indx_NE.:DI  0.029 -0.413 -0.039  0.023  0.284

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129547.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.88594 -0.68842  0.01109  0.71401  2.21101 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004998 0.0707  
##  Residual             2.029245 1.4245  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.441e-02  2.404e-02  1.388e+01   1.431    0.174    
## index_NEexp.c        8.110e-02  5.135e-03  6.698e+03  15.793  < 2e-16 ***
## pRepD                9.526e-01  1.701e-02  3.605e+04  56.011  < 2e-16 ***
## pRepI                6.441e-01  2.114e-02  3.651e+04  30.468  < 2e-16 ***
## index_NEexp.c:pRepD -6.956e-02  5.826e-03  3.609e+04 -11.940  < 2e-16 ***
## index_NEexp.c:pRepI -4.498e-02  7.690e-03  3.651e+04  -5.850 4.96e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.093                              
## pRepD       -0.397 -0.150                       
## pRepI       -0.317 -0.098  0.449                
## indx_NE.:RD -0.071 -0.759  0.051  0.080         
## indx_NE.:RI -0.053 -0.564  0.074  0.108  0.501

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129547.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.88594 -0.68842  0.01109  0.71401  2.21101 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004998 0.0707  
##  Residual             2.029245 1.4245  
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.785e-01  2.651e-02  2.052e+01  25.596  < 2e-16 ***
## index_NEexp.c        3.612e-02  6.397e-03  1.297e+04   5.645 1.68e-08 ***
## pIndD                3.085e-01  2.033e-02  3.648e+04  15.176  < 2e-16 ***
## pIndR               -6.441e-01  2.114e-02  3.651e+04 -30.468  < 2e-16 ***
## index_NEexp.c:pIndD -2.458e-02  6.941e-03  3.651e+04  -3.541 0.000398 ***
## index_NEexp.c:pIndR  4.498e-02  7.690e-03  3.651e+04   5.850 4.96e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.052                              
## pIndD       -0.532 -0.080                       
## pIndR       -0.510 -0.052  0.664                
## indx_NE.:ID -0.043 -0.835  0.023  0.053         
## indx_NE.:IR -0.039 -0.749  0.051  0.108  0.687

F. vaccine attitudes

vaxAttitudes ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c) * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 157212.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.39713 -0.69368  0.03946  0.89106  1.64871 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03947  0.1987  
##  Residual             4.34582  2.0847  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.817e-01  5.852e-02  1.054e+01   8.231 6.55e-06 ***
## index_NEexp.c           1.099e-01  5.132e-03  1.320e+04  21.424  < 2e-16 ***
## pDem_Rep               -8.730e-01  2.492e-02  3.646e+04 -35.029  < 2e-16 ***
## pInd_Not                5.759e-01  2.768e-02  3.647e+04  20.802  < 2e-16 ***
## index_NEexp.c:pDem_Rep  8.443e-02  8.535e-03  3.647e+04   9.891  < 2e-16 ***
## index_NEexp.c:pInd_Not -7.714e-03  9.836e-03  3.647e+04  -0.784    0.433    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.013                             
## pDem_Rep     0.018  0.146                      
## pInd_Not    -0.061 -0.041  0.052               
## ind_NE.:D_R  0.021  0.194  0.051  0.066        
## ind_NE.:I_N -0.007 -0.286  0.062  0.072  0.140
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157212.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.39713 -0.69368  0.03946  0.89106  1.64871 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03947  0.1987  
##  Residual             4.34582  2.0847  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.108e+00  5.967e-02  1.139e+01  18.574 7.12e-10 ***
## index_NEexp.c        6.518e-02  5.762e-03  1.902e+04  11.312  < 2e-16 ***
## pDemR               -8.730e-01  2.492e-02  3.646e+04 -35.029  < 2e-16 ***
## pDemI               -1.012e+00  2.976e-02  3.648e+04 -34.018  < 2e-16 ***
## index_NEexp.c:pDemR  8.443e-02  8.535e-03  3.647e+04   9.891  < 2e-16 ***
## index_NEexp.c:pDemI  4.993e-02  1.016e-02  3.647e+04   4.915 8.94e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.041                              
## pDemR       -0.183  0.127                       
## pDemI       -0.153  0.095  0.370                
## indx_NE.:DR  0.020 -0.489  0.051 -0.040         
## indx_NE.:DI  0.017 -0.404 -0.038  0.023  0.285

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157212.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.39713 -0.69368  0.03946  0.89106  1.64871 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03947  0.1987  
##  Residual             4.34582  2.0847  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.352e-01  6.030e-02  1.188e+01   3.901  0.00214 ** 
## index_NEexp.c        1.496e-01  7.611e-03  2.605e+04  19.655  < 2e-16 ***
## pRepD                8.730e-01  2.492e-02  3.646e+04  35.029  < 2e-16 ***
## pRepI               -1.394e-01  3.095e-02  3.647e+04  -4.504 6.68e-06 ***
## index_NEexp.c:pRepD -8.443e-02  8.535e-03  3.647e+04  -9.891  < 2e-16 ***
## index_NEexp.c:pRepI -3.450e-02  1.126e-02  3.648e+04  -3.065  0.00218 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.055                              
## pRepD       -0.232 -0.153                       
## pRepI       -0.185 -0.098  0.449                
## indx_NE.:RD -0.041 -0.751  0.051  0.080         
## indx_NE.:RI -0.031 -0.558  0.073  0.108  0.501

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157212.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.39713 -0.69368  0.03946  0.89106  1.64871 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03947  0.1987  
##  Residual             4.34582  2.0847  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.582e-02  6.246e-02  1.369e+01   1.534  0.14782    
## index_NEexp.c        1.151e-01  9.438e-03  3.133e+04  12.196  < 2e-16 ***
## pIndD                1.012e+00  2.976e-02  3.648e+04  34.018  < 2e-16 ***
## pIndR                1.394e-01  3.095e-02  3.647e+04   4.504 6.68e-06 ***
## index_NEexp.c:pIndD -4.993e-02  1.016e-02  3.647e+04  -4.915 8.94e-07 ***
## index_NEexp.c:pIndR  3.450e-02  1.126e-02  3.648e+04   3.065  0.00218 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.032                              
## pIndD       -0.330 -0.082                       
## pIndR       -0.317 -0.050  0.664                
## indx_NE.:ID -0.027 -0.830  0.023  0.053         
## indx_NE.:IR -0.024 -0.743  0.051  0.108  0.687

F. vaccine attitudes

vaxAttitudes ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ (index_NEexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 149834.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4792 -0.7552 -0.2317  0.7959  2.5966 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008609 0.09278 
##  Residual             3.536965 1.88068 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            -1.153e+00  2.877e-02  9.514e+00 -40.086 6.21e-12 ***
## index_NEexp.c           4.683e-02  4.507e-03  1.684e+03  10.389  < 2e-16 ***
## pDem_Rep                9.411e-01  2.245e-02  3.604e+04  41.913  < 2e-16 ***
## pInd_Not               -5.988e-02  2.497e-02  3.651e+04  -2.398   0.0165 *  
## index_NEexp.c:pDem_Rep -2.648e-03  7.692e-03  3.608e+04  -0.344   0.7307    
## index_NEexp.c:pInd_Not  6.335e-03  8.873e-03  3.651e+04   0.714   0.4753    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.023                             
## pDem_Rep     0.032  0.141                      
## pInd_Not    -0.113 -0.040  0.052               
## ind_NE.:D_R  0.039  0.197  0.051  0.066        
## ind_NE.:I_N -0.012 -0.292  0.062  0.072  0.140
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ (index_NEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 149834.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4792 -0.7552 -0.2317  0.7959  2.5966 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008609 0.09278 
##  Residual             3.536966 1.88068 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -1.644e+00  3.062e-02  1.220e+01 -53.676 7.27e-16 ***
## index_NEexp.c        5.024e-02  5.098e-03  3.160e+03   9.856  < 2e-16 ***
## pDemR                9.411e-01  2.245e-02  3.604e+04  41.913  < 2e-16 ***
## pDemI                5.304e-01  2.684e-02  3.648e+04  19.764  < 2e-16 ***
## index_NEexp.c:pDemR -2.648e-03  7.692e-03  3.608e+04  -0.344    0.731    
## index_NEexp.c:pDemI -7.658e-03  9.163e-03  3.651e+04  -0.836    0.403    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.071                              
## pDemR       -0.322  0.122                       
## pDemI       -0.269  0.092  0.370                
## indx_NE.:DR  0.036 -0.500  0.051 -0.040         
## indx_NE.:DI  0.029 -0.413 -0.039  0.023  0.284

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ (index_NEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 149834.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4792 -0.7552 -0.2317  0.7959  2.5966 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008609 0.09278 
##  Residual             3.536965 1.88068 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -7.025e-01  3.161e-02  1.385e+01 -22.228 3.15e-12 ***
## index_NEexp.c        4.759e-02  6.778e-03  6.563e+03   7.021 2.42e-12 ***
## pRepD               -9.411e-01  2.245e-02  3.604e+04 -41.913  < 2e-16 ***
## pRepI               -4.107e-01  2.791e-02  3.651e+04 -14.714  < 2e-16 ***
## index_NEexp.c:pRepD  2.648e-03  7.692e-03  3.608e+04   0.344    0.731    
## index_NEexp.c:pRepI -5.011e-03  1.015e-02  3.651e+04  -0.494    0.622    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.094                              
## pRepD       -0.398 -0.150                       
## pRepI       -0.318 -0.098  0.449                
## indx_NE.:RD -0.071 -0.759  0.051  0.080         
## indx_NE.:RI -0.053 -0.564  0.074  0.108  0.501

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vulnerableWorker ~ (index_NEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 149834.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4792 -0.7552 -0.2317  0.7959  2.5966 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008609 0.09278 
##  Residual             3.536965 1.88068 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -1.113e+00  3.487e-02  2.053e+01 -31.921  < 2e-16 ***
## index_NEexp.c        4.258e-02  8.445e-03  1.276e+04   5.042 4.66e-07 ***
## pIndD               -5.304e-01  2.684e-02  3.648e+04 -19.764  < 2e-16 ***
## pIndR                4.107e-01  2.791e-02  3.651e+04  14.714  < 2e-16 ***
## index_NEexp.c:pIndD  7.658e-03  9.163e-03  3.651e+04   0.836    0.403    
## index_NEexp.c:pIndR  5.011e-03  1.015e-02  3.651e+04   0.494    0.622    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.052                              
## pIndD       -0.534 -0.080                       
## pIndR       -0.512 -0.052  0.664                
## indx_NE.:ID -0.043 -0.835  0.023  0.053         
## indx_NE.:IR -0.039 -0.749  0.051  0.108  0.687

6. NEGATIVE VS. POSITIVE EMOTIONS

A. risk severity

risk severity ~ indexes * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_PEexp.c + index_NEexp.c) * (pDem_Rep +  
##     pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116698.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2846 -0.6489 -0.0305  0.6692  2.8005 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008546 0.09244 
##  Residual             1.459658 1.20816 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.298e+00  2.754e-02  1.072e+01 156.089  < 2e-16 ***
## index_PEexp.c           6.413e-02  5.789e-03  7.261e+02  11.077  < 2e-16 ***
## index_NEexp.c           4.042e-03  7.546e-03  4.938e+02   0.536   0.5924    
## pDem_Rep               -7.401e-01  1.450e-02  3.624e+04 -51.030  < 2e-16 ***
## pInd_Not               -7.834e-02  1.614e-02  3.624e+04  -4.854 1.21e-06 ***
## index_PEexp.c:pDem_Rep  3.630e-02  7.801e-03  3.445e+04   4.654 3.27e-06 ***
## index_PEexp.c:pInd_Not -1.724e-02  8.939e-03  3.624e+04  -1.928   0.0538 .  
## index_NEexp.c:pDem_Rep  8.270e-03  8.876e-03  3.338e+04   0.932   0.3515    
## index_NEexp.c:pInd_Not  6.476e-03  1.000e-02  3.624e+04   0.648   0.5173    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. in_NE. pDm_Rp pInd_N i_PE.:D i_PE.:I i_NE.:D
## indx_PExp.c  0.005                                                    
## indx_NExp.c  0.002 -0.918                                             
## pDem_Rep     0.021  0.033  0.024                                      
## pInd_Not    -0.076 -0.019 -0.001  0.052                               
## ind_PE.:D_R  0.017  0.224 -0.214  0.015  0.043                        
## ind_PE.:I_N -0.007 -0.242  0.171  0.040  0.047  0.123                 
## ind_NE.:D_R  0.001 -0.244  0.275  0.013  0.002 -0.826  -0.118         
## ind_NE.:I_N  0.001  0.195 -0.202  0.002  0.002 -0.121  -0.820   0.158

## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_NEexp.c + index_PEexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116698.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2846 -0.6489 -0.0305  0.6692  2.8005 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008545 0.09244 
##  Residual             1.459658 1.20816 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.642e+00  2.836e-02  1.207e+01 163.681  < 2e-16 ***
## index_NEexp.c        2.044e-03  7.377e-03  7.587e+02   0.277 0.781805    
## index_PEexp.c        4.029e-02  6.018e-03  1.418e+03   6.695 3.10e-11 ***
## pDemR               -7.401e-01  1.450e-02  3.624e+04 -51.030  < 2e-16 ***
## pDemI               -2.917e-01  1.734e-02  3.625e+04 -16.819  < 2e-16 ***
## index_NEexp.c:pDemR  8.270e-03  8.876e-03  3.338e+04   0.932 0.351483    
## index_NEexp.c:pDemI -2.341e-03  1.028e-02  3.600e+04  -0.228 0.819874    
## index_PEexp.c:pDemR  3.630e-02  7.801e-03  3.445e+04   4.654 3.27e-06 ***
## index_PEexp.c:pDemI  3.539e-02  9.302e-03  3.614e+04   3.804 0.000142 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pDemR  pDemI  i_NE.:DR i_NE.:DI i_PE.:DR
## indx_NExp.c -0.003                                                       
## indx_PExp.c -0.024 -0.883                                                
## pDemR       -0.225  0.018  0.042                                         
## pDemI       -0.188  0.008  0.039  0.369                                  
## indx_NE.:DR -0.002 -0.250  0.243  0.013  0.004                           
## indx_NE.:DI -0.001 -0.250  0.237  0.003  0.002  0.278                    
## indx_PE.:DR  0.020  0.224 -0.372  0.015 -0.034 -0.826   -0.239           
## indx_PE.:DI  0.016  0.210 -0.327 -0.032  0.012 -0.233   -0.818    0.301

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c + index_PEexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157169.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13701 -0.70925  0.05774  0.88666  1.57607 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01542  0.1242  
##  Residual             4.33972  2.0832  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.427e-01  4.041e-02  1.329e+01   6.006 4.02e-05 ***
## index_NEexp.c        2.808e-02  1.677e-02  4.940e+02   1.674   0.0947 .  
## index_PEexp.c        1.030e-01  1.327e-02  8.194e+02   7.762 2.48e-14 ***
## pRepD                8.684e-01  2.494e-02  3.645e+04  34.817  < 2e-16 ***
## pRepI               -1.440e-01  3.100e-02  3.647e+04  -4.646 3.39e-06 ***
## index_NEexp.c:pRepD -9.490e-03  1.524e-02  3.116e+04  -0.623   0.5334    
## index_NEexp.c:pRepI -7.009e-03  1.987e-02  3.647e+04  -0.353   0.7242    
## index_PEexp.c:pRepD -7.347e-02  1.340e-02  3.273e+04  -5.484 4.18e-08 ***
## index_PEexp.c:pRepI -2.407e-02  1.750e-02  3.646e+04  -1.376   0.1689    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pRepD  pRepI  i_NE.:RD i_NE.:RI i_PE.:RD
## indx_NExp.c  0.010                                                       
## indx_PExp.c  0.032 -0.888                                                
## pRepD       -0.346 -0.023 -0.049                                         
## pRepI       -0.278 -0.010 -0.042  0.450                                  
## indx_NE.:RD -0.006 -0.710  0.636  0.013  0.007                           
## indx_NE.:RI -0.004 -0.494  0.443  0.007  0.005  0.522                    
## indx_PE.:RD -0.034  0.574 -0.714  0.015  0.044 -0.826   -0.423           
## indx_PE.:RI -0.026  0.396 -0.506  0.041  0.068 -0.422   -0.824    0.492

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_NEexp.c + index_PEexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116698.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2846 -0.6489 -0.0305  0.6692  2.8005 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008546 0.09244 
##  Residual             1.459658 1.20816 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.351e+00  3.034e-02  1.580e+01 143.417  < 2e-16 ***
## index_NEexp.c       -2.967e-04  1.106e-02  1.990e+03  -0.027 0.978595    
## index_PEexp.c        7.568e-02  9.282e-03  3.897e+03   8.153 4.73e-16 ***
## pIndD                2.917e-01  1.734e-02  3.625e+04  16.819  < 2e-16 ***
## pIndR               -4.484e-01  1.804e-02  3.624e+04 -24.859  < 2e-16 ***
## index_NEexp.c:pIndD  2.341e-03  1.028e-02  3.600e+04   0.228 0.819875    
## index_NEexp.c:pIndR  1.061e-02  1.156e-02  3.625e+04   0.918 0.358874    
## index_PEexp.c:pIndD -3.539e-02  9.302e-03  3.614e+04  -3.804 0.000142 ***
## index_PEexp.c:pIndR  9.118e-04  1.018e-02  3.625e+04   0.090 0.928659    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pIndD  pIndR  i_NE.:ID i_NE.:IR i_PE.:ID
## indx_NExp.c  0.001                                                       
## indx_PExp.c  0.022 -0.861                                                
## pIndD       -0.396 -0.008 -0.037                                         
## pIndR       -0.380  0.005 -0.040  0.665                                  
## indx_NE.:ID  0.000 -0.763  0.666  0.002 -0.001                           
## indx_NE.:IR  0.000 -0.608  0.534 -0.001  0.005  0.676                    
## indx_PE.:ID -0.022  0.620 -0.790  0.012  0.038 -0.818   -0.548           
## indx_PE.:IR -0.021  0.511 -0.676  0.037  0.068 -0.564   -0.824    0.683

B. worst of Covid is behind/ahead

worstBorA ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c + index_PEexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129505.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8478 -0.6847  0.0067  0.7203  2.2333 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001961 0.04428 
##  Residual             2.026258 1.42347 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.701e-01  1.507e-02  9.247e+00  37.833 1.87e-11 ***
## index_NEexp.c           8.389e-03  7.163e-03  4.725e+01   1.171    0.247    
## index_PEexp.c           2.754e-02  5.738e-03  7.949e+01   4.800 7.33e-06 ***
## pDem_Rep               -9.501e-01  1.702e-02  3.615e+04 -55.817  < 2e-16 ***
## pInd_Not               -1.627e-01  1.894e-02  3.651e+04  -8.590  < 2e-16 ***
## index_NEexp.c:pDem_Rep  2.633e-03  1.036e-02  2.531e+04   0.254    0.799    
## index_NEexp.c:pInd_Not  3.554e-03  1.173e-02  3.651e+04   0.303    0.762    
## index_PEexp.c:pDem_Rep  6.901e-02  9.110e-03  2.489e+04   7.575 3.73e-14 ***
## index_PEexp.c:pInd_Not  5.328e-03  1.048e-02  3.651e+04   0.508    0.611    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pDm_Rp pInd_N i_NE.:D i_NE.:I i_PE.:D
## indx_NExp.c  0.003                                                    
## indx_PExp.c  0.014 -0.888                                             
## pDem_Rep     0.046  0.016  0.048                                      
## pInd_Not    -0.162  0.000 -0.023  0.054                               
## ind_NE.:D_R  0.002  0.262 -0.222  0.011  0.002                        
## ind_NE.:I_N  0.001 -0.238  0.220  0.003  0.002  0.162                 
## ind_PE.:D_R  0.036 -0.203  0.213  0.016  0.043 -0.825  -0.124         
## ind_PE.:I_N -0.015  0.200 -0.275  0.040  0.047 -0.122  -0.820   0.126
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c + index_PEexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129505.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8478 -0.6847  0.0067  0.7203  2.2333 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001961 0.04428 
##  Residual             2.026258 1.42347 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.914e-01  1.704e-02  1.512e+01  58.174  < 2e-16 ***
## index_NEexp.c        8.245e-03  7.350e-03  8.863e+01   1.122  0.26501    
## index_PEexp.c       -5.204e-03  6.293e-03  1.925e+02  -0.827  0.40930    
## pDemR               -9.501e-01  1.702e-02  3.615e+04 -55.817  < 2e-16 ***
## pDemI               -3.124e-01  2.034e-02  3.649e+04 -15.357  < 2e-16 ***
## index_NEexp.c:pDemR  2.633e-03  1.036e-02  2.531e+04   0.254  0.79930    
## index_NEexp.c:pDemI -2.237e-03  1.203e-02  3.510e+04  -0.186  0.85251    
## index_PEexp.c:pDemR  6.901e-02  9.110e-03  2.489e+04   7.575 3.73e-14 ***
## index_PEexp.c:pDemI  2.917e-02  1.089e-02  3.564e+04   2.679  0.00739 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pDemR  pDemI  i_NE.:DR i_NE.:DI i_PE.:DR
## indx_NExp.c -0.003                                                       
## indx_PExp.c -0.055 -0.854                                                
## pDemR       -0.439  0.009  0.054                                         
## pDemI       -0.367  0.004  0.047  0.368                                  
## indx_NE.:DR -0.003 -0.364  0.328  0.011  0.003                           
## indx_NE.:DI -0.002 -0.333  0.297  0.002  0.002  0.272                    
## indx_PE.:DR  0.039  0.319 -0.460  0.016 -0.033 -0.825   -0.234           
## indx_PE.:DI  0.032  0.279 -0.392 -0.032  0.012 -0.228   -0.817    0.297

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c + index_PEexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129505.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8478 -0.6847  0.0067  0.7203  2.2333 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001961 0.04429 
##  Residual             2.026258 1.42347 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.130e-02  1.805e-02  1.900e+01   2.289 0.033735 *  
## index_NEexp.c        1.088e-02  1.029e-02  1.374e+02   1.057 0.292246    
## index_PEexp.c        6.380e-02  8.355e-03  2.436e+02   7.636 5.08e-13 ***
## pRepD                9.501e-01  1.702e-02  3.615e+04  55.817  < 2e-16 ***
## pRepI                6.377e-01  2.117e-02  3.651e+04  30.118  < 2e-16 ***
## index_NEexp.c:pRepD -2.633e-03  1.036e-02  2.531e+04  -0.254 0.799298    
## index_NEexp.c:pRepI -4.870e-03  1.357e-02  3.648e+04  -0.359 0.719665    
## index_PEexp.c:pRepD -6.901e-02  9.110e-03  2.489e+04  -7.575 3.73e-14 ***
## index_PEexp.c:pRepI -3.983e-02  1.195e-02  3.632e+04  -3.334 0.000857 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pRepD  pRepI  i_NE.:RD i_NE.:RI i_PE.:RD
## indx_NExp.c  0.012                                                       
## indx_PExp.c  0.056 -0.869                                                
## pRepD       -0.529 -0.018 -0.058                                         
## pRepI       -0.424 -0.009 -0.048  0.450                                  
## indx_NE.:RD -0.008 -0.747  0.653  0.011  0.006                           
## indx_NE.:RI -0.006 -0.538  0.471  0.006  0.005  0.522                    
## indx_PE.:RD -0.052  0.603 -0.744  0.016  0.045 -0.825   -0.422           
## indx_PE.:RI -0.040  0.433 -0.541  0.041  0.068 -0.422   -0.824    0.492

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c + index_PEexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129505.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8478 -0.6847  0.0067  0.7203  2.2333 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001961 0.04429 
##  Residual             2.026258 1.42347 
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.790e-01  2.121e-02  3.630e+01  32.015  < 2e-16 ***
## index_NEexp.c        6.008e-03  1.183e-02  3.165e+02   0.508 0.611776    
## index_PEexp.c        2.397e-02  1.022e-02  6.986e+02   2.345 0.019298 *  
## pIndD                3.124e-01  2.034e-02  3.649e+04  15.357  < 2e-16 ***
## pIndR               -6.377e-01  2.117e-02  3.651e+04 -30.118  < 2e-16 ***
## index_NEexp.c:pIndD  2.237e-03  1.203e-02  3.510e+04   0.186 0.852510    
## index_NEexp.c:pIndR  4.870e-03  1.357e-02  3.648e+04   0.359 0.719665    
## index_PEexp.c:pIndD -2.917e-02  1.089e-02  3.564e+04  -2.679 0.007391 ** 
## index_PEexp.c:pIndR  3.983e-02  1.195e-02  3.632e+04   3.334 0.000857 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pIndD  pIndR  i_NE.:ID i_NE.:IR i_PE.:ID
## indx_NExp.c  0.001                                                       
## indx_PExp.c  0.040 -0.841                                                
## pIndD       -0.664 -0.004 -0.042                                         
## pIndR       -0.637  0.002 -0.041  0.664                                  
## indx_NE.:ID  0.000 -0.810  0.687  0.002  0.000                           
## indx_NE.:IR  0.000 -0.680  0.578  0.000  0.005  0.679                    
## indx_PE.:ID -0.037  0.658 -0.824  0.012  0.037 -0.817   -0.550           
## indx_PE.:IR -0.034  0.569 -0.726  0.036  0.068 -0.566   -0.824    0.685

C. vaccine attitudes

vaxAttitudes ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c + index_PEexp.c) * (pDem_Rep +  
##     pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157169.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13701 -0.70925  0.05774  0.88666  1.57607 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01542  0.1242  
##  Residual             4.33972  2.0832  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.861e-01  3.770e-02  1.006e+01  12.894 1.39e-07 ***
## index_NEexp.c           2.259e-02  1.245e-02  2.203e+02   1.814    0.071 .  
## index_PEexp.c           7.047e-02  9.623e-03  3.327e+02   7.323 1.84e-12 ***
## pDem_Rep               -8.684e-01  2.494e-02  3.645e+04 -34.817  < 2e-16 ***
## pInd_Not                5.782e-01  2.772e-02  3.647e+04  20.860  < 2e-16 ***
## index_NEexp.c:pDem_Rep  9.490e-03  1.524e-02  3.116e+04   0.623    0.533    
## index_NEexp.c:pInd_Not  2.264e-03  1.717e-02  3.647e+04   0.132    0.895    
## index_PEexp.c:pDem_Rep  7.347e-02  1.340e-02  3.273e+04   5.484 4.18e-08 ***
## index_PEexp.c:pInd_Not -1.267e-02  1.535e-02  3.647e+04  -0.825    0.409    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pDm_Rp pInd_N i_NE.:D i_NE.:I i_PE.:D
## indx_NExp.c  0.002                                                    
## indx_PExp.c  0.007 -0.913                                             
## pDem_Rep     0.027  0.022  0.036                                      
## pInd_Not    -0.095 -0.001 -0.019  0.054                               
## ind_NE.:D_R  0.001  0.272 -0.240  0.013  0.002                        
## ind_NE.:I_N  0.001 -0.208  0.199  0.002  0.002  0.160                 
## ind_PE.:D_R  0.021 -0.212  0.222  0.015  0.043 -0.826  -0.123         
## ind_PE.:I_N -0.009  0.176 -0.247  0.040  0.047 -0.120  -0.820   0.125
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c + index_PEexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157169.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13701 -0.70925  0.05774  0.88666  1.57607 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01542  0.1242  
##  Residual             4.33972  2.0832  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.111e+00  3.946e-02  1.208e+01  28.155 2.18e-12 ***
## index_NEexp.c        1.859e-02  1.227e-02  3.503e+02   1.515  0.13062    
## index_PEexp.c        2.956e-02  1.009e-02  6.791e+02   2.928  0.00352 ** 
## pDemR               -8.684e-01  2.494e-02  3.645e+04 -34.817  < 2e-16 ***
## pDemI               -1.012e+00  2.978e-02  3.647e+04 -33.997  < 2e-16 ***
## index_NEexp.c:pDemR  9.490e-03  1.524e-02  3.116e+04   0.623  0.53339    
## index_NEexp.c:pDemI  2.481e-03  1.764e-02  3.593e+04   0.141  0.88814    
## index_PEexp.c:pDemR  7.347e-02  1.340e-02  3.273e+04   5.484 4.18e-08 ***
## index_PEexp.c:pDemI  4.940e-02  1.596e-02  3.621e+04   3.095  0.00197 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pDemR  pDemI  i_NE.:DR i_NE.:DI i_PE.:DR
## indx_NExp.c -0.004                                                       
## indx_PExp.c -0.031 -0.877                                                
## pDemR       -0.277  0.016  0.045                                         
## pDemI       -0.232  0.008  0.041  0.369                                  
## indx_NE.:DR -0.002 -0.271  0.260  0.013  0.004                           
## indx_NE.:DI -0.001 -0.265  0.249  0.003  0.002  0.276                    
## indx_PE.:DR  0.025  0.242 -0.389  0.015 -0.034 -0.826   -0.237           
## indx_PE.:DI  0.020  0.222 -0.339 -0.032  0.011 -0.231   -0.817    0.300

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c + index_PEexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157169.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13701 -0.70925  0.05774  0.88666  1.57607 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01542  0.1242  
##  Residual             4.33972  2.0832  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.427e-01  4.041e-02  1.329e+01   6.006 4.02e-05 ***
## index_NEexp.c        2.808e-02  1.677e-02  4.940e+02   1.674   0.0947 .  
## index_PEexp.c        1.030e-01  1.327e-02  8.194e+02   7.762 2.48e-14 ***
## pRepD                8.684e-01  2.494e-02  3.645e+04  34.817  < 2e-16 ***
## pRepI               -1.440e-01  3.100e-02  3.647e+04  -4.646 3.39e-06 ***
## index_NEexp.c:pRepD -9.490e-03  1.524e-02  3.116e+04  -0.623   0.5334    
## index_NEexp.c:pRepI -7.009e-03  1.987e-02  3.647e+04  -0.353   0.7242    
## index_PEexp.c:pRepD -7.347e-02  1.340e-02  3.273e+04  -5.484 4.18e-08 ***
## index_PEexp.c:pRepI -2.407e-02  1.750e-02  3.646e+04  -1.376   0.1689    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pRepD  pRepI  i_NE.:RD i_NE.:RI i_PE.:RD
## indx_NExp.c  0.010                                                       
## indx_PExp.c  0.032 -0.888                                                
## pRepD       -0.346 -0.023 -0.049                                         
## pRepI       -0.278 -0.010 -0.042  0.450                                  
## indx_NE.:RD -0.006 -0.710  0.636  0.013  0.007                           
## indx_NE.:RI -0.004 -0.494  0.443  0.007  0.005  0.522                    
## indx_PE.:RD -0.034  0.574 -0.714  0.015  0.044 -0.826   -0.423           
## indx_PE.:RI -0.026  0.396 -0.506  0.041  0.068 -0.422   -0.824    0.492

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c + index_PEexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157169.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13701 -0.70925  0.05774  0.88666  1.57607 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01542  0.1242  
##  Residual             4.33972  2.0832  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.868e-02  4.357e-02  1.796e+01   2.265  0.03613 *  
## index_NEexp.c        2.107e-02  1.863e-02  9.817e+02   1.131  0.25826    
## index_PEexp.c        7.896e-02  1.572e-02  2.010e+03   5.022 5.58e-07 ***
## pIndD                1.012e+00  2.978e-02  3.647e+04  33.997  < 2e-16 ***
## pIndR                1.440e-01  3.100e-02  3.647e+04   4.646 3.39e-06 ***
## index_NEexp.c:pIndD -2.481e-03  1.764e-02  3.593e+04  -0.141  0.88814    
## index_NEexp.c:pIndR  7.009e-03  1.987e-02  3.647e+04   0.353  0.72425    
## index_PEexp.c:pIndD -4.940e-02  1.596e-02  3.621e+04  -3.095  0.00197 ** 
## index_PEexp.c:pIndR  2.407e-02  1.750e-02  3.646e+04   1.376  0.16891    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pIndD  pIndR  i_NE.:ID i_NE.:IR i_PE.:ID
## indx_NExp.c  0.001                                                       
## indx_PExp.c  0.027 -0.856                                                
## pIndD       -0.473 -0.007 -0.038                                         
## pIndR       -0.454  0.004 -0.040  0.664                                  
## indx_NE.:ID  0.000 -0.772  0.670  0.002  0.000                           
## indx_NE.:IR  0.000 -0.622  0.542 -0.001  0.005  0.676                    
## indx_PE.:ID -0.026  0.627 -0.797  0.011  0.037 -0.817   -0.548           
## indx_PE.:IR -0.024  0.522 -0.686  0.036  0.068 -0.564   -0.824    0.683

7. AFFECT VS. ANALYTICAL THINKING

A. risk3

risk3 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ (index_AFexp.c + index_ANexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 134721.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.90529 -0.78375 -0.03965  0.65955  2.34437 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004775 0.0691  
##  Residual             2.338271 1.5291  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.500e+00  2.172e-02  7.648e+00 207.179 1.28e-15 ***
## index_AFexp.c           1.886e-02  4.324e-03  1.036e+02   4.361 3.06e-05 ***
## index_ANexp.c           1.691e-03  2.266e-04  1.427e+02   7.466 7.51e-12 ***
## pDem_Rep               -1.364e+00  1.837e-02  3.650e+04 -74.225  < 2e-16 ***
## pInd_Not                1.434e-01  2.038e-02  3.649e+04   7.038 1.98e-12 ***
## index_AFexp.c:pDem_Rep  2.772e-03  5.646e-03  3.485e+04   0.491    0.623    
## index_AFexp.c:pInd_Not -6.260e-03  6.649e-03  3.645e+04  -0.941    0.347    
## index_ANexp.c:pDem_Rep  3.146e-03  3.274e-04  3.583e+04   9.609  < 2e-16 ***
## index_ANexp.c:pInd_Not -5.862e-04  3.821e-04  3.647e+04  -1.534    0.125    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDm_Rp pInd_N i_AF.:D i_AF.:I i_AN.:D
## indx_AFxp.c  0.001                                                    
## indx_ANxp.c  0.011 -0.926                                             
## pDem_Rep     0.036 -0.001  0.057                                      
## pInd_Not    -0.119 -0.014 -0.003  0.057                               
## ind_AF.:D_R -0.001  0.169 -0.162 -0.007 -0.002                        
## ind_AF.:I_N -0.004 -0.265  0.243 -0.003  0.010  0.109                 
## ind_AN.:D_R  0.032 -0.148  0.180  0.040  0.052 -0.843  -0.093         
## ind_AN.:I_N -0.005  0.226 -0.277  0.049  0.040 -0.094  -0.847   0.116

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ (index_AFexp.c + index_ANexp.c) * (pDemR + pDemI) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 134721.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.90529 -0.78375 -0.03965  0.65955  2.34437 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004775 0.0691  
##  Residual             2.338271 1.5291  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.229e+00  2.335e-02  1.022e+01 223.932  < 2e-16 ***
## index_AFexp.c        1.541e-02  4.580e-03  1.859e+02   3.364 0.000934 ***
## index_ANexp.c       -7.497e-05  2.451e-04  2.892e+02  -0.306 0.759935    
## pDemR               -1.364e+00  1.837e-02  3.650e+04 -74.225  < 2e-16 ***
## pDemI               -8.252e-01  2.187e-02  3.650e+04 -37.730  < 2e-16 ***
## index_AFexp.c:pDemR  2.772e-03  5.646e-03  3.485e+04   0.491 0.623410    
## index_AFexp.c:pDemI  7.646e-03  6.934e-03  3.587e+04   1.103 0.270205    
## index_ANexp.c:pDemR  3.146e-03  3.274e-04  3.583e+04   9.609  < 2e-16 ***
## index_ANexp.c:pDemI  2.159e-03  3.978e-04  3.602e+04   5.428 5.75e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDemR  pDemI  i_AF.:DR i_AF.:DI i_AN.:DR
## indx_AFxp.c -0.003                                                       
## indx_ANxp.c -0.039 -0.901                                                
## pDemR       -0.344  0.002  0.051                                         
## pDemI       -0.289  0.008  0.038  0.367                                  
## indx_AF.:DR  0.001 -0.405  0.365 -0.007 -0.001                           
## indx_AF.:DI  0.000 -0.320  0.291  0.000  0.010  0.302                    
## indx_AN.:DR  0.030  0.335 -0.442  0.040 -0.032 -0.843   -0.254           
## indx_AN.:DI  0.024  0.267 -0.356 -0.031  0.003 -0.256   -0.848    0.300

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ (index_AFexp.c + index_ANexp.c) * (pRepD + pRepI) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 134721.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.90529 -0.78375 -0.03965  0.65955  2.34437 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004775 0.0691  
##  Residual             2.338271 1.5291  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.866e+00  2.425e-02  1.188e+01 159.422  < 2e-16 ***
## index_AFexp.c        1.818e-02  5.650e-03  2.651e+02   3.217  0.00145 ** 
## index_ANexp.c        3.071e-03  3.104e-04  4.384e+02   9.893  < 2e-16 ***
## pRepD                1.364e+00  1.837e-02  3.650e+04  74.225  < 2e-16 ***
## pRepI                5.384e-01  2.282e-02  3.649e+04  23.591  < 2e-16 ***
## index_AFexp.c:pRepD -2.772e-03  5.646e-03  3.485e+04  -0.491  0.62341    
## index_AFexp.c:pRepI  4.874e-03  7.502e-03  3.650e+04   0.650  0.51594    
## index_ANexp.c:pRepD -3.146e-03  3.274e-04  3.583e+04  -9.609  < 2e-16 ***
## index_ANexp.c:pRepI -9.868e-04  4.328e-04  3.649e+04  -2.280  0.02262 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pRepD  pRepI  i_AF.:RD i_AF.:RI i_AN.:RD
## indx_AFxp.c -0.006                                                       
## indx_ANxp.c  0.063 -0.890                                                
## pRepD       -0.427  0.006 -0.082                                         
## pRepI       -0.343  0.010 -0.070  0.453                                  
## indx_AF.:RD  0.005 -0.671  0.601 -0.007 -0.005                           
## indx_AF.:RI  0.003 -0.465  0.417 -0.005  0.005  0.473                    
## indx_AN.:RD -0.059  0.570 -0.706  0.040  0.063 -0.843   -0.400           
## indx_AN.:RI -0.044  0.395 -0.501  0.058  0.072 -0.402   -0.845    0.481

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ (index_AFexp.c + index_ANexp.c) * (pIndD + pIndR) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 134721.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.90529 -0.78375 -0.03965  0.65955  2.34437 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004775 0.0691  
##  Residual             2.338271 1.5291  
## Number of obs: 36508, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.404e+00  2.700e-02  1.825e+01 163.137  < 2e-16 ***
## index_AFexp.c        2.305e-02  6.982e-03  5.620e+02   3.302  0.00102 ** 
## index_ANexp.c        2.084e-03  3.859e-04  9.252e+02   5.400 8.46e-08 ***
## pIndD                8.252e-01  2.187e-02  3.650e+04  37.730  < 2e-16 ***
## pIndR               -5.384e-01  2.282e-02  3.649e+04 -23.591  < 2e-16 ***
## index_AFexp.c:pIndD -7.646e-03  6.934e-03  3.587e+04  -1.103  0.27020    
## index_AFexp.c:pIndR -4.874e-03  7.502e-03  3.650e+04  -0.650  0.51594    
## index_ANexp.c:pIndD -2.159e-03  3.978e-04  3.602e+04  -5.428 5.75e-08 ***
## index_ANexp.c:pIndR  9.868e-04  4.328e-04  3.649e+04   2.280  0.02262 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pIndD  pIndR  i_AF.:ID i_AF.:IR i_AN.:ID
## indx_AFxp.c  0.011                                                       
## indx_ANxp.c  0.022 -0.879                                                
## pIndD       -0.560 -0.015 -0.027                                         
## pIndR       -0.537 -0.014 -0.025  0.663                                  
## indx_AF.:ID -0.008 -0.783  0.689  0.010  0.010                           
## indx_AF.:IR -0.008 -0.698  0.613  0.010  0.005  0.697                    
## indx_AN.:ID -0.023  0.667 -0.805  0.003  0.027 -0.848   -0.591           
## indx_AN.:IR -0.022  0.589 -0.718  0.027  0.072 -0.588   -0.845    0.692

B. risk4

risk4 ~ index * party + (1 | media)

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ (index_AFexp.c + index_ANexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 127508.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2133 -0.6243  0.0937  0.7322  1.5384 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 3.754e-15 6.127e-08
##  Residual             1.938e+00 1.392e+00
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.115e+00  7.838e-03  3.640e+04 652.509  < 2e-16 ***
## index_AFexp.c           4.098e-03  2.496e-03  3.640e+04   1.642   0.1006    
## index_ANexp.c           2.988e-04  1.441e-04  3.640e+04   2.073   0.0382 *  
## pDem_Rep               -4.499e-01  1.672e-02  3.640e+04 -26.908  < 2e-16 ***
## pInd_Not                7.789e-02  1.860e-02  3.640e+04   4.188 2.83e-05 ***
## index_AFexp.c:pDem_Rep -3.412e-04  5.110e-03  3.640e+04  -0.067   0.9468    
## index_AFexp.c:pInd_Not -2.591e-03  6.069e-03  3.640e+04  -0.427   0.6694    
## index_ANexp.c:pDem_Rep  3.130e-04  2.972e-04  3.640e+04   1.053   0.2923    
## index_ANexp.c:pInd_Not -1.251e-04  3.489e-04  3.640e+04  -0.358   0.7200    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDm_Rp pInd_N i_AF.:D i_AF.:I i_AN.:D
## indx_AFxp.c  0.003                                                    
## indx_ANxp.c  0.041 -0.846                                             
## pDem_Rep     0.090 -0.004  0.079                                      
## pInd_Not    -0.304 -0.011 -0.015  0.056                               
## ind_AF.:D_R -0.004  0.180 -0.156 -0.007 -0.003                        
## ind_AF.:I_N -0.010 -0.371  0.311 -0.003  0.009  0.110                 
## ind_AN.:D_R  0.082 -0.155  0.191  0.040  0.051 -0.845  -0.095         
## ind_AN.:I_N -0.014  0.312 -0.360  0.049  0.041 -0.096  -0.848   0.118 
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

1. simple effects for dems

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ (index_AFexp.c + index_ANexp.c) * (pDemR + pDemI) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 127508.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2133 -0.6243  0.0937  0.7322  1.5384 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 3.754e-15 6.127e-08
##  Residual             1.938e+00 1.392e+00
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.365e+00  1.106e-02  3.640e+04 485.218   <2e-16 ***
## index_AFexp.c        3.414e-03  3.104e-03  3.640e+04   1.100    0.271    
## index_ANexp.c        1.010e-04  1.788e-04  3.640e+04   0.565    0.572    
## pDemR               -4.499e-01  1.672e-02  3.640e+04 -26.908   <2e-16 ***
## pDemI               -3.028e-01  1.996e-02  3.640e+04 -15.173   <2e-16 ***
## index_AFexp.c:pDemR -3.412e-04  5.110e-03  3.640e+04  -0.067    0.947    
## index_AFexp.c:pDemI  2.420e-03  6.320e-03  3.640e+04   0.383    0.702    
## index_ANexp.c:pDemR  3.130e-04  2.972e-04  3.640e+04   1.053    0.292    
## index_ANexp.c:pDemI  2.816e-04  3.628e-04  3.640e+04   0.776    0.438    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDemR  pDemI  i_AF.:DR i_AF.:DI i_AN.:DR
## indx_AFxp.c -0.001                                                       
## indx_ANxp.c -0.094 -0.847                                                
## pDemR       -0.661  0.001  0.062                                         
## pDemI       -0.554  0.000  0.052  0.366                                  
## indx_AF.:DR  0.000 -0.607  0.514 -0.007  0.000                           
## indx_AF.:DI  0.000 -0.491  0.416  0.000  0.009  0.298                    
## indx_AN.:DR  0.056  0.509 -0.601  0.040 -0.031 -0.845   -0.250           
## indx_AN.:DI  0.046  0.417 -0.493 -0.031  0.005 -0.253   -0.848    0.296  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

2. simple effects for reps

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ (index_AFexp.c + index_ANexp.c) * (pRepD + pRepI) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 127508.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2133 -0.6243  0.0937  0.7322  1.5384 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 3.754e-15 6.127e-08
##  Residual             1.938e+00 1.392e+00
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.915e+00  1.254e-02  3.640e+04 391.926  < 2e-16 ***
## index_AFexp.c        3.073e-03  4.059e-03  3.640e+04   0.757   0.4491    
## index_ANexp.c        4.140e-04  2.375e-04  3.640e+04   1.744   0.0812 .  
## pRepD                4.499e-01  1.672e-02  3.640e+04  26.908  < 2e-16 ***
## pRepI                1.471e-01  2.082e-02  3.640e+04   7.064 1.65e-12 ***
## index_AFexp.c:pRepD  3.412e-04  5.110e-03  3.640e+04   0.067   0.9468    
## index_AFexp.c:pRepI  2.762e-03  6.840e-03  3.640e+04   0.404   0.6864    
## index_ANexp.c:pRepD -3.130e-04  2.972e-04  3.640e+04  -1.053   0.2923    
## index_ANexp.c:pRepI -3.145e-05  3.950e-04  3.640e+04  -0.080   0.9365    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pRepD  pRepI  i_AF.:RD i_AF.:RI i_AN.:RD
## indx_AFxp.c -0.011                                                       
## indx_ANxp.c  0.128 -0.843                                                
## pRepD       -0.750  0.008 -0.096                                         
## pRepI       -0.602  0.007 -0.077  0.452                                  
## indx_AF.:RD  0.009 -0.794  0.670 -0.007 -0.005                           
## indx_AF.:RI  0.007 -0.593  0.500 -0.005  0.004  0.471                    
## indx_AN.:RD -0.102  0.674 -0.799  0.040  0.062 -0.845   -0.400           
## indx_AN.:RI -0.077  0.507 -0.601  0.058  0.073 -0.403   -0.846    0.480  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

3. simple effects for indep

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ (index_AFexp.c + index_ANexp.c) * (pIndD + pIndR) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 127508.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2133 -0.6243  0.0937  0.7322  1.5384 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.938    1.392   
## Number of obs: 36412, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.062e+00  1.662e-02  3.640e+04 304.669  < 2e-16 ***
## index_AFexp.c        5.834e-03  5.505e-03  3.640e+04   1.060    0.289    
## index_ANexp.c        3.826e-04  3.157e-04  3.640e+04   1.212    0.226    
## pIndD                3.028e-01  1.996e-02  3.640e+04  15.173  < 2e-16 ***
## pIndR               -1.471e-01  2.082e-02  3.640e+04  -7.064 1.65e-12 ***
## index_AFexp.c:pIndD -2.420e-03  6.320e-03  3.640e+04  -0.383    0.702    
## index_AFexp.c:pIndR -2.762e-03  6.840e-03  3.640e+04  -0.404    0.686    
## index_ANexp.c:pIndD -2.816e-04  3.628e-04  3.640e+04  -0.776    0.438    
## index_ANexp.c:pIndR  3.145e-05  3.950e-04  3.640e+04   0.080    0.937    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pIndD  pIndR  i_AF.:ID i_AF.:IR i_AN.:ID
## indx_AFxp.c  0.013                                                       
## indx_ANxp.c  0.042 -0.848                                                
## pIndD       -0.833 -0.011 -0.035                                         
## pIndR       -0.798 -0.010 -0.033  0.664                                  
## indx_AF.:ID -0.011 -0.871  0.739  0.009  0.009                           
## indx_AF.:IR -0.010 -0.805  0.683  0.009  0.004  0.701                    
## indx_AN.:ID -0.036  0.738 -0.870  0.005  0.029 -0.848   -0.594           
## indx_AN.:IR -0.033  0.678 -0.799  0.028  0.073 -0.591   -0.846    0.695  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

C. risk5

risk5 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ (index_AFexp.c + index_ANexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 148327.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8929 -0.8745 -0.1827  0.7574  2.3879 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00357  0.05975 
##  Residual             3.45018  1.85746 
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.302e+00  2.017e-02  1.129e+01 163.717  < 2e-16 ***
## index_AFexp.c          -4.287e-03  4.811e-03  7.314e+01  -0.891    0.376    
## index_ANexp.c           3.123e-03  2.557e-04  1.062e+02  12.213  < 2e-16 ***
## pDem_Rep               -3.850e-01  2.235e-02  3.635e+04 -17.223  < 2e-16 ***
## pInd_Not               -4.635e-01  2.477e-02  3.635e+04 -18.710  < 2e-16 ***
## index_AFexp.c:pDem_Rep -6.334e-03  6.863e-03  3.414e+04  -0.923    0.356    
## index_AFexp.c:pInd_Not -4.849e-04  8.081e-03  3.630e+04  -0.060    0.952    
## index_ANexp.c:pDem_Rep  1.633e-03  3.983e-04  3.554e+04   4.100 4.15e-05 ***
## index_ANexp.c:pInd_Not  3.061e-04  4.643e-04  3.632e+04   0.659    0.510    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDm_Rp pInd_N i_AF.:D i_AF.:I i_AN.:D
## indx_AFxp.c  0.002                                                    
## indx_ANxp.c  0.015 -0.914                                             
## pDem_Rep     0.046 -0.002  0.061                                      
## pInd_Not    -0.155 -0.014 -0.005  0.056                               
## ind_AF.:D_R -0.002  0.166 -0.158 -0.008 -0.002                        
## ind_AF.:I_N -0.006 -0.279  0.253 -0.003  0.010  0.109                 
## ind_AN.:D_R  0.042 -0.145  0.178  0.040  0.052 -0.843  -0.093         
## ind_AN.:I_N -0.007  0.237 -0.288  0.049  0.039 -0.094  -0.847   0.116

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ (index_AFexp.c + index_ANexp.c) * (pDemR + pDemI) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 148327.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8929 -0.8745 -0.1827  0.7574  2.3879 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00357  0.05975 
##  Residual             3.45018  1.85746 
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.341e+00  2.272e-02  1.818e+01 147.065  < 2e-16 ***
## index_AFexp.c       -1.280e-03  5.234e-03  1.451e+02  -0.245    0.807    
## index_ANexp.c        2.408e-03  2.840e-04  2.377e+02   8.477 2.46e-15 ***
## pDemR               -3.850e-01  2.235e-02  3.635e+04 -17.223  < 2e-16 ***
## pDemI                2.711e-01  2.661e-02  3.635e+04  10.189  < 2e-16 ***
## index_AFexp.c:pDemR -6.334e-03  6.863e-03  3.414e+04  -0.923    0.356    
## index_AFexp.c:pDemI -2.682e-03  8.429e-03  3.570e+04  -0.318    0.750    
## index_ANexp.c:pDemR  1.633e-03  3.983e-04  3.554e+04   4.100 4.15e-05 ***
## index_ANexp.c:pDemI  5.103e-04  4.836e-04  3.585e+04   1.055    0.291    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDemR  pDemI  i_AF.:DR i_AF.:DI i_AN.:DR
## indx_AFxp.c -0.003                                                       
## indx_ANxp.c -0.051 -0.890                                                
## pDemR       -0.431  0.002  0.053                                         
## pDemI       -0.362  0.006  0.041  0.368                                  
## indx_AF.:DR  0.001 -0.447  0.398 -0.008 -0.001                           
## indx_AF.:DI  0.000 -0.356  0.320  0.000  0.010  0.303                    
## indx_AN.:DR  0.037  0.372 -0.478  0.040 -0.032 -0.843   -0.254           
## indx_AN.:DI  0.030  0.300 -0.388 -0.031  0.002 -0.257   -0.848    0.301

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ (index_AFexp.c + index_ANexp.c) * (pRepD + pRepI) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 148327.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8929 -0.8745 -0.1827  0.7574  2.3879 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00357  0.05975 
##  Residual             3.45018  1.85746 
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.956e+00  2.405e-02  2.282e+01 122.949  < 2e-16 ***
## index_AFexp.c       -7.614e-03  6.508e-03  2.148e+02  -1.170   0.2433    
## index_ANexp.c        4.040e-03  3.621e-04  3.729e+02  11.157  < 2e-16 ***
## pRepD                3.850e-01  2.235e-02  3.635e+04  17.223  < 2e-16 ***
## pRepI                6.560e-01  2.774e-02  3.635e+04  23.648  < 2e-16 ***
## index_AFexp.c:pRepD  6.334e-03  6.863e-03  3.414e+04   0.923   0.3561    
## index_AFexp.c:pRepI  3.652e-03  9.116e-03  3.634e+04   0.401   0.6887    
## index_ANexp.c:pRepD -1.633e-03  3.983e-04  3.554e+04  -4.100 4.15e-05 ***
## index_ANexp.c:pRepI -1.122e-03  5.260e-04  3.635e+04  -2.134   0.0329 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pRepD  pRepI  i_AF.:RD i_AF.:RI i_AN.:RD
## indx_AFxp.c -0.007                                                       
## indx_ANxp.c  0.080 -0.881                                                
## pRepD       -0.522  0.007 -0.085                                         
## pRepI       -0.421  0.009 -0.072  0.453                                  
## indx_AF.:RD  0.006 -0.695  0.615 -0.008 -0.005                           
## indx_AF.:RI  0.004 -0.493  0.436 -0.005  0.005  0.473                    
## indx_AN.:RD -0.072  0.590 -0.725  0.040  0.062 -0.843   -0.400           
## indx_AN.:RI -0.054  0.419 -0.524  0.058  0.072 -0.402   -0.846    0.481

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ (index_AFexp.c + index_ANexp.c) * (pIndD + pIndR) + (1 |  
##     media)
##    Data: dl1
## 
## REML criterion at convergence: 148327.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8929 -0.8745 -0.1827  0.7574  2.3879 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00357  0.05975 
##  Residual             3.45018  1.85746 
## Number of obs: 36364, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.612e+00  2.804e-02  4.220e+01 128.821  < 2e-16 ***
## index_AFexp.c       -3.962e-03  8.185e-03  4.900e+02  -0.484   0.6285    
## index_ANexp.c        2.918e-03  4.562e-04  8.306e+02   6.397 2.64e-10 ***
## pIndD               -2.711e-01  2.661e-02  3.635e+04 -10.189  < 2e-16 ***
## pIndR               -6.560e-01  2.774e-02  3.635e+04 -23.648  < 2e-16 ***
## index_AFexp.c:pIndD  2.682e-03  8.429e-03  3.570e+04   0.318   0.7504    
## index_AFexp.c:pIndR -3.652e-03  9.116e-03  3.634e+04  -0.401   0.6887    
## index_ANexp.c:pIndD -5.103e-04  4.836e-04  3.585e+04  -1.055   0.2914    
## index_ANexp.c:pIndR  1.122e-03  5.260e-04  3.635e+04   2.134   0.0329 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pIndD  pIndR  i_AF.:ID i_AF.:IR i_AN.:ID
## indx_AFxp.c  0.012                                                       
## indx_ANxp.c  0.027 -0.872                                                
## pIndD       -0.655 -0.014 -0.028                                         
## pIndR       -0.628 -0.013 -0.026  0.662                                  
## indx_AF.:ID -0.010 -0.802  0.700  0.010  0.010                           
## indx_AF.:IR -0.009 -0.722  0.629  0.010  0.005  0.697                    
## indx_AN.:ID -0.027  0.682 -0.819  0.002  0.027 -0.848   -0.591           
## indx_AN.:IR -0.025  0.609 -0.737  0.026  0.072 -0.587   -0.846    0.692

D. risk severity

risk severity ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_AFexp.c + index_ANexp.c) * (pDem_Rep +  
##     pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116649.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3233 -0.6733 -0.0241  0.6714  2.7950 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001908 0.04368 
##  Residual             1.457282 1.20718 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.302e+00  1.433e-02  9.123e+00 300.219  < 2e-16 ***
## index_AFexp.c           7.581e-03  3.237e-03  7.413e+01   2.342   0.0219 *  
## index_ANexp.c           1.644e-03  1.711e-04  1.055e+02   9.608 4.45e-16 ***
## pDem_Rep               -7.314e-01  1.454e-02  3.625e+04 -50.297  < 2e-16 ***
## pInd_Not               -7.270e-02  1.615e-02  3.624e+04  -4.502 6.77e-06 ***
## index_AFexp.c:pDem_Rep -1.232e-03  4.468e-03  3.406e+04  -0.276   0.7827    
## index_AFexp.c:pInd_Not -3.533e-03  5.272e-03  3.619e+04  -0.670   0.5027    
## index_ANexp.c:pDem_Rep  1.693e-03  2.592e-04  3.542e+04   6.531 6.61e-11 ***
## index_ANexp.c:pInd_Not -1.193e-04  3.030e-04  3.620e+04  -0.394   0.6938    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDm_Rp pInd_N i_AF.:D i_AF.:I i_AN.:D
## indx_AFxp.c  0.001                                                    
## indx_ANxp.c  0.014 -0.918                                             
## pDem_Rep     0.042 -0.002  0.059                                      
## pInd_Not    -0.144 -0.014 -0.005  0.056                               
## ind_AF.:D_R -0.002  0.166 -0.158 -0.008 -0.002                        
## ind_AF.:I_N -0.005 -0.275  0.251 -0.003  0.010  0.108                 
## ind_AN.:D_R  0.039 -0.145  0.178  0.040  0.052 -0.843  -0.092         
## ind_AN.:I_N -0.007  0.234 -0.286  0.049  0.040 -0.093  -0.848   0.115
## Warning: Removed 3 row(s) containing missing values (geom_path).

## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_AFexp.c + index_ANexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116649.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3233 -0.6733 -0.0241  0.6714  2.7950 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001908 0.04368 
##  Residual             1.457282 1.20718 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.644e+00  1.586e-02  1.369e+01 292.779  < 2e-16 ***
## index_AFexp.c        7.031e-03  3.486e-03  1.415e+02   2.017  0.04560 *  
## index_ANexp.c        7.587e-04  1.882e-04  2.276e+02   4.031 7.59e-05 ***
## pDemR               -7.314e-01  1.454e-02  3.625e+04 -50.297  < 2e-16 ***
## pDemI               -2.930e-01  1.734e-02  3.625e+04 -16.897  < 2e-16 ***
## index_AFexp.c:pDemR -1.232e-03  4.468e-03  3.406e+04  -0.276  0.78268    
## index_AFexp.c:pDemI  2.917e-03  5.499e-03  3.553e+04   0.530  0.59578    
## index_ANexp.c:pDemR  1.693e-03  2.592e-04  3.542e+04   6.531 6.61e-11 ***
## index_ANexp.c:pDemI  9.656e-04  3.156e-04  3.570e+04   3.060  0.00222 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDemR  pDemI  i_AF.:DR i_AF.:DI i_AN.:DR
## indx_AFxp.c -0.003                                                       
## indx_ANxp.c -0.046 -0.894                                                
## pDemR       -0.402  0.002  0.052                                         
## pDemI       -0.337  0.007  0.039  0.368                                  
## indx_AF.:DR  0.001 -0.433  0.387 -0.008 -0.001                           
## indx_AF.:DI  0.000 -0.343  0.309  0.000  0.010  0.303                    
## indx_AN.:DR  0.034  0.359 -0.466  0.040 -0.032 -0.843   -0.254           
## indx_AN.:DI  0.028  0.287 -0.376 -0.030  0.004 -0.257   -0.848    0.300

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_AFexp.c + index_ANexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116649.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3233 -0.6733 -0.0241  0.6714  2.7950 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001908 0.04368 
##  Residual             1.457282 1.20718 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.912e+00  1.667e-02  1.669e+01 234.738  < 2e-16 ***
## index_AFexp.c        5.799e-03  4.317e-03  2.061e+02   1.343    0.181    
## index_ANexp.c        2.451e-03  2.391e-04  3.515e+02  10.253  < 2e-16 ***
## pRepD                7.314e-01  1.454e-02  3.625e+04  50.297  < 2e-16 ***
## pRepI                4.384e-01  1.808e-02  3.624e+04  24.252  < 2e-16 ***
## index_AFexp.c:pRepD  1.232e-03  4.468e-03  3.406e+04   0.276    0.783    
## index_AFexp.c:pRepI  4.149e-03  5.943e-03  3.624e+04   0.698    0.485    
## index_ANexp.c:pRepD -1.693e-03  2.592e-04  3.542e+04  -6.531 6.61e-11 ***
## index_ANexp.c:pRepI -7.270e-04  3.430e-04  3.624e+04  -2.120    0.034 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pRepD  pRepI  i_AF.:RD i_AF.:RI i_AN.:RD
## indx_AFxp.c -0.007                                                       
## indx_ANxp.c  0.074 -0.884                                                
## pRepD       -0.490  0.006 -0.084                                         
## pRepI       -0.394  0.009 -0.071  0.452                                  
## indx_AF.:RD  0.005 -0.686  0.609 -0.008 -0.005                           
## indx_AF.:RI  0.004 -0.482  0.429 -0.005  0.005  0.472                    
## indx_AN.:RD -0.067  0.582 -0.717  0.040  0.062 -0.843   -0.399           
## indx_AN.:RI -0.050  0.409 -0.515  0.058  0.073 -0.401   -0.846    0.479

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_AFexp.c + index_ANexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 116649.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3233 -0.6733 -0.0241  0.6714  2.7950 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001908 0.04368 
##  Residual             1.457282 1.20718 
## Number of obs: 36256, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.351e+00  1.916e-02  2.913e+01 227.116  < 2e-16 ***
## index_AFexp.c        9.948e-03  5.408e-03  4.617e+02   1.839  0.06649 .  
## index_ANexp.c        1.724e-03  3.006e-04  7.759e+02   5.735 1.39e-08 ***
## pIndD                2.930e-01  1.734e-02  3.625e+04  16.897  < 2e-16 ***
## pIndR               -4.384e-01  1.808e-02  3.624e+04 -24.252  < 2e-16 ***
## index_AFexp.c:pIndD -2.917e-03  5.499e-03  3.553e+04  -0.530  0.59578    
## index_AFexp.c:pIndR -4.149e-03  5.943e-03  3.624e+04  -0.698  0.48509    
## index_ANexp.c:pIndD -9.656e-04  3.156e-04  3.570e+04  -3.060  0.00222 ** 
## index_ANexp.c:pIndR  7.270e-04  3.430e-04  3.624e+04   2.120  0.03403 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pIndD  pIndR  i_AF.:ID i_AF.:IR i_AN.:ID
## indx_AFxp.c  0.011                                                       
## indx_ANxp.c  0.026 -0.875                                                
## pIndD       -0.626 -0.014 -0.028                                         
## pIndR       -0.601 -0.013 -0.027  0.664                                  
## indx_AF.:ID -0.009 -0.796  0.697  0.010  0.009                           
## indx_AF.:IR -0.008 -0.715  0.624  0.010  0.005  0.698                    
## indx_AN.:ID -0.027  0.677 -0.814  0.004  0.028 -0.848   -0.592           
## indx_AN.:IR -0.025  0.603 -0.732  0.027  0.073 -0.589   -0.846    0.693

E. worst of Covid is behind/ahead

worstBorA ~ indexes * party

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_ANexp.c + index_AFexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129445.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.82407 -0.69239  0.01057  0.71418  2.26181 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             2.022    1.422   
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             5.751e-01  7.991e-03  3.651e+04  71.974  < 2e-16 ***
## index_ANexp.c           9.218e-04  1.468e-04  3.651e+04   6.280 3.42e-10 ***
## index_AFexp.c           2.539e-03  2.543e-03  3.651e+04   0.998    0.318    
## pDem_Rep               -9.417e-01  1.707e-02  3.651e+04 -55.169  < 2e-16 ***
## pInd_Not               -1.543e-01  1.895e-02  3.651e+04  -8.146 3.89e-16 ***
## index_ANexp.c:pDem_Rep  2.815e-03  3.033e-04  3.651e+04   9.281  < 2e-16 ***
## index_ANexp.c:pInd_Not  4.728e-04  3.550e-04  3.651e+04   1.332    0.183    
## index_AFexp.c:pDem_Rep -3.509e-03  5.215e-03  3.651e+04  -0.673    0.501    
## index_AFexp.c:pInd_Not -1.680e-03  6.177e-03  3.651e+04  -0.272    0.786    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pDm_Rp pInd_N i_AN.:D i_AN.:I i_AF.:D
## indx_ANxp.c  0.040                                                    
## indx_AFxp.c  0.004 -0.846                                             
## pDem_Rep     0.090  0.079 -0.004                                      
## pInd_Not    -0.301 -0.014 -0.011  0.057                               
## ind_AN.:D_R  0.082  0.193 -0.156  0.039  0.052                        
## ind_AN.:I_N -0.013 -0.357  0.309  0.049  0.040  0.119                 
## ind_AF.:D_R -0.004 -0.158  0.181 -0.007 -0.003 -0.845  -0.097         
## ind_AF.:I_N -0.011  0.308 -0.369 -0.003  0.010 -0.096  -0.847   0.111 
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning: Removed 3 row(s) containing missing values (geom_path).

## Warning: Removed 12 row(s) containing missing values (geom_path).

1. simple effects for dems

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_ANexp.c + index_AFexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129445.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.82407 -0.69239  0.01057  0.71418  2.26181 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             2.022    1.422   
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.950e-01  1.128e-02  3.651e+04  88.191   <2e-16 ***
## index_ANexp.c       -3.297e-04  1.821e-04  3.651e+04  -1.810   0.0703 .  
## index_AFexp.c        3.739e-03  3.163e-03  3.651e+04   1.182   0.2372    
## pDemR               -9.417e-01  1.707e-02  3.651e+04 -55.169   <2e-16 ***
## pDemI               -3.165e-01  2.033e-02  3.651e+04 -15.567   <2e-16 ***
## index_ANexp.c:pDemR  2.815e-03  3.033e-04  3.651e+04   9.281   <2e-16 ***
## index_ANexp.c:pDemI  9.348e-04  3.691e-04  3.651e+04   2.533   0.0113 *  
## index_AFexp.c:pDemR -3.509e-03  5.215e-03  3.651e+04  -0.673   0.5010    
## index_AFexp.c:pDemI -7.438e-05  6.432e-03  3.651e+04  -0.012   0.9908    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pDemR  pDemI  i_AN.:DR i_AN.:DI i_AF.:DR
## indx_ANxp.c -0.095                                                       
## indx_AFxp.c -0.001 -0.847                                                
## pDemR       -0.661  0.063  0.001                                         
## pDemI       -0.555  0.053  0.000  0.367                                  
## indx_AN.:DR  0.057 -0.601  0.509  0.039 -0.032                           
## indx_AN.:DI  0.047 -0.494  0.418 -0.031  0.003  0.296                    
## indx_AF.:DR  0.000  0.514 -0.607 -0.007  0.000 -0.845   -0.254           
## indx_AF.:DI  0.000  0.417 -0.492  0.000  0.010 -0.250   -0.848    0.298  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

2. simple effects for reps

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_ANexp.c + index_AFexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129445.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.82407 -0.69239  0.01057  0.71418  2.26181 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             2.022    1.422   
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.337e-02  1.281e-02  3.651e+04   4.167 3.09e-05 ***
## index_ANexp.c        2.485e-03  2.425e-04  3.651e+04  10.248  < 2e-16 ***
## index_AFexp.c        2.302e-04  4.146e-03  3.651e+04   0.056    0.956    
## pRepD                9.417e-01  1.707e-02  3.651e+04  55.169  < 2e-16 ***
## pRepI                6.251e-01  2.122e-02  3.651e+04  29.465  < 2e-16 ***
## index_ANexp.c:pRepD -2.815e-03  3.033e-04  3.651e+04  -9.281  < 2e-16 ***
## index_ANexp.c:pRepI -1.880e-03  4.023e-04  3.651e+04  -4.674 2.97e-06 ***
## index_AFexp.c:pRepD  3.509e-03  5.215e-03  3.651e+04   0.673    0.501    
## index_AFexp.c:pRepI  3.435e-03  6.968e-03  3.651e+04   0.493    0.622    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pRepD  pRepI  i_AN.:RD i_AN.:RI i_AF.:RD
## indx_ANxp.c  0.128                                                       
## indx_AFxp.c -0.011 -0.843                                                
## pRepD       -0.750 -0.096  0.008                                         
## pRepI       -0.604 -0.078  0.007  0.453                                  
## indx_AN.:RD -0.103 -0.800  0.674  0.039  0.062                           
## indx_AN.:RI -0.077 -0.603  0.508  0.058  0.072  0.482                    
## indx_AF.:RD  0.009  0.670 -0.795 -0.007 -0.005 -0.845   -0.404           
## indx_AF.:RI  0.006  0.502 -0.595 -0.005  0.005 -0.401   -0.846    0.473  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

3. simple effects for indep

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_ANexp.c + index_AFexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 129445.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.82407 -0.69239  0.01057  0.71418  2.26181 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             2.022    1.422   
## Number of obs: 36520, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.785e-01  1.691e-02  3.651e+04  40.115  < 2e-16 ***
## index_ANexp.c        6.051e-04  3.210e-04  3.651e+04   1.885   0.0595 .  
## index_AFexp.c        3.665e-03  5.600e-03  3.651e+04   0.654   0.5128    
## pIndD                3.165e-01  2.033e-02  3.651e+04  15.567  < 2e-16 ***
## pIndR               -6.251e-01  2.122e-02  3.651e+04 -29.465  < 2e-16 ***
## index_ANexp.c:pIndD -9.348e-04  3.691e-04  3.651e+04  -2.533   0.0113 *  
## index_ANexp.c:pIndR  1.880e-03  4.023e-04  3.651e+04   4.674 2.97e-06 ***
## index_AFexp.c:pIndD  7.438e-05  6.432e-03  3.651e+04   0.012   0.9908    
## index_AFexp.c:pIndR -3.435e-03  6.968e-03  3.651e+04  -0.493   0.6221    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pIndD  pIndR  i_AN.:ID i_AN.:IR i_AF.:ID
## indx_ANxp.c  0.040                                                       
## indx_AFxp.c  0.014 -0.848                                                
## pIndD       -0.832 -0.033 -0.011                                         
## pIndR       -0.797 -0.032 -0.011  0.663                                  
## indx_AN.:ID -0.035 -0.870  0.737  0.003  0.028                           
## indx_AN.:IR -0.032 -0.798  0.676  0.027  0.072  0.694                    
## indx_AF.:ID -0.012  0.738 -0.871  0.010  0.009 -0.848   -0.589           
## indx_AF.:IR -0.011  0.681 -0.804  0.009  0.005 -0.593   -0.846    0.700  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

F. vaccine attitudes

vaxAttitudes ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_ANexp.c + index_AFexp.c) * (pDem_Rep +  
##     pInd_Not) + (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157117.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.17580 -0.73454  0.06145  0.88944  1.53016 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001648 0.0406  
##  Residual             4.332684 2.0815  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.907e-01  1.656e-02  1.129e+01  29.630 4.59e-12 ***
## index_ANexp.c           2.512e-03  2.542e-04  5.958e+01   9.880 3.63e-14 ***
## index_AFexp.c           3.091e-03  4.652e-03  3.708e+01   0.664    0.511    
## pDem_Rep               -8.539e-01  2.501e-02  3.645e+04 -34.147  < 2e-16 ***
## pInd_Not                5.856e-01  2.774e-02  3.647e+04  21.115  < 2e-16 ***
## index_ANexp.c:pDem_Rep  2.382e-03  4.448e-04  3.496e+04   5.355 8.62e-08 ***
## index_ANexp.c:pInd_Not  1.758e-04  5.198e-04  3.642e+04   0.338    0.735    
## index_AFexp.c:pDem_Rep  8.591e-03  7.660e-03  3.169e+04   1.122    0.262    
## index_AFexp.c:pInd_Not -6.863e-03  9.046e-03  3.640e+04  -0.759    0.448    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pDm_Rp pInd_N i_AN.:D i_AN.:I i_AF.:D
## indx_ANxp.c  0.023                                                    
## indx_AFxp.c  0.002 -0.890                                             
## pDem_Rep     0.064  0.068 -0.003                                      
## pInd_Not    -0.212 -0.009 -0.012  0.057                               
## ind_AN.:D_R  0.058  0.184 -0.148  0.039  0.052                        
## ind_AN.:I_N -0.009 -0.314  0.262  0.049  0.040  0.118                 
## ind_AF.:D_R -0.003 -0.157  0.170 -0.007 -0.002 -0.843  -0.096         
## ind_AF.:I_N -0.007  0.273 -0.310 -0.003  0.010 -0.095  -0.847   0.110
## Warning: Removed 3 row(s) containing missing values (geom_path).

## Warning: Removed 12 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_ANexp.c + index_AFexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157117.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.17580 -0.73454  0.06145  0.88944  1.53016 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001648 0.0406  
##  Residual             4.332684 2.0815  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.111e+00  2.026e-02  2.526e+01  54.830  < 2e-16 ***
## index_ANexp.c        1.379e-03  2.938e-04  1.565e+02   4.692 5.85e-06 ***
## index_AFexp.c       -3.470e-03  5.292e-03  8.800e+01  -0.656   0.5138    
## pDemR               -8.539e-01  2.501e-02  3.645e+04 -34.147  < 2e-16 ***
## pDemI               -1.013e+00  2.977e-02  3.647e+04 -34.013  < 2e-16 ***
## index_ANexp.c:pDemR  2.382e-03  4.448e-04  3.496e+04   5.355 8.62e-08 ***
## index_ANexp.c:pDemI  1.015e-03  5.408e-04  3.579e+04   1.877   0.0605 .  
## index_AFexp.c:pDemR  8.591e-03  7.660e-03  3.169e+04   1.122   0.2621    
## index_AFexp.c:pDemI  1.116e-02  9.425e-03  3.559e+04   1.184   0.2365    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pDemR  pDemI  i_AN.:DR i_AN.:DI i_AF.:DR
## indx_ANxp.c -0.070                                                       
## indx_AFxp.c -0.002 -0.872                                                
## pDemR       -0.539  0.058  0.001                                         
## pDemI       -0.453  0.046  0.004  0.367                                  
## indx_AN.:DR  0.046 -0.529  0.427  0.039 -0.032                           
## indx_AN.:DI  0.038 -0.432  0.347 -0.031  0.003  0.298                    
## indx_AF.:DR  0.001  0.446 -0.512 -0.007 -0.001 -0.843   -0.255           
## indx_AF.:DI  0.000  0.360 -0.411  0.000  0.010 -0.252   -0.848    0.300

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_ANexp.c + index_AFexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157117.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.17580 -0.73454  0.06145  0.88944  1.53016 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001648 0.0406  
##  Residual             4.332684 2.0815  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.570e-01  2.212e-02  3.592e+01  11.618 1.01e-13 ***
## index_ANexp.c        3.760e-03  3.819e-04  2.645e+02   9.847  < 2e-16 ***
## index_AFexp.c        5.122e-03  6.724e-03  1.412e+02   0.762   0.4475    
## pRepD                8.539e-01  2.501e-02  3.645e+04  34.147  < 2e-16 ***
## pRepI               -1.587e-01  3.106e-02  3.647e+04  -5.109 3.25e-07 ***
## index_ANexp.c:pRepD -2.382e-03  4.448e-04  3.496e+04  -5.355 8.62e-08 ***
## index_ANexp.c:pRepI -1.367e-03  5.890e-04  3.647e+04  -2.320   0.0203 *  
## index_AFexp.c:pRepD -8.591e-03  7.660e-03  3.169e+04  -1.122   0.2621    
## index_AFexp.c:pRepI  2.567e-03  1.021e-02  3.640e+04   0.252   0.8014    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pRepD  pRepI  i_AN.:RD i_AN.:RI i_AF.:RD
## indx_ANxp.c  0.102                                                       
## indx_AFxp.c -0.009 -0.865                                                
## pRepD       -0.637 -0.090  0.008                                         
## pRepI       -0.512 -0.074  0.008  0.453                                  
## indx_AN.:RD -0.087 -0.758  0.625  0.039  0.062                           
## indx_AN.:RI -0.065 -0.558  0.456  0.058  0.072  0.482                    
## indx_AF.:RD  0.007  0.639 -0.737 -0.007 -0.005 -0.843   -0.403           
## indx_AF.:RI  0.005  0.465 -0.536 -0.005  0.005 -0.401   -0.846    0.473

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_ANexp.c + index_AFexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl1
## 
## REML criterion at convergence: 157117.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.17580 -0.73454  0.06145  0.88944  1.53016 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001648 0.0406  
##  Residual             4.332684 2.0815  
## Number of obs: 36484, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          9.830e-02  2.739e-02  8.443e+01   3.588 0.000557 ***
## index_ANexp.c        2.394e-03  4.915e-04  6.443e+02   4.870 1.40e-06 ***
## index_AFexp.c        7.689e-03  8.710e-03  3.640e+02   0.883 0.377947    
## pIndD                1.013e+00  2.977e-02  3.647e+04  34.013  < 2e-16 ***
## pIndR                1.587e-01  3.106e-02  3.647e+04   5.109 3.25e-07 ***
## index_ANexp.c:pIndD -1.015e-03  5.408e-04  3.579e+04  -1.877 0.060507 .  
## index_ANexp.c:pIndR  1.367e-03  5.890e-04  3.647e+04   2.320 0.020338 *  
## index_AFexp.c:pIndD -1.116e-02  9.425e-03  3.559e+04  -1.184 0.236461    
## index_AFexp.c:pIndR -2.567e-03  1.021e-02  3.640e+04  -0.252 0.801386    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pIndD  pIndR  i_AN.:ID i_AN.:IR i_AF.:ID
## indx_ANxp.c  0.034                                                       
## indx_AFxp.c  0.013 -0.861                                                
## pIndD       -0.752 -0.031 -0.013                                         
## pIndR       -0.720 -0.029 -0.012  0.663                                  
## indx_AN.:ID -0.031 -0.842  0.707  0.003  0.028                           
## indx_AN.:IR -0.029 -0.765  0.639  0.027  0.072  0.693                    
## indx_AF.:ID -0.011  0.717 -0.833  0.010  0.010 -0.848   -0.588           
## indx_AF.:IR -0.010  0.652 -0.758  0.010  0.005 -0.592   -0.846    0.698

WAVE 2

1. AFFECT

A. risk severity

risk severity ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_AFexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90310
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4218 -0.6716 -0.0450  0.6349  3.0699 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01111  0.1054  
##  Residual             1.33909  1.1572  
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.161e+00  3.136e-02  1.094e+01 132.687   <2e-16 ***
## index_AFexp.c           4.086e-02  1.559e-03  2.175e+04  26.211   <2e-16 ***
## pDem_Rep               -7.617e-01  1.533e-02  2.882e+04 -49.691   <2e-16 ***
## pInd_Not               -5.442e-03  1.867e-02  2.882e+04  -0.291    0.771    
## index_AFexp.c:pDem_Rep  2.448e-02  2.769e-03  2.871e+04   8.843   <2e-16 ***
## index_AFexp.c:pInd_Not  4.594e-04  3.548e-03  2.882e+04   0.129    0.897    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDm_Rp pInd_N i_AF.:D
## indx_AFxp.c  0.026                             
## pDem_Rep     0.016  0.153                      
## pInd_Not    -0.097 -0.096  0.037               
## ind_AF.:D_R  0.032  0.170  0.050  0.081        
## ind_AF.:I_N -0.022 -0.418  0.074  0.136  0.110
## Warning: Removed 6 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_AFexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90310
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4218 -0.6716 -0.0450  0.6349  3.0699 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01111  0.1054  
##  Residual             1.33909  1.1572  
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.540e+00  3.212e-02  1.204e+01 141.362   <2e-16 ***
## index_AFexp.c        2.877e-02  1.761e-03  2.435e+04  16.342   <2e-16 ***
## pDemR               -7.617e-01  1.533e-02  2.882e+04 -49.691   <2e-16 ***
## pDemI               -3.754e-01  1.992e-02  2.882e+04 -18.847   <2e-16 ***
## index_AFexp.c:pDemR  2.448e-02  2.769e-03  2.871e+04   8.843   <2e-16 ***
## index_AFexp.c:pDemI  1.178e-02  3.663e-03  2.882e+04   3.216   0.0013 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDemR  pDemI  i_AF.:DR
## indx_AFxp.c -0.062                              
## pDemR       -0.216  0.145                       
## pDemI       -0.166  0.110  0.350                
## indx_AF.:DR  0.035 -0.562  0.050 -0.056         
## indx_AF.:DI  0.026 -0.414 -0.053  0.074  0.271

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_AFexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90310
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4218 -0.6716 -0.0450  0.6349  3.0699 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01111  0.1054  
##  Residual             1.33909  1.1572  
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.778e+00  3.246e-02  1.257e+01 116.383   <2e-16 ***
## index_AFexp.c        5.325e-02  2.298e-03  2.640e+04  23.171   <2e-16 ***
## pRepD                7.617e-01  1.533e-02  2.882e+04  49.691   <2e-16 ***
## pRepI                3.863e-01  2.044e-02  2.881e+04  18.901   <2e-16 ***
## index_AFexp.c:pRepD -2.448e-02  2.769e-03  2.871e+04  -8.843   <2e-16 ***
## index_AFexp.c:pRepI -1.270e-02  3.948e-03  2.882e+04  -3.217   0.0013 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pRepD  pRepI  i_AF.:RD
## indx_AFxp.c  0.076                              
## pRepD       -0.259 -0.172                       
## pRepI       -0.193 -0.113  0.408                
## indx_AF.:RD -0.058 -0.774  0.050  0.093         
## indx_AF.:RI -0.040 -0.534  0.084  0.169  0.450

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_AFexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90310
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4218 -0.6716 -0.0450  0.6349  3.0699 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01111  0.1054  
##  Residual             1.33909  1.1572  
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.165e+00  3.487e-02  1.673e+01 119.436   <2e-16 ***
## index_AFexp.c        4.056e-02  3.343e-03  2.842e+04  12.130   <2e-16 ***
## pIndD                3.754e-01  1.992e-02  2.882e+04  18.847   <2e-16 ***
## pIndR               -3.863e-01  2.044e-02  2.881e+04 -18.901   <2e-16 ***
## index_AFexp.c:pIndD -1.178e-02  3.663e-03  2.882e+04  -3.216   0.0013 ** 
## index_AFexp.c:pIndR  1.270e-02  3.948e-03  2.882e+04   3.217   0.0013 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pIndD  pIndR  i_AF.:ID
## indx_AFxp.c  0.075                              
## pIndD       -0.418 -0.139                       
## pIndR       -0.407 -0.122  0.712                
## indx_AF.:ID -0.066 -0.878  0.074  0.112         
## indx_AF.:IR -0.061 -0.814  0.108  0.169  0.738

B. worst of Covid is behind/ahead

worstBorA ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_AFexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105986.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0224 -0.6382  0.0446  0.7295  2.0855 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008032 0.08962 
##  Residual             2.297014 1.51559 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             7.641e-01  2.772e-02  1.089e+01  27.566    2e-11 ***
## index_AFexp.c           3.591e-02  2.028e-03  1.085e+04  17.710  < 2e-16 ***
## pDem_Rep               -1.180e+00  2.006e-02  2.881e+04 -58.818  < 2e-16 ***
## pInd_Not               -8.037e-02  2.445e-02  2.885e+04  -3.287  0.00101 ** 
## index_AFexp.c:pDem_Rep  4.320e-02  3.621e-03  2.809e+04  11.930  < 2e-16 ***
## index_AFexp.c:pInd_Not  9.650e-03  4.646e-03  2.885e+04   2.077  0.03780 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDm_Rp pInd_N i_AF.:D
## indx_AFxp.c  0.038                             
## pDem_Rep     0.024  0.151                      
## pInd_Not    -0.144 -0.095  0.037               
## ind_AF.:D_R  0.048  0.171  0.050  0.081        
## ind_AF.:I_N -0.032 -0.421  0.074  0.136  0.110
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_AFexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105986.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0224 -0.6382  0.0446  0.7295  2.0855 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008032 0.08962 
##  Residual             2.297014 1.51559 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.327e+00  2.916e-02  1.334e+01  45.518 4.98e-16 ***
## index_AFexp.c        1.749e-02  2.293e-03  1.484e+04   7.628 2.53e-14 ***
## pDemR               -1.180e+00  2.006e-02  2.881e+04 -58.818  < 2e-16 ***
## pDemI               -5.095e-01  2.608e-02  2.886e+04 -19.536  < 2e-16 ***
## index_AFexp.c:pDemR  4.320e-02  3.621e-03  2.809e+04  11.930  < 2e-16 ***
## index_AFexp.c:pDemI  1.195e-02  4.797e-03  2.886e+04   2.491   0.0127 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDemR  pDemI  i_AF.:DR
## indx_AFxp.c -0.089                              
## pDemR       -0.311  0.143                       
## pDemI       -0.239  0.109  0.350                
## indx_AF.:DR  0.050 -0.565  0.050 -0.056         
## indx_AF.:DI  0.037 -0.416 -0.053  0.074  0.271

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_AFexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105986.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0224 -0.6382  0.0446  0.7295  2.0855 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008032 0.08962 
##  Residual             2.297014 1.51559 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.478e-01  2.982e-02  1.458e+01   4.956 0.000188 ***
## index_AFexp.c        6.069e-02  2.998e-03  1.945e+04  20.244  < 2e-16 ***
## pRepD                1.180e+00  2.006e-02  2.881e+04  58.818  < 2e-16 ***
## pRepI                6.702e-01  2.676e-02  2.885e+04  25.041  < 2e-16 ***
## index_AFexp.c:pRepD -4.320e-02  3.621e-03  2.809e+04 -11.930  < 2e-16 ***
## index_AFexp.c:pRepI -3.125e-02  5.169e-03  2.884e+04  -6.046  1.5e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pRepD  pRepI  i_AF.:RD
## indx_AFxp.c  0.107                              
## pRepD       -0.369 -0.170                       
## pRepI       -0.275 -0.113  0.408                
## indx_AF.:RD -0.083 -0.776  0.050  0.093         
## indx_AF.:RI -0.057 -0.535  0.084  0.169  0.449

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_AFexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105986.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0224 -0.6382  0.0446  0.7295  2.0855 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008032 0.08962 
##  Residual             2.297014 1.51559 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          8.180e-01  3.416e-02  2.513e+01  23.943  < 2e-16 ***
## index_AFexp.c        2.944e-02  4.372e-03  2.670e+04   6.735 1.68e-11 ***
## pIndD                5.095e-01  2.608e-02  2.886e+04  19.536  < 2e-16 ***
## pIndR               -6.702e-01  2.676e-02  2.885e+04 -25.041  < 2e-16 ***
## index_AFexp.c:pIndD -1.195e-02  4.797e-03  2.886e+04  -2.491   0.0127 *  
## index_AFexp.c:pIndR  3.125e-02  5.169e-03  2.884e+04   6.046 1.50e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pIndD  pIndR  i_AF.:ID
## indx_AFxp.c  0.101                              
## pIndD       -0.559 -0.139                       
## pIndR       -0.544 -0.122  0.712                
## indx_AF.:ID -0.088 -0.879  0.074  0.112         
## indx_AF.:IR -0.082 -0.815  0.108  0.169  0.738

C. vaccine attitudes

vaxAttitudes ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_AFexp.c * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 124038.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9980 -0.7798  0.0452  0.9551  1.6405 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01241  0.1114  
##  Residual             4.30153  2.0740  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             2.427e-01  3.492e-02  1.084e+01   6.949 2.62e-05 ***
## index_AFexp.c           4.720e-02  2.768e-03  8.604e+03  17.048  < 2e-16 ***
## pDem_Rep               -4.937e-01  2.744e-02  2.876e+04 -17.989  < 2e-16 ***
## pInd_Not                4.507e-01  3.345e-02  2.884e+04  13.473  < 2e-16 ***
## index_AFexp.c:pDem_Rep  1.858e-02  4.953e-03  2.773e+04   3.752 0.000176 ***
## index_AFexp.c:pInd_Not -1.575e-02  6.357e-03  2.884e+04  -2.477 0.013247 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDm_Rp pInd_N i_AF.:D
## indx_AFxp.c  0.041                             
## pDem_Rep     0.026  0.150                      
## pInd_Not    -0.156 -0.096  0.037               
## ind_AF.:D_R  0.052  0.170  0.049  0.080        
## ind_AF.:I_N -0.035 -0.422  0.074  0.135  0.109
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_AFexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124038.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9980 -0.7798  0.0452  0.9551  1.6405 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01241  0.1114  
##  Residual             4.30153  2.0740  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.383e-01  3.706e-02  1.375e+01  17.221 1.07e-10 ***
## index_AFexp.c        3.271e-02  3.135e-03  1.231e+04  10.432  < 2e-16 ***
## pDemR               -4.937e-01  2.744e-02  2.876e+04 -17.989  < 2e-16 ***
## pDemI               -6.976e-01  3.569e-02  2.884e+04 -19.545  < 2e-16 ***
## index_AFexp.c:pDemR  1.858e-02  4.953e-03  2.773e+04   3.752 0.000176 ***
## index_AFexp.c:pDemI  2.504e-02  6.565e-03  2.885e+04   3.814 0.000137 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pDemR  pDemI  i_AF.:DR
## indx_AFxp.c -0.096                              
## pDemR       -0.335  0.143                       
## pDemI       -0.258  0.109  0.350                
## indx_AF.:DR  0.055 -0.567  0.049 -0.057         
## indx_AF.:DI  0.040 -0.417 -0.053  0.074  0.271

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_AFexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124038.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9980 -0.7798  0.0452  0.9551  1.6405 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01241  0.1114  
##  Residual             4.30153  2.0740  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.446e-01  3.802e-02  1.522e+01   3.803 0.001692 ** 
## index_AFexp.c        5.129e-02  4.094e-03  1.711e+04  12.527  < 2e-16 ***
## pRepD                4.937e-01  2.744e-02  2.876e+04  17.989  < 2e-16 ***
## pRepI               -2.039e-01  3.662e-02  2.884e+04  -5.568 2.61e-08 ***
## index_AFexp.c:pRepD -1.858e-02  4.953e-03  2.773e+04  -3.752 0.000176 ***
## index_AFexp.c:pRepI  6.458e-03  7.071e-03  2.881e+04   0.913 0.361039    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pRepD  pRepI  i_AF.:RD
## indx_AFxp.c  0.114                              
## pRepD       -0.395 -0.168                       
## pRepI       -0.295 -0.112  0.408                
## indx_AF.:RD -0.088 -0.776  0.049  0.092         
## indx_AF.:RI -0.061 -0.535  0.083  0.168  0.449

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_AFexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124038.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9980 -0.7798  0.0452  0.9551  1.6405 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01241  0.1114  
##  Residual             4.30153  2.0740  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -5.930e-02  4.434e-02  2.816e+01  -1.337 0.191850    
## index_AFexp.c        5.775e-02  5.980e-03  2.585e+04   9.657  < 2e-16 ***
## pIndD                6.976e-01  3.569e-02  2.884e+04  19.545  < 2e-16 ***
## pIndR                2.039e-01  3.662e-02  2.884e+04   5.568 2.61e-08 ***
## index_AFexp.c:pIndD -2.504e-02  6.565e-03  2.885e+04  -3.814 0.000137 ***
## index_AFexp.c:pIndR -6.458e-03  7.071e-03  2.881e+04  -0.913 0.361039    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. pIndD  pIndR  i_AF.:ID
## indx_AFxp.c  0.106                              
## pIndD       -0.590 -0.138                       
## pIndR       -0.573 -0.122  0.712                
## indx_AF.:ID -0.093 -0.879  0.074  0.112         
## indx_AF.:IR -0.086 -0.816  0.108  0.168  0.739

2. COGNITIVE PROCESSING

A. risk3

risk3 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103779.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1317 -0.8180  0.1077  0.6358  2.4343 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007782 0.08822 
##  Residual             2.130709 1.45969 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.510e+00  2.722e-02  1.118e+01 165.698  < 2e-16 ***
## index_CPexp.c           2.236e-02  9.199e-04  1.979e+04  24.309  < 2e-16 ***
## pDem_Rep               -1.476e+00  1.931e-02  2.884e+04 -76.474  < 2e-16 ***
## pInd_Not                1.499e-01  2.360e-02  2.884e+04   6.350 2.19e-10 ***
## index_CPexp.c:pDem_Rep  2.344e-02  1.676e-03  2.726e+04  13.986  < 2e-16 ***
## index_CPexp.c:pInd_Not -5.970e-03  2.210e-03  2.884e+04  -2.701  0.00691 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.041                             
## pDem_Rep     0.023  0.141                      
## pInd_Not    -0.142 -0.109  0.037               
## ind_CP.:D_R  0.048  0.162  0.046  0.082        
## ind_CP.:I_N -0.037 -0.460  0.074  0.150  0.098
## Warning: Removed 12 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103779.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1317 -0.8180  0.1077  0.6358  2.4343 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007782 0.08822 
##  Residual             2.130709 1.45969 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.298e+00  2.858e-02  1.360e+01 185.344  < 2e-16 ***
## index_CPexp.c        8.673e-03  1.045e-03  2.242e+04   8.299  < 2e-16 ***
## pDemR               -1.476e+00  1.931e-02  2.884e+04 -76.474  < 2e-16 ***
## pDemI               -8.881e-01  2.516e-02  2.885e+04 -35.291  < 2e-16 ***
## index_CPexp.c:pDemR  2.344e-02  1.676e-03  2.726e+04  13.986  < 2e-16 ***
## index_CPexp.c:pDemI  1.769e-02  2.285e-03  2.885e+04   7.740 1.03e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.089                              
## pDemR       -0.306  0.139                       
## pDemI       -0.235  0.107  0.349                
## indx_CP.:DR  0.053 -0.590  0.046 -0.060         
## indx_CP.:DI  0.038 -0.423 -0.054  0.086  0.272

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103779.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1317 -0.8180  0.1077  0.6358  2.4343 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007782 0.08822 
##  Residual             2.130709 1.45969 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.821e+00  2.919e-02  1.480e+01 130.889   <2e-16 ***
## index_CPexp.c        3.211e-02  1.354e-03  2.301e+04  23.720   <2e-16 ***
## pRepD                1.476e+00  1.931e-02  2.884e+04  76.474   <2e-16 ***
## pRepI                5.884e-01  2.583e-02  2.884e+04  22.779   <2e-16 ***
## index_CPexp.c:pRepD -2.344e-02  1.676e-03  2.726e+04 -13.986   <2e-16 ***
## index_CPexp.c:pRepI -5.748e-03  2.439e-03  2.881e+04  -2.356   0.0185 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.105                              
## pRepD       -0.362 -0.164                       
## pRepI       -0.270 -0.114  0.408                
## indx_CP.:RD -0.082 -0.782  0.046  0.092         
## indx_CP.:RI -0.055 -0.528  0.083  0.181  0.432

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103779.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1317 -0.8180  0.1077  0.6358  2.4343 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007782 0.08822 
##  Residual             2.130709 1.45969 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.409e+00  3.336e-02  2.523e+01 132.189  < 2e-16 ***
## index_CPexp.c        2.636e-02  2.072e-03  2.845e+04  12.723  < 2e-16 ***
## pIndD                8.881e-01  2.516e-02  2.885e+04  35.291  < 2e-16 ***
## pIndR               -5.884e-01  2.583e-02  2.884e+04 -22.779  < 2e-16 ***
## index_CPexp.c:pIndD -1.769e-02  2.285e-03  2.885e+04  -7.740 1.03e-14 ***
## index_CPexp.c:pIndR  5.748e-03  2.439e-03  2.881e+04   2.356   0.0185 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.110                              
## pIndD       -0.553 -0.149                       
## pIndR       -0.538 -0.138  0.714                
## indx_CP.:ID -0.098 -0.889  0.086  0.125         
## indx_CP.:IR -0.091 -0.832  0.122  0.181  0.750

B. risk4

risk4 ~ index * party + (1 | media)

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99409.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2095 -0.5808  0.1504  0.5862  1.7355 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 3.759e-14 1.939e-07
##  Residual             1.833e+00 1.354e+00
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.931e+00  8.902e-03  2.885e+04 553.942  < 2e-16 ***
## index_CPexp.c           4.174e-03  8.086e-04  2.885e+04   5.162 2.46e-07 ***
## pDem_Rep               -5.156e-01  1.786e-02  2.885e+04 -28.873  < 2e-16 ***
## pInd_Not                1.643e-01  2.188e-02  2.885e+04   7.509 6.13e-14 ***
## index_CPexp.c:pDem_Rep  3.157e-03  1.521e-03  2.885e+04   2.075    0.038 *  
## index_CPexp.c:pInd_Not  8.433e-04  2.049e-03  2.885e+04   0.412    0.681    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.115                             
## pDem_Rep     0.064  0.125                      
## pInd_Not    -0.402 -0.108  0.039               
## ind_CP.:D_R  0.133  0.161  0.043  0.081        
## ind_CP.:I_N -0.105 -0.487  0.073  0.149  0.095 
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning: Removed 12 row(s) containing missing values (geom_path).

1. simple effects for dems

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99409.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2095 -0.5808  0.1504  0.5862  1.7355 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 3.673e-14 1.917e-07
##  Residual             1.833e+00 1.354e+00
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.243e+00  1.202e-02  2.885e+04 436.336  < 2e-16 ***
## index_CPexp.c        2.874e-03  9.282e-04  2.885e+04   3.096  0.00197 ** 
## pDemR               -5.156e-01  1.786e-02  2.885e+04 -28.873  < 2e-16 ***
## pDemI               -4.221e-01  2.331e-02  2.885e+04 -18.108  < 2e-16 ***
## index_CPexp.c:pDemR  3.157e-03  1.521e-03  2.885e+04   2.075  0.03797 *  
## index_CPexp.c:pDemI  7.353e-04  2.117e-03  2.885e+04   0.347  0.72830    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.189                              
## pDemR       -0.673  0.127                       
## pDemI       -0.515  0.097  0.347                
## indx_CP.:DR  0.115 -0.610  0.043 -0.059         
## indx_CP.:DI  0.083 -0.439 -0.056  0.087  0.268  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

2. simple effects for reps

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99409.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2095 -0.5808  0.1504  0.5862  1.7355 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 4.245e-14 2.060e-07
##  Residual             1.833e+00 1.354e+00
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.728e+00  1.321e-02  2.885e+04 357.853  < 2e-16 ***
## index_CPexp.c        6.031e-03  1.205e-03  2.885e+04   5.003 5.67e-07 ***
## pRepD                5.156e-01  1.786e-02  2.885e+04  28.873  < 2e-16 ***
## pRepI                9.351e-02  2.395e-02  2.885e+04   3.904 9.47e-05 ***
## index_CPexp.c:pRepD -3.157e-03  1.521e-03  2.885e+04  -2.075    0.038 *  
## index_CPexp.c:pRepI -2.422e-03  2.252e-03  2.885e+04  -1.075    0.282    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.205                              
## pRepD       -0.740 -0.152                       
## pRepI       -0.552 -0.113  0.408                
## indx_CP.:RD -0.163 -0.792  0.043  0.090         
## indx_CP.:RI -0.110 -0.535  0.081  0.179  0.424  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

3. simple effects for indep

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99409.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2095 -0.5808  0.1504  0.5862  1.7355 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 3.967e-14 1.992e-07
##  Residual             1.833e+00 1.354e+00
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.821e+00  1.998e-02  2.885e+04 241.349  < 2e-16 ***
## index_CPexp.c        3.609e-03  1.902e-03  2.885e+04   1.897   0.0578 .  
## pIndD                4.221e-01  2.331e-02  2.885e+04  18.108  < 2e-16 ***
## pIndR               -9.351e-02  2.395e-02  2.885e+04  -3.904 9.47e-05 ***
## index_CPexp.c:pIndD -7.353e-04  2.117e-03  2.885e+04  -0.347   0.7283    
## index_CPexp.c:pIndR  2.422e-03  2.252e-03  2.885e+04   1.075   0.2822    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.168                              
## pIndD       -0.857 -0.144                       
## pIndR       -0.834 -0.140  0.715                
## indx_CP.:ID -0.151 -0.899  0.087  0.126         
## indx_CP.:IR -0.142 -0.845  0.122  0.179  0.759  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

C. risk5

risk5 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115159.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7673 -0.8627 -0.2452  0.7113  2.5915 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01587  0.126   
##  Residual             3.15559  1.776   
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.043e+00  3.820e-02  1.112e+01  79.654  < 2e-16 ***
## index_CPexp.c           2.838e-02  1.121e-03  2.307e+04  25.311  < 2e-16 ***
## pDem_Rep               -3.087e-01  2.349e-02  2.886e+04 -13.145  < 2e-16 ***
## pInd_Not               -3.374e-01  2.872e-02  2.885e+04 -11.749  < 2e-16 ***
## index_CPexp.c:pDem_Rep  6.370e-03  2.040e-03  2.801e+04   3.123  0.00179 ** 
## index_CPexp.c:pInd_Not  1.366e-03  2.690e-03  2.885e+04   0.508  0.61142    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.035                             
## pDem_Rep     0.020  0.141                      
## pInd_Not    -0.123 -0.109  0.037               
## ind_CP.:D_R  0.042  0.162  0.045  0.082        
## ind_CP.:I_N -0.032 -0.460  0.073  0.150  0.098
## Warning: Removed 12 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115159.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7673 -0.8627 -0.2452  0.7113  2.5915 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01587  0.126   
##  Residual             3.15559  1.776   
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.086e+00  3.965e-02  1.291e+01  77.827  < 2e-16 ***
## index_CPexp.c        2.564e-02  1.274e-03  2.496e+04  20.136  < 2e-16 ***
## pDemR               -3.087e-01  2.349e-02  2.886e+04 -13.145  < 2e-16 ***
## pDemI                1.831e-01  3.062e-02  2.886e+04   5.978 2.29e-09 ***
## index_CPexp.c:pDemR  6.370e-03  2.040e-03  2.801e+04   3.123  0.00179 ** 
## index_CPexp.c:pDemI  1.818e-03  2.781e-03  2.886e+04   0.654  0.51328    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.078                              
## pDemR       -0.268  0.139                       
## pDemI       -0.206  0.107  0.349                
## indx_CP.:DR  0.046 -0.590  0.045 -0.060         
## indx_CP.:DI  0.033 -0.423 -0.054  0.087  0.272

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115159.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7673 -0.8627 -0.2452  0.7113  2.5915 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01587  0.126   
##  Residual             3.15559  1.776   
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.777e+00  4.030e-02  1.378e+01  68.913  < 2e-16 ***
## index_CPexp.c        3.201e-02  1.648e-03  2.536e+04  19.420  < 2e-16 ***
## pRepD                3.087e-01  2.349e-02  2.886e+04  13.145  < 2e-16 ***
## pRepI                4.918e-01  3.143e-02  2.885e+04  15.649  < 2e-16 ***
## index_CPexp.c:pRepD -6.370e-03  2.040e-03  2.801e+04  -3.123  0.00179 ** 
## index_CPexp.c:pRepI -4.551e-03  2.969e-03  2.884e+04  -1.533  0.12524    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.092                              
## pRepD       -0.319 -0.164                       
## pRepI       -0.237 -0.113  0.407                
## indx_CP.:RD -0.072 -0.782  0.045  0.092         
## indx_CP.:RI -0.049 -0.528  0.082  0.180  0.432

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115159.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7673 -0.8627 -0.2452  0.7113  2.5915 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01587  0.126   
##  Residual             3.15559  1.776   
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.269e+00  4.484e-02  2.111e+01  72.910  < 2e-16 ***
## index_CPexp.c        2.746e-02  2.522e-03  2.866e+04  10.887  < 2e-16 ***
## pIndD               -1.831e-01  3.062e-02  2.886e+04  -5.978 2.29e-09 ***
## pIndR               -4.918e-01  3.143e-02  2.885e+04 -15.649  < 2e-16 ***
## index_CPexp.c:pIndD -1.818e-03  2.781e-03  2.886e+04  -0.654    0.513    
## index_CPexp.c:pIndR  4.551e-03  2.969e-03  2.884e+04   1.533    0.125    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.099                              
## pIndD       -0.501 -0.149                       
## pIndR       -0.487 -0.138  0.714                
## indx_CP.:ID -0.088 -0.889  0.087  0.125         
## indx_CP.:IR -0.083 -0.832  0.122  0.180  0.750

D. risk severity

risk severity ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90347.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4035 -0.6708 -0.0431  0.6376  3.0242 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.006102 0.07811 
##  Residual             1.340933 1.15799 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.161e+00  2.380e-02  1.114e+01 174.824   <2e-16 ***
## index_CPexp.c           1.854e-02  7.308e-04  2.211e+04  25.372   <2e-16 ***
## pDem_Rep               -7.669e-01  1.533e-02  2.882e+04 -50.042   <2e-16 ***
## pInd_Not               -8.475e-03  1.872e-02  2.882e+04  -0.453    0.651    
## index_CPexp.c:pDem_Rep  1.104e-02  1.331e-03  2.778e+04   8.298   <2e-16 ***
## index_CPexp.c:pInd_Not -1.225e-03  1.754e-03  2.882e+04  -0.699    0.485    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.037                             
## pDem_Rep     0.021  0.142                      
## pInd_Not    -0.128 -0.109  0.037               
## ind_CP.:D_R  0.044  0.163  0.046  0.082        
## ind_CP.:I_N -0.033 -0.459  0.074  0.150  0.099

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90347.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4035 -0.6708 -0.0431  0.6376  3.0242 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.006102 0.07811 
##  Residual             1.340933 1.15799 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.542e+00  2.479e-02  1.311e+01 183.212  < 2e-16 ***
## index_CPexp.c        1.262e-02  8.300e-04  2.423e+04  15.199  < 2e-16 ***
## pDemR               -7.669e-01  1.533e-02  2.882e+04 -50.042  < 2e-16 ***
## pDemI               -3.750e-01  1.997e-02  2.882e+04 -18.781  < 2e-16 ***
## index_CPexp.c:pDemR  1.104e-02  1.331e-03  2.778e+04   8.298  < 2e-16 ***
## index_CPexp.c:pDemI  6.747e-03  1.813e-03  2.882e+04   3.721 0.000199 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.082                              
## pDemR       -0.280  0.139                       
## pDemI       -0.215  0.107  0.349                
## indx_CP.:DR  0.048 -0.590  0.046 -0.060         
## indx_CP.:DI  0.035 -0.423 -0.054  0.086  0.272

2. simple effects for reps

  riskSeverity
Predictors Estimates CI p
(Intercept) 3.77 3.73 – 3.82 <0.001
index_CPexp.c 0.02 0.02 – 0.03 <0.001
pRepD 0.77 0.74 – 0.80 <0.001
pRepI 0.39 0.35 – 0.43 <0.001
index_CPexp.c * pRepD -0.01 -0.01 – -0.01 <0.001
index_CPexp.c * pRepI -0.00 -0.01 – -0.00 0.026
Random Effects
σ2 1.34
τ00 media 0.01
ICC 0.00
N media 12
Observations 28829
Marginal R2 / Conditional R2 0.126 / 0.129
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90347.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4035 -0.6708 -0.0431  0.6376  3.0242 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.006102 0.07811 
##  Residual             1.340933 1.15799 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.775e+00  2.524e-02  1.407e+01 149.588   <2e-16 ***
## index_CPexp.c        2.366e-02  1.076e-03  2.470e+04  21.994   <2e-16 ***
## pRepD                7.669e-01  1.533e-02  2.882e+04  50.042   <2e-16 ***
## pRepI                3.919e-01  2.049e-02  2.881e+04  19.124   <2e-16 ***
## index_CPexp.c:pRepD -1.104e-02  1.331e-03  2.778e+04  -8.298   <2e-16 ***
## index_CPexp.c:pRepI -4.296e-03  1.936e-03  2.880e+04  -2.219   0.0265 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.096                              
## pRepD       -0.332 -0.164                       
## pRepI       -0.248 -0.114  0.408                
## indx_CP.:RD -0.075 -0.782  0.046  0.093         
## indx_CP.:RI -0.051 -0.529  0.083  0.181  0.433

3. simple effects for indep

  riskSeverity
Predictors Estimates CI p
(Intercept) 4.17 4.11 – 4.22 <0.001
index_CPexp.c 0.02 0.02 – 0.02 <0.001
pIndD 0.37 0.34 – 0.41 <0.001
pIndR -0.39 -0.43 – -0.35 <0.001
index_CPexp.c * pIndD -0.01 -0.01 – -0.00 <0.001
index_CPexp.c * pIndR 0.00 0.00 – 0.01 0.026
Random Effects
σ2 1.34
τ00 media 0.01
ICC 0.00
N media 12
Observations 28829
Marginal R2 / Conditional R2 0.126 / 0.129
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90347.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4035 -0.6708 -0.0431  0.6376  3.0242 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.006102 0.07811 
##  Residual             1.340933 1.15799 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.167e+00  2.830e-02  2.224e+01 147.268  < 2e-16 ***
## index_CPexp.c        1.936e-02  1.644e-03  2.858e+04  11.777  < 2e-16 ***
## pIndD                3.750e-01  1.997e-02  2.882e+04  18.781  < 2e-16 ***
## pIndR               -3.919e-01  2.049e-02  2.881e+04 -19.124  < 2e-16 ***
## index_CPexp.c:pIndD -6.747e-03  1.813e-03  2.882e+04  -3.721 0.000199 ***
## index_CPexp.c:pIndR  4.296e-03  1.936e-03  2.880e+04   2.219 0.026476 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.103                              
## pIndD       -0.517 -0.149                       
## pIndR       -0.503 -0.138  0.713                
## indx_CP.:ID -0.091 -0.889  0.086  0.125         
## indx_CP.:IR -0.085 -0.832  0.122  0.181  0.750

E. worst of Covid is behind/ahead

worstBorA ~ index * party + (1 |media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106024.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00114 -0.63500  0.03995  0.72965  2.07911 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004339 0.06587 
##  Residual             2.300142 1.51662 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             7.640e-01  2.147e-02  1.133e+01  35.580 5.57e-13 ***
## index_CPexp.c           1.581e-02  9.509e-04  1.176e+04  16.631  < 2e-16 ***
## pDem_Rep               -1.186e+00  2.005e-02  2.881e+04 -59.166  < 2e-16 ***
## pInd_Not               -8.148e-02  2.452e-02  2.886e+04  -3.323 0.000891 ***
## index_CPexp.c:pDem_Rep  2.002e-02  1.738e-03  2.410e+04  11.521  < 2e-16 ***
## index_CPexp.c:pInd_Not  3.473e-03  2.296e-03  2.886e+04   1.512 0.130433    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.054                             
## pDem_Rep     0.030  0.140                      
## pInd_Not    -0.187 -0.109  0.038               
## ind_CP.:D_R  0.063  0.162  0.046  0.082        
## ind_CP.:I_N -0.048 -0.463  0.074  0.150  0.098

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106024.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00114 -0.63500  0.03995  0.72965  2.07911 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004339 0.06587 
##  Residual             2.300142 1.51662 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.330e+00  2.331e-02  1.570e+01  57.081  < 2e-16 ***
## index_CPexp.c        6.950e-03  1.081e-03  1.504e+04   6.428 1.33e-10 ***
## pDemR               -1.186e+00  2.005e-02  2.881e+04 -59.166  < 2e-16 ***
## pDemI               -5.117e-01  2.614e-02  2.886e+04 -19.574  < 2e-16 ***
## index_CPexp.c:pDemR  2.002e-02  1.738e-03  2.410e+04  11.521  < 2e-16 ***
## index_CPexp.c:pDemI  6.538e-03  2.374e-03  2.886e+04   2.754   0.0059 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.113                              
## pDemR       -0.389  0.137                       
## pDemI       -0.299  0.106  0.348                
## indx_CP.:DR  0.067 -0.592  0.046 -0.060         
## indx_CP.:DI  0.048 -0.425 -0.054  0.087  0.271

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106024.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00114 -0.63500  0.03995  0.72965  2.07911 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004339 0.06587 
##  Residual             2.300142 1.51662 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.440e-01  2.411e-02  1.799e+01   5.972 1.20e-05 ***
## index_CPexp.c        2.697e-02  1.401e-03  1.588e+04  19.246  < 2e-16 ***
## pRepD                1.186e+00  2.005e-02  2.881e+04  59.166  < 2e-16 ***
## pRepI                6.746e-01  2.684e-02  2.885e+04  25.139  < 2e-16 ***
## index_CPexp.c:pRepD -2.002e-02  1.738e-03  2.410e+04 -11.521  < 2e-16 ***
## index_CPexp.c:pRepI -1.348e-02  2.534e-03  2.866e+04  -5.322 1.03e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.131                              
## pRepD       -0.455 -0.163                       
## pRepI       -0.339 -0.114  0.408                
## indx_CP.:RD -0.103 -0.783  0.046  0.092         
## indx_CP.:RI -0.070 -0.529  0.083  0.180  0.432

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106024.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00114 -0.63500  0.03995  0.72965  2.07911 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004339 0.06587 
##  Residual             2.300142 1.51662 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          8.186e-01  2.937e-02  3.961e+01  27.873  < 2e-16 ***
## index_CPexp.c        1.349e-02  2.151e-03  2.753e+04   6.271 3.63e-10 ***
## pIndD                5.117e-01  2.614e-02  2.886e+04  19.574  < 2e-16 ***
## pIndR               -6.746e-01  2.684e-02  2.885e+04 -25.139  < 2e-16 ***
## index_CPexp.c:pIndD -6.538e-03  2.374e-03  2.886e+04  -2.754   0.0059 ** 
## index_CPexp.c:pIndR  1.348e-02  2.534e-03  2.866e+04   5.322 1.03e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.129                              
## pIndD       -0.653 -0.149                       
## pIndR       -0.635 -0.138  0.714                
## indx_CP.:ID -0.115 -0.890  0.087  0.125         
## indx_CP.:IR -0.108 -0.833  0.122  0.180  0.751

F. vaccine attitudes

vaxAttitudes ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_CPexp.c * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 124047.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9824 -0.7841  0.0384  0.9433  1.6073 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.006181 0.07862 
##  Residual             4.303218 2.07442 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             2.425e-01  2.648e-02  1.135e+01   9.159  1.4e-06 ***
## index_CPexp.c           2.150e-02  1.297e-03  8.846e+03  16.579  < 2e-16 ***
## pDem_Rep               -4.985e-01  2.742e-02  2.876e+04 -18.180  < 2e-16 ***
## pInd_Not                4.462e-01  3.354e-02  2.884e+04  13.305  < 2e-16 ***
## index_CPexp.c:pDem_Rep  7.468e-03  2.375e-03  2.195e+04   3.145  0.00166 ** 
## index_CPexp.c:pInd_Not -8.681e-03  3.141e-03  2.885e+04  -2.764  0.00571 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDm_Rp pInd_N i_CP.:D
## indx_CPxp.c  0.059                             
## pDem_Rep     0.033  0.138                      
## pInd_Not    -0.207 -0.109  0.037               
## ind_CP.:D_R  0.070  0.161  0.044  0.082        
## ind_CP.:I_N -0.054 -0.464  0.073  0.149  0.097

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_CPexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124047.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9824 -0.7841  0.0384  0.9433  1.6073 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.006181 0.07862 
##  Residual             4.303218 2.07442 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.391e-01  2.924e-02  1.686e+01  21.855 8.35e-14 ***
## index_CPexp.c        1.491e-02  1.477e-03  1.182e+04  10.092  < 2e-16 ***
## pDemR               -4.985e-01  2.742e-02  2.876e+04 -18.180  < 2e-16 ***
## pDemI               -6.955e-01  3.576e-02  2.884e+04 -19.451  < 2e-16 ***
## index_CPexp.c:pDemR  7.468e-03  2.375e-03  2.195e+04   3.145 0.001664 ** 
## index_CPexp.c:pDemI  1.242e-02  3.248e-03  2.884e+04   3.823 0.000132 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pDemR  pDemI  i_CP.:DR
## indx_CPxp.c -0.123                              
## pDemR       -0.425  0.137                       
## pDemI       -0.326  0.106  0.349                
## indx_CP.:DR  0.073 -0.594  0.044 -0.060         
## indx_CP.:DI  0.053 -0.426 -0.055  0.086  0.271

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_CPexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124047.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9824 -0.7841  0.0384  0.9433  1.6073 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.006181 0.07862 
##  Residual             4.303218 2.07442 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.405e-01  3.043e-02  1.976e+01   4.618 0.000171 ***
## index_CPexp.c        2.237e-02  1.912e-03  1.270e+04  11.702  < 2e-16 ***
## pRepD                4.985e-01  2.742e-02  2.876e+04  18.180  < 2e-16 ***
## pRepI               -1.970e-01  3.670e-02  2.884e+04  -5.366 8.09e-08 ***
## index_CPexp.c:pRepD -7.468e-03  2.375e-03  2.195e+04  -3.145 0.001664 ** 
## index_CPexp.c:pRepI  4.947e-03  3.464e-03  2.852e+04   1.428 0.153287    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pRepD  pRepI  i_CP.:RD
## indx_CPxp.c  0.141                              
## pRepD       -0.493 -0.161                       
## pRepI       -0.367 -0.113  0.408                
## indx_CP.:RD -0.110 -0.783  0.044  0.091         
## indx_CP.:RI -0.075 -0.529  0.082  0.180  0.431

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_CPexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124047.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9824 -0.7841  0.0384  0.9433  1.6073 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.006181 0.07862 
##  Residual             4.303218 2.07442 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -5.643e-02  3.811e-02  4.864e+01  -1.481 0.145167    
## index_CPexp.c        2.732e-02  2.940e-03  2.679e+04   9.293  < 2e-16 ***
## pIndD                6.955e-01  3.576e-02  2.884e+04  19.451  < 2e-16 ***
## pIndR                1.970e-01  3.670e-02  2.884e+04   5.366 8.09e-08 ***
## index_CPexp.c:pIndD -1.242e-02  3.248e-03  2.884e+04  -3.823 0.000132 ***
## index_CPexp.c:pIndR -4.947e-03  3.464e-03  2.852e+04  -1.428 0.153287    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_CP. pIndD  pIndR  i_CP.:ID
## indx_CPxp.c  0.136                              
## pIndD       -0.688 -0.149                       
## pIndR       -0.670 -0.138  0.714                
## indx_CP.:ID -0.121 -0.891  0.086  0.125         
## indx_CP.:IR -0.114 -0.834  0.122  0.180  0.751

3. ANALYTIC THINKING

A. risk3

risk3 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103678.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.14567 -0.82500  0.04845  0.58625  2.44194 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001559 0.03948 
##  Residual             2.123328 1.45716 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.515e+00  1.491e-02  1.272e+01 302.888  < 2e-16 ***
## index_ANexp.c           2.564e-03  1.006e-04  1.931e+04  25.487  < 2e-16 ***
## pDem_Rep               -1.462e+00  1.935e-02  2.884e+04 -75.557  < 2e-16 ***
## pInd_Not                1.612e-01  2.357e-02  2.884e+04   6.838 8.22e-12 ***
## index_ANexp.c:pDem_Rep  3.168e-03  1.943e-04  2.377e+04  16.301  < 2e-16 ***
## index_ANexp.c:pInd_Not -4.325e-04  2.485e-04  2.885e+04  -1.740   0.0818 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.077                             
## pDem_Rep     0.043  0.150                      
## pInd_Not    -0.255 -0.099  0.040               
## ind_AN.:D_R  0.098  0.186  0.061  0.093        
## ind_AN.:I_N -0.062 -0.445  0.087  0.149  0.115
## Warning: Removed 93 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103678.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.14567 -0.82500  0.04845  0.58625  2.44194 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001559 0.03948 
##  Residual             2.123328 1.45716 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.299e+00  1.728e-02  2.294e+01 306.686  < 2e-16 ***
## index_ANexp.c        8.374e-04  1.161e-04  1.743e+04   7.215 5.63e-13 ***
## pDemR               -1.462e+00  1.935e-02  2.884e+04 -75.557  < 2e-16 ***
## pDemI               -8.921e-01  2.511e-02  2.885e+04 -35.522  < 2e-16 ***
## index_ANexp.c:pDemR  3.168e-03  1.943e-04  2.377e+04  16.301  < 2e-16 ***
## index_ANexp.c:pDemI  2.016e-03  2.562e-04  2.883e+04   7.870 3.66e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.157                              
## pDemR       -0.505  0.140                       
## pDemI       -0.389  0.109  0.347                
## indx_AN.:DR  0.093 -0.595  0.061 -0.064         
## indx_AN.:DI  0.069 -0.443 -0.061  0.079  0.267

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103678.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.14567 -0.82500  0.04845  0.58625  2.44194 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001559 0.03948 
##  Residual             2.123328 1.45716 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.837e+00  1.832e-02  2.898e+01 209.469  < 2e-16 ***
## index_ANexp.c        4.005e-03  1.562e-04  2.431e+04  25.633  < 2e-16 ***
## pRepD                1.462e+00  1.935e-02  2.884e+04  75.557  < 2e-16 ***
## pRepI                5.698e-01  2.583e-02  2.884e+04  22.056  < 2e-16 ***
## index_ANexp.c:pRepD -3.168e-03  1.943e-04  2.377e+04 -16.301  < 2e-16 ***
## index_ANexp.c:pRepI -1.151e-03  2.771e-04  2.857e+04  -4.155 3.26e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.189                              
## pRepD       -0.580 -0.180                       
## pRepI       -0.434 -0.133  0.411                
## indx_AN.:RD -0.152 -0.802  0.061  0.108         
## indx_AN.:RI -0.106 -0.559  0.099  0.189  0.454

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103678.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.14567 -0.82500  0.04845  0.58625  2.44194 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001559 0.03948 
##  Residual             2.123328 1.45716 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.407e+00  2.433e-02  9.008e+01 181.160  < 2e-16 ***
## index_ANexp.c        2.854e-03  2.297e-04  2.808e+04  12.424  < 2e-16 ***
## pIndD                8.921e-01  2.511e-02  2.885e+04  35.522  < 2e-16 ***
## pIndR               -5.698e-01  2.583e-02  2.884e+04 -22.056  < 2e-16 ***
## index_ANexp.c:pIndD -2.016e-03  2.562e-04  2.883e+04  -7.870 3.66e-15 ***
## index_ANexp.c:pIndR  1.151e-03  2.771e-04  2.857e+04   4.155 3.26e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.146                              
## pIndD       -0.756 -0.143                       
## pIndR       -0.735 -0.137  0.712                
## indx_AN.:ID -0.131 -0.891  0.079  0.123         
## indx_AN.:IR -0.121 -0.826  0.118  0.189  0.737

B. risk4

risk4 ~ index * party + (1 | media)

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99411.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2114 -0.5814  0.1512  0.5828  1.7372 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.832    1.354   
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.933e+00  8.921e-03  2.885e+04 552.918  < 2e-16 ***
## index_ANexp.c           5.323e-04  9.232e-05  2.885e+04   5.766 8.19e-09 ***
## pDem_Rep               -5.097e-01  1.796e-02  2.885e+04 -28.378  < 2e-16 ***
## pInd_Not                1.668e-01  2.189e-02  2.885e+04   7.621 2.60e-14 ***
## index_ANexp.c:pDem_Rep  5.407e-04  1.790e-04  2.885e+04   3.021  0.00252 ** 
## index_ANexp.c:pInd_Not  1.822e-04  2.308e-04  2.885e+04   0.789  0.42991    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.119                             
## pDem_Rep     0.067  0.146                      
## pInd_Not    -0.397 -0.099  0.041               
## ind_AN.:D_R  0.151  0.191  0.060  0.092        
## ind_AN.:I_N -0.097 -0.449  0.087  0.149  0.114 
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning: Removed 93 row(s) containing missing values (geom_path).

1. simple effects for dems

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99411.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2114 -0.5814  0.1512  0.5828  1.7372 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.832    1.354   
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.243e+00  1.206e-02  2.885e+04 434.872  < 2e-16 ***
## index_ANexp.c        3.221e-04  1.063e-04  2.885e+04   3.029  0.00246 ** 
## pDemR               -5.097e-01  1.796e-02  2.885e+04 -28.378  < 2e-16 ***
## pDemI               -4.216e-01  2.332e-02  2.885e+04 -18.081  < 2e-16 ***
## index_ANexp.c:pDemR  5.407e-04  1.790e-04  2.885e+04   3.021  0.00252 ** 
## index_ANexp.c:pDemI  8.822e-05  2.378e-04  2.885e+04   0.371  0.71067    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.206                              
## pDemR       -0.671  0.138                       
## pDemI       -0.517  0.106  0.347                
## indx_AN.:DR  0.122 -0.594  0.060 -0.063         
## indx_AN.:DI  0.092 -0.447 -0.062  0.079  0.266  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

2. simple effects for reps

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99411.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2114 -0.5814  0.1512  0.5828  1.7372 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.832    1.354   
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.733e+00  1.331e-02  2.885e+04 355.544  < 2e-16 ***
## index_ANexp.c        8.628e-04  1.440e-04  2.885e+04   5.992 2.09e-09 ***
## pRepD                5.097e-01  1.796e-02  2.885e+04  28.378  < 2e-16 ***
## pRepI                8.802e-02  2.399e-02  2.885e+04   3.669 0.000244 ***
## index_ANexp.c:pRepD -5.407e-04  1.790e-04  2.885e+04  -3.021 0.002523 ** 
## index_ANexp.c:pRepI -4.525e-04  2.569e-04  2.885e+04  -1.762 0.078117 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.239                              
## pRepD       -0.741 -0.177                       
## pRepI       -0.555 -0.133  0.411                
## indx_AN.:RD -0.192 -0.804  0.060  0.107         
## indx_AN.:RI -0.134 -0.561  0.099  0.188  0.451  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

3. simple effects for indep

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99411.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2114 -0.5814  0.1512  0.5828  1.7372 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.832    1.354   
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.821e+00  1.996e-02  2.885e+04 241.515  < 2e-16 ***
## index_ANexp.c        4.103e-04  2.127e-04  2.885e+04   1.929 0.053747 .  
## pIndD                4.216e-01  2.332e-02  2.885e+04  18.081  < 2e-16 ***
## pIndR               -8.802e-02  2.399e-02  2.885e+04  -3.669 0.000244 ***
## index_ANexp.c:pIndD -8.822e-05  2.378e-04  2.885e+04  -0.371 0.710670    
## index_ANexp.c:pIndR  4.525e-04  2.569e-04  2.885e+04   1.762 0.078117 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.165                              
## pIndD       -0.856 -0.142                       
## pIndR       -0.832 -0.138  0.712                
## indx_AN.:ID -0.148 -0.894  0.079  0.123         
## indx_AN.:IR -0.137 -0.828  0.117  0.188  0.741  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

C. risk5

risk5 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115003
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8308 -0.8498 -0.2453  0.7092  2.6003 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004391 0.06627 
##  Residual             3.138419 1.77156 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.046e+00  2.241e-02  1.203e+01 135.899  < 2e-16 ***
## index_ANexp.c           3.337e-03  1.226e-04  2.417e+04  27.219  < 2e-16 ***
## pDem_Rep               -2.837e-01  2.351e-02  2.886e+04 -12.065  < 2e-16 ***
## pInd_Not               -3.286e-01  2.865e-02  2.885e+04 -11.468  < 2e-16 ***
## index_ANexp.c:pDem_Rep  1.112e-03  2.365e-04  2.668e+04   4.702 2.59e-06 ***
## index_ANexp.c:pInd_Not  6.058e-04  3.022e-04  2.886e+04   2.005    0.045 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.062                             
## pDem_Rep     0.035  0.150                      
## pInd_Not    -0.207 -0.100  0.040               
## ind_AN.:D_R  0.079  0.184  0.060  0.093        
## ind_AN.:I_N -0.050 -0.445  0.086  0.149  0.115
## Warning: Removed 93 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115003
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8308 -0.8498 -0.2453  0.7092  2.6003 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004391 0.06627 
##  Residual             3.138419 1.77156 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.079e+00  2.480e-02  1.803e+01 124.143  < 2e-16 ***
## index_ANexp.c        2.981e-03  1.415e-04  2.294e+04  21.062  < 2e-16 ***
## pDemR               -2.837e-01  2.351e-02  2.886e+04 -12.065  < 2e-16 ***
## pDemI                1.867e-01  3.054e-02  2.886e+04   6.116 9.72e-10 ***
## index_ANexp.c:pDemR  1.112e-03  2.365e-04  2.668e+04   4.702 2.59e-06 ***
## index_ANexp.c:pDemI -4.975e-05  3.115e-04  2.886e+04  -0.160    0.873    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.133                              
## pDemR       -0.427  0.141                       
## pDemI       -0.329  0.110  0.348                
## indx_AN.:DR  0.079 -0.595  0.060 -0.065         
## indx_AN.:DI  0.059 -0.442 -0.061  0.079  0.268

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115003
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8308 -0.8498 -0.2453  0.7092  2.6003 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004391 0.06627 
##  Residual             3.138419 1.77156 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.795e+00  2.587e-02  2.136e+01 108.041  < 2e-16 ***
## index_ANexp.c        4.093e-03  1.901e-04  2.694e+04  21.528  < 2e-16 ***
## pRepD                2.837e-01  2.351e-02  2.886e+04  12.065  < 2e-16 ***
## pRepI                4.704e-01  3.140e-02  2.885e+04  14.982  < 2e-16 ***
## index_ANexp.c:pRepD -1.112e-03  2.365e-04  2.668e+04  -4.702 2.59e-06 ***
## index_ANexp.c:pRepI -1.162e-03  3.369e-04  2.877e+04  -3.448 0.000565 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.162                              
## pRepD       -0.499 -0.179                       
## pRepI       -0.373 -0.133  0.411                
## indx_AN.:RD -0.130 -0.801  0.060  0.107         
## indx_AN.:RI -0.091 -0.559  0.098  0.189  0.454

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115003
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8308 -0.8498 -0.2453  0.7092  2.6003 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.004391 0.06627 
##  Residual             3.138419 1.77156 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.266e+00  3.238e-02  5.239e+01 100.852  < 2e-16 ***
## index_ANexp.c        2.931e-03  2.794e-04  2.858e+04  10.489  < 2e-16 ***
## pIndD               -1.867e-01  3.054e-02  2.886e+04  -6.116 9.72e-10 ***
## pIndR               -4.704e-01  3.140e-02  2.885e+04 -14.982  < 2e-16 ***
## index_ANexp.c:pIndD  4.975e-05  3.115e-04  2.886e+04   0.160 0.873098    
## index_ANexp.c:pIndR  1.162e-03  3.369e-04  2.877e+04   3.448 0.000565 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.134                              
## pIndD       -0.691 -0.143                       
## pIndR       -0.671 -0.137  0.712                
## indx_AN.:ID -0.119 -0.891  0.079  0.122         
## indx_AN.:IR -0.111 -0.826  0.118  0.189  0.737

D. risk severity

risk severity ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90222.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4662 -0.6615 -0.0519  0.6539  3.0212 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001465 0.03827 
##  Residual             1.335122 1.15547 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.164e+00  1.342e-02  1.226e+01 310.270   <2e-16 ***
## index_ANexp.c           2.152e-03  7.992e-05  2.246e+04  26.933   <2e-16 ***
## pDem_Rep               -7.525e-01  1.535e-02  2.882e+04 -49.014   <2e-16 ***
## pInd_Not               -6.940e-04  1.869e-02  2.882e+04  -0.037    0.970    
## index_ANexp.c:pDem_Rep  1.607e-03  1.543e-04  2.573e+04  10.412   <2e-16 ***
## index_ANexp.c:pInd_Not  1.201e-04  1.971e-04  2.882e+04   0.609    0.542    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.068                             
## pDem_Rep     0.038  0.150                      
## pInd_Not    -0.225 -0.099  0.040               
## ind_AN.:D_R  0.087  0.185  0.061  0.094        
## ind_AN.:I_N -0.055 -0.444  0.087  0.149  0.116
## Warning: Removed 9 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90222.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4662 -0.6615 -0.0519  0.6539  3.0212 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001465 0.03827 
##  Residual             1.335122 1.15547 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.540e+00  1.511e-02  1.966e+01 300.542  < 2e-16 ***
## index_ANexp.c        1.389e-03  9.223e-05  2.093e+04  15.057  < 2e-16 ***
## pDemR               -7.525e-01  1.535e-02  2.882e+04 -49.014  < 2e-16 ***
## pDemI               -3.755e-01  1.992e-02  2.882e+04 -18.854  < 2e-16 ***
## index_ANexp.c:pDemR  1.607e-03  1.543e-04  2.573e+04  10.412  < 2e-16 ***
## index_ANexp.c:pDemI  6.832e-04  2.032e-04  2.882e+04   3.363 0.000773 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.142                              
## pDemR       -0.458  0.141                       
## pDemI       -0.353  0.110  0.348                
## indx_AN.:DR  0.085 -0.594  0.061 -0.065         
## indx_AN.:DI  0.063 -0.442 -0.061  0.079  0.267

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90222.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4662 -0.6615 -0.0519  0.6539  3.0212 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001465 0.03827 
##  Residual             1.335122 1.15547 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.788e+00  1.586e-02  2.389e+01 238.817  < 2e-16 ***
## index_ANexp.c        2.995e-03  1.241e-04  2.610e+04  24.139  < 2e-16 ***
## pRepD                7.525e-01  1.535e-02  2.882e+04  49.014  < 2e-16 ***
## pRepI                3.769e-01  2.049e-02  2.882e+04  18.396  < 2e-16 ***
## index_ANexp.c:pRepD -1.607e-03  1.543e-04  2.573e+04 -10.412  < 2e-16 ***
## index_ANexp.c:pRepI -9.234e-04  2.198e-04  2.868e+04  -4.201 2.67e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.174                              
## pRepD       -0.532 -0.180                       
## pRepI       -0.398 -0.134  0.411                
## indx_AN.:RD -0.139 -0.802  0.061  0.108         
## indx_AN.:RI -0.097 -0.559  0.099  0.189  0.455

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90222.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4662 -0.6615 -0.0519  0.6539  3.0212 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.001465 0.03827 
##  Residual             1.335122 1.15547 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.165e+00  2.031e-02  6.421e+01 205.056  < 2e-16 ***
## index_ANexp.c        2.072e-03  1.822e-04  2.840e+04  11.371  < 2e-16 ***
## pIndD                3.755e-01  1.992e-02  2.882e+04  18.854  < 2e-16 ***
## pIndR               -3.769e-01  2.049e-02  2.882e+04 -18.396  < 2e-16 ***
## index_ANexp.c:pIndD -6.832e-04  2.032e-04  2.882e+04  -3.363 0.000773 ***
## index_ANexp.c:pIndR  9.234e-04  2.198e-04  2.868e+04   4.201 2.67e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.139                              
## pIndD       -0.718 -0.143                       
## pIndR       -0.698 -0.137  0.712                
## indx_AN.:ID -0.124 -0.891  0.079  0.122         
## indx_AN.:IR -0.115 -0.825  0.118  0.189  0.737

E. worst of Covid is behind/ahead

worstBorA ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105938.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00056 -0.62514  0.05042  0.74873  2.10351 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000523 0.02287 
##  Residual             2.293354 1.51438 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             7.691e-01  1.197e-02  1.416e+01  64.261  < 2e-16 ***
## index_ANexp.c           1.815e-03  1.040e-04  1.116e+04  17.452  < 2e-16 ***
## pDem_Rep               -1.172e+00  2.010e-02  2.881e+04 -58.309  < 2e-16 ***
## pInd_Not               -6.877e-02  2.449e-02  2.886e+04  -2.808  0.00499 ** 
## index_ANexp.c:pDem_Rep  2.844e-03  2.013e-04  1.688e+04  14.129  < 2e-16 ***
## index_ANexp.c:pInd_Not  7.515e-04  2.583e-04  2.885e+04   2.910  0.00362 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.100                             
## pDem_Rep     0.056  0.148                      
## pInd_Not    -0.331 -0.099  0.041               
## ind_AN.:D_R  0.127  0.189  0.061  0.093        
## ind_AN.:I_N -0.080 -0.446  0.087  0.149  0.115
## Warning: Removed 9 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105938.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00056 -0.62514  0.05042  0.74873  2.10351 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000523 0.02287 
##  Residual             2.293354 1.51438 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.332e+00  1.501e-02  3.497e+01  88.738  < 2e-16 ***
## index_ANexp.c        6.411e-04  1.199e-04  9.307e+03   5.348 9.09e-08 ***
## pDemR               -1.172e+00  2.010e-02  2.881e+04 -58.309  < 2e-16 ***
## pDemI               -5.172e-01  2.609e-02  2.885e+04 -19.823  < 2e-16 ***
## index_ANexp.c:pDemR  2.844e-03  2.013e-04  1.688e+04  14.129  < 2e-16 ***
## index_ANexp.c:pDemI  6.705e-04  2.662e-04  2.878e+04   2.519   0.0118 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.186                              
## pDemR       -0.603  0.139                       
## pDemI       -0.464  0.108  0.347                
## indx_AN.:DR  0.110 -0.594  0.061 -0.064         
## indx_AN.:DI  0.083 -0.445 -0.061  0.079  0.266

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105938.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00056 -0.62514  0.05042  0.74873  2.10351 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000523 0.02287 
##  Residual             2.293354 1.51438 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.604e-01  1.630e-02  4.857e+01   9.839 3.78e-13 ***
## index_ANexp.c        3.485e-03  1.619e-04  1.783e+04  21.520  < 2e-16 ***
## pRepD                1.172e+00  2.010e-02  2.881e+04  58.309  < 2e-16 ***
## pRepI                6.548e-01  2.685e-02  2.886e+04  24.387  < 2e-16 ***
## index_ANexp.c:pRepD -2.844e-03  2.013e-04  1.688e+04 -14.129  < 2e-16 ***
## index_ANexp.c:pRepI -2.173e-03  2.878e-04  2.785e+04  -7.552 4.41e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.221                              
## pRepD       -0.678 -0.179                       
## pRepI       -0.507 -0.134  0.411                
## indx_AN.:RD -0.177 -0.803  0.061  0.108         
## indx_AN.:RI -0.124 -0.560  0.100  0.189  0.453

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105938.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00056 -0.62514  0.05042  0.74873  2.10351 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000523 0.02287 
##  Residual             2.293354 1.51438 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          8.151e-01  2.329e-02  2.021e+02  35.000  < 2e-16 ***
## index_ANexp.c        1.312e-03  2.384e-04  2.640e+04   5.502 3.79e-08 ***
## pIndD                5.172e-01  2.609e-02  2.885e+04  19.823  < 2e-16 ***
## pIndR               -6.548e-01  2.685e-02  2.886e+04 -24.387  < 2e-16 ***
## index_ANexp.c:pIndD -6.705e-04  2.662e-04  2.878e+04  -2.519   0.0118 *  
## index_ANexp.c:pIndR  2.173e-03  2.878e-04  2.785e+04   7.552 4.41e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.159                              
## pIndD       -0.821 -0.142                       
## pIndR       -0.798 -0.137  0.712                
## indx_AN.:ID -0.142 -0.893  0.079  0.123         
## indx_AN.:IR -0.131 -0.827  0.118  0.189  0.739

F. vaccine attitudes

vaxAttitudes ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_ANexp.c * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 124002
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.02397 -0.78335  0.04169  0.95003  1.61717 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0008659 0.02943 
##  Residual             4.2962466 2.07274 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             2.448e-01  1.609e-02  1.406e+01  15.218 3.95e-10 ***
## index_ANexp.c           2.535e-03  1.422e-04  1.044e+04  17.823  < 2e-16 ***
## pDem_Rep               -4.852e-01  2.751e-02  2.879e+04 -17.637  < 2e-16 ***
## pInd_Not                4.482e-01  3.352e-02  2.885e+04  13.372  < 2e-16 ***
## index_ANexp.c:pDem_Rep  9.942e-04  2.753e-04  1.615e+04   3.611 0.000306 ***
## index_ANexp.c:pInd_Not -9.507e-04  3.535e-04  2.884e+04  -2.690 0.007157 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDm_Rp pInd_N i_AN.:D
## indx_ANxp.c  0.101                             
## pDem_Rep     0.057  0.147                      
## pInd_Not    -0.337 -0.099  0.040               
## ind_AN.:D_R  0.129  0.188  0.060  0.092        
## ind_AN.:I_N -0.082 -0.447  0.087  0.149  0.114

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_ANexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124002
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.02397 -0.78335  0.04169  0.95003  1.61717 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000866 0.02943 
##  Residual             4.296247 2.07274 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.353e-01  2.033e-02  3.572e+01  31.254  < 2e-16 ***
## index_ANexp.c        1.724e-03  1.642e-04  8.648e+03  10.505  < 2e-16 ***
## pDemR               -4.852e-01  2.751e-02  2.879e+04 -17.637  < 2e-16 ***
## pDemI               -6.908e-01  3.572e-02  2.883e+04 -19.341  < 2e-16 ***
## index_ANexp.c:pDemR  9.942e-04  2.753e-04  1.615e+04   3.611 0.000306 ***
## index_ANexp.c:pDemI  1.448e-03  3.644e-04  2.875e+04   3.973  7.1e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pDemR  pDemI  i_AN.:DR
## indx_ANxp.c -0.188                              
## pDemR       -0.610  0.139                       
## pDemI       -0.470  0.108  0.347                
## indx_AN.:DR  0.112 -0.595  0.060 -0.064         
## indx_AN.:DI  0.084 -0.445 -0.062  0.079  0.267

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_ANexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124002
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.02397 -0.78335  0.04169  0.95003  1.61717 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000866 0.02943 
##  Residual             4.296247 2.07274 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.502e-01  2.209e-02  4.978e+01   6.799 1.26e-08 ***
## index_ANexp.c        2.719e-03  2.213e-04  1.712e+04  12.285  < 2e-16 ***
## pRepD                4.852e-01  2.751e-02  2.879e+04  17.637  < 2e-16 ***
## pRepI               -2.057e-01  3.674e-02  2.884e+04  -5.597 2.19e-08 ***
## index_ANexp.c:pRepD -9.942e-04  2.753e-04  1.615e+04  -3.611 0.000306 ***
## index_ANexp.c:pRepI  4.536e-04  3.937e-04  2.774e+04   1.152 0.249291    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pRepD  pRepI  i_AN.:RD
## indx_ANxp.c  0.221                              
## pRepD       -0.684 -0.177                       
## pRepI       -0.512 -0.132  0.411                
## indx_AN.:RD -0.177 -0.803  0.060  0.107         
## indx_AN.:RI -0.124 -0.560  0.099  0.188  0.452

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_ANexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124002
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.02397 -0.78335  0.04169  0.95003  1.61717 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000866 0.02943 
##  Residual             4.296247 2.07274 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -5.550e-02  3.173e-02  2.116e+02  -1.749   0.0817 .  
## index_ANexp.c        3.172e-03  3.262e-04  2.614e+04   9.724  < 2e-16 ***
## pIndD                6.908e-01  3.572e-02  2.883e+04  19.341  < 2e-16 ***
## pIndR                2.057e-01  3.674e-02  2.884e+04   5.597 2.19e-08 ***
## index_ANexp.c:pIndD -1.448e-03  3.644e-04  2.875e+04  -3.973 7.10e-05 ***
## index_ANexp.c:pIndR -4.536e-04  3.937e-04  2.774e+04  -1.152   0.2493    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. pIndD  pIndR  i_AN.:ID
## indx_ANxp.c  0.160                              
## pIndD       -0.825 -0.142                       
## pIndR       -0.802 -0.137  0.712                
## indx_AN.:ID -0.142 -0.893  0.079  0.123         
## indx_AN.:IR -0.132 -0.827  0.118  0.188  0.739

4. POSITIVE EMOTIONS

A. risk3

risk3 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_PEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103732.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.14790 -0.80656  0.09893  0.63060  2.43987 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00938  0.09685 
##  Residual             2.12765  1.45865 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.510e+00  2.956e-02  1.111e+01 152.586  < 2e-16 ***
## index_PEexp.c           8.185e-02  3.275e-03  1.984e+04  24.988  < 2e-16 ***
## pDem_Rep               -1.473e+00  1.930e-02  2.884e+04 -76.317  < 2e-16 ***
## pInd_Not                1.511e-01  2.356e-02  2.884e+04   6.411 1.46e-10 ***
## index_PEexp.c:pDem_Rep  8.528e-02  5.955e-03  2.802e+04  14.321  < 2e-16 ***
## index_PEexp.c:pInd_Not -1.945e-02  7.755e-03  2.884e+04  -2.509   0.0121 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.036                             
## pDem_Rep     0.021  0.145                      
## pInd_Not    -0.130 -0.104  0.037               
## ind_PE.:D_R  0.044  0.156  0.044  0.082        
## ind_PE.:I_N -0.032 -0.446  0.074  0.144  0.097

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_PEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103732.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.14790 -0.80656  0.09893  0.63060  2.43987 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00938  0.09685 
##  Residual             2.12765  1.45865 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.296e+00  3.082e-02  1.313e+01 171.845  < 2e-16 ***
## index_PEexp.c        3.278e-02  3.761e-03  2.302e+04   8.716  < 2e-16 ***
## pDemR               -1.473e+00  1.930e-02  2.884e+04 -76.317  < 2e-16 ***
## pDemI               -8.875e-01  2.513e-02  2.885e+04 -35.315  < 2e-16 ***
## index_PEexp.c:pDemR  8.528e-02  5.955e-03  2.802e+04  14.321  < 2e-16 ***
## index_PEexp.c:pDemI  6.209e-02  8.034e-03  2.885e+04   7.729 1.12e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.083                              
## pDemR       -0.284  0.141                       
## pDemI       -0.218  0.109  0.349                
## indx_PE.:DR  0.049 -0.590  0.044 -0.060         
## indx_PE.:DI  0.036 -0.427 -0.055  0.080  0.277

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_PEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103732.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.14790 -0.80656  0.09893  0.63060  2.43987 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00938  0.09685 
##  Residual             2.12765  1.45865 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.823e+00  3.139e-02  1.412e+01 121.821  < 2e-16 ***
## index_PEexp.c        1.181e-01  4.815e-03  2.416e+04  24.518  < 2e-16 ***
## pRepD                1.473e+00  1.930e-02  2.884e+04  76.317  < 2e-16 ***
## pRepI                5.854e-01  2.579e-02  2.884e+04  22.697  < 2e-16 ***
## index_PEexp.c:pRepD -8.528e-02  5.955e-03  2.802e+04 -14.321  < 2e-16 ***
## index_PEexp.c:pRepI -2.319e-02  8.571e-03  2.883e+04  -2.705  0.00683 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.097                              
## pRepD       -0.336 -0.165                       
## pRepI       -0.251 -0.113  0.408                
## indx_PE.:RD -0.076 -0.776  0.044  0.092         
## indx_PE.:RI -0.052 -0.530  0.083  0.176  0.435

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_PEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103732.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.14790 -0.80656  0.09893  0.63060  2.43987 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00938  0.09685 
##  Residual             2.12765  1.45865 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.409e+00  3.527e-02  2.252e+01 124.991  < 2e-16 ***
## index_PEexp.c        9.488e-02  7.273e-03  2.837e+04  13.045  < 2e-16 ***
## pIndD                8.875e-01  2.513e-02  2.885e+04  35.315  < 2e-16 ***
## pIndR               -5.854e-01  2.579e-02  2.884e+04 -22.697  < 2e-16 ***
## index_PEexp.c:pIndD -6.209e-02  8.034e-03  2.885e+04  -7.729 1.12e-14 ***
## index_PEexp.c:pIndR  2.319e-02  8.571e-03  2.883e+04   2.705  0.00683 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.100                              
## pIndD       -0.522 -0.145                       
## pIndR       -0.508 -0.132  0.713                
## indx_PE.:ID -0.088 -0.884  0.080  0.120         
## indx_PE.:IR -0.083 -0.828  0.117  0.176  0.745

B. risk4

risk4 ~ index * party + (1 | media)

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_PEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99399.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2043 -0.5807  0.1514  0.5875  1.7392 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.833    1.354   
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.931e+00  8.896e-03  2.885e+04 554.312  < 2e-16 ***
## index_PEexp.c           1.524e-02  2.852e-03  2.885e+04   5.342 9.26e-08 ***
## pDem_Rep               -5.151e-01  1.786e-02  2.885e+04 -28.847  < 2e-16 ***
## pInd_Not                1.645e-01  2.186e-02  2.885e+04   7.525 5.43e-14 ***
## index_PEexp.c:pDem_Rep  1.181e-02  5.423e-03  2.885e+04   2.178   0.0294 *  
## index_PEexp.c:pInd_Not  3.068e-03  7.192e-03  2.885e+04   0.427   0.6697    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.110                             
## pDem_Rep     0.063  0.126                      
## pInd_Not    -0.401 -0.103  0.039               
## ind_PE.:D_R  0.133  0.158  0.042  0.081        
## ind_PE.:I_N -0.100 -0.474  0.075  0.143  0.093 
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular

1. simple effects for dems

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_PEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99399.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2043 -0.5807  0.1514  0.5875  1.7392 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.000    0.000   
##  Residual             1.833    1.354   
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.243e+00  1.202e-02  2.885e+04 436.330  < 2e-16 ***
## index_PEexp.c        1.034e-02  3.326e-03  2.885e+04   3.109  0.00188 ** 
## pDemR               -5.151e-01  1.786e-02  2.885e+04 -28.847  < 2e-16 ***
## pDemI               -4.221e-01  2.329e-02  2.885e+04 -18.120  < 2e-16 ***
## index_PEexp.c:pDemR  1.181e-02  5.423e-03  2.885e+04   2.178  0.02944 *  
## index_PEexp.c:pDemI  2.837e-03  7.446e-03  2.885e+04   0.381  0.70320    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.189                              
## pDemR       -0.673  0.127                       
## pDemI       -0.516  0.098  0.347                
## indx_PE.:DR  0.116 -0.613  0.042 -0.060         
## indx_PE.:DI  0.084 -0.447 -0.057  0.080  0.274  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

2. simple effects for reps

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_PEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99399.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2043 -0.5807  0.1514  0.5875  1.7392 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 2.646e-15 5.144e-08
##  Residual             1.833e+00 1.354e+00
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.728e+00  1.321e-02  2.885e+04 357.917  < 2e-16 ***
## index_PEexp.c        2.215e-02  4.283e-03  2.885e+04   5.172 2.33e-07 ***
## pRepD                5.151e-01  1.786e-02  2.885e+04  28.847  < 2e-16 ***
## pRepI                9.308e-02  2.393e-02  2.885e+04   3.890 0.000101 ***
## index_PEexp.c:pRepD -1.181e-02  5.423e-03  2.885e+04  -2.178 0.029436 *  
## index_PEexp.c:pRepI -8.973e-03  7.920e-03  2.885e+04  -1.133 0.257238    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.205                              
## pRepD       -0.740 -0.152                       
## pRepI       -0.552 -0.113  0.408                
## indx_PE.:RD -0.162 -0.790  0.042  0.089         
## indx_PE.:RI -0.111 -0.541  0.082  0.175  0.427  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

3. simple effects for indep

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_PEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99399.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2043 -0.5807  0.1514  0.5875  1.7392 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 2.684e-15 5.180e-08
##  Residual             1.833e+00 1.354e+00
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.821e+00  1.995e-02  2.885e+04 241.623  < 2e-16 ***
## index_PEexp.c        1.318e-02  6.662e-03  2.885e+04   1.978 0.047892 *  
## pIndD                4.221e-01  2.329e-02  2.885e+04  18.120  < 2e-16 ***
## pIndR               -9.308e-02  2.393e-02  2.885e+04  -3.890 0.000101 ***
## index_PEexp.c:pIndD -2.837e-03  7.446e-03  2.885e+04  -0.381 0.703200    
## index_PEexp.c:pIndR  8.973e-03  7.920e-03  2.885e+04   1.133 0.257238    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.162                              
## pIndD       -0.857 -0.139                       
## pIndR       -0.834 -0.135  0.714                
## indx_PE.:ID -0.145 -0.895  0.080  0.121         
## indx_PE.:IR -0.136 -0.841  0.117  0.175  0.753  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

C. risk5

risk5 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_PEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115130.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6987 -0.8666 -0.2413  0.7284  2.6053 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01886  0.1373  
##  Residual             3.15306  1.7757  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.042e+00  4.133e-02  1.107e+01  73.607 3.02e-16 ***
## index_PEexp.c           1.024e-01  3.993e-03  2.302e+04  25.655  < 2e-16 ***
## pDem_Rep               -3.052e-01  2.348e-02  2.886e+04 -12.995  < 2e-16 ***
## pInd_Not               -3.362e-01  2.868e-02  2.885e+04 -11.719  < 2e-16 ***
## index_PEexp.c:pDem_Rep  2.034e-02  7.250e-03  2.842e+04   2.806  0.00502 ** 
## index_PEexp.c:pInd_Not  9.424e-03  9.440e-03  2.885e+04   0.998  0.31811    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.031                             
## pDem_Rep     0.018  0.145                      
## pInd_Not    -0.113 -0.104  0.037               
## ind_PE.:D_R  0.038  0.156  0.044  0.082        
## ind_PE.:I_N -0.028 -0.445  0.074  0.144  0.096

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_PEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115130.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6987 -0.8666 -0.2413  0.7284  2.6053 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01886  0.1373  
##  Residual             3.15306  1.7757  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.083e+00  4.267e-02  1.258e+01  72.262  < 2e-16 ***
## index_PEexp.c        9.538e-02  4.585e-03  2.530e+04  20.805  < 2e-16 ***
## pDemR               -3.052e-01  2.348e-02  2.886e+04 -12.995  < 2e-16 ***
## pDemI                1.836e-01  3.059e-02  2.886e+04   6.000    2e-09 ***
## index_PEexp.c:pDemR  2.035e-02  7.250e-03  2.842e+04   2.806  0.00502 ** 
## index_PEexp.c:pDemI  7.482e-04  9.780e-03  2.886e+04   0.076  0.93902    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.073                              
## pDemR       -0.249  0.141                       
## pDemI       -0.191  0.109  0.350                
## indx_PE.:DR  0.043 -0.589  0.044 -0.060         
## indx_PE.:DI  0.031 -0.426 -0.055  0.080  0.278

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_PEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115130.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6987 -0.8666 -0.2413  0.7284  2.6053 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01886  0.1373  
##  Residual             3.15306  1.7757  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.778e+00  4.327e-02  1.330e+01  64.205  < 2e-16 ***
## index_PEexp.c        1.157e-01  5.865e-03  2.606e+04  19.732  < 2e-16 ***
## pRepD                3.052e-01  2.348e-02  2.886e+04  12.995  < 2e-16 ***
## pRepI                4.887e-01  3.139e-02  2.885e+04  15.571  < 2e-16 ***
## index_PEexp.c:pRepD -2.034e-02  7.250e-03  2.842e+04  -2.806  0.00502 ** 
## index_PEexp.c:pRepI -1.960e-02  1.043e-02  2.885e+04  -1.878  0.06034 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.086                              
## pRepD       -0.297 -0.165                       
## pRepI       -0.221 -0.113  0.407                
## indx_PE.:RD -0.066 -0.775  0.044  0.091         
## indx_PE.:RI -0.045 -0.529  0.082  0.176  0.435

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_PEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115130.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6987 -0.8666 -0.2413  0.7284  2.6053 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.01886  0.1373  
##  Residual             3.15306  1.7757  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.267e+00  4.751e-02  1.933e+01  68.769   <2e-16 ***
## index_PEexp.c        9.613e-02  8.857e-03  2.861e+04  10.854   <2e-16 ***
## pIndD               -1.836e-01  3.059e-02  2.886e+04  -6.000    2e-09 ***
## pIndR               -4.887e-01  3.139e-02  2.885e+04 -15.571   <2e-16 ***
## index_PEexp.c:pIndD -7.482e-04  9.780e-03  2.886e+04  -0.076   0.9390    
## index_PEexp.c:pIndR  1.960e-02  1.043e-02  2.885e+04   1.878   0.0603 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.090                              
## pIndD       -0.472 -0.145                       
## pIndR       -0.459 -0.132  0.713                
## indx_PE.:ID -0.080 -0.884  0.080  0.120         
## indx_PE.:IR -0.075 -0.827  0.117  0.176  0.745

D. risk severity

risk severity ~ indexes * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_PEexp.c) * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 90310.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3896 -0.6747 -0.0424  0.6382  3.0250 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007331 0.08562 
##  Residual             1.339442 1.15734 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.161e+00  2.586e-02  1.108e+01 160.888   <2e-16 ***
## index_PEexp.c           6.750e-02  2.602e-03  2.215e+04  25.936   <2e-16 ***
## pDem_Rep               -7.642e-01  1.532e-02  2.882e+04 -49.875   <2e-16 ***
## pInd_Not               -7.669e-03  1.870e-02  2.882e+04  -0.410    0.682    
## index_PEexp.c:pDem_Rep  3.931e-02  4.729e-03  2.829e+04   8.312   <2e-16 ***
## index_PEexp.c:pInd_Not -2.270e-03  6.153e-03  2.882e+04  -0.369    0.712    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.033                             
## pDem_Rep     0.019  0.145                      
## pInd_Not    -0.118 -0.104  0.037               
## ind_PE.:D_R  0.040  0.157  0.045  0.082        
## ind_PE.:I_N -0.029 -0.445  0.074  0.144  0.097
## Warning: Removed 9 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_PEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90310.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3896 -0.6747 -0.0424  0.6382  3.0250 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007331 0.08562 
##  Residual             1.339442 1.15734 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.541e+00  2.678e-02  1.272e+01 169.576  < 2e-16 ***
## index_PEexp.c        4.709e-02  2.988e-03  2.469e+04  15.762  < 2e-16 ***
## pDemR               -7.642e-01  1.532e-02  2.882e+04 -49.875  < 2e-16 ***
## pDemI               -3.744e-01  1.994e-02  2.882e+04 -18.774  < 2e-16 ***
## index_PEexp.c:pDemR  3.931e-02  4.729e-03  2.829e+04   8.312  < 2e-16 ***
## index_PEexp.c:pDemI  2.193e-02  6.375e-03  2.882e+04   3.439 0.000584 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.076                              
## pDemR       -0.259  0.141                       
## pDemI       -0.199  0.109  0.350                
## indx_PE.:DR  0.045 -0.589  0.045 -0.060         
## indx_PE.:DI  0.032 -0.426 -0.055  0.080  0.277

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124032.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.95650 -0.79241  0.04414  0.95556  1.61786 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007639 0.0874  
##  Residual             4.301809 2.0741  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.425e-01  3.236e-02  1.812e+01   4.402 0.000339 ***
## index_PEexp.c        8.270e-02  6.810e-03  1.456e+04  12.145  < 2e-16 ***
## pRepD                4.965e-01  2.743e-02  2.877e+04  18.103  < 2e-16 ***
## pRepI               -1.992e-01  3.667e-02  2.884e+04  -5.434 5.56e-08 ***
## index_PEexp.c:pRepD -2.922e-02  8.450e-03  2.473e+04  -3.458 0.000545 ***
## index_PEexp.c:pRepI  1.618e-02  1.218e-02  2.867e+04   1.328 0.184095    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.133                              
## pRepD       -0.464 -0.163                       
## pRepI       -0.346 -0.113  0.408                
## indx_PE.:RD -0.103 -0.777  0.043  0.091         
## indx_PE.:RI -0.071 -0.531  0.082  0.175  0.434

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_PEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90310.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3896 -0.6747 -0.0424  0.6382  3.0250 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007331 0.08562 
##  Residual             1.339442 1.15734 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.166e+00  3.003e-02  2.015e+01 138.707  < 2e-16 ***
## index_PEexp.c        6.902e-02  5.772e-03  2.852e+04  11.957  < 2e-16 ***
## pIndD                3.744e-01  1.994e-02  2.882e+04  18.774  < 2e-16 ***
## pIndR               -3.898e-01  2.047e-02  2.881e+04 -19.044  < 2e-16 ***
## index_PEexp.c:pIndD -2.193e-02  6.375e-03  2.882e+04  -3.439 0.000584 ***
## index_PEexp.c:pIndR  1.739e-02  6.803e-03  2.881e+04   2.556 0.010604 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.093                              
## pIndD       -0.487 -0.145                       
## pIndR       -0.473 -0.132  0.713                
## indx_PE.:ID -0.082 -0.884  0.080  0.120         
## indx_PE.:IR -0.077 -0.827  0.117  0.176  0.744

E. worst of Covid is ahead/behind

worstBorA ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_PEexp.c) * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105997.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00822 -0.63377  0.04405  0.72769  2.08455 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005204 0.07214 
##  Residual             2.298484 1.51608 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             7.640e-01  2.309e-02  1.119e+01  33.094 1.61e-12 ***
## index_PEexp.c           5.782e-02  3.387e-03  1.155e+04  17.074  < 2e-16 ***
## pDem_Rep               -1.183e+00  2.005e-02  2.881e+04 -59.026  < 2e-16 ***
## pInd_Not               -8.076e-02  2.449e-02  2.886e+04  -3.298 0.000976 ***
## index_PEexp.c:pDem_Rep  7.189e-02  6.182e-03  2.605e+04  11.630  < 2e-16 ***
## index_PEexp.c:pInd_Not  1.447e-02  8.060e-03  2.886e+04   1.795 0.072678 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.048                             
## pDem_Rep     0.028  0.143                      
## pInd_Not    -0.173 -0.104  0.037               
## ind_PE.:D_R  0.059  0.157  0.045  0.082        
## ind_PE.:I_N -0.043 -0.448  0.074  0.144  0.096
## Warning: Removed 9 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_PEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105997.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00822 -0.63377  0.04405  0.72769  2.08455 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005204 0.07214 
##  Residual             2.298484 1.51608 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.329e+00  2.480e-02  1.490e+01  53.588  < 2e-16 ***
## index_PEexp.c        2.665e-02  3.893e-03  1.566e+04   6.845 7.95e-12 ***
## pDemR               -1.183e+00  2.005e-02  2.881e+04 -59.026  < 2e-16 ***
## pDemI               -5.110e-01  2.611e-02  2.886e+04 -19.567  < 2e-16 ***
## index_PEexp.c:pDemR  7.189e-02  6.182e-03  2.605e+04  11.630  < 2e-16 ***
## index_PEexp.c:pDemI  2.148e-02  8.349e-03  2.886e+04   2.573   0.0101 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.107                              
## pDemR       -0.366  0.140                       
## pDemI       -0.281  0.108  0.349                
## indx_PE.:DR  0.063 -0.592  0.045 -0.060         
## indx_PE.:DI  0.046 -0.428 -0.055  0.080  0.277

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_PEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105997.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00822 -0.63377  0.04405  0.72769  2.08455 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005204 0.07214 
##  Residual             2.298484 1.51608 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.456e-01  2.556e-02  1.681e+01   5.698 2.73e-05 ***
## index_PEexp.c        9.854e-02  4.989e-03  1.748e+04  19.751  < 2e-16 ***
## pRepD                1.183e+00  2.005e-02  2.881e+04  59.026  < 2e-16 ***
## pRepI                6.725e-01  2.681e-02  2.885e+04  25.088  < 2e-16 ***
## index_PEexp.c:pRepD -7.189e-02  6.182e-03  2.605e+04 -11.630  < 2e-16 ***
## index_PEexp.c:pRepI -5.041e-02  8.906e-03  2.875e+04  -5.661 1.52e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.124                              
## pRepD       -0.429 -0.164                       
## pRepI       -0.320 -0.114  0.408                
## indx_PE.:RD -0.096 -0.777  0.045  0.092         
## indx_PE.:RI -0.066 -0.531  0.083  0.176  0.434

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_PEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105997.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00822 -0.63377  0.04405  0.72769  2.08455 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005204 0.07214 
##  Residual             2.298484 1.51608 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          8.181e-01  3.055e-02  3.430e+01  26.780  < 2e-16 ***
## index_PEexp.c        4.813e-02  7.551e-03  2.721e+04   6.374 1.87e-10 ***
## pIndD                5.110e-01  2.611e-02  2.886e+04  19.567  < 2e-16 ***
## pIndR               -6.725e-01  2.681e-02  2.885e+04 -25.088  < 2e-16 ***
## index_PEexp.c:pIndD -2.148e-02  8.349e-03  2.886e+04  -2.573   0.0101 *  
## index_PEexp.c:pIndR  5.041e-02  8.906e-03  2.875e+04   5.661 1.52e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.120                              
## pIndD       -0.627 -0.144                       
## pIndR       -0.610 -0.132  0.713                
## indx_PE.:ID -0.106 -0.885  0.080  0.120         
## indx_PE.:IR -0.099 -0.829  0.117  0.176  0.745

F. vaccine attitudes

vaxAttitudes ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 124032.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.95650 -0.79241  0.04414  0.95556  1.61786 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007639 0.0874  
##  Residual             4.301809 2.0741  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             2.430e-01  2.868e-02  1.118e+01   8.474 3.36e-06 ***
## index_PEexp.c           7.825e-02  4.621e-03  8.851e+03  16.934  < 2e-16 ***
## pDem_Rep               -4.965e-01  2.743e-02  2.877e+04 -18.103  < 2e-16 ***
## pInd_Not                4.475e-01  3.350e-02  2.884e+04  13.357  < 2e-16 ***
## index_PEexp.c:pDem_Rep  2.922e-02  8.450e-03  2.473e+04   3.458 0.000545 ***
## index_PEexp.c:pInd_Not -3.079e-02  1.103e-02  2.885e+04  -2.793 0.005233 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDm_Rp pInd_N i_PE.:D
## indx_PExp.c  0.053                             
## pDem_Rep     0.031  0.142                      
## pInd_Not    -0.190 -0.104  0.037               
## ind_PE.:D_R  0.064  0.156  0.043  0.082        
## ind_PE.:I_N -0.048 -0.449  0.074  0.144  0.096

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124032.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.95650 -0.79241  0.04414  0.95556  1.61786 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007639 0.0874  
##  Residual             4.301809 2.0741  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.390e-01  3.125e-02  1.576e+01  20.446 9.11e-13 ***
## index_PEexp.c        5.348e-02  5.321e-03  1.267e+04  10.051  < 2e-16 ***
## pDemR               -4.965e-01  2.743e-02  2.877e+04 -18.103  < 2e-16 ***
## pDemI               -6.958e-01  3.573e-02  2.884e+04 -19.473  < 2e-16 ***
## index_PEexp.c:pDemR  2.922e-02  8.450e-03  2.473e+04   3.458 0.000545 ***
## index_PEexp.c:pDemI  4.540e-02  1.142e-02  2.884e+04   3.974 7.07e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pDemR  pDemI  i_PE.:DR
## indx_PExp.c -0.116                              
## pDemR       -0.398  0.140                       
## pDemI       -0.305  0.107  0.349                
## indx_PE.:DR  0.069 -0.593  0.043 -0.060         
## indx_PE.:DI  0.050 -0.430 -0.056  0.080  0.277

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124032.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.95650 -0.79241  0.04414  0.95556  1.61786 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007639 0.0874  
##  Residual             4.301809 2.0741  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.425e-01  3.236e-02  1.812e+01   4.402 0.000339 ***
## index_PEexp.c        8.270e-02  6.810e-03  1.456e+04  12.145  < 2e-16 ***
## pRepD                4.965e-01  2.743e-02  2.877e+04  18.103  < 2e-16 ***
## pRepI               -1.992e-01  3.667e-02  2.884e+04  -5.434 5.56e-08 ***
## index_PEexp.c:pRepD -2.922e-02  8.450e-03  2.473e+04  -3.458 0.000545 ***
## index_PEexp.c:pRepI  1.618e-02  1.218e-02  2.867e+04   1.328 0.184095    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pRepD  pRepI  i_PE.:RD
## indx_PExp.c  0.133                              
## pRepD       -0.464 -0.163                       
## pRepI       -0.346 -0.113  0.408                
## indx_PE.:RD -0.103 -0.777  0.043  0.091         
## indx_PE.:RI -0.071 -0.531  0.082  0.175  0.434

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_PEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124032.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.95650 -0.79241  0.04414  0.95556  1.61786 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.007639 0.0874  
##  Residual             4.301809 2.0741  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -5.678e-02  3.964e-02  4.081e+01  -1.432    0.160    
## index_PEexp.c        9.888e-02  1.032e-02  2.640e+04   9.578  < 2e-16 ***
## pIndD                6.957e-01  3.573e-02  2.884e+04  19.473  < 2e-16 ***
## pIndR                1.992e-01  3.667e-02  2.884e+04   5.434 5.56e-08 ***
## index_PEexp.c:pIndD -4.540e-02  1.142e-02  2.884e+04  -3.974 7.07e-05 ***
## index_PEexp.c:pIndR -1.618e-02  1.218e-02  2.867e+04  -1.328    0.184    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. pIndD  pIndR  i_PE.:ID
## indx_PExp.c  0.126                              
## pIndD       -0.661 -0.144                       
## pIndR       -0.643 -0.133  0.713                
## indx_PE.:ID -0.112 -0.885  0.080  0.120         
## indx_PE.:IR -0.105 -0.829  0.117  0.175  0.745

5. NEGATIVE EMOTIONS

A. risk3

risk3 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_NEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103804.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2133 -0.8265  0.1394  0.6787  2.4842 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03341  0.1828  
##  Residual             2.13213  1.4602  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.503e+00  5.362e-02  1.072e+01  83.978  < 2e-16 ***
## index_NEexp.c           1.178e-01  4.761e-03  1.747e+04  24.749  < 2e-16 ***
## pDem_Rep               -1.473e+00  1.929e-02  2.884e+04 -76.341  < 2e-16 ***
## pInd_Not                1.553e-01  2.345e-02  2.884e+04   6.623 3.58e-11 ***
## index_NEexp.c:pDem_Rep  1.025e-01  7.583e-03  2.885e+04  13.522  < 2e-16 ***
## index_NEexp.c:pInd_Not -8.927e-03  9.540e-03  2.884e+04  -0.936    0.349    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.016                             
## pDem_Rep     0.012  0.161                      
## pInd_Not    -0.071 -0.076  0.035               
## ind_NE.:D_R  0.020  0.199  0.056  0.067        
## ind_NE.:I_N -0.012 -0.357  0.064  0.109  0.130

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_NEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103804.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2133 -0.8265  0.1394  0.6787  2.4842 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03341  0.1828  
##  Residual             2.13213  1.4602  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.291e+00  5.432e-02  1.129e+01  97.391  < 2e-16 ***
## index_NEexp.c        6.360e-02  5.094e-03  2.105e+04  12.485  < 2e-16 ***
## pDemR               -1.473e+00  1.929e-02  2.884e+04 -76.341  < 2e-16 ***
## pDemI               -8.918e-01  2.505e-02  2.885e+04 -35.609  < 2e-16 ***
## index_NEexp.c:pDemR  1.025e-01  7.583e-03  2.885e+04  13.522  < 2e-16 ***
## index_NEexp.c:pDemI  6.019e-02  9.797e-03  2.884e+04   6.144 8.13e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.041                              
## pDemR       -0.161  0.148                       
## pDemI       -0.123  0.107  0.353                
## indx_NE.:DR  0.020 -0.478  0.056 -0.041         
## indx_NE.:DI  0.015 -0.367 -0.040  0.059  0.260

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_NEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103804.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2133 -0.8265  0.1394  0.6787  2.4842 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03341  0.1828  
##  Residual             2.13213  1.4602  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.818e+00  5.465e-02  1.157e+01  69.857  < 2e-16 ***
## index_NEexp.c        1.661e-01  6.822e-03  2.436e+04  24.352  < 2e-16 ***
## pRepD                1.473e+00  1.929e-02  2.884e+04  76.341  < 2e-16 ***
## pRepI                5.812e-01  2.567e-02  2.884e+04  22.644  < 2e-16 ***
## index_NEexp.c:pRepD -1.025e-01  7.583e-03  2.885e+04 -13.522  < 2e-16 ***
## index_NEexp.c:pRepI -4.234e-02  1.072e-02  2.884e+04  -3.952 7.78e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.052                              
## pRepD       -0.193 -0.173                       
## pRepI       -0.144 -0.097  0.408                
## indx_NE.:RD -0.039 -0.755  0.056  0.082         
## indx_NE.:RI -0.027 -0.521  0.077  0.139  0.470

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ index_NEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103804.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2133 -0.8265  0.1394  0.6787  2.4842 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.03341  0.1828  
##  Residual             2.13213  1.4602  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.399e+00  5.694e-02  1.363e+01  77.252  < 2e-16 ***
## index_NEexp.c        1.238e-01  9.233e-03  2.759e+04  13.409  < 2e-16 ***
## pIndD                8.918e-01  2.505e-02  2.885e+04  35.609  < 2e-16 ***
## pIndR               -5.812e-01  2.567e-02  2.884e+04 -22.644  < 2e-16 ***
## index_NEexp.c:pIndD -6.019e-02  9.797e-03  2.884e+04  -6.144 8.13e-10 ***
## index_NEexp.c:pIndR  4.234e-02  1.072e-02  2.884e+04   3.952 7.78e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.047                              
## pIndD       -0.322 -0.122                       
## pIndR       -0.313 -0.090  0.711                
## indx_NE.:ID -0.041 -0.858  0.059  0.088         
## indx_NE.:IR -0.037 -0.776  0.084  0.139  0.730

B. risk4

risk4 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_NEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99405.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2465 -0.5847  0.1500  0.5758  1.7235 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0003564 0.01888 
##  Residual             1.8328300 1.35382 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.931e+00  1.039e-02  5.130e+00 474.630 4.15e-13 ***
## index_NEexp.c           1.977e-02  3.763e-03  5.449e+01   5.252 2.56e-06 ***
## pDem_Rep               -5.181e-01  1.778e-02  1.938e+04 -29.135  < 2e-16 ***
## pInd_Not                1.662e-01  2.173e-02  2.882e+04   7.647 2.13e-14 ***
## index_NEexp.c:pDem_Rep  1.781e-02  6.989e-03  1.464e+04   2.549   0.0108 *  
## index_NEexp.c:pInd_Not  5.040e-03  8.843e-03  2.884e+04   0.570   0.5687    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.076                             
## pDem_Rep     0.056  0.122                      
## pInd_Not    -0.341 -0.070  0.038               
## ind_NE.:D_R  0.096  0.210  0.052  0.068        
## ind_NE.:I_N -0.058 -0.412  0.065  0.108  0.130

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_NEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99405.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2465 -0.5847  0.1500  0.5758  1.7235 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0003564 0.01888 
##  Residual             1.8328300 1.35382 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.245e+00  1.313e-02  1.292e+01 399.482  < 2e-16 ***
## index_NEexp.c        1.252e-02  4.203e-03  1.095e+02   2.980  0.00356 ** 
## pDemR               -5.181e-01  1.778e-02  1.938e+04 -29.135  < 2e-16 ***
## pDemI               -4.252e-01  2.316e-02  2.681e+04 -18.358  < 2e-16 ***
## index_NEexp.c:pDemR  1.781e-02  6.989e-03  1.464e+04   2.549  0.01082 *  
## index_NEexp.c:pDemI  3.867e-03  9.077e-03  2.872e+04   0.426  0.67008    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.141                              
## pDemR       -0.612  0.112                       
## pDemI       -0.470  0.084  0.348                
## indx_NE.:DR  0.078 -0.553  0.052 -0.044         
## indx_NE.:DI  0.060 -0.425 -0.044  0.058  0.259

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_NEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99405.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2465 -0.5847  0.1500  0.5758  1.7235 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0003564 0.01888 
##  Residual             1.8328300 1.35382 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.727e+00  1.424e-02  1.784e+01 331.946  < 2e-16 ***
## index_NEexp.c        3.034e-02  5.833e-03  2.390e+02   5.201 4.26e-07 ***
## pRepD                5.181e-01  1.778e-02  1.938e+04  29.135  < 2e-16 ***
## pRepI                9.288e-02  2.379e-02  2.884e+04   3.903 9.51e-05 ***
## index_NEexp.c:pRepD -1.781e-02  6.989e-03  1.464e+04  -2.549   0.0108 *  
## index_NEexp.c:pRepI -1.395e-02  9.921e-03  2.756e+04  -1.406   0.1598    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.170                              
## pRepD       -0.684 -0.142                       
## pRepI       -0.510 -0.099  0.409                
## indx_NE.:RD -0.136 -0.800  0.052  0.081         
## indx_NE.:RI -0.095 -0.560  0.076  0.139  0.468

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ index_NEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99405.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2465 -0.5847  0.1500  0.5758  1.7235 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0003564 0.01888 
##  Residual             1.8328300 1.35382 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.819e+00  2.057e-02  7.839e+01 234.278  < 2e-16 ***
## index_NEexp.c        1.639e-02  8.225e-03  1.076e+03   1.993   0.0465 *  
## pIndD                4.252e-01  2.316e-02  2.681e+04  18.358  < 2e-16 ***
## pIndR               -9.288e-02  2.379e-02  2.884e+04  -3.903 9.51e-05 ***
## index_NEexp.c:pIndD -3.867e-03  9.077e-03  2.872e+04  -0.426   0.6701    
## index_NEexp.c:pIndR  1.395e-02  9.921e-03  2.756e+04   1.406   0.1598    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.117                              
## pIndD       -0.826 -0.107                       
## pIndR       -0.803 -0.097  0.713                
## indx_NE.:ID -0.103 -0.887  0.058  0.089         
## indx_NE.:IR -0.094 -0.809  0.084  0.139  0.733

C. risk5

risk5 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_NEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115274.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9679 -0.8687 -0.2426  0.7337  2.7314 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.06084  0.2467  
##  Residual             3.16764  1.7798  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.041e+00  7.215e-02  1.077e+01  42.149 2.65e-13 ***
## index_NEexp.c           1.421e-01  5.810e-03  2.013e+04  24.459  < 2e-16 ***
## pDem_Rep               -3.172e-01  2.351e-02  2.886e+04 -13.490  < 2e-16 ***
## pInd_Not               -3.242e-01  2.858e-02  2.885e+04 -11.342  < 2e-16 ***
## index_NEexp.c:pDem_Rep  4.197e-02  9.238e-03  2.886e+04   4.543 5.57e-06 ***
## index_NEexp.c:pInd_Not  1.890e-02  1.163e-02  2.885e+04   1.625    0.104    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.015                             
## pDem_Rep     0.011  0.160                      
## pInd_Not    -0.065 -0.076  0.035               
## ind_NE.:D_R  0.018  0.199  0.055  0.067        
## ind_NE.:I_N -0.011 -0.357  0.063  0.109  0.130

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_NEexp.c * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115274.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9679 -0.8687 -0.2426  0.7337  2.7314 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.06084  0.2467  
##  Residual             3.16764  1.7798  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.093e+00  7.293e-02  1.124e+01  42.408 9.23e-14 ***
## index_NEexp.c        1.274e-01  6.216e-03  2.316e+04  20.488  < 2e-16 ***
## pDemR               -3.172e-01  2.351e-02  2.886e+04 -13.490  < 2e-16 ***
## pDemI                1.656e-01  3.053e-02  2.886e+04   5.425 5.84e-08 ***
## index_NEexp.c:pDemR  4.197e-02  9.238e-03  2.886e+04   4.543 5.57e-06 ***
## index_NEexp.c:pDemI  2.086e-03  1.194e-02  2.885e+04   0.175    0.861    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.037                              
## pDemR       -0.146  0.148                       
## pDemI       -0.112  0.107  0.353                
## indx_NE.:DR  0.018 -0.477  0.055 -0.041         
## indx_NE.:DI  0.014 -0.367 -0.040  0.060  0.260

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_NEexp.c * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115274.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9679 -0.8687 -0.2426  0.7337  2.7314 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.06084  0.2467  
##  Residual             3.16764  1.7798  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.775e+00  7.328e-02  1.146e+01  37.872 2.11e-13 ***
## index_NEexp.c        1.693e-01  8.317e-03  2.572e+04  20.358  < 2e-16 ***
## pRepD                3.172e-01  2.351e-02  2.886e+04  13.490  < 2e-16 ***
## pRepI                4.828e-01  3.128e-02  2.885e+04  15.434  < 2e-16 ***
## index_NEexp.c:pRepD -4.197e-02  9.238e-03  2.886e+04  -4.543 5.57e-06 ***
## index_NEexp.c:pRepI -3.988e-02  1.306e-02  2.885e+04  -3.054  0.00226 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.047                              
## pRepD       -0.176 -0.172                       
## pRepI       -0.130 -0.096  0.407                
## indx_NE.:RD -0.036 -0.754  0.055  0.082         
## indx_NE.:RI -0.025 -0.520  0.076  0.139  0.469

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ index_NEexp.c * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115274.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9679 -0.8687 -0.2426  0.7337  2.7314 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.06084  0.2467  
##  Residual             3.16764  1.7798  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.258e+00  7.583e-02  1.314e+01  42.964 1.59e-15 ***
## index_NEexp.c        1.294e-01  1.126e-02  2.803e+04  11.497  < 2e-16 ***
## pIndD               -1.656e-01  3.053e-02  2.886e+04  -5.425 5.84e-08 ***
## pIndR               -4.828e-01  3.128e-02  2.885e+04 -15.434  < 2e-16 ***
## index_NEexp.c:pIndD -2.086e-03  1.194e-02  2.885e+04  -0.175  0.86132    
## index_NEexp.c:pIndR  3.988e-02  1.306e-02  2.885e+04   3.054  0.00226 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.043                              
## pIndD       -0.295 -0.122                       
## pIndR       -0.286 -0.090  0.711                
## indx_NE.:ID -0.037 -0.858  0.060  0.088         
## indx_NE.:IR -0.034 -0.776  0.084  0.139  0.730

D. risk severity

risk severity ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ index_NEexp.c * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90391.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5353 -0.6635 -0.0517  0.6319  3.1311 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02542  0.1594  
##  Residual             1.34270  1.1587  
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.158e+00  4.664e-02  1.077e+01  89.153   <2e-16 ***
## index_NEexp.c           9.638e-02  3.784e-03  1.993e+04  25.472   <2e-16 ***
## pDem_Rep               -7.679e-01  1.532e-02  2.882e+04 -50.119   <2e-16 ***
## pInd_Not               -2.174e-03  1.861e-02  2.881e+04  -0.117    0.907    
## index_NEexp.c:pDem_Rep  5.446e-02  6.021e-03  2.882e+04   9.045   <2e-16 ***
## index_NEexp.c:pInd_Not  4.926e-03  7.572e-03  2.881e+04   0.651    0.515    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.015                             
## pDem_Rep     0.011  0.161                      
## pInd_Not    -0.065 -0.076  0.035               
## ind_NE.:D_R  0.019  0.199  0.056  0.067        
## ind_NE.:I_N -0.011 -0.356  0.064  0.109  0.131
## Warning: Removed 6 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_NEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90391.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5353 -0.6635 -0.0517  0.6319  3.1311 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02542  0.1594  
##  Residual             1.34270  1.1587  
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.542e+00  4.715e-02  1.124e+01  96.316  < 2e-16 ***
## index_NEexp.c        7.077e-02  4.047e-03  2.299e+04  17.486  < 2e-16 ***
## pDemR               -7.679e-01  1.532e-02  2.882e+04 -50.119  < 2e-16 ***
## pDemI               -3.818e-01  1.988e-02  2.882e+04 -19.206  < 2e-16 ***
## index_NEexp.c:pDemR  5.446e-02  6.021e-03  2.882e+04   9.045  < 2e-16 ***
## index_NEexp.c:pDemI  2.231e-02  7.775e-03  2.881e+04   2.869  0.00412 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.038                              
## pDemR       -0.147  0.148                       
## pDemI       -0.113  0.107  0.353                
## indx_NE.:DR  0.018 -0.477  0.056 -0.041         
## indx_NE.:DI  0.014 -0.367 -0.040  0.059  0.260

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124073
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13488 -0.78677  0.03072  0.94870  1.68627 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02982  0.1727  
##  Residual             4.30612  2.0751  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.414e-01  5.379e-02  1.221e+01   2.628   0.0218 *  
## index_NEexp.c        1.233e-01  9.643e-03  1.507e+04  12.791  < 2e-16 ***
## pRepD                4.991e-01  2.741e-02  2.876e+04  18.211  < 2e-16 ***
## pRepI               -2.092e-01  3.647e-02  2.884e+04  -5.736 9.79e-09 ***
## index_NEexp.c:pRepD -4.375e-02  1.077e-02  2.881e+04  -4.062 4.87e-05 ***
## index_NEexp.c:pRepI  3.086e-03  1.522e-02  2.885e+04   0.203   0.8394    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.074                              
## pRepD       -0.279 -0.170                       
## pRepI       -0.207 -0.096  0.408                
## indx_NE.:RD -0.056 -0.757  0.055  0.082         
## indx_NE.:RI -0.039 -0.523  0.076  0.139  0.469

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_NEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90391.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5353 -0.6635 -0.0517  0.6319  3.1311 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02542  0.1594  
##  Residual             1.34270  1.1587  
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.160e+00  4.906e-02  1.318e+01  84.792  < 2e-16 ***
## index_NEexp.c        9.308e-02  7.330e-03  2.797e+04  12.699  < 2e-16 ***
## pIndD                3.818e-01  1.988e-02  2.882e+04  19.206  < 2e-16 ***
## pIndR               -3.861e-01  2.037e-02  2.881e+04 -18.953  < 2e-16 ***
## index_NEexp.c:pIndD -2.231e-02  7.775e-03  2.881e+04  -2.869 0.004120 ** 
## index_NEexp.c:pIndR  3.216e-02  8.506e-03  2.882e+04   3.781 0.000157 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.044                              
## pIndD       -0.297 -0.122                       
## pIndR       -0.288 -0.090  0.710                
## indx_NE.:ID -0.037 -0.858  0.059  0.088         
## indx_NE.:IR -0.034 -0.775  0.084  0.139  0.730

E. worst of Covid is ahead/behind

worstBorA ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c) * (pDem_Rep + pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106024.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.13328 -0.64698  0.02705  0.71578  2.10551 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02009  0.1417  
##  Residual             2.29965  1.5165  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             7.606e-01  4.210e-02  1.052e+01  18.066 2.95e-09 ***
## index_NEexp.c           8.808e-02  4.915e-03  9.474e+03  17.919  < 2e-16 ***
## pDem_Rep               -1.184e+00  2.003e-02  2.881e+04 -59.103  < 2e-16 ***
## pInd_Not               -8.331e-02  2.435e-02  2.885e+04  -3.421 0.000625 ***
## index_NEexp.c:pDem_Rep  8.853e-02  7.877e-03  2.884e+04  11.239  < 2e-16 ***
## index_NEexp.c:pInd_Not  2.102e-02  9.909e-03  2.885e+04   2.122 0.033862 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.021                             
## pDem_Rep     0.016  0.159                      
## pInd_Not    -0.094 -0.075  0.035               
## ind_NE.:D_R  0.027  0.200  0.056  0.067        
## ind_NE.:I_N -0.016 -0.359  0.064  0.109  0.131
## Warning: Removed 6 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106024.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.13328 -0.64698  0.02705  0.71578  2.10551 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02009  0.1417  
##  Residual             2.29965  1.5165  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.325e+00  4.306e-02  1.151e+01  30.772 2.07e-12 ***
## index_NEexp.c        5.076e-02  5.266e-03  1.332e+04   9.638  < 2e-16 ***
## pDemR               -1.184e+00  2.003e-02  2.881e+04 -59.103  < 2e-16 ***
## pDemI               -5.086e-01  2.600e-02  2.886e+04 -19.559  < 2e-16 ***
## index_NEexp.c:pDemR  8.853e-02  7.877e-03  2.884e+04  11.239  < 2e-16 ***
## index_NEexp.c:pDemI  2.324e-02  1.017e-02  2.885e+04   2.284   0.0224 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.054                              
## pDemR       -0.210  0.146                       
## pDemI       -0.162  0.106  0.352                
## indx_NE.:DR  0.026 -0.480  0.056 -0.041         
## indx_NE.:DI  0.020 -0.370 -0.041  0.059  0.260

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106024.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.13328 -0.64698  0.02705  0.71578  2.10551 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02009  0.1417  
##  Residual             2.29965  1.5165  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.412e-01  4.351e-02  1.199e+01   3.245  0.00704 ** 
## index_NEexp.c        1.393e-01  7.067e-03  1.823e+04  19.708  < 2e-16 ***
## pRepD                1.184e+00  2.003e-02  2.881e+04  59.103  < 2e-16 ***
## pRepI                6.752e-01  2.666e-02  2.885e+04  25.331  < 2e-16 ***
## index_NEexp.c:pRepD -8.853e-02  7.877e-03  2.884e+04 -11.239  < 2e-16 ***
## index_NEexp.c:pRepI -6.529e-02  1.113e-02  2.886e+04  -5.866 4.52e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.068                              
## pRepD       -0.252 -0.172                       
## pRepI       -0.187 -0.097  0.408                
## indx_NE.:RD -0.051 -0.757  0.056  0.083         
## indx_NE.:RI -0.035 -0.522  0.077  0.139  0.470

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106024.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.13328 -0.64698  0.02705  0.71578  2.10551 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02009  0.1417  
##  Residual             2.29965  1.5165  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          8.164e-01  4.657e-02  1.574e+01  17.532 9.52e-12 ***
## index_NEexp.c        7.400e-02  9.573e-03  2.514e+04   7.730 1.11e-14 ***
## pIndD                5.086e-01  2.600e-02  2.886e+04  19.559  < 2e-16 ***
## pIndR               -6.752e-01  2.666e-02  2.885e+04 -25.331  < 2e-16 ***
## index_NEexp.c:pIndD -2.324e-02  1.017e-02  2.885e+04  -2.284   0.0224 *  
## index_NEexp.c:pIndR  6.529e-02  1.113e-02  2.886e+04   5.866 4.52e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.060                              
## pIndD       -0.409 -0.121                       
## pIndR       -0.397 -0.090  0.711                
## indx_NE.:ID -0.052 -0.859  0.059  0.088         
## indx_NE.:IR -0.047 -0.777  0.084  0.139  0.730

F. vaccine attitudes

vaxxAttitudes ~ negative emotion * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ index_NEexp.c * (pDem_Rep + pInd_Not) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 124073
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13488 -0.78677  0.03072  0.94870  1.68627 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02982  0.1727  
##  Residual             4.30612  2.0751  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             2.395e-01  5.166e-02  1.039e+01   4.637 0.000837 ***
## index_NEexp.c           1.097e-01  6.704e-03  6.853e+03  16.364  < 2e-16 ***
## pDem_Rep               -4.991e-01  2.741e-02  2.876e+04 -18.211  < 2e-16 ***
## pInd_Not                4.588e-01  3.333e-02  2.884e+04  13.766  < 2e-16 ***
## index_NEexp.c:pDem_Rep  4.375e-02  1.077e-02  2.881e+04   4.062 4.87e-05 ***
## index_NEexp.c:pInd_Not -2.496e-02  1.356e-02  2.884e+04  -1.841 0.065607 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDm_Rp pInd_N i_NE.:D
## indx_NExp.c  0.024                             
## pDem_Rep     0.018  0.158                      
## pInd_Not    -0.105 -0.076  0.035               
## ind_NE.:D_R  0.030  0.199  0.055  0.067        
## ind_NE.:I_N -0.018 -0.360  0.064  0.109  0.130
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c) * (pDemR + pDemI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124073
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13488 -0.78677  0.03072  0.94870  1.68627 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02982  0.1727  
##  Residual             4.30612  2.0751  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.405e-01  5.312e-02  1.162e+01  12.056 6.41e-08 ***
## index_NEexp.c        7.959e-02  7.193e-03  1.019e+04  11.065  < 2e-16 ***
## pDemR               -4.991e-01  2.741e-02  2.876e+04 -18.211  < 2e-16 ***
## pDemI               -7.083e-01  3.559e-02  2.884e+04 -19.904  < 2e-16 ***
## index_NEexp.c:pDemR  4.375e-02  1.077e-02  2.881e+04   4.062 4.87e-05 ***
## index_NEexp.c:pDemI  4.684e-02  1.392e-02  2.884e+04   3.364 0.000769 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pDemR  pDemI  i_NE.:DR
## indx_NExp.c -0.060                              
## pDemR       -0.233  0.146                       
## pDemI       -0.179  0.106  0.352                
## indx_NE.:DR  0.029 -0.482  0.055 -0.042         
## indx_NE.:DI  0.022 -0.371 -0.041  0.059  0.260

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c) * (pRepD + pRepI) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124073
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13488 -0.78677  0.03072  0.94870  1.68627 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02982  0.1727  
##  Residual             4.30612  2.0751  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.414e-01  5.379e-02  1.221e+01   2.628   0.0218 *  
## index_NEexp.c        1.233e-01  9.643e-03  1.507e+04  12.791  < 2e-16 ***
## pRepD                4.991e-01  2.741e-02  2.876e+04  18.211  < 2e-16 ***
## pRepI               -2.092e-01  3.647e-02  2.884e+04  -5.736 9.79e-09 ***
## index_NEexp.c:pRepD -4.375e-02  1.077e-02  2.881e+04  -4.062 4.87e-05 ***
## index_NEexp.c:pRepI  3.086e-03  1.522e-02  2.885e+04   0.203   0.8394    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pRepD  pRepI  i_NE.:RD
## indx_NExp.c  0.074                              
## pRepD       -0.279 -0.170                       
## pRepI       -0.207 -0.096  0.408                
## indx_NE.:RD -0.056 -0.757  0.055  0.082         
## indx_NE.:RI -0.039 -0.523  0.076  0.139  0.469

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c) * (pIndD + pIndR) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124073
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.13488 -0.78677  0.03072  0.94870  1.68627 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.02982  0.1727  
##  Residual             4.30612  2.0751  
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -6.783e-02  5.840e-02  1.697e+01  -1.162 0.261516    
## index_NEexp.c        1.264e-01  1.309e-02  2.339e+04   9.660  < 2e-16 ***
## pIndD                7.083e-01  3.559e-02  2.884e+04  19.904  < 2e-16 ***
## pIndR                2.092e-01  3.647e-02  2.884e+04   5.736 9.79e-09 ***
## index_NEexp.c:pIndD -4.684e-02  1.392e-02  2.884e+04  -3.364 0.000769 ***
## index_NEexp.c:pIndR -3.086e-03  1.522e-02  2.885e+04  -0.203 0.839379    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. pIndD  pIndR  i_NE.:ID
## indx_NExp.c  0.065                              
## pIndD       -0.446 -0.121                       
## pIndR       -0.434 -0.091  0.711                
## indx_NE.:ID -0.056 -0.860  0.059  0.088         
## indx_NE.:IR -0.051 -0.778  0.084  0.139  0.730

6. NEGATIVE VS. POSITIVE EMOTIONS

A. risk severity

risk severity ~ indexes * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_PEexp.c + index_NEexp.c) * (pDem_Rep +  
##     pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90323.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3955 -0.6713 -0.0457  0.6338  3.0313 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008713 0.09334 
##  Residual             1.339087 1.15719 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.161e+00  2.800e-02  1.055e+01 148.616  < 2e-16 ***
## index_PEexp.c           5.680e-02  5.884e-03  7.443e+02   9.654  < 2e-16 ***
## index_NEexp.c           1.807e-02  8.573e-03  4.622e+02   2.107 0.035626 *  
## pDem_Rep               -7.625e-01  1.533e-02  2.881e+04 -49.738  < 2e-16 ***
## pInd_Not               -7.400e-03  1.870e-02  2.881e+04  -0.396 0.692299    
## index_PEexp.c:pDem_Rep  2.728e-02  7.773e-03  2.705e+04   3.510 0.000449 ***
## index_PEexp.c:pInd_Not -1.119e-02  1.012e-02  2.882e+04  -1.107 0.268454    
## index_NEexp.c:pDem_Rep  2.000e-02  9.945e-03  2.633e+04   2.011 0.044340 *  
## index_NEexp.c:pInd_Not  1.466e-02  1.243e-02  2.882e+04   1.179 0.238243    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. in_NE. pDm_Rp pInd_N i_PE.:D i_PE.:I i_NE.:D
## indx_PExp.c  0.013                                                    
## indx_NExp.c  0.000 -0.896                                             
## pDem_Rep     0.018  0.037  0.030                                      
## pInd_Not    -0.109 -0.058  0.013  0.037                               
## ind_PE.:D_R  0.021  0.212 -0.200  0.012  0.045                        
## ind_PE.:I_N -0.020 -0.345  0.233  0.041  0.097  0.104                 
## ind_NE.:D_R  0.002 -0.229  0.269  0.019  0.006 -0.793  -0.094         
## ind_NE.:I_N  0.004  0.265 -0.272  0.006 -0.011 -0.100  -0.793   0.137
## Warning: Removed 9 row(s) containing missing values (geom_path).

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_PEexp.c + index_NEexp.c) * (pDem_Rep +  
##     pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90323.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3955 -0.6713 -0.0457  0.6338  3.0313 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008713 0.09334 
##  Residual             1.339087 1.15719 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.161e+00  2.800e-02  1.055e+01 148.616  < 2e-16 ***
## index_PEexp.c           5.680e-02  5.884e-03  7.443e+02   9.654  < 2e-16 ***
## index_NEexp.c           1.807e-02  8.573e-03  4.622e+02   2.107 0.035626 *  
## pDem_Rep               -7.625e-01  1.533e-02  2.881e+04 -49.738  < 2e-16 ***
## pInd_Not               -7.400e-03  1.870e-02  2.881e+04  -0.396 0.692299    
## index_PEexp.c:pDem_Rep  2.728e-02  7.773e-03  2.705e+04   3.510 0.000449 ***
## index_PEexp.c:pInd_Not -1.119e-02  1.012e-02  2.882e+04  -1.107 0.268454    
## index_NEexp.c:pDem_Rep  2.000e-02  9.945e-03  2.633e+04   2.011 0.044340 *  
## index_NEexp.c:pInd_Not  1.466e-02  1.243e-02  2.882e+04   1.179 0.238243    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_PE. in_NE. pDm_Rp pInd_N i_PE.:D i_PE.:I i_NE.:D
## indx_PExp.c  0.013                                                    
## indx_NExp.c  0.000 -0.896                                             
## pDem_Rep     0.018  0.037  0.030                                      
## pInd_Not    -0.109 -0.058  0.013  0.037                               
## ind_PE.:D_R  0.021  0.212 -0.200  0.012  0.045                        
## ind_PE.:I_N -0.020 -0.345  0.233  0.041  0.097  0.104                 
## ind_NE.:D_R  0.002 -0.229  0.269  0.019  0.006 -0.793  -0.094         
## ind_NE.:I_N  0.004  0.265 -0.272  0.006 -0.011 -0.100  -0.793   0.137
## Warning: Removed 6 row(s) containing missing values (geom_path).

## Warning: Removed 9 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_NEexp.c + index_PEexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90323.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3955 -0.6713 -0.0457  0.6338  3.0313 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008713 0.09334 
##  Residual             1.339087 1.15719 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.540e+00  2.885e-02  1.188e+01 157.391  < 2e-16 ***
## index_NEexp.c        1.290e-02  8.210e-03  6.751e+02   1.572 0.116438    
## index_PEexp.c        3.947e-02  5.909e-03  1.327e+03   6.680 3.51e-11 ***
## pDemR               -7.625e-01  1.533e-02  2.881e+04 -49.738  < 2e-16 ***
## pDemI               -3.738e-01  1.994e-02  2.882e+04 -18.746  < 2e-16 ***
## index_NEexp.c:pDemR  2.000e-02  9.945e-03  2.633e+04   2.011 0.044340 *  
## index_NEexp.c:pDemI -4.661e-03  1.274e-02  2.868e+04  -0.366 0.714506    
## index_PEexp.c:pDemR  2.728e-02  7.773e-03  2.705e+04   3.510 0.000449 ***
## index_PEexp.c:pDemI  2.483e-02  1.045e-02  2.874e+04   2.376 0.017507 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pDemR  pDemI  i_NE.:DR i_NE.:DI i_PE.:DR
## indx_NExp.c -0.005                                                       
## indx_PExp.c -0.032 -0.862                                                
## pDemR       -0.240  0.023  0.052                                         
## pDemI       -0.185  0.005  0.051  0.349                                  
## indx_NE.:DR -0.001 -0.257  0.240  0.019  0.002                           
## indx_NE.:DI -0.001 -0.229  0.209  0.002 -0.012  0.257                    
## indx_PE.:DR  0.026  0.222 -0.388  0.012 -0.038 -0.793   -0.212           
## indx_PE.:DI  0.019  0.176 -0.292 -0.036  0.058 -0.204   -0.793    0.271

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c + index_PEexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124049.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9604 -0.7763  0.0450  0.9542  1.6350 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.009048 0.09512 
##  Residual             4.301733 2.07406 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.436e-01  3.414e-02  1.576e+01   4.207  0.00069 ***
## index_NEexp.c        2.630e-02  1.846e-02  2.154e+02   1.425  0.15561    
## index_PEexp.c        6.723e-02  1.305e-02  3.918e+02   5.154 4.06e-07 ***
## pRepD                4.949e-01  2.744e-02  2.872e+04  18.034  < 2e-16 ***
## pRepI               -2.003e-01  3.668e-02  2.884e+04  -5.460 4.80e-08 ***
## index_NEexp.c:pRepD -1.573e-02  1.772e-02  2.189e+04  -0.888  0.37480    
## index_NEexp.c:pRepI -1.724e-02  2.508e-02  2.884e+04  -0.687  0.49184    
## index_PEexp.c:pRepD -1.985e-02  1.386e-02  2.191e+04  -1.432  0.15230    
## index_PEexp.c:pRepI  2.646e-02  2.007e-02  2.878e+04   1.319  0.18731    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pRepD  pRepI  i_NE.:RD i_NE.:RI i_PE.:RD
## indx_NExp.c  0.019                                                       
## indx_PExp.c  0.050 -0.853                                                
## pRepD       -0.440 -0.030 -0.060                                         
## pRepI       -0.328 -0.018 -0.043  0.408                                  
## indx_NE.:RD -0.013 -0.725  0.621  0.018  0.012                           
## indx_NE.:RI -0.008 -0.471  0.403  0.011 -0.003  0.476                    
## indx_PE.:RD -0.050  0.561 -0.728  0.013  0.046 -0.792   -0.369           
## indx_PE.:RI -0.034  0.351 -0.468  0.042  0.109 -0.360   -0.794    0.440

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_NEexp.c + index_PEexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90323.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3955 -0.6713 -0.0457  0.6338  3.0313 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008713 0.09334 
##  Residual             1.339087 1.15719 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.166e+00  3.189e-02  1.776e+01 130.626  < 2e-16 ***
## index_NEexp.c        8.245e-03  1.348e-02  2.371e+03   0.612   0.5409    
## index_PEexp.c        6.430e-02  1.039e-02  5.143e+03   6.186 6.65e-10 ***
## pIndD                3.738e-01  1.994e-02  2.882e+04  18.746  < 2e-16 ***
## pIndR               -3.886e-01  2.047e-02  2.881e+04 -18.986  < 2e-16 ***
## index_NEexp.c:pIndD  4.661e-03  1.274e-02  2.868e+04   0.366   0.7145    
## index_NEexp.c:pIndR  2.466e-02  1.401e-02  2.882e+04   1.761   0.0783 .  
## index_PEexp.c:pIndD -2.483e-02  1.045e-02  2.874e+04  -2.376   0.0175 *  
## index_PEexp.c:pIndR  2.448e-03  1.121e-02  2.882e+04   0.218   0.8271    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pIndD  pIndR  i_NE.:ID i_NE.:IR i_PE.:ID
## indx_NExp.c -0.008                                                       
## indx_PExp.c  0.055 -0.831                                                
## pIndD       -0.458  0.008 -0.088                                         
## pIndR       -0.446  0.020 -0.090  0.713                                  
## indx_NE.:ID  0.008 -0.805  0.678 -0.012 -0.013                           
## indx_NE.:IR  0.007 -0.671  0.568 -0.012 -0.003  0.727                    
## indx_PE.:ID -0.053  0.642 -0.839  0.058  0.083 -0.793   -0.576           
## indx_PE.:IR -0.050  0.553 -0.746  0.081  0.110 -0.592   -0.794    0.745

B. worst of Covid is ahead/behind

worstBorA ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c + index_PEexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106003.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.03215 -0.63674  0.04346  0.72727  2.09089 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008864 0.09415 
##  Residual             2.297143 1.51563 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             7.645e-01  2.895e-02  9.299e+00  26.410 4.61e-10 ***
## index_NEexp.c           3.689e-02  1.075e-02  1.886e+02   3.431 0.000738 ***
## index_PEexp.c           3.607e-02  7.449e-03  3.151e+02   4.842 2.01e-06 ***
## pDem_Rep               -1.180e+00  2.006e-02  2.882e+04 -58.825  < 2e-16 ***
## pInd_Not               -8.013e-02  2.449e-02  2.885e+04  -3.272 0.001068 ** 
## index_NEexp.c:pDem_Rep  2.852e-02  1.300e-02  2.389e+04   2.194 0.028220 *  
## index_NEexp.c:pInd_Not  1.133e-02  1.628e-02  2.885e+04   0.696 0.486399    
## index_PEexp.c:pDem_Rep  5.509e-02  1.016e-02  2.481e+04   5.423 5.92e-08 ***
## index_PEexp.c:pInd_Not  8.128e-03  1.325e-02  2.886e+04   0.614 0.539467    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pDm_Rp pInd_N i_NE.:D i_NE.:I i_PE.:D
## indx_NExp.c  0.000                                                    
## indx_PExp.c  0.018 -0.889                                             
## pDem_Rep     0.023  0.029  0.041                                      
## pInd_Not    -0.138  0.013 -0.059  0.037                               
## ind_NE.:D_R  0.003  0.264 -0.223  0.019  0.006                        
## ind_NE.:I_N  0.005 -0.282  0.272  0.006 -0.011  0.137                 
## ind_PE.:D_R  0.026 -0.196  0.208  0.013  0.045 -0.793  -0.100         
## ind_PE.:I_N -0.025  0.240 -0.354  0.041  0.097 -0.095  -0.793   0.104
## Warning: Removed 6 row(s) containing missing values (geom_path).

## Warning: Removed 9 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c + index_PEexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106003.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.03215 -0.63674  0.04346  0.72727  2.09089 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008864 0.09415 
##  Residual             2.297143 1.51563 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.328e+00  3.033e-02  1.121e+01  43.782 6.90e-14 ***
## index_NEexp.c        2.637e-02  1.038e-02  2.851e+02   2.541   0.0116 *  
## index_PEexp.c        1.121e-02  7.546e-03  5.860e+02   1.485   0.1381    
## pDemR               -1.180e+00  2.006e-02  2.882e+04 -58.825  < 2e-16 ***
## pDemI               -5.099e-01  2.611e-02  2.886e+04 -19.527  < 2e-16 ***
## index_NEexp.c:pDemR  2.852e-02  1.300e-02  2.389e+04   2.194   0.0282 *  
## index_NEexp.c:pDemI  2.931e-03  1.668e-02  2.852e+04   0.176   0.8605    
## index_PEexp.c:pDemR  5.509e-02  1.016e-02  2.481e+04   5.423 5.92e-08 ***
## index_PEexp.c:pDemI  1.942e-02  1.368e-02  2.865e+04   1.419   0.1559    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pDemR  pDemI  i_NE.:DR i_NE.:DI i_PE.:DR
## indx_NExp.c -0.005                                                       
## indx_PExp.c -0.041 -0.855                                                
## pDemR       -0.299  0.021  0.056                                         
## pDemI       -0.230  0.004  0.052  0.349                                  
## indx_NE.:DR -0.002 -0.282  0.259  0.019  0.002                           
## indx_NE.:DI -0.001 -0.246  0.221  0.002 -0.012  0.256                    
## indx_PE.:DR  0.033  0.242 -0.407  0.013 -0.038 -0.793   -0.211           
## indx_PE.:DI  0.023  0.190 -0.306 -0.035  0.058 -0.203   -0.792    0.270

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c + index_PEexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106003.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.03215 -0.63674  0.04346  0.72727  2.09089 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008864 0.09415 
##  Residual             2.297143 1.51563 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.481e-01  3.096e-02  1.216e+01   4.782 0.000430 ***
## index_NEexp.c        5.489e-02  1.416e-02  3.818e+02   3.876 0.000125 ***
## index_PEexp.c        6.630e-02  9.885e-03  6.704e+02   6.707 4.22e-11 ***
## pRepD                1.180e+00  2.006e-02  2.882e+04  58.825  < 2e-16 ***
## pRepI                6.701e-01  2.681e-02  2.885e+04  25.000  < 2e-16 ***
## index_NEexp.c:pRepD -2.852e-02  1.300e-02  2.389e+04  -2.194 0.028220 *  
## index_NEexp.c:pRepI -2.559e-02  1.834e-02  2.885e+04  -1.396 0.162874    
## index_PEexp.c:pRepD -5.509e-02  1.016e-02  2.481e+04  -5.423 5.92e-08 ***
## index_PEexp.c:pRepI -3.567e-02  1.467e-02  2.884e+04  -2.431 0.015047 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pRepD  pRepI  i_NE.:RD i_NE.:RI i_PE.:RD
## indx_NExp.c  0.016                                                       
## indx_PExp.c  0.038 -0.862                                                
## pRepD       -0.355 -0.032 -0.056                                         
## pRepI       -0.264 -0.020 -0.040  0.408                                  
## indx_NE.:RD -0.011 -0.711  0.617  0.019  0.013                           
## indx_NE.:RI -0.007 -0.455  0.394  0.012 -0.003  0.476                    
## indx_PE.:RD -0.040  0.550 -0.717  0.013  0.046 -0.793   -0.370           
## indx_PE.:RI -0.028  0.337 -0.455  0.042  0.110 -0.360   -0.794    0.440

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_NEexp.c + index_PEexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 106003.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.03215 -0.63674  0.04346  0.72727  2.09089 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.008864 0.09415 
##  Residual             2.297143 1.51563 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          8.182e-01  3.519e-02  2.030e+01  23.253 4.17e-16 ***
## index_NEexp.c        2.930e-02  1.734e-02  1.110e+03   1.690   0.0914 .  
## index_PEexp.c        3.062e-02  1.346e-02  2.592e+03   2.276   0.0229 *  
## pIndD                5.099e-01  2.611e-02  2.886e+04  19.527  < 2e-16 ***
## pIndR               -6.701e-01  2.681e-02  2.885e+04 -25.000  < 2e-16 ***
## index_NEexp.c:pIndD -2.931e-03  1.668e-02  2.852e+04  -0.176   0.8605    
## index_NEexp.c:pIndR  2.559e-02  1.834e-02  2.885e+04   1.396   0.1629    
## index_PEexp.c:pIndD -1.942e-02  1.368e-02  2.865e+04  -1.419   0.1559    
## index_PEexp.c:pIndR  3.567e-02  1.467e-02  2.884e+04   2.431   0.0150 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pIndD  pIndR  i_NE.:ID i_NE.:IR i_PE.:ID
## indx_NExp.c -0.010                                                       
## indx_PExp.c  0.066 -0.827                                                
## pIndD       -0.544  0.009 -0.089                                         
## pIndR       -0.529  0.019 -0.090  0.713                                  
## indx_NE.:ID  0.009 -0.815  0.682 -0.012 -0.013                           
## indx_NE.:IR  0.008 -0.686  0.577 -0.012 -0.003  0.728                    
## indx_PE.:ID -0.063  0.649 -0.845  0.058  0.083 -0.792   -0.577           
## indx_PE.:IR -0.059  0.565 -0.756  0.081  0.110 -0.593   -0.794    0.745

C. vaccine attitudes

vaxAttitudes ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c + index_PEexp.c) * (pDem_Rep +  
##     pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124049.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9604 -0.7763  0.0450  0.9542  1.6350 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.009048 0.09512 
##  Residual             4.301733 2.07406 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             2.433e-01  3.066e-02  1.026e+01   7.936 1.08e-05 ***
## index_NEexp.c           1.534e-02  1.372e-02  9.746e+01   1.118   0.2663    
## index_PEexp.c           6.932e-02  9.668e-03  1.719e+02   7.170 2.13e-11 ***
## pDem_Rep               -4.949e-01  2.744e-02  2.872e+04 -18.034  < 2e-16 ***
## pInd_Not                4.477e-01  3.351e-02  2.884e+04  13.361  < 2e-16 ***
## index_NEexp.c:pDem_Rep  1.573e-02  1.772e-02  2.189e+04   0.888   0.3748    
## index_NEexp.c:pInd_Not  9.374e-03  2.227e-02  2.884e+04   0.421   0.6738    
## index_PEexp.c:pDem_Rep  1.985e-02  1.387e-02  2.191e+04   1.432   0.1523    
## index_PEexp.c:pInd_Not -3.639e-02  1.812e-02  2.884e+04  -2.008   0.0447 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pDm_Rp pInd_N i_NE.:D i_NE.:I i_PE.:D
## indx_NExp.c  0.000                                                    
## indx_PExp.c  0.024 -0.878                                             
## pDem_Rep     0.029  0.025  0.046                                      
## pInd_Not    -0.178  0.013 -0.062  0.037                               
## ind_NE.:D_R  0.004  0.255 -0.211  0.018  0.006                        
## ind_NE.:I_N  0.007 -0.299  0.284  0.006 -0.011  0.138                 
## ind_PE.:D_R  0.034 -0.189  0.201  0.013  0.045 -0.792  -0.100         
## ind_PE.:I_N -0.032  0.253 -0.370  0.041  0.097 -0.095  -0.793   0.104
## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c + index_PEexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124049.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9604 -0.7763  0.0450  0.9542  1.6350 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.009048 0.09512 
##  Residual             4.301733 2.07406 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.385e-01  3.308e-02  1.389e+01  19.303 1.98e-11 ***
## index_NEexp.c        1.057e-02  1.344e-02  1.558e+02   0.787   0.4326    
## index_PEexp.c        4.739e-02  9.946e-03  3.387e+02   4.764 2.81e-06 ***
## pDemR               -4.949e-01  2.744e-02  2.872e+04 -18.034  < 2e-16 ***
## pDemI               -6.951e-01  3.573e-02  2.884e+04 -19.453  < 2e-16 ***
## index_NEexp.c:pDemR  1.573e-02  1.772e-02  2.189e+04   0.888   0.3748    
## index_NEexp.c:pDemI -1.509e-03  2.281e-02  2.830e+04  -0.066   0.9473    
## index_PEexp.c:pDemR  1.985e-02  1.387e-02  2.191e+04   1.432   0.1523    
## index_PEexp.c:pDemI  4.631e-02  1.872e-02  2.848e+04   2.474   0.0134 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pDemR  pDemI  i_NE.:DR i_NE.:DI i_PE.:DR
## indx_NExp.c -0.005                                                       
## indx_PExp.c -0.054 -0.844                                                
## pDemR       -0.376  0.017  0.061                                         
## pDemI       -0.288  0.004  0.055  0.349                                  
## indx_NE.:DR -0.002 -0.323  0.290  0.018  0.001                           
## indx_NE.:DI -0.001 -0.273  0.240  0.001 -0.012  0.254                    
## indx_PE.:DR  0.041  0.275 -0.439  0.013 -0.038 -0.792   -0.210           
## indx_PE.:DI  0.029  0.211 -0.326 -0.035  0.058 -0.201   -0.792    0.269

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c + index_PEexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124049.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9604 -0.7763  0.0450  0.9542  1.6350 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.009048 0.09512 
##  Residual             4.301733 2.07406 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.436e-01  3.414e-02  1.576e+01   4.207  0.00069 ***
## index_NEexp.c        2.630e-02  1.846e-02  2.154e+02   1.425  0.15561    
## index_PEexp.c        6.723e-02  1.305e-02  3.918e+02   5.154 4.06e-07 ***
## pRepD                4.949e-01  2.744e-02  2.872e+04  18.034  < 2e-16 ***
## pRepI               -2.003e-01  3.668e-02  2.884e+04  -5.460 4.80e-08 ***
## index_NEexp.c:pRepD -1.573e-02  1.772e-02  2.189e+04  -0.888  0.37480    
## index_NEexp.c:pRepI -1.724e-02  2.508e-02  2.884e+04  -0.687  0.49184    
## index_PEexp.c:pRepD -1.985e-02  1.386e-02  2.191e+04  -1.432  0.15230    
## index_PEexp.c:pRepI  2.646e-02  2.007e-02  2.878e+04   1.319  0.18731    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pRepD  pRepI  i_NE.:RD i_NE.:RI i_PE.:RD
## indx_NExp.c  0.019                                                       
## indx_PExp.c  0.050 -0.853                                                
## pRepD       -0.440 -0.030 -0.060                                         
## pRepI       -0.328 -0.018 -0.043  0.408                                  
## indx_NE.:RD -0.013 -0.725  0.621  0.018  0.012                           
## indx_NE.:RI -0.008 -0.471  0.403  0.011 -0.003  0.476                    
## indx_PE.:RD -0.050  0.561 -0.728  0.013  0.046 -0.792   -0.369           
## indx_PE.:RI -0.034  0.351 -0.468  0.042  0.109 -0.360   -0.794    0.440

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_NEexp.c + index_PEexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124049.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9604 -0.7763  0.0450  0.9542  1.6350 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.009048 0.09512 
##  Residual             4.301733 2.07406 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -5.665e-02  4.110e-02  3.313e+01  -1.378   0.1774    
## index_NEexp.c        9.063e-03  2.310e-02  6.863e+02   0.392   0.6949    
## index_PEexp.c        9.370e-02  1.810e-02  1.673e+03   5.176 2.54e-07 ***
## pIndD                6.951e-01  3.573e-02  2.884e+04  19.453  < 2e-16 ***
## pIndR                2.003e-01  3.668e-02  2.884e+04   5.460 4.80e-08 ***
## index_NEexp.c:pIndD  1.509e-03  2.281e-02  2.830e+04   0.066   0.9473    
## index_NEexp.c:pIndR  1.724e-02  2.508e-02  2.884e+04   0.687   0.4918    
## index_PEexp.c:pIndD -4.631e-02  1.872e-02  2.848e+04  -2.474   0.0134 *  
## index_PEexp.c:pIndR -2.646e-02  2.007e-02  2.878e+04  -1.319   0.1873    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_NE. in_PE. pIndD  pIndR  i_NE.:ID i_NE.:IR i_PE.:ID
## indx_NExp.c -0.011                                                       
## indx_PExp.c  0.079 -0.821                                                
## pIndD       -0.637  0.010 -0.090                                         
## pIndR       -0.620  0.018 -0.090  0.713                                  
## indx_NE.:ID  0.011 -0.829  0.687 -0.012 -0.013                           
## indx_NE.:IR  0.010 -0.709  0.590 -0.012 -0.003  0.730                    
## indx_PE.:ID -0.074  0.659 -0.855  0.058  0.083 -0.792   -0.578           
## indx_PE.:IR -0.069  0.582 -0.771  0.080  0.109 -0.594   -0.794    0.747

7. AFFECT VS. ANALYTICAL THINKING

A. risk3

risk3 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ (index_AFexp.c + index_ANexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 103690.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.12822 -0.82218  0.06169  0.58796  2.45196 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003239 0.05691 
##  Residual             2.122179 1.45677 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.515e+00  1.903e-02  8.635e+00 237.258  < 2e-16 ***
## index_AFexp.c           1.755e-02  4.864e-03  7.179e+01   3.608 0.000566 ***
## index_ANexp.c           1.739e-03  2.535e-04  9.807e+01   6.861 6.19e-10 ***
## pDem_Rep               -1.461e+00  1.935e-02  2.884e+04 -75.507  < 2e-16 ***
## pInd_Not                1.600e-01  2.357e-02  2.884e+04   6.788 1.16e-11 ***
## index_AFexp.c:pDem_Rep  8.172e-03  6.494e-03  2.648e+04   1.258 0.208230    
## index_AFexp.c:pInd_Not -3.881e-03  8.568e-03  2.878e+04  -0.453 0.650590    
## index_ANexp.c:pDem_Rep  2.777e-03  3.639e-04  2.775e+04   7.632 2.38e-14 ***
## index_ANexp.c:pInd_Not -2.435e-04  4.768e-04  2.880e+04  -0.511 0.609570    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDm_Rp pInd_N i_AF.:D i_AF.:I i_AN.:D
## indx_AFxp.c  0.004                                                    
## indx_ANxp.c  0.021 -0.917                                             
## pDem_Rep     0.034  0.006  0.055                                      
## pInd_Not    -0.200 -0.015 -0.026  0.040                               
## ind_AF.:D_R  0.003  0.165 -0.154 -0.003  0.003                        
## ind_AF.:I_N -0.007 -0.360  0.327  0.002  0.016  0.095                 
## ind_AN.:D_R  0.039 -0.146  0.176  0.035  0.048 -0.845  -0.080         
## ind_AN.:I_N -0.020  0.310 -0.374  0.044  0.064 -0.081  -0.853   0.101

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ (index_AFexp.c + index_ANexp.c) * (pDemR + pDemI) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 103690.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.12822 -0.82218  0.06169  0.58796  2.45196 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003239 0.05691 
##  Residual             2.122179 1.45677 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.299e+00  2.094e-02  1.266e+01 253.015  < 2e-16 ***
## index_AFexp.c        1.219e-02  5.035e-03  1.248e+02   2.420  0.01696 *  
## index_ANexp.c        2.702e-04  2.650e-04  1.868e+02   1.020  0.30924    
## pDemR               -1.461e+00  1.935e-02  2.884e+04 -75.507  < 2e-16 ***
## pDemI               -8.904e-01  2.511e-02  2.884e+04 -35.453  < 2e-16 ***
## index_AFexp.c:pDemR  8.172e-03  6.494e-03  2.648e+04   1.258  0.20823    
## index_AFexp.c:pDemI  7.967e-03  8.871e-03  2.820e+04   0.898  0.36914    
## index_ANexp.c:pDemR  2.777e-03  3.639e-04  2.775e+04   7.632 2.38e-14 ***
## index_ANexp.c:pDemI  1.632e-03  4.929e-04  2.827e+04   3.311  0.00093 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDemR  pDemI  i_AF.:DR i_AF.:DI i_AN.:DR
## indx_AFxp.c -0.008                                                       
## indx_ANxp.c -0.049 -0.898                                                
## pDemR       -0.416  0.008  0.054                                         
## pDemI       -0.321  0.010  0.039  0.348                                  
## indx_AF.:DR  0.005 -0.432  0.384 -0.003 -0.004                           
## indx_AF.:DI  0.003 -0.306  0.275 -0.003  0.012  0.275                    
## indx_AN.:DR  0.037  0.358 -0.458  0.035 -0.031 -0.845   -0.232           
## indx_AN.:DI  0.028  0.256 -0.330 -0.030  0.030 -0.234   -0.854    0.272

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ (index_AFexp.c + index_ANexp.c) * (pRepD + pRepI) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 103690.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.12822 -0.82218  0.06169  0.58796  2.45196 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003239 0.05691 
##  Residual             2.122179 1.45677 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.838e+00  2.181e-02  1.488e+01 175.989  < 2e-16 ***
## index_AFexp.c        2.036e-02  6.266e-03  1.716e+02   3.249  0.00139 ** 
## index_ANexp.c        3.047e-03  3.380e-04  2.673e+02   9.015  < 2e-16 ***
## pRepD                1.461e+00  1.935e-02  2.884e+04  75.507  < 2e-16 ***
## pRepI                5.704e-01  2.583e-02  2.884e+04  22.083  < 2e-16 ***
## index_AFexp.c:pRepD -8.172e-03  6.494e-03  2.648e+04  -1.258  0.20823    
## index_AFexp.c:pRepI -2.051e-04  9.446e-03  2.884e+04  -0.022  0.98268    
## index_ANexp.c:pRepD -2.777e-03  3.639e-04  2.775e+04  -7.632 2.38e-14 ***
## index_ANexp.c:pRepI -1.145e-03  5.272e-04  2.884e+04  -2.172  0.02986 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pRepD  pRepI  i_AF.:RD i_AF.:RI i_AN.:RD
## indx_AFxp.c  0.002                                                       
## indx_ANxp.c  0.072 -0.886                                                
## pRepD       -0.487 -0.004 -0.080                                         
## pRepI       -0.365  0.001 -0.063  0.411                                  
## indx_AF.:RD -0.002 -0.689  0.608 -0.003  0.002                           
## indx_AF.:RI -0.001 -0.437  0.386  0.001  0.014  0.430                    
## indx_AN.:RD -0.067  0.588 -0.717  0.035  0.056 -0.845   -0.363           
## indx_AN.:RI -0.046  0.371 -0.464  0.052  0.087 -0.365   -0.851    0.436

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk3 ~ (index_AFexp.c + index_ANexp.c) * (pIndD + pIndR) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 103690.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.12822 -0.82218  0.06169  0.58796  2.45196 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.003239 0.05691 
##  Residual             2.122179 1.45677 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.408e+00  2.705e-02  3.524e+01 162.958  < 2e-16 ***
## index_AFexp.c        2.015e-02  8.758e-03  5.736e+02   2.301  0.02174 *  
## index_ANexp.c        1.902e-03  4.763e-04  8.919e+02   3.993 7.05e-05 ***
## pIndD                8.904e-01  2.511e-02  2.884e+04  35.453  < 2e-16 ***
## pIndR               -5.704e-01  2.583e-02  2.884e+04 -22.083  < 2e-16 ***
## index_AFexp.c:pIndD -7.967e-03  8.871e-03  2.820e+04  -0.898  0.36914    
## index_AFexp.c:pIndR  2.051e-04  9.446e-03  2.884e+04   0.022  0.98268    
## index_ANexp.c:pIndD -1.632e-03  4.929e-04  2.827e+04  -3.311  0.00093 ***
## index_ANexp.c:pIndR  1.145e-03  5.272e-04  2.884e+04   2.172  0.02986 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pIndD  pIndR  i_AF.:ID i_AF.:IR i_AN.:ID
## indx_AFxp.c  0.015                                                       
## indx_ANxp.c  0.050 -0.876                                                
## pIndD       -0.680 -0.018 -0.053                                         
## pIndR       -0.661 -0.016 -0.052  0.712                                  
## indx_AF.:ID -0.013 -0.837  0.731  0.012  0.014                           
## indx_AF.:IR -0.013 -0.766  0.667  0.014  0.014  0.750                    
## indx_AN.:ID -0.050  0.718 -0.851  0.030  0.052 -0.854   -0.642           
## indx_AN.:IR -0.047  0.652 -0.778  0.050  0.087 -0.639   -0.851    0.747

B. risk4

risk4 ~ index * party + (1 | media)

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ (index_AFexp.c + index_ANexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 99436.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2172 -0.5804  0.1492  0.5816  1.7353 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 2.683e-15 5.180e-08
##  Residual             1.832e+00 1.354e+00
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.933e+00  8.923e-03  2.884e+04 552.849  < 2e-16 ***
## index_AFexp.c           3.258e-03  3.154e-03  2.884e+04   1.033   0.3015    
## index_ANexp.c           3.776e-04  1.760e-04  2.884e+04   2.146   0.0319 *  
## pDem_Rep               -5.095e-01  1.796e-02  2.884e+04 -28.369  < 2e-16 ***
## pInd_Not                1.665e-01  2.189e-02  2.884e+04   7.608 2.88e-14 ***
## index_AFexp.c:pDem_Rep -7.187e-04  5.995e-03  2.884e+04  -0.120   0.9046    
## index_AFexp.c:pInd_Not -1.661e-03  7.954e-03  2.884e+04  -0.209   0.8345    
## index_ANexp.c:pDem_Rep  5.739e-04  3.367e-04  2.884e+04   1.705   0.0883 .  
## index_ANexp.c:pInd_Not  2.610e-04  4.426e-04  2.884e+04   0.590   0.5554    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDm_Rp pInd_N i_AF.:D i_AF.:I i_AN.:D
## indx_AFxp.c  0.010                                                    
## indx_ANxp.c  0.054 -0.851                                             
## pDem_Rep     0.067  0.004  0.073                                      
## pInd_Not    -0.397 -0.014 -0.040  0.041                               
## ind_AF.:D_R  0.004  0.164 -0.141 -0.002  0.003                        
## ind_AF.:I_N -0.013 -0.474  0.403  0.002  0.015  0.097                 
## ind_AN.:D_R  0.077 -0.140  0.175  0.034  0.047 -0.847  -0.083         
## ind_AN.:I_N -0.039  0.404 -0.466  0.043  0.064 -0.084  -0.853   0.104 
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

1. simple effects for dems

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ (index_AFexp.c + index_ANexp.c) * (pDemR + pDemI) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 99436.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2172 -0.5804  0.1492  0.5816  1.7353 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 2.683e-15 5.180e-08
##  Residual             1.832e+00 1.354e+00
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.243e+00  1.206e-02  2.884e+04 434.828   <2e-16 ***
## index_AFexp.c        3.069e-03  3.654e-03  2.884e+04   0.840   0.4010    
## index_ANexp.c        1.768e-04  2.031e-04  2.884e+04   0.871   0.3840    
## pDemR               -5.095e-01  1.796e-02  2.884e+04 -28.369   <2e-16 ***
## pDemI               -4.213e-01  2.332e-02  2.884e+04 -18.064   <2e-16 ***
## index_AFexp.c:pDemR -7.187e-04  5.995e-03  2.884e+04  -0.120   0.9046    
## index_AFexp.c:pDemI  1.302e-03  8.224e-03  2.884e+04   0.158   0.8742    
## index_ANexp.c:pDemR  5.739e-04  3.367e-04  2.884e+04   1.705   0.0883 .  
## index_ANexp.c:pDemI  2.600e-05  4.569e-04  2.884e+04   0.057   0.9546    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDemR  pDemI  i_AF.:DR i_AF.:DI i_AN.:DR
## indx_AFxp.c -0.010                                                       
## indx_ANxp.c -0.099 -0.852                                                
## pDemR       -0.671  0.007  0.066                                         
## pDemI       -0.517  0.005  0.051  0.347                                  
## indx_AF.:DR  0.006 -0.610  0.519 -0.002 -0.003                           
## indx_AF.:DI  0.005 -0.444  0.379 -0.003  0.012  0.271                    
## indx_AN.:DR  0.060  0.514 -0.603  0.034 -0.031 -0.847   -0.228           
## indx_AN.:DI  0.044  0.379 -0.444 -0.030  0.031 -0.231   -0.854    0.268  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

2. simple effects for reps

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ (index_AFexp.c + index_ANexp.c) * (pRepD + pRepI) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 99436.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2172 -0.5804  0.1492  0.5816  1.7353 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 2.683e-15 5.180e-08
##  Residual             1.832e+00 1.354e+00
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.733e+00  1.331e-02  2.884e+04 355.533  < 2e-16 ***
## index_AFexp.c        2.350e-03  4.753e-03  2.884e+04   0.495 0.620927    
## index_ANexp.c        7.507e-04  2.685e-04  2.884e+04   2.796 0.005184 ** 
## pRepD                5.095e-01  1.796e-02  2.884e+04  28.369  < 2e-16 ***
## pRepI                8.822e-02  2.400e-02  2.884e+04   3.676 0.000237 ***
## index_AFexp.c:pRepD  7.187e-04  5.995e-03  2.884e+04   0.120 0.904574    
## index_AFexp.c:pRepI  2.021e-03  8.767e-03  2.884e+04   0.230 0.817707    
## index_ANexp.c:pRepD -5.739e-04  3.367e-04  2.884e+04  -1.705 0.088256 .  
## index_ANexp.c:pRepI -5.479e-04  4.896e-04  2.884e+04  -1.119 0.263047    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pRepD  pRepI  i_AF.:RD i_AF.:RI i_AN.:RD
## indx_AFxp.c  0.003                                                       
## indx_ANxp.c  0.125 -0.844                                                
## pRepD       -0.741 -0.002 -0.093                                         
## pRepI       -0.555 -0.002 -0.069  0.411                                  
## indx_AF.:RD -0.003 -0.793  0.669 -0.002  0.001                           
## indx_AF.:RI -0.002 -0.542  0.458  0.001  0.014  0.430                    
## indx_AN.:RD -0.100  0.673 -0.798  0.034  0.055 -0.847   -0.365           
## indx_AN.:RI -0.069  0.463 -0.549  0.051  0.087 -0.367   -0.851    0.438  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

3. simple effects for indep

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk4 ~ (index_AFexp.c + index_ANexp.c) * (pIndD + pIndR) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 99436.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2172 -0.5804  0.1492  0.5816  1.7353 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  media    (Intercept) 2.683e-15 5.180e-08
##  Residual             1.832e+00 1.354e+00
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.821e+00  1.997e-02  2.884e+04 241.478  < 2e-16 ***
## index_AFexp.c        4.371e-03  7.367e-03  2.884e+04   0.593 0.552964    
## index_ANexp.c        2.028e-04  4.093e-04  2.884e+04   0.495 0.620318    
## pIndD                4.213e-01  2.332e-02  2.884e+04  18.064  < 2e-16 ***
## pIndR               -8.822e-02  2.400e-02  2.884e+04  -3.676 0.000237 ***
## index_AFexp.c:pIndD -1.302e-03  8.224e-03  2.884e+04  -0.158 0.874197    
## index_AFexp.c:pIndR -2.021e-03  8.767e-03  2.884e+04  -0.230 0.817707    
## index_ANexp.c:pIndD -2.600e-05  4.569e-04  2.884e+04  -0.057 0.954630    
## index_ANexp.c:pIndR  5.479e-04  4.896e-04  2.884e+04   1.119 0.263047    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pIndD  pIndR  i_AF.:ID i_AF.:IR i_AN.:ID
## indx_AFxp.c  0.018                                                       
## indx_ANxp.c  0.070 -0.854                                                
## pIndD       -0.856 -0.016 -0.060                                         
## pIndR       -0.832 -0.015 -0.058  0.712                                  
## indx_AF.:ID -0.016 -0.896  0.765  0.012  0.014                           
## indx_AF.:IR -0.015 -0.840  0.718  0.013  0.014  0.753                    
## indx_AN.:ID -0.063  0.765 -0.896  0.031  0.052 -0.854   -0.643           
## indx_AN.:IR -0.059  0.714 -0.836  0.050  0.087 -0.640   -0.851    0.749  
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

C. risk5

risk5 ~ index * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ (index_AFexp.c + index_ANexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 115021.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8669 -0.8501 -0.2479  0.7058  2.6044 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005883 0.0767  
##  Residual             3.137903 1.7714  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.046e+00  2.503e-02  1.038e+01 121.668  < 2e-16 ***
## index_AFexp.c          -1.239e-02  6.069e-03  1.074e+02  -2.041 0.043694 *  
## index_ANexp.c           3.938e-03  3.150e-04  1.446e+02  12.501  < 2e-16 ***
## pDem_Rep               -2.837e-01  2.351e-02  2.886e+04 -12.063  < 2e-16 ***
## pInd_Not               -3.282e-01  2.866e-02  2.885e+04 -11.454  < 2e-16 ***
## index_AFexp.c:pDem_Rep -9.514e-03  7.895e-03  2.724e+04  -1.205 0.228172    
## index_AFexp.c:pInd_Not -8.805e-04  1.042e-02  2.881e+04  -0.085 0.932651    
## index_ANexp.c:pDem_Rep  1.568e-03  4.422e-04  2.809e+04   3.545 0.000394 ***
## index_ANexp.c:pInd_Not  6.415e-04  5.797e-04  2.882e+04   1.106 0.268530    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDm_Rp pInd_N i_AF.:D i_AF.:I i_AN.:D
## indx_AFxp.c  0.003                                                    
## indx_ANxp.c  0.019 -0.921                                             
## pDem_Rep     0.031  0.006  0.053                                      
## pInd_Not    -0.185 -0.015 -0.025  0.040                               
## ind_AF.:D_R  0.002  0.165 -0.155 -0.003  0.003                        
## ind_AF.:I_N -0.006 -0.354  0.323  0.002  0.016  0.094                 
## ind_AN.:D_R  0.036 -0.147  0.176  0.034  0.047 -0.845  -0.080         
## ind_AN.:I_N -0.018  0.305 -0.369  0.043  0.064 -0.080  -0.853   0.100

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ (index_AFexp.c + index_ANexp.c) * (pDemR + pDemI) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 115021.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8669 -0.8501 -0.2479  0.7058  2.6044 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005883 0.0767  
##  Residual             3.137903 1.7714  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.079e+00  2.720e-02  1.446e+01 113.226  < 2e-16 ***
## index_AFexp.c       -7.920e-03  6.245e-03  1.822e+02  -1.268 0.206365    
## index_ANexp.c        3.366e-03  3.275e-04  2.688e+02  10.278  < 2e-16 ***
## pDemR               -2.837e-01  2.351e-02  2.886e+04 -12.063  < 2e-16 ***
## pDemI                1.864e-01  3.054e-02  2.886e+04   6.104 1.05e-09 ***
## index_AFexp.c:pDemR -9.514e-03  7.895e-03  2.724e+04  -1.205 0.228172    
## index_AFexp.c:pDemI -3.877e-03  1.079e-02  2.839e+04  -0.359 0.719395    
## index_ANexp.c:pDemR  1.568e-03  4.422e-04  2.809e+04   3.545 0.000394 ***
## index_ANexp.c:pDemI  1.423e-04  5.995e-04  2.844e+04   0.237 0.812349    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDemR  pDemI  i_AF.:DR i_AF.:DI i_AN.:DR
## indx_AFxp.c -0.008                                                       
## indx_ANxp.c -0.045 -0.902                                                
## pDemR       -0.390  0.009  0.053                                         
## pDemI       -0.300  0.011  0.038  0.348                                  
## indx_AF.:DR  0.004 -0.420  0.374 -0.003 -0.004                           
## indx_AF.:DI  0.003 -0.296  0.267 -0.003  0.012  0.275                    
## indx_AN.:DR  0.035  0.347 -0.448  0.034 -0.031 -0.845   -0.232           
## indx_AN.:DI  0.026  0.247 -0.321 -0.029  0.030 -0.234   -0.854    0.272

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ (index_AFexp.c + index_ANexp.c) * (pRepD + pRepI) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 115021.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8669 -0.8501 -0.2479  0.7058  2.6044 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005883 0.0767  
##  Residual             3.137903 1.7714  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          2.796e+00  2.817e-02  1.666e+01  99.224  < 2e-16 ***
## index_AFexp.c       -1.743e-02  7.743e-03  2.470e+02  -2.252 0.025221 *  
## index_ANexp.c        4.934e-03  4.162e-04  3.793e+02  11.855  < 2e-16 ***
## pRepD                2.837e-01  2.351e-02  2.886e+04  12.063  < 2e-16 ***
## pRepI                4.701e-01  3.140e-02  2.885e+04  14.969  < 2e-16 ***
## index_AFexp.c:pRepD  9.514e-03  7.895e-03  2.724e+04   1.205 0.228172    
## index_AFexp.c:pRepI  5.638e-03  1.148e-02  2.885e+04   0.491 0.623459    
## index_ANexp.c:pRepD -1.568e-03  4.422e-04  2.809e+04  -3.545 0.000394 ***
## index_ANexp.c:pRepI -1.425e-03  6.408e-04  2.885e+04  -2.224 0.026148 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pRepD  pRepI  i_AF.:RD i_AF.:RI i_AN.:RD
## indx_AFxp.c  0.002                                                       
## indx_ANxp.c  0.067 -0.889                                                
## pRepD       -0.458 -0.004 -0.078                                         
## pRepI       -0.343  0.001 -0.062  0.411                                  
## indx_AF.:RD -0.002 -0.681  0.603 -0.003  0.002                           
## indx_AF.:RI -0.001 -0.429  0.380  0.001  0.014  0.429                    
## indx_AN.:RD -0.062  0.581 -0.710  0.034  0.056 -0.845   -0.363           
## indx_AN.:RI -0.043  0.364 -0.456  0.051  0.087 -0.364   -0.851    0.436

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: risk5 ~ (index_AFexp.c + index_ANexp.c) * (pIndD + pIndR) + (1 |  
##     media)
##    Data: dl2
## 
## REML criterion at convergence: 115021.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8669 -0.8501 -0.2479  0.7058  2.6044 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.005883 0.0767  
##  Residual             3.137903 1.7714  
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.266e+00  3.425e-02  3.638e+01  95.342  < 2e-16 ***
## index_AFexp.c       -1.180e-02  1.075e-02  7.978e+02  -1.098   0.2727    
## index_ANexp.c        3.508e-03  5.835e-04  1.228e+03   6.013 2.40e-09 ***
## pIndD               -1.864e-01  3.054e-02  2.886e+04  -6.104 1.05e-09 ***
## pIndR               -4.701e-01  3.140e-02  2.885e+04 -14.969  < 2e-16 ***
## index_AFexp.c:pIndD  3.877e-03  1.079e-02  2.839e+04   0.359   0.7194    
## index_AFexp.c:pIndR -5.638e-03  1.148e-02  2.885e+04  -0.491   0.6235    
## index_ANexp.c:pIndD -1.423e-04  5.995e-04  2.844e+04  -0.237   0.8123    
## index_ANexp.c:pIndR  1.425e-03  6.408e-04  2.885e+04   2.224   0.0261 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pIndD  pIndR  i_AF.:ID i_AF.:IR i_AN.:ID
## indx_AFxp.c  0.015                                                       
## indx_ANxp.c  0.048 -0.878                                                
## pIndD       -0.653 -0.018 -0.053                                         
## pIndR       -0.635 -0.016 -0.051  0.712                                  
## indx_AF.:ID -0.013 -0.832  0.728  0.012  0.014                           
## indx_AF.:IR -0.012 -0.759  0.663  0.014  0.014  0.750                    
## indx_AN.:ID -0.048  0.714 -0.847  0.030  0.052 -0.854   -0.642           
## indx_AN.:IR -0.045  0.647 -0.773  0.050  0.087 -0.639   -0.851    0.748

D. risk severity

risk severity ~ indexes * party + (1 | media)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_ANexp.c + index_AFexp.c) * (pDem_Rep +  
##     pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90247.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4572 -0.6635 -0.0553  0.6498  3.0275 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00159  0.03988 
##  Residual             1.33517  1.15550 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             4.164e+00  1.381e-02  1.179e+01 301.628  < 2e-16 ***
## index_ANexp.c           1.961e-03  1.955e-04  1.076e+02  10.032  < 2e-16 ***
## index_AFexp.c           4.032e-03  3.734e-03  7.735e+01   1.080    0.284    
## pDem_Rep               -7.523e-01  1.535e-02  2.882e+04 -48.998  < 2e-16 ***
## pInd_Not               -1.026e-03  1.870e-02  2.882e+04  -0.055    0.956    
## index_ANexp.c:pDem_Rep  1.631e-03  2.886e-04  2.785e+04   5.650 1.62e-08 ***
## index_ANexp.c:pInd_Not  2.299e-04  3.782e-04  2.878e+04   0.608    0.543    
## index_AFexp.c:pDem_Rep -5.509e-04  5.151e-03  2.661e+04  -0.107    0.915    
## index_AFexp.c:pInd_Not -2.288e-03  6.796e-03  2.877e+04  -0.337    0.736    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pDm_Rp pInd_N i_AN.:D i_AN.:I i_AF.:D
## indx_ANxp.c  0.023                                                    
## indx_AFxp.c  0.004 -0.913                                             
## pDem_Rep     0.037  0.056  0.006                                      
## pInd_Not    -0.219 -0.027 -0.015  0.040                               
## ind_AN.:D_R  0.043  0.175 -0.145  0.035  0.047                        
## ind_AN.:I_N -0.022 -0.381  0.317  0.044  0.064  0.101                 
## ind_AF.:D_R  0.003 -0.153  0.164 -0.003  0.003 -0.845  -0.081         
## ind_AF.:I_N -0.007  0.333 -0.368  0.002  0.016 -0.081  -0.853   0.095
## Warning: Removed 9 row(s) containing missing values (geom_path).

## Warning: Removed 3 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_ANexp.c + index_AFexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90247.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4572 -0.6635 -0.0553  0.6498  3.0275 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00159  0.03988 
##  Residual             1.33517  1.15550 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.540e+00  1.545e-02  1.847e+01 293.856  < 2e-16 ***
## index_ANexp.c        1.222e-03  2.061e-04  2.115e+02   5.930 1.22e-08 ***
## index_AFexp.c        3.553e-03  3.897e-03  1.389e+02   0.912    0.364    
## pDemR               -7.523e-01  1.535e-02  2.882e+04 -48.998  < 2e-16 ***
## pDemI               -3.751e-01  1.992e-02  2.882e+04 -18.828  < 2e-16 ***
## index_ANexp.c:pDemR  1.631e-03  2.886e-04  2.785e+04   5.650 1.62e-08 ***
## index_ANexp.c:pDemI  5.854e-04  3.909e-04  2.834e+04   1.498    0.134    
## index_AFexp.c:pDemR -5.509e-04  5.151e-03  2.661e+04  -0.107    0.915    
## index_AFexp.c:pDemI  2.012e-03  7.035e-03  2.828e+04   0.286    0.775    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pDemR  pDemI  i_AN.:DR i_AN.:DI i_AF.:DR
## indx_ANxp.c -0.054                                                       
## indx_AFxp.c -0.009 -0.894                                                
## pDemR       -0.448  0.056  0.008                                         
## pDemI       -0.345  0.040  0.010  0.348                                  
## indx_AN.:DR  0.040 -0.473  0.373  0.035 -0.031                           
## indx_AN.:DI  0.030 -0.342  0.267 -0.029  0.031  0.271                    
## indx_AF.:DR  0.005  0.397 -0.449 -0.003 -0.004 -0.845   -0.233           
## indx_AF.:DI  0.003  0.285 -0.319 -0.003  0.012 -0.231   -0.854    0.274

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_ANexp.c + index_AFexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124023.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.05264 -0.78366  0.04051  0.94417  1.61639 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0009917 0.03149 
##  Residual             4.2963644 2.07277 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.503e-01  2.232e-02  4.571e+01   6.733 2.36e-08 ***
## index_ANexp.c        2.382e-03  4.306e-04  2.167e+02   5.532 9.09e-08 ***
## index_AFexp.c        7.132e-03  7.738e-03  1.241e+02   0.922    0.359    
## pRepD                4.851e-01  2.751e-02  2.878e+04  17.635  < 2e-16 ***
## pRepI               -2.056e-01  3.675e-02  2.884e+04  -5.596 2.21e-08 ***
## index_ANexp.c:pRepD -4.293e-04  5.164e-04  2.715e+04  -0.831    0.406    
## index_ANexp.c:pRepI  6.908e-04  7.497e-04  2.884e+04   0.921    0.357    
## index_AFexp.c:pRepD -1.189e-02  9.202e-03  2.361e+04  -1.292    0.196    
## index_AFexp.c:pRepI -4.966e-03  1.343e-02  2.873e+04  -0.370    0.712    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pRepD  pRepI  i_AN.:RD i_AN.:RI i_AF.:RD
## indx_ANxp.c  0.110                                                       
## indx_AFxp.c  0.003 -0.858                                                
## pRepD       -0.677 -0.089 -0.003                                         
## pRepI       -0.507 -0.067 -0.001  0.411                                  
## indx_AN.:RD -0.091 -0.771  0.644  0.034  0.056                           
## indx_AN.:RI -0.063 -0.522  0.433  0.051  0.087  0.437                    
## indx_AF.:RD -0.003  0.649 -0.758 -0.003  0.002 -0.846   -0.366           
## indx_AF.:RI -0.002  0.435 -0.508  0.001  0.014 -0.364   -0.851    0.430

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskSeverity ~ (index_ANexp.c + index_AFexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 90247.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4572 -0.6635 -0.0553  0.6498  3.0275 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00159  0.03988 
##  Residual             1.33517  1.15550 
## Number of obs: 28829, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          4.165e+00  2.057e-02  5.802e+01 202.490  < 2e-16 ***
## index_ANexp.c        1.807e-03  3.744e-04  1.049e+03   4.827 1.59e-06 ***
## index_AFexp.c        5.565e-03  6.869e-03  6.709e+02   0.810   0.4181    
## pIndD                3.751e-01  1.992e-02  2.882e+04  18.828  < 2e-16 ***
## pIndR               -3.772e-01  2.049e-02  2.881e+04 -18.404  < 2e-16 ***
## index_ANexp.c:pIndD -5.854e-04  3.909e-04  2.834e+04  -1.498   0.1342    
## index_ANexp.c:pIndR  1.045e-03  4.182e-04  2.882e+04   2.499   0.0125 *  
## index_AFexp.c:pIndD -2.012e-03  7.035e-03  2.828e+04  -0.286   0.7749    
## index_AFexp.c:pIndR -2.563e-03  7.493e-03  2.881e+04  -0.342   0.7323    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pIndD  pIndR  i_AN.:ID i_AN.:IR i_AF.:ID
## indx_ANxp.c  0.053                                                       
## indx_AFxp.c  0.016 -0.874                                                
## pIndD       -0.709 -0.054 -0.018                                         
## pIndR       -0.689 -0.053 -0.016  0.712                                  
## indx_AN.:ID -0.052 -0.856  0.723  0.031  0.052                           
## indx_AN.:IR -0.049 -0.784  0.659  0.050  0.087  0.748                    
## indx_AF.:ID -0.014  0.735 -0.843  0.012  0.014 -0.854   -0.639           
## indx_AF.:IR -0.013  0.673 -0.773  0.014  0.014 -0.642   -0.851    0.750

E. worst of Covid is behind/ahead

worstBorA ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_ANexp.c + index_AFexp.c) * (pDem_Rep + pInd_Not) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105957
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00697 -0.62755  0.05285  0.74877  2.10977 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00129  0.03592 
##  Residual             2.29272  1.51417 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             7.693e-01  1.439e-02  8.753e+00  53.453 2.58e-12 ***
## index_ANexp.c           1.296e-03  2.352e-04  4.965e+01   5.509 1.28e-06 ***
## index_AFexp.c           1.124e-02  4.416e-03  3.354e+01   2.546  0.01568 *  
## pDem_Rep               -1.171e+00  2.010e-02  2.883e+04 -58.248  < 2e-16 ***
## pInd_Not               -6.975e-02  2.449e-02  2.886e+04  -2.848  0.00441 ** 
## index_ANexp.c:pDem_Rep  2.887e-03  3.778e-04  2.693e+04   7.641 2.22e-14 ***
## index_ANexp.c:pInd_Not  9.591e-04  4.954e-04  2.879e+04   1.936  0.05287 .  
## index_AFexp.c:pDem_Rep -8.449e-04  6.738e-03  2.396e+04  -0.125  0.90021    
## index_AFexp.c:pInd_Not -4.335e-03  8.903e-03  2.876e+04  -0.487  0.62632    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pDm_Rp pInd_N i_AN.:D i_AN.:I i_AF.:D
## indx_ANxp.c  0.032                                                    
## indx_AFxp.c  0.005 -0.896                                             
## pDem_Rep     0.047  0.062  0.005                                      
## pInd_Not    -0.275 -0.031 -0.014  0.040                               
## ind_AN.:D_R  0.054  0.175 -0.143  0.035  0.047                        
## ind_AN.:I_N -0.027 -0.405  0.340  0.044  0.064  0.103                 
## ind_AF.:D_R  0.003 -0.149  0.163 -0.003  0.003 -0.845  -0.083         
## ind_AF.:I_N -0.009  0.352 -0.396  0.002  0.015 -0.082  -0.853   0.096
## Warning: Removed 9 row(s) containing missing values (geom_path).

## Warning: Removed 15 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_ANexp.c + index_AFexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105957
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00697 -0.62755  0.05285  0.74877  2.10977 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00129  0.03591 
##  Residual             2.29272  1.51417 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.332e+00  1.701e-02  1.706e+01  78.284  < 2e-16 ***
## index_ANexp.c        1.685e-04  2.543e-04  1.082e+02   0.662   0.5091    
## index_AFexp.c        1.023e-02  4.738e-03  6.721e+01   2.160   0.0344 *  
## pDemR               -1.171e+00  2.010e-02  2.883e+04 -58.248  < 2e-16 ***
## pDemI               -5.157e-01  2.610e-02  2.885e+04 -19.761  < 2e-16 ***
## index_ANexp.c:pDemR  2.887e-03  3.778e-04  2.693e+04   7.641 2.22e-14 ***
## index_ANexp.c:pDemI  4.845e-04  5.118e-04  2.808e+04   0.947   0.3438    
## index_AFexp.c:pDemR -8.449e-04  6.738e-03  2.396e+04  -0.125   0.9002    
## index_AFexp.c:pDemI  3.913e-03  9.211e-03  2.799e+04   0.425   0.6710    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pDemR  pDemI  i_AN.:DR i_AN.:DI i_AF.:DR
## indx_ANxp.c -0.069                                                       
## indx_AFxp.c -0.010 -0.881                                                
## pDemR       -0.532  0.059  0.008                                         
## pDemI       -0.410  0.044  0.008  0.347                                  
## indx_AN.:DR  0.047 -0.515  0.417  0.035 -0.031                           
## indx_AN.:DI  0.035 -0.376  0.303 -0.029  0.031  0.270                    
## indx_AF.:DR  0.006  0.437 -0.500 -0.003 -0.004 -0.845   -0.232           
## indx_AF.:DI  0.004  0.316 -0.359 -0.003  0.012 -0.230   -0.854    0.273

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_ANexp.c + index_AFexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105957
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00697 -0.62755  0.05285  0.74877  2.10977 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00129  0.03591 
##  Residual             2.29272  1.51417 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.609e-01  1.815e-02  2.214e+01   8.861 9.86e-09 ***
## index_ANexp.c        3.056e-03  3.293e-04  1.638e+02   9.281  < 2e-16 ***
## index_AFexp.c        9.388e-03  5.996e-03  9.827e+01   1.566    0.121    
## pRepD                1.171e+00  2.010e-02  2.883e+04  58.248  < 2e-16 ***
## pRepI                6.552e-01  2.685e-02  2.885e+04  24.402  < 2e-16 ***
## index_ANexp.c:pRepD -2.887e-03  3.778e-04  2.693e+04  -7.641 2.22e-14 ***
## index_ANexp.c:pRepI -2.403e-03  5.480e-04  2.886e+04  -4.384 1.17e-05 ***
## index_AFexp.c:pRepD  8.449e-04  6.738e-03  2.396e+04   0.125    0.900    
## index_AFexp.c:pRepI  4.757e-03  9.817e-03  2.880e+04   0.485    0.628    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pRepD  pRepI  i_AN.:RD i_AN.:RI i_AF.:RD
## indx_ANxp.c  0.096                                                       
## indx_AFxp.c  0.002 -0.870                                                
## pRepD       -0.609 -0.086 -0.003                                         
## pRepI       -0.456 -0.066  0.000  0.411                                  
## indx_AN.:RD -0.083 -0.750  0.620  0.035  0.056                           
## indx_AN.:RI -0.057 -0.499  0.408  0.052  0.087  0.438                    
## indx_AF.:RD -0.002  0.632 -0.729 -0.003  0.002 -0.845   -0.366           
## indx_AF.:RI -0.001  0.416 -0.479  0.001  0.014 -0.365   -0.851    0.430

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: worstBorA ~ (index_ANexp.c + index_AFexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 105957
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00697 -0.62755  0.05285  0.74877  2.10977 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  media    (Intercept) 0.00129  0.03592 
##  Residual             2.29272  1.51417 
## Number of obs: 28865, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          8.161e-01  2.463e-02  7.492e+01  33.139  < 2e-16 ***
## index_ANexp.c        6.530e-04  4.783e-04  6.254e+02   1.365    0.173    
## index_AFexp.c        1.415e-02  8.715e-03  3.893e+02   1.623    0.105    
## pIndD                5.157e-01  2.610e-02  2.885e+04  19.761  < 2e-16 ***
## pIndR               -6.552e-01  2.685e-02  2.885e+04 -24.402  < 2e-16 ***
## index_ANexp.c:pIndD -4.845e-04  5.118e-04  2.808e+04  -0.947    0.344    
## index_ANexp.c:pIndR  2.403e-03  5.480e-04  2.886e+04   4.384 1.17e-05 ***
## index_AFexp.c:pIndD -3.913e-03  9.211e-03  2.799e+04  -0.425    0.671    
## index_AFexp.c:pIndR -4.757e-03  9.817e-03  2.880e+04  -0.485    0.628    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pIndD  pIndR  i_AN.:ID i_AN.:IR i_AF.:ID
## indx_ANxp.c  0.060                                                       
## indx_AFxp.c  0.017 -0.867                                                
## pIndD       -0.777 -0.056 -0.017                                         
## pIndR       -0.754 -0.055 -0.016  0.712                                  
## indx_AN.:ID -0.057 -0.870  0.738  0.031  0.052                           
## indx_AN.:IR -0.053 -0.802  0.678  0.050  0.087  0.748                    
## indx_AF.:ID -0.015  0.746 -0.862  0.012  0.014 -0.854   -0.639           
## indx_AF.:IR -0.014  0.689 -0.797  0.014  0.014 -0.642   -0.851    0.751

F. vaccine attitudes

vaxAttitudes ~ indexes * party

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_ANexp.c + index_AFexp.c) * (pDem_Rep +  
##     pInd_Not) + (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124023.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.05264 -0.78366  0.04051  0.94417  1.61639 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0009917 0.03149 
##  Residual             4.2963644 2.07277 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             2.450e-01  1.641e-02  1.340e+01  14.925 9.85e-10 ***
## index_ANexp.c           2.466e-03  2.962e-04  5.659e+01   8.324 2.10e-11 ***
## index_AFexp.c           1.509e-03  5.454e-03  3.568e+01   0.277    0.784    
## pDem_Rep               -4.851e-01  2.751e-02  2.878e+04 -17.635  < 2e-16 ***
## pInd_Not                4.482e-01  3.353e-02  2.884e+04  13.368  < 2e-16 ***
## index_ANexp.c:pDem_Rep  4.293e-04  5.164e-04  2.715e+04   0.831    0.406    
## index_ANexp.c:pInd_Not -9.054e-04  6.779e-04  2.880e+04  -1.336    0.182    
## index_AFexp.c:pDem_Rep  1.189e-02  9.202e-03  2.361e+04   1.292    0.196    
## index_AFexp.c:pInd_Not -9.800e-04  1.218e-02  2.878e+04  -0.080    0.936    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pDm_Rp pInd_N i_AN.:D i_AN.:I i_AF.:D
## indx_ANxp.c  0.041                                                    
## indx_AFxp.c  0.007 -0.877                                             
## pDem_Rep     0.055  0.067  0.005                                      
## pInd_Not    -0.330 -0.036 -0.014  0.040                               
## ind_AN.:D_R  0.064  0.172 -0.140  0.034  0.047                        
## ind_AN.:I_N -0.033 -0.432  0.367  0.043  0.064  0.102                 
## ind_AF.:D_R  0.004 -0.144  0.161 -0.003  0.003 -0.846  -0.083         
## ind_AF.:I_N -0.011  0.375 -0.429  0.002  0.015 -0.082  -0.853   0.096

## Warning: Removed 12 row(s) containing missing values (geom_path).

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_ANexp.c + index_AFexp.c) * (pDemR + pDemI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124023.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.05264 -0.78366  0.04051  0.94417  1.61639 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0009917 0.03149 
##  Residual             4.2963644 2.07277 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.354e-01  2.059e-02  3.305e+01  30.868  < 2e-16 ***
## index_ANexp.c        1.952e-03  3.301e-04  1.378e+02   5.915 2.49e-08 ***
## index_AFexp.c       -4.759e-03  6.052e-03  8.097e+01  -0.786    0.434    
## pDemR               -4.851e-01  2.751e-02  2.878e+04 -17.635  < 2e-16 ***
## pDemI               -6.908e-01  3.572e-02  2.882e+04 -19.336  < 2e-16 ***
## index_ANexp.c:pDemR  4.293e-04  5.164e-04  2.715e+04   0.831    0.406    
## index_ANexp.c:pDemI  1.120e-03  7.003e-04  2.833e+04   1.599    0.110    
## index_AFexp.c:pDemR  1.189e-02  9.202e-03  2.361e+04   1.292    0.196    
## index_AFexp.c:pDemI  6.926e-03  1.260e-02  2.827e+04   0.550    0.583    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pDemR  pDemI  i_AN.:DR i_AN.:DI i_AF.:DR
## indx_ANxp.c -0.084                                                       
## indx_AFxp.c -0.010 -0.867                                                
## pDemR       -0.602  0.063  0.007                                         
## pDemI       -0.464  0.048  0.007  0.347                                  
## indx_AN.:DR  0.054 -0.558  0.463  0.034 -0.031                           
## indx_AN.:DI  0.040 -0.409  0.338 -0.030  0.031  0.270                    
## indx_AF.:DR  0.006  0.477 -0.551 -0.003 -0.004 -0.846   -0.232           
## indx_AF.:DI  0.004  0.346 -0.399 -0.003  0.012 -0.230   -0.854    0.272

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_ANexp.c + index_AFexp.c) * (pRepD + pRepI) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124023.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.05264 -0.78366  0.04051  0.94417  1.61639 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0009917 0.03149 
##  Residual             4.2963644 2.07277 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.503e-01  2.232e-02  4.571e+01   6.733 2.36e-08 ***
## index_ANexp.c        2.382e-03  4.306e-04  2.167e+02   5.532 9.09e-08 ***
## index_AFexp.c        7.132e-03  7.738e-03  1.241e+02   0.922    0.359    
## pRepD                4.851e-01  2.751e-02  2.878e+04  17.635  < 2e-16 ***
## pRepI               -2.056e-01  3.675e-02  2.884e+04  -5.596 2.21e-08 ***
## index_ANexp.c:pRepD -4.293e-04  5.164e-04  2.715e+04  -0.831    0.406    
## index_ANexp.c:pRepI  6.908e-04  7.497e-04  2.884e+04   0.921    0.357    
## index_AFexp.c:pRepD -1.189e-02  9.202e-03  2.361e+04  -1.292    0.196    
## index_AFexp.c:pRepI -4.966e-03  1.343e-02  2.873e+04  -0.370    0.712    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pRepD  pRepI  i_AN.:RD i_AN.:RI i_AF.:RD
## indx_ANxp.c  0.110                                                       
## indx_AFxp.c  0.003 -0.858                                                
## pRepD       -0.677 -0.089 -0.003                                         
## pRepI       -0.507 -0.067 -0.001  0.411                                  
## indx_AN.:RD -0.091 -0.771  0.644  0.034  0.056                           
## indx_AN.:RI -0.063 -0.522  0.433  0.051  0.087  0.437                    
## indx_AF.:RD -0.003  0.649 -0.758 -0.003  0.002 -0.846   -0.366           
## indx_AF.:RI -0.002  0.435 -0.508  0.001  0.014 -0.364   -0.851    0.430

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: vaxxAttitudes ~ (index_ANexp.c + index_AFexp.c) * (pIndD + pIndR) +  
##     (1 | media)
##    Data: dl2
## 
## REML criterion at convergence: 124023.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.05264 -0.78366  0.04051  0.94417  1.61639 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  media    (Intercept) 0.0009917 0.03149 
##  Residual             4.2963644 2.07277 
## Number of obs: 28853, groups:  media, 12
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         -5.535e-02  3.190e-02  1.903e+02  -1.735   0.0843 .  
## index_ANexp.c        3.073e-03  6.406e-04  9.020e+02   4.796 1.89e-06 ***
## index_AFexp.c        2.166e-03  1.160e-02  5.550e+02   0.187   0.8520    
## pIndD                6.908e-01  3.572e-02  2.882e+04  19.336  < 2e-16 ***
## pIndR                2.056e-01  3.675e-02  2.884e+04   5.596 2.21e-08 ***
## index_ANexp.c:pIndD -1.120e-03  7.003e-04  2.833e+04  -1.599   0.1097    
## index_ANexp.c:pIndR -6.908e-04  7.497e-04  2.884e+04  -0.921   0.3569    
## index_AFexp.c:pIndD -6.926e-03  1.260e-02  2.827e+04  -0.550   0.5827    
## index_AFexp.c:pIndR  4.966e-03  1.343e-02  2.873e+04   0.370   0.7116    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AN. in_AF. pIndD  pIndR  i_AN.:ID i_AN.:IR i_AF.:ID
## indx_ANxp.c  0.065                                                       
## indx_AFxp.c  0.018 -0.861                                                
## pIndD       -0.820 -0.058 -0.016                                         
## pIndR       -0.797 -0.057 -0.016  0.712                                  
## indx_AN.:ID -0.060 -0.883  0.751  0.031  0.052                           
## indx_AN.:IR -0.056 -0.819  0.696  0.050  0.087  0.748                    
## indx_AF.:ID -0.016  0.755 -0.878  0.012  0.014 -0.854   -0.640           
## indx_AF.:IR -0.015  0.703 -0.819  0.014  0.014 -0.643   -0.851    0.752

G. vaccine policy support + (1 | policy condition)

1. policySupport ~ index * party + (1 | policy condition) singular with (1|media), so excluded

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: policySupport ~ (index_AFexp.c + index_ANexp.c) * (pDem_Rep +  
##     pInd_Not) + (1 | Policy_Condition)
##    Data: dl2
## 
## REML criterion at convergence: 111126.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.76870 -0.62300 -0.00133  0.83758  2.11489 
## 
## Random effects:
##  Groups           Name        Variance Std.Dev.
##  Policy_Condition (Intercept) 0.2046   0.4523  
##  Residual                     2.7353   1.6539  
## Number of obs: 28877, groups:  Policy_Condition, 8
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             6.716e-01  1.603e-01  7.013e+00   4.190  0.00407 ** 
## index_AFexp.c           4.651e-03  3.852e-03  2.886e+04   1.207  0.22735    
## index_ANexp.c           1.004e-03  2.150e-04  2.886e+04   4.667 3.07e-06 ***
## pDem_Rep                6.967e-02  2.197e-02  2.886e+04   3.171  0.00152 ** 
## pInd_Not                4.192e-01  2.676e-02  2.886e+04  15.663  < 2e-16 ***
## index_AFexp.c:pDem_Rep  3.723e-03  7.322e-03  2.886e+04   0.509  0.61110    
## index_AFexp.c:pInd_Not  1.418e-03  9.718e-03  2.886e+04   0.146  0.88402    
## index_ANexp.c:pDem_Rep  3.706e-04  4.114e-04  2.886e+04   0.901  0.36761    
## index_ANexp.c:pInd_Not -1.012e-03  5.409e-04  2.886e+04  -1.871  0.06138 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDm_Rp pInd_N i_AF.:D i_AF.:I i_AN.:D
## indx_AFxp.c  0.001                                                    
## indx_ANxp.c  0.004 -0.851                                             
## pDem_Rep     0.004  0.004  0.073                                      
## pInd_Not    -0.027 -0.013 -0.040  0.041                               
## ind_AF.:D_R  0.000  0.163 -0.141 -0.002  0.003                        
## ind_AF.:I_N -0.001 -0.474  0.403  0.002  0.015  0.097                 
## ind_AN.:D_R  0.005 -0.140  0.175  0.034  0.047 -0.847  -0.083         
## ind_AN.:I_N -0.003  0.404 -0.466  0.043  0.065 -0.084  -0.853   0.104

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: policySupport ~ (index_AFexp.c + index_ANexp.c) * (pDemR + pDemI) +  
##     (1 | Policy_Condition)
##    Data: dl2
## 
## REML criterion at convergence: 111126.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.76870 -0.62300 -0.00133  0.83758  2.11489 
## 
## Random effects:
##  Groups           Name        Variance Std.Dev.
##  Policy_Condition (Intercept) 0.2046   0.4523  
##  Residual                     2.7353   1.6539  
## Number of obs: 28877, groups:  Policy_Condition, 8
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          7.751e-01  1.606e-01  7.067e+00   4.826  0.00186 ** 
## index_AFexp.c        3.257e-03  4.464e-03  2.886e+04   0.730  0.46569    
## index_ANexp.c        4.843e-04  2.481e-04  2.886e+04   1.952  0.05092 .  
## pDemR                6.967e-02  2.197e-02  2.886e+04   3.171  0.00152 ** 
## pDemI               -3.844e-01  2.852e-02  2.886e+04 -13.479  < 2e-16 ***
## index_AFexp.c:pDemR  3.723e-03  7.322e-03  2.886e+04   0.509  0.61110    
## index_AFexp.c:pDemI  4.441e-04  1.005e-02  2.886e+04   0.044  0.96475    
## index_ANexp.c:pDemR  3.706e-04  4.114e-04  2.886e+04   0.901  0.36761    
## index_ANexp.c:pDemI  1.197e-03  5.584e-04  2.886e+04   2.144  0.03203 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pDemR  pDemI  i_AF.:DR i_AF.:DI i_AN.:DR
## indx_AFxp.c -0.001                                                       
## indx_ANxp.c -0.009 -0.852                                                
## pDemR       -0.062  0.007  0.066                                         
## pDemI       -0.047  0.005  0.051  0.347                                  
## indx_AF.:DR  0.001 -0.610  0.519 -0.002 -0.003                           
## indx_AF.:DI  0.000 -0.444  0.378 -0.003  0.012  0.271                    
## indx_AN.:DR  0.005  0.514 -0.603  0.034 -0.031 -0.847   -0.228           
## indx_AN.:DI  0.004  0.379 -0.444 -0.029  0.032 -0.231   -0.854    0.268

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: policySupport ~ (index_AFexp.c + index_ANexp.c) * (pRepD + pRepI) +  
##     (1 | Policy_Condition)
##    Data: dl2
## 
## REML criterion at convergence: 111126.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.76870 -0.62300 -0.00133  0.83758  2.11489 
## 
## Random effects:
##  Groups           Name        Variance Std.Dev.
##  Policy_Condition (Intercept) 0.2046   0.4523  
##  Residual                     2.7353   1.6539  
## Number of obs: 28877, groups:  Policy_Condition, 8
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          8.448e-01  1.607e-01  7.093e+00   5.255  0.00113 ** 
## index_AFexp.c        6.980e-03  5.803e-03  2.886e+04   1.203  0.22908    
## index_ANexp.c        8.550e-04  3.281e-04  2.886e+04   2.605  0.00918 ** 
## pRepD               -6.967e-02  2.197e-02  2.886e+04  -3.171  0.00152 ** 
## pRepI               -4.540e-01  2.934e-02  2.886e+04 -15.474  < 2e-16 ***
## index_AFexp.c:pRepD -3.723e-03  7.322e-03  2.886e+04  -0.509  0.61110    
## index_AFexp.c:pRepI -3.279e-03  1.071e-02  2.886e+04  -0.306  0.75948    
## index_ANexp.c:pRepD -3.706e-04  4.114e-04  2.886e+04  -0.901  0.36761    
## index_ANexp.c:pRepI  8.267e-04  5.983e-04  2.886e+04   1.382  0.16711    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pRepD  pRepI  i_AF.:RD i_AF.:RI i_AN.:RD
## indx_AFxp.c  0.000                                                       
## indx_ANxp.c  0.013 -0.844                                                
## pRepD       -0.075 -0.002 -0.093                                         
## pRepI       -0.056 -0.002 -0.070  0.411                                  
## indx_AF.:RD  0.000 -0.793  0.669 -0.002  0.001                           
## indx_AF.:RI  0.000 -0.542  0.457  0.001  0.014  0.429                    
## indx_AN.:RD -0.010  0.673 -0.798  0.034  0.055 -0.847   -0.365           
## indx_AN.:RI -0.007  0.463 -0.549  0.051  0.087 -0.367   -0.851    0.438

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: policySupport ~ (index_AFexp.c + index_ANexp.c) * (pIndD + pIndR) +  
##     (1 | Policy_Condition)
##    Data: dl2
## 
## REML criterion at convergence: 111126.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.76870 -0.62300 -0.00133  0.83758  2.11489 
## 
## Random effects:
##  Groups           Name        Variance Std.Dev.
##  Policy_Condition (Intercept) 0.2046   0.4523  
##  Residual                     2.7353   1.6539  
## Number of obs: 28877, groups:  Policy_Condition, 8
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.908e-01  1.618e-01  7.276e+00   2.415 0.045102 *  
## index_AFexp.c        3.701e-03  9.002e-03  2.886e+04   0.411 0.680978    
## index_ANexp.c        1.682e-03  5.003e-04  2.886e+04   3.362 0.000776 ***
## pIndD                3.844e-01  2.852e-02  2.886e+04  13.479  < 2e-16 ***
## pIndR                4.540e-01  2.934e-02  2.886e+04  15.474  < 2e-16 ***
## index_AFexp.c:pIndD -4.441e-04  1.005e-02  2.886e+04  -0.044 0.964750    
## index_AFexp.c:pIndR  3.279e-03  1.071e-02  2.886e+04   0.306 0.759477    
## index_ANexp.c:pIndD -1.197e-03  5.584e-04  2.886e+04  -2.144 0.032027 *  
## index_ANexp.c:pIndR -8.267e-04  5.983e-04  2.886e+04  -1.382 0.167108    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) in_AF. in_AN. pIndD  pIndR  i_AF.:ID i_AF.:IR i_AN.:ID
## indx_AFxp.c  0.003                                                       
## indx_ANxp.c  0.011 -0.854                                                
## pIndD       -0.129 -0.016 -0.061                                         
## pIndR       -0.126 -0.015 -0.059  0.712                                  
## indx_AF.:ID -0.002 -0.896  0.765  0.012  0.014                           
## indx_AF.:IR -0.002 -0.840  0.718  0.013  0.014  0.753                    
## indx_AN.:ID -0.010  0.765 -0.896  0.032  0.053 -0.854   -0.643           
## indx_AN.:IR -0.009  0.714 -0.836  0.051  0.087 -0.640   -0.851    0.749

H. vaccine policy support + prop v. US 1st + (1 | policy group)

policySupport ~ index * party * propVUS1st + (1 | policy_group) singular with (1|media), so excluded

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: policySupport ~ (index_AFexp.c + index_ANexp.c) * (pDem_Rep +  
##     pInd_Not) * PropvUS1st + (1 | Policy_Group)
##    Data: dl2
## 
## REML criterion at convergence: 110948.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.90565 -0.60778  0.06409  0.80157  1.98909 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  Policy_Group (Intercept) 0.08946  0.2991  
##  Residual                 2.71416  1.6475  
## Number of obs: 28877, groups:  Policy_Group, 4
## 
## Fixed effects:
##                                     Estimate Std. Error         df t value
## (Intercept)                        6.700e-01  1.499e-01  3.007e+00   4.468
## index_AFexp.c                      5.050e-03  3.858e-03  2.886e+04   1.309
## index_ANexp.c                      9.936e-04  2.159e-04  2.886e+04   4.602
## pDem_Rep                           8.214e-02  2.189e-02  2.886e+04   3.753
## pInd_Not                           4.200e-01  2.678e-02  2.886e+04  15.683
## PropvUS1st                         6.040e-01  2.179e-02  2.886e+04  27.717
## index_AFexp.c:pDem_Rep             3.546e-03  7.303e-03  2.886e+04   0.486
## index_AFexp.c:pInd_Not             1.257e-03  9.750e-03  2.886e+04   0.129
## index_ANexp.c:pDem_Rep             3.927e-04  4.102e-04  2.886e+04   0.957
## index_ANexp.c:pInd_Not            -1.044e-03  5.450e-04  2.886e+04  -1.915
## index_AFexp.c:PropvUS1st           1.768e-03  7.716e-03  2.886e+04   0.229
## index_ANexp.c:PropvUS1st          -8.922e-04  4.319e-04  2.886e+04  -2.065
## pDem_Rep:PropvUS1st                7.284e-01  4.378e-02  2.886e+04  16.637
## pInd_Not:PropvUS1st                1.871e-01  5.354e-02  2.886e+04   3.494
## index_AFexp.c:pDem_Rep:PropvUS1st -9.523e-03  1.461e-02  2.886e+04  -0.652
## index_AFexp.c:pInd_Not:PropvUS1st -4.085e-03  1.950e-02  2.886e+04  -0.210
## index_ANexp.c:pDem_Rep:PropvUS1st -1.336e-03  8.204e-04  2.886e+04  -1.628
## index_ANexp.c:pInd_Not:PropvUS1st -1.578e-03  1.090e-03  2.886e+04  -1.448
##                                   Pr(>|t|)    
## (Intercept)                       0.020786 *  
## index_AFexp.c                     0.190616    
## index_ANexp.c                     4.21e-06 ***
## pDem_Rep                          0.000175 ***
## pInd_Not                           < 2e-16 ***
## PropvUS1st                         < 2e-16 ***
## index_AFexp.c:pDem_Rep            0.627260    
## index_AFexp.c:pInd_Not            0.897442    
## index_ANexp.c:pDem_Rep            0.338345    
## index_ANexp.c:pInd_Not            0.055488 .  
## index_AFexp.c:PropvUS1st          0.818768    
## index_ANexp.c:PropvUS1st          0.038885 *  
## pDem_Rep:PropvUS1st                < 2e-16 ***
## pInd_Not:PropvUS1st               0.000476 ***
## index_AFexp.c:pDem_Rep:PropvUS1st 0.514426    
## index_AFexp.c:pInd_Not:PropvUS1st 0.834042    
## index_ANexp.c:pDem_Rep:PropvUS1st 0.103532    
## index_ANexp.c:pInd_Not:PropvUS1st 0.147527    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it

1. simple effects for dems

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: policySupport ~ (index_AFexp.c + index_ANexp.c) * (pDemR + pDemI) *  
##     PropvUS1st + (1 | Policy_Group)
##    Data: dl2
## 
## REML criterion at convergence: 110948.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.90565 -0.60778  0.06409  0.80157  1.98909 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  Policy_Group (Intercept) 0.08946  0.2991  
##  Residual                 2.71416  1.6475  
## Number of obs: 28877, groups:  Policy_Group, 4
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     7.675e-01  1.503e-01  3.033e+00   5.107
## index_AFexp.c                   3.691e-03  4.456e-03  2.886e+04   0.828
## index_ANexp.c                   4.529e-04  2.477e-04  2.886e+04   1.828
## pDemR                           8.214e-02  2.189e-02  2.886e+04   3.753
## pDemI                          -3.789e-01  2.853e-02  2.886e+04 -13.284
## PropvUS1st                      3.015e-01  2.938e-02  2.886e+04  10.262
## index_AFexp.c:pDemR             3.546e-03  7.303e-03  2.886e+04   0.486
## index_AFexp.c:pDemI             5.166e-04  1.008e-02  2.886e+04   0.051
## index_ANexp.c:pDemR             3.927e-04  4.102e-04  2.886e+04   0.957
## index_ANexp.c:pDemI             1.240e-03  5.624e-04  2.886e+04   2.205
## index_AFexp.c:PropvUS1st        5.181e-03  8.911e-03  2.886e+04   0.581
## index_ANexp.c:PropvUS1st       -7.452e-04  4.954e-04  2.886e+04  -1.504
## pDemR:PropvUS1st                7.284e-01  4.378e-02  2.886e+04  16.637
## pDemI:PropvUS1st                1.771e-01  5.702e-02  2.886e+04   3.106
## index_AFexp.c:pDemR:PropvUS1st -9.523e-03  1.461e-02  2.886e+04  -0.652
## index_AFexp.c:pDemI:PropvUS1st -6.760e-04  2.016e-02  2.886e+04  -0.034
## index_ANexp.c:pDemR:PropvUS1st -1.336e-03  8.204e-04  2.886e+04  -1.628
## index_ANexp.c:pDemI:PropvUS1st  9.105e-04  1.125e-03  2.886e+04   0.810
##                                Pr(>|t|)    
## (Intercept)                    0.014137 *  
## index_AFexp.c                  0.407448    
## index_ANexp.c                  0.067520 .  
## pDemR                          0.000175 ***
## pDemI                           < 2e-16 ***
## PropvUS1st                      < 2e-16 ***
## index_AFexp.c:pDemR            0.627260    
## index_AFexp.c:pDemI            0.959123    
## index_ANexp.c:pDemR            0.338345    
## index_ANexp.c:pDemI            0.027463 *  
## index_AFexp.c:PropvUS1st       0.560933    
## index_ANexp.c:PropvUS1st       0.132509    
## pDemR:PropvUS1st                < 2e-16 ***
## pDemI:PropvUS1st               0.001895 ** 
## index_AFexp.c:pDemR:PropvUS1st 0.514426    
## index_AFexp.c:pDemI:PropvUS1st 0.973245    
## index_ANexp.c:pDemR:PropvUS1st 0.103532    
## index_ANexp.c:pDemI:PropvUS1st 0.418148    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it

2. simple effects for reps

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: policySupport ~ (index_AFexp.c + index_ANexp.c) * (pRepD + pRepI) *  
##     PropvUS1st + (1 | Policy_Group)
##    Data: dl2
## 
## REML criterion at convergence: 110948.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.90565 -0.60778  0.06409  0.80157  1.98909 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  Policy_Group (Intercept) 0.08946  0.2991  
##  Residual                 2.71416  1.6475  
## Number of obs: 28877, groups:  Policy_Group, 4
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     8.496e-01  1.504e-01  3.046e+00   5.648
## index_AFexp.c                   7.237e-03  5.787e-03  2.886e+04   1.251
## index_ANexp.c                   8.456e-04  3.269e-04  2.886e+04   2.587
## pRepD                          -8.214e-02  2.189e-02  2.886e+04  -3.753
## pRepI                          -4.611e-01  2.933e-02  2.886e+04 -15.721
## PropvUS1st                      1.030e+00  3.244e-02  2.886e+04  31.750
## index_AFexp.c:pRepD            -3.546e-03  7.303e-03  2.886e+04  -0.486
## index_AFexp.c:pRepI            -3.030e-03  1.073e-02  2.886e+04  -0.282
## index_ANexp.c:pRepD            -3.927e-04  4.102e-04  2.886e+04  -0.957
## index_ANexp.c:pRepI             8.473e-04  6.015e-04  2.886e+04   1.409
## index_AFexp.c:PropvUS1st       -4.342e-03  1.157e-02  2.886e+04  -0.375
## index_ANexp.c:PropvUS1st       -2.081e-03  6.539e-04  2.886e+04  -3.182
## pRepD:PropvUS1st               -7.284e-01  4.378e-02  2.886e+04 -16.637
## pRepI:PropvUS1st               -5.513e-01  5.866e-02  2.886e+04  -9.398
## index_AFexp.c:pRepD:PropvUS1st  9.523e-03  1.461e-02  2.886e+04   0.652
## index_AFexp.c:pRepI:PropvUS1st  8.847e-03  2.147e-02  2.886e+04   0.412
## index_ANexp.c:pRepD:PropvUS1st  1.336e-03  8.204e-04  2.886e+04   1.628
## index_ANexp.c:pRepI:PropvUS1st  2.246e-03  1.203e-03  2.886e+04   1.867
##                                Pr(>|t|)    
## (Intercept)                    0.010546 *  
## index_AFexp.c                  0.211064    
## index_ANexp.c                  0.009700 ** 
## pRepD                          0.000175 ***
## pRepI                           < 2e-16 ***
## PropvUS1st                      < 2e-16 ***
## index_AFexp.c:pRepD            0.627260    
## index_AFexp.c:pRepI            0.777727    
## index_ANexp.c:pRepD            0.338345    
## index_ANexp.c:pRepI            0.158970    
## index_AFexp.c:PropvUS1st       0.707560    
## index_ANexp.c:PropvUS1st       0.001464 ** 
## pRepD:PropvUS1st                < 2e-16 ***
## pRepI:PropvUS1st                < 2e-16 ***
## index_AFexp.c:pRepD:PropvUS1st 0.514426    
## index_AFexp.c:pRepI:PropvUS1st 0.680252    
## index_ANexp.c:pRepD:PropvUS1st 0.103532    
## index_ANexp.c:pRepI:PropvUS1st 0.061861 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it

3. simple effects for indep

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: policySupport ~ (index_AFexp.c + index_ANexp.c) * (pIndD + pIndR) *  
##     PropvUS1st + (1 | Policy_Group)
##    Data: dl2
## 
## REML criterion at convergence: 110948.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.90565 -0.60778  0.06409  0.80157  1.98909 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  Policy_Group (Intercept) 0.08946  0.2991  
##  Residual                 2.71416  1.6475  
## Number of obs: 28877, groups:  Policy_Group, 4
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     3.886e-01  1.515e-01  3.136e+00   2.564
## index_AFexp.c                   4.208e-03  9.040e-03  2.886e+04   0.465
## index_ANexp.c                   1.693e-03  5.049e-04  2.886e+04   3.353
## pIndD                           3.789e-01  2.853e-02  2.886e+04  13.284
## pIndR                           4.611e-01  2.933e-02  2.886e+04  15.721
## PropvUS1st                      4.786e-01  4.887e-02  2.886e+04   9.794
## index_AFexp.c:pIndD            -5.166e-04  1.008e-02  2.886e+04  -0.051
## index_AFexp.c:pIndR             3.030e-03  1.073e-02  2.886e+04   0.282
## index_ANexp.c:pIndD            -1.240e-03  5.624e-04  2.886e+04  -2.205
## index_ANexp.c:pIndR            -8.473e-04  6.015e-04  2.886e+04  -1.409
## index_AFexp.c:PropvUS1st        4.505e-03  1.808e-02  2.886e+04   0.249
## index_ANexp.c:PropvUS1st        1.653e-04  1.010e-03  2.886e+04   0.164
## pIndD:PropvUS1st               -1.771e-01  5.702e-02  2.886e+04  -3.106
## pIndR:PropvUS1st                5.513e-01  5.866e-02  2.886e+04   9.398
## index_AFexp.c:pIndD:PropvUS1st  6.760e-04  2.016e-02  2.886e+04   0.034
## index_AFexp.c:pIndR:PropvUS1st -8.847e-03  2.147e-02  2.886e+04  -0.412
## index_ANexp.c:pIndD:PropvUS1st -9.105e-04  1.125e-03  2.886e+04  -0.810
## index_ANexp.c:pIndR:PropvUS1st -2.246e-03  1.203e-03  2.886e+04  -1.867
##                                Pr(>|t|)    
## (Intercept)                      0.0793 .  
## index_AFexp.c                    0.6416    
## index_ANexp.c                    0.0008 ***
## pIndD                            <2e-16 ***
## pIndR                            <2e-16 ***
## PropvUS1st                       <2e-16 ***
## index_AFexp.c:pIndD              0.9591    
## index_AFexp.c:pIndR              0.7777    
## index_ANexp.c:pIndD              0.0275 *  
## index_ANexp.c:pIndR              0.1590    
## index_AFexp.c:PropvUS1st         0.8032    
## index_ANexp.c:PropvUS1st         0.8699    
## pIndD:PropvUS1st                 0.0019 ** 
## pIndR:PropvUS1st                 <2e-16 ***
## index_AFexp.c:pIndD:PropvUS1st   0.9732    
## index_AFexp.c:pIndR:PropvUS1st   0.6803    
## index_ANexp.c:pIndD:PropvUS1st   0.4181    
## index_ANexp.c:pIndR:PropvUS1st   0.0619 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it

AVERAGE OF W1 & W2

1. Analytic + Affect

A. avgRisk3

avgRisk3 ~ index * party

## 
## Call:
## lm(formula = avgRisk3 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pDem_Rep.y + pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9249 -0.9514  0.0719  0.9678  3.6877 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  4.5602977  0.0317816 143.489  < 2e-16 ***
## avgIndex_AFexp.c             0.0502206  0.0076366   6.576 6.01e-11 ***
## avgIndex_ANexp.c            -0.0018273  0.0003665  -4.985 6.68e-07 ***
## pDem_Rep.y                  -1.2253223  0.0662268 -18.502  < 2e-16 ***
## pInd_Not.y                   0.1352679  0.0764971   1.768  0.07715 .  
## avgIndex_AFexp.c:pDem_Rep.y  0.0407835  0.0144180   2.829  0.00472 ** 
## avgIndex_AFexp.c:pInd_Not.y -0.0062478  0.0193199  -0.323  0.74643    
## avgIndex_ANexp.c:pDem_Rep.y -0.0013857  0.0006889  -2.012  0.04439 *  
## avgIndex_ANexp.c:pInd_Not.y  0.0001166  0.0009292   0.125  0.90018    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.31 on 2194 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.2884, Adjusted R-squared:  0.2858 
## F-statistic: 111.1 on 8 and 2194 DF,  p-value: < 2.2e-16

1. simple effects for dems

## 
## Call:
## lm(formula = avgRisk3 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pDemR.y + pDemI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9249 -0.9514  0.0719  0.9678  3.6877 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.2175972  0.0444252 117.447  < 2e-16 ***
## avgIndex_AFexp.c          0.0277671  0.0090181   3.079  0.00210 ** 
## avgIndex_ANexp.c         -0.0010959  0.0004304  -2.546  0.01096 *  
## pDemR.y                  -1.2253223  0.0662268 -18.502  < 2e-16 ***
## pDemI.y                  -0.7479291  0.0820299  -9.118  < 2e-16 ***
## avgIndex_AFexp.c:pDemR.y  0.0407835  0.0144180   2.829  0.00472 ** 
## avgIndex_AFexp.c:pDemI.y  0.0266395  0.0200652   1.328  0.18443    
## avgIndex_ANexp.c:pDemR.y -0.0013857  0.0006889  -2.012  0.04439 *  
## avgIndex_ANexp.c:pDemI.y -0.0008094  0.0009643  -0.839  0.40137    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.31 on 2194 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.2884, Adjusted R-squared:  0.2858 
## F-statistic: 111.1 on 8 and 2194 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRisk3 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pRepD.y + pRepI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9249 -0.9514  0.0719  0.9678  3.6877 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.9922749  0.0491161  81.282  < 2e-16 ***
## avgIndex_AFexp.c          0.0685506  0.0112496   6.094 1.30e-09 ***
## avgIndex_ANexp.c         -0.0024817  0.0005379  -4.614 4.18e-06 ***
## pRepD.y                   1.2253223  0.0662268  18.502  < 2e-16 ***
## pRepI.y                   0.4773932  0.0846623   5.639 1.93e-08 ***
## avgIndex_AFexp.c:pRepD.y -0.0407835  0.0144180  -2.829  0.00472 ** 
## avgIndex_AFexp.c:pRepI.y -0.0141439  0.0211622  -0.668  0.50398    
## avgIndex_ANexp.c:pRepD.y  0.0013857  0.0006889   2.012  0.04439 *  
## avgIndex_ANexp.c:pRepI.y  0.0005763  0.0010169   0.567  0.57094    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.31 on 2194 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.2884, Adjusted R-squared:  0.2858 
## F-statistic: 111.1 on 8 and 2194 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRisk3 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pIndD.y + pIndR.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9249 -0.9514  0.0719  0.9678  3.6877 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.4696681  0.0689587  64.817  < 2e-16 ***
## avgIndex_AFexp.c          0.0544067  0.0179245   3.035  0.00243 ** 
## avgIndex_ANexp.c         -0.0019054  0.0008630  -2.208  0.02735 *  
## pIndD.y                   0.7479291  0.0820299   9.118  < 2e-16 ***
## pIndR.y                  -0.4773932  0.0846623  -5.639 1.93e-08 ***
## avgIndex_AFexp.c:pIndD.y -0.0266395  0.0200652  -1.328  0.18443    
## avgIndex_AFexp.c:pIndR.y  0.0141439  0.0211622   0.668  0.50398    
## avgIndex_ANexp.c:pIndD.y  0.0008094  0.0009643   0.839  0.40137    
## avgIndex_ANexp.c:pIndR.y -0.0005763  0.0010169  -0.567  0.57094    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.31 on 2194 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.2884, Adjusted R-squared:  0.2858 
## F-statistic: 111.1 on 8 and 2194 DF,  p-value: < 2.2e-16

B. avgRisk4

avgRisk4 ~ index * party

## 
## Call:
## lm(formula = avgRisk4 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pDem_Rep.y + pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1245 -0.7756  0.1737  0.8318  2.3640 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  5.0314690  0.0291896 172.372  < 2e-16 ***
## avgIndex_AFexp.c             0.0230368  0.0070262   3.279  0.00106 ** 
## avgIndex_ANexp.c            -0.0009771  0.0003373  -2.897  0.00381 ** 
## pDem_Rep.y                  -0.4652521  0.0607278  -7.661 2.75e-14 ***
## pInd_Not.y                   0.0546541  0.0703241   0.777  0.43714    
## avgIndex_AFexp.c:pDem_Rep.y -0.0082462  0.0132208  -0.624  0.53287    
## avgIndex_AFexp.c:pInd_Not.y -0.0116860  0.0178017  -0.656  0.51160    
## avgIndex_ANexp.c:pDem_Rep.y  0.0004252  0.0006318   0.673  0.50099    
## avgIndex_ANexp.c:pInd_Not.y  0.0005260  0.0008564   0.614  0.53910    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.201 on 2188 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.05069,    Adjusted R-squared:  0.04722 
## F-statistic:  14.6 on 8 and 2188 DF,  p-value: < 2.2e-16

1. simple effects for dems

## 
## Call:
## lm(formula = avgRisk4 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pDemR.y + pDemI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1245 -0.7756  0.1737  0.8318  2.3640 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.2821309  0.0407637 129.579  < 2e-16 ***
## avgIndex_AFexp.c          0.0233036  0.0082703   2.818 0.004880 ** 
## avgIndex_ANexp.c         -0.0010161  0.0003947  -2.574 0.010112 *  
## pDemR.y                  -0.4652521  0.0607278  -7.661 2.75e-14 ***
## pDemI.y                  -0.2872802  0.0754002  -3.810 0.000143 ***
## avgIndex_AFexp.c:pDemR.y -0.0082462  0.0132208  -0.624 0.532868    
## avgIndex_AFexp.c:pDemI.y  0.0075629  0.0184825   0.409 0.682438    
## avgIndex_ANexp.c:pDemR.y  0.0004252  0.0006318   0.673 0.500995    
## avgIndex_ANexp.c:pDemI.y -0.0003134  0.0008885  -0.353 0.724283    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.201 on 2188 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.05069,    Adjusted R-squared:  0.04722 
## F-statistic:  14.6 on 8 and 2188 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRisk4 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pRepD.y + pRepI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1245 -0.7756  0.1737  0.8318  2.3640 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.8168789  0.0450131 107.011  < 2e-16 ***
## avgIndex_AFexp.c          0.0150573  0.0103146   1.460   0.1445    
## avgIndex_ANexp.c         -0.0005909  0.0004933  -1.198   0.2311    
## pRepD.y                   0.4652521  0.0607278   7.661 2.75e-14 ***
## pRepI.y                   0.1779719  0.0777798   2.288   0.0222 *  
## avgIndex_AFexp.c:pRepD.y  0.0082462  0.0132208   0.624   0.5329    
## avgIndex_AFexp.c:pRepI.y  0.0158091  0.0194832   0.811   0.4172    
## avgIndex_ANexp.c:pRepD.y -0.0004252  0.0006318  -0.673   0.5010    
## avgIndex_ANexp.c:pRepI.y -0.0007386  0.0009364  -0.789   0.4303    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.201 on 2188 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.05069,    Adjusted R-squared:  0.04722 
## F-statistic:  14.6 on 8 and 2188 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRisk4 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pIndD.y + pIndR.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1245 -0.7756  0.1737  0.8318  2.3640 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.9948508  0.0634312  78.744  < 2e-16 ***
## avgIndex_AFexp.c          0.0308665  0.0165289   1.867 0.061975 .  
## avgIndex_ANexp.c         -0.0013295  0.0007960  -1.670 0.094996 .  
## pIndD.y                   0.2872802  0.0754002   3.810 0.000143 ***
## pIndR.y                  -0.1779719  0.0777798  -2.288 0.022224 *  
## avgIndex_AFexp.c:pIndD.y -0.0075629  0.0184825  -0.409 0.682438    
## avgIndex_AFexp.c:pIndR.y -0.0158091  0.0194832  -0.811 0.417210    
## avgIndex_ANexp.c:pIndD.y  0.0003134  0.0008885   0.353 0.724283    
## avgIndex_ANexp.c:pIndR.y  0.0007386  0.0009364   0.789 0.430322    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.201 on 2188 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.05069,    Adjusted R-squared:  0.04722 
## F-statistic:  14.6 on 8 and 2188 DF,  p-value: < 2.2e-16

C. avgRisk5

avgRisk5 ~ index * party

## 
## Call:
## lm(formula = avgRisk5 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pDem_Rep.y + pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3843 -1.3260 -0.1639  1.0864  4.5813 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  3.1259939  0.0385306  81.130  < 2e-16 ***
## avgIndex_AFexp.c            -0.0125264  0.0092641  -1.352  0.17647    
## avgIndex_ANexp.c             0.0012571  0.0004447   2.827  0.00474 ** 
## pDem_Rep.y                  -0.1230758  0.0802708  -1.533  0.12536    
## pInd_Not.y                  -0.4234660  0.0927548  -4.565 5.26e-06 ***
## avgIndex_AFexp.c:pDem_Rep.y -0.0152028  0.0174979  -0.869  0.38504    
## avgIndex_AFexp.c:pInd_Not.y -0.0007205  0.0234332  -0.031  0.97547    
## avgIndex_ANexp.c:pDem_Rep.y  0.0007492  0.0008362   0.896  0.37035    
## avgIndex_ANexp.c:pInd_Not.y  0.0001607  0.0011271   0.143  0.88660    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.586 on 2184 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.1146, Adjusted R-squared:  0.1114 
## F-statistic: 35.34 on 8 and 2184 DF,  p-value: < 2.2e-16

1. simple effects for dems

## 
## Call:
## lm(formula = avgRisk5 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pDemR.y + pDemI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3843 -1.3260 -0.1639  1.0864  4.5813 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.0477880  0.0539027  56.542  < 2e-16 ***
## avgIndex_AFexp.c         -0.0051628  0.0109613  -0.471 0.637685    
## avgIndex_ANexp.c          0.0009356  0.0005233   1.788 0.073926 .  
## pDemR.y                  -0.1230758  0.0802708  -1.533 0.125357    
## pDemI.y                   0.3619282  0.0994892   3.638 0.000281 ***
## avgIndex_AFexp.c:pDemR.y -0.0152028  0.0174979  -0.869 0.385035    
## avgIndex_AFexp.c:pDemI.y -0.0068808  0.0243459  -0.283 0.777489    
## avgIndex_ANexp.c:pDemR.y  0.0007492  0.0008362   0.896 0.370353    
## avgIndex_ANexp.c:pDemI.y  0.0002138  0.0011702   0.183 0.855017    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.586 on 2184 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.1146, Adjusted R-squared:  0.1114 
## F-statistic: 35.34 on 8 and 2184 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRisk5 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pRepD.y + pRepI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3843 -1.3260 -0.1639  1.0864  4.5813 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.9247122  0.0594803  49.171  < 2e-16 ***
## avgIndex_AFexp.c         -0.0203656  0.0136392  -1.493  0.13554    
## avgIndex_ANexp.c          0.0016848  0.0006522   2.583  0.00985 ** 
## pRepD.y                   0.1230758  0.0802708   1.533  0.12536    
## pRepI.y                   0.4850039  0.1026183   4.726 2.43e-06 ***
## avgIndex_AFexp.c:pRepD.y  0.0152028  0.0174979   0.869  0.38504    
## avgIndex_AFexp.c:pRepI.y  0.0083219  0.0256632   0.324  0.74576    
## avgIndex_ANexp.c:pRepD.y -0.0007492  0.0008362  -0.896  0.37035    
## avgIndex_ANexp.c:pRepI.y -0.0005353  0.0012332  -0.434  0.66426    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.586 on 2184 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.1146, Adjusted R-squared:  0.1114 
## F-statistic: 35.34 on 8 and 2184 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRisk5 ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pIndD.y + pIndR.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3843 -1.3260 -0.1639  1.0864  4.5813 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.4097161  0.0836218  40.775  < 2e-16 ***
## avgIndex_AFexp.c         -0.0120436  0.0217387  -0.554 0.579623    
## avgIndex_ANexp.c          0.0011494  0.0010467   1.098 0.272266    
## pIndD.y                  -0.3619282  0.0994892  -3.638 0.000281 ***
## pIndR.y                  -0.4850039  0.1026183  -4.726 2.43e-06 ***
## avgIndex_AFexp.c:pIndD.y  0.0068808  0.0243459   0.283 0.777489    
## avgIndex_AFexp.c:pIndR.y -0.0083219  0.0256632  -0.324 0.745761    
## avgIndex_ANexp.c:pIndD.y -0.0002138  0.0011702  -0.183 0.855017    
## avgIndex_ANexp.c:pIndR.y  0.0005353  0.0012332   0.434 0.664265    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.586 on 2184 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.1146, Adjusted R-squared:  0.1114 
## F-statistic: 35.34 on 8 and 2184 DF,  p-value: < 2.2e-16

D. avgRiskSeverity

risk severity ~ index * party

## 
## Call:
## lm(formula = avgRiskSeverity ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pDem_Rep.y + pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6253 -0.7025 -0.0510  0.6864  3.3539 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  4.235e+00  2.523e-02 167.835  < 2e-16 ***
## avgIndex_AFexp.c             2.021e-02  6.080e-03   3.324 0.000902 ***
## avgIndex_ANexp.c            -5.166e-04  2.919e-04  -1.770 0.076889 .  
## pDem_Rep.y                  -6.083e-01  5.253e-02 -11.580  < 2e-16 ***
## pInd_Not.y                  -6.909e-02  6.077e-02  -1.137 0.255756    
## avgIndex_AFexp.c:pDem_Rep.y  6.073e-03  1.146e-02   0.530 0.596349    
## avgIndex_AFexp.c:pInd_Not.y -7.427e-03  1.539e-02  -0.483 0.629447    
## avgIndex_ANexp.c:pDem_Rep.y -8.438e-05  5.477e-04  -0.154 0.877564    
## avgIndex_ANexp.c:pInd_Not.y  3.324e-04  7.404e-04   0.449 0.653509    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2176 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1952, Adjusted R-squared:  0.1923 
## F-statistic: 65.98 on 8 and 2176 DF,  p-value: < 2.2e-16

1. simple effects for dems

## 
## Call:
## lm(formula = avgRiskSeverity ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pDemR.y + pDemI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6253 -0.7025 -0.0510  0.6864  3.3539 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.516e+00  3.527e-02 128.041  < 2e-16 ***
## avgIndex_AFexp.c          1.472e-02  7.163e-03   2.055 0.039955 *  
## avgIndex_ANexp.c         -3.647e-04  3.419e-04  -1.067 0.286248    
## pDemR.y                  -6.083e-01  5.253e-02 -11.580  < 2e-16 ***
## pDemI.y                  -2.351e-01  6.518e-02  -3.606 0.000317 ***
## avgIndex_AFexp.c:pDemR.y  6.073e-03  1.146e-02   0.530 0.596349    
## avgIndex_AFexp.c:pDemI.y  1.046e-02  1.598e-02   0.655 0.512653    
## avgIndex_ANexp.c:pDemR.y -8.438e-05  5.477e-04  -0.154 0.877564    
## avgIndex_ANexp.c:pDemI.y -3.746e-04  7.682e-04  -0.488 0.625858    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2176 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1952, Adjusted R-squared:  0.1923 
## F-statistic: 65.98 on 8 and 2176 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRiskSeverity ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pRepD.y + pRepI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6253 -0.7025 -0.0510  0.6864  3.3539 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.908e+00  3.892e-02 100.414  < 2e-16 ***
## avgIndex_AFexp.c          2.080e-02  8.950e-03   2.324   0.0202 *  
## avgIndex_ANexp.c         -4.491e-04  4.278e-04  -1.050   0.2940    
## pRepD.y                   6.083e-01  5.253e-02  11.580  < 2e-16 ***
## pRepI.y                   3.732e-01  6.722e-02   5.552 3.16e-08 ***
## avgIndex_AFexp.c:pRepD.y -6.073e-03  1.146e-02  -0.530   0.5963    
## avgIndex_AFexp.c:pRepI.y  4.391e-03  1.686e-02   0.260   0.7945    
## avgIndex_ANexp.c:pRepD.y  8.438e-05  5.477e-04   0.154   0.8776    
## avgIndex_ANexp.c:pRepI.y -2.902e-04  8.101e-04  -0.358   0.7202    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2176 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1952, Adjusted R-squared:  0.1923 
## F-statistic: 65.98 on 8 and 2176 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRiskSeverity ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pIndD.y + pIndR.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6253 -0.7025 -0.0510  0.6864  3.3539 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.2814288  0.0548070  78.118  < 2e-16 ***
## avgIndex_AFexp.c          0.0251866  0.0142836   1.763 0.077987 .  
## avgIndex_ANexp.c         -0.0007393  0.0006879  -1.075 0.282629    
## pIndD.y                   0.2350525  0.0651770   3.606 0.000317 ***
## pIndR.y                  -0.3732276  0.0672209  -5.552 3.16e-08 ***
## avgIndex_AFexp.c:pIndD.y -0.0104634  0.0159790  -0.655 0.512653    
## avgIndex_AFexp.c:pIndR.y -0.0043909  0.0168559  -0.260 0.794507    
## avgIndex_ANexp.c:pIndD.y  0.0003746  0.0007682   0.488 0.625858    
## avgIndex_ANexp.c:pIndR.y  0.0002902  0.0008101   0.358 0.720185    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2176 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1952, Adjusted R-squared:  0.1923 
## F-statistic: 65.98 on 8 and 2176 DF,  p-value: < 2.2e-16

E. avgVaxxAttitudes

avgVaxxAttitudes ~ (affect + analytical) * party

## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pDem_Rep.y + pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4579 -1.3158  0.1858  1.5952  3.7400 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.4532464  0.0459732   9.859  < 2e-16 ***
## avgIndex_AFexp.c             0.0255370  0.0111018   2.300 0.021527 *  
## avgIndex_ANexp.c            -0.0007068  0.0005331  -1.326 0.184982    
## pDem_Rep.y                  -0.5472590  0.0957382  -5.716 1.24e-08 ***
## pInd_Not.y                   0.4856998  0.1106970   4.388 1.20e-05 ***
## avgIndex_AFexp.c:pDem_Rep.y  0.0811162  0.0208339   3.893 0.000102 ***
## avgIndex_AFexp.c:pInd_Not.y -0.0073240  0.0281599  -0.260 0.794822    
## avgIndex_ANexp.c:pDem_Rep.y -0.0035821  0.0009956  -3.598 0.000328 ***
## avgIndex_ANexp.c:pInd_Not.y  0.0002600  0.0013549   0.192 0.847828    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.896 on 2194 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.08729,    Adjusted R-squared:  0.08396 
## F-statistic: 26.23 on 8 and 2194 DF,  p-value: < 2.2e-16
## Warning: Removed 60 row(s) containing missing values (geom_path).
## geom_path: Each group consists of only one observation. Do you need to adjust
## the group aesthetic?

## Warning: Removed 30 row(s) containing missing values (geom_path).
## geom_path: Each group consists of only one observation. Do you need to adjust
## the group aesthetic?

1. simple effects for dems

## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pDemR.y + pDemI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4579 -1.3158  0.1858  1.5952  3.7400 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.8871568  0.0642167  13.815  < 2e-16 ***
## avgIndex_AFexp.c         -0.0174380  0.0130467  -1.337 0.181497    
## avgIndex_ANexp.c          0.0011700  0.0006227   1.879 0.060389 .  
## pDemR.y                  -0.5472590  0.0957382  -5.716 1.24e-08 ***
## pDemI.y                  -0.7593293  0.1186851  -6.398 1.92e-10 ***
## avgIndex_AFexp.c:pDemR.y  0.0811162  0.0208339   3.893 0.000102 ***
## avgIndex_AFexp.c:pDemI.y  0.0478821  0.0292350   1.638 0.101599    
## avgIndex_ANexp.c:pDemR.y -0.0035821  0.0009956  -3.598 0.000328 ***
## avgIndex_ANexp.c:pDemI.y -0.0020511  0.0014056  -1.459 0.144634    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.896 on 2194 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.08729,    Adjusted R-squared:  0.08396 
## F-statistic: 26.23 on 8 and 2194 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pRepD.y + pRepI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4579 -1.3158  0.1858  1.5952  3.7400 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.3398978  0.0710072   4.787 1.81e-06 ***
## avgIndex_AFexp.c          0.0636782  0.0162430   3.920 9.11e-05 ***
## avgIndex_ANexp.c         -0.0024121  0.0007769  -3.105 0.001928 ** 
## pRepD.y                   0.5472590  0.0957382   5.716 1.24e-08 ***
## pRepI.y                  -0.2120703  0.1224924  -1.731 0.083540 .  
## avgIndex_AFexp.c:pRepD.y -0.0811162  0.0208339  -3.893 0.000102 ***
## avgIndex_AFexp.c:pRepI.y -0.0332341  0.0307945  -1.079 0.280607    
## avgIndex_ANexp.c:pRepD.y  0.0035821  0.0009956   3.598 0.000328 ***
## avgIndex_ANexp.c:pRepI.y  0.0015311  0.0014803   1.034 0.301121    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.896 on 2194 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.08729,    Adjusted R-squared:  0.08396 
## F-statistic: 26.23 on 8 and 2194 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgVaxxAttitudes ~ (avgIndex_AFexp.c + avgIndex_ANexp.c) * 
##     (pIndD.y + pIndR.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4579 -1.3158  0.1858  1.5952  3.7400 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.1278276  0.0998117   1.281   0.2004    
## avgIndex_AFexp.c          0.0304441  0.0261623   1.164   0.2447    
## avgIndex_ANexp.c         -0.0008811  0.0012601  -0.699   0.4845    
## pIndD.y                   0.7593293  0.1186851   6.398 1.92e-10 ***
## pIndR.y                   0.2120703  0.1224924   1.731   0.0835 .  
## avgIndex_AFexp.c:pIndD.y -0.0478821  0.0292350  -1.638   0.1016    
## avgIndex_AFexp.c:pIndR.y  0.0332341  0.0307945   1.079   0.2806    
## avgIndex_ANexp.c:pIndD.y  0.0020511  0.0014056   1.459   0.1446    
## avgIndex_ANexp.c:pIndR.y -0.0015311  0.0014803  -1.034   0.3011    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.896 on 2194 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.08729,    Adjusted R-squared:  0.08396 
## F-statistic: 26.23 on 8 and 2194 DF,  p-value: < 2.2e-16

2. Positive emotion

A. avgRisk3

avgRisk ~ positive emotion

avgRisk3 ~ index * party

## 
## Call:
## lm(formula = avgRisk3 ~ avgIndex_PEexp.c * (pDem_Rep.y + pInd_Not.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0975 -0.9797  0.0933  0.9514  3.6896 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  4.552355   0.031722 143.508  < 2e-16 ***
## avgIndex_PEexp.c             0.020584   0.001444  14.258  < 2e-16 ***
## pDem_Rep.y                  -1.235172   0.066595 -18.548  < 2e-16 ***
## pInd_Not.y                   0.166658   0.076019   2.192   0.0285 *  
## avgIndex_PEexp.c:pDem_Rep.y  0.020073   0.003052   6.577 5.98e-11 ***
## avgIndex_PEexp.c:pInd_Not.y -0.006761   0.003445  -1.963   0.0498 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.321 on 2197 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.276,  Adjusted R-squared:  0.2744 
## F-statistic: 167.5 on 5 and 2197 DF,  p-value: < 2.2e-16
## Warning: Removed 42 row(s) containing missing values (geom_path).

1. simple effects for dems

## 
## Call:
## lm(formula = avgRisk3 ~ avgIndex_PEexp.c * (pDemR.y + pDemI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0975 -0.9797  0.0933  0.9514  3.6896 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.224938   0.044659 116.997  < 2e-16 ***
## avgIndex_PEexp.c          0.008316   0.001918   4.335 1.52e-05 ***
## pDemR.y                  -1.235172   0.066595 -18.548  < 2e-16 ***
## pDemI.y                  -0.784244   0.081637  -9.607  < 2e-16 ***
## avgIndex_PEexp.c:pDemR.y  0.020073   0.003052   6.577 5.98e-11 ***
## avgIndex_PEexp.c:pDemI.y  0.016798   0.003636   4.620 4.06e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.321 on 2197 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.276,  Adjusted R-squared:  0.2744 
## F-statistic: 167.5 on 5 and 2197 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRisk3 ~ avgIndex_PEexp.c * (pRepD.y + pRepI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0975 -0.9797  0.0933  0.9514  3.6896 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.989766   0.049401  80.763  < 2e-16 ***
## avgIndex_PEexp.c          0.028389   0.002374  11.961  < 2e-16 ***
## pRepD.y                   1.235172   0.066595  18.548  < 2e-16 ***
## pRepI.y                   0.450928   0.084324   5.348 9.84e-08 ***
## avgIndex_PEexp.c:pRepD.y -0.020073   0.003052  -6.577 5.98e-11 ***
## avgIndex_PEexp.c:pRepI.y -0.003275   0.003895  -0.841    0.401    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.321 on 2197 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.276,  Adjusted R-squared:  0.2744 
## F-statistic: 167.5 on 5 and 2197 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRisk3 ~ avgIndex_PEexp.c * (pIndD.y + pIndR.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0975 -0.9797  0.0933  0.9514  3.6896 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.440694   0.068338  64.981  < 2e-16 ***
## avgIndex_PEexp.c          0.025114   0.003089   8.131 7.02e-16 ***
## pIndD.y                   0.784244   0.081637   9.607  < 2e-16 ***
## pIndR.y                  -0.450928   0.084324  -5.348 9.84e-08 ***
## avgIndex_PEexp.c:pIndD.y -0.016798   0.003636  -4.620 4.06e-06 ***
## avgIndex_PEexp.c:pIndR.y  0.003275   0.003895   0.841    0.401    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.321 on 2197 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.276,  Adjusted R-squared:  0.2744 
## F-statistic: 167.5 on 5 and 2197 DF,  p-value: < 2.2e-16

B. avgRisk4

avgRisk4 ~ index * party

## 
## Call:
## lm(formula = avgRisk4 ~ avgIndex_PEexp.c * (pDem_Rep.y + pInd_Not.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1842 -0.7866  0.1786  0.7852  2.3154 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  5.0266002  0.0289761 173.474  < 2e-16 ***
## avgIndex_PEexp.c             0.0044960  0.0013192   3.408 0.000666 ***
## pDem_Rep.y                  -0.4737525  0.0607087  -7.804 9.23e-15 ***
## pInd_Not.y                   0.0768968  0.0695218   1.106 0.268813    
## avgIndex_PEexp.c:pDem_Rep.y  0.0008796  0.0027858   0.316 0.752214    
## avgIndex_PEexp.c:pInd_Not.y -0.0015014  0.0031501  -0.477 0.633676    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.204 on 2191 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.04548,    Adjusted R-squared:  0.0433 
## F-statistic: 20.88 on 5 and 2191 DF,  p-value: < 2.2e-16
## Warning: Removed 42 row(s) containing missing values (geom_path).

1. simple effects for dems

## 
## Call:
## lm(formula = avgRisk4 ~ avgIndex_PEexp.c * (pDemR.y + pDemI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1842 -0.7866  0.1786  0.7852  2.3154 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.2888524  0.0407366 129.831  < 2e-16 ***
## avgIndex_PEexp.c          0.0035607  0.0017564   2.027   0.0428 *  
## pDemR.y                  -0.4737525  0.0607087  -7.804 9.23e-15 ***
## pDemI.y                  -0.3137730  0.0746416  -4.204 2.73e-05 ***
## avgIndex_PEexp.c:pDemR.y  0.0008796  0.0027858   0.316   0.7522    
## avgIndex_PEexp.c:pDemI.y  0.0019412  0.0033269   0.584   0.5596    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.204 on 2191 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.04548,    Adjusted R-squared:  0.0433 
## F-statistic: 20.88 on 5 and 2191 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRisk4 ~ avgIndex_PEexp.c * (pRepD.y + pRepI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1842 -0.7866  0.1786  0.7852  2.3154 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.8151000  0.0450119 106.974  < 2e-16 ***
## avgIndex_PEexp.c          0.0044403  0.0021623   2.053   0.0401 *  
## pRepD.y                   0.4737525  0.0607087   7.804 9.23e-15 ***
## pRepI.y                   0.1599794  0.0770583   2.076   0.0380 *  
## avgIndex_PEexp.c:pRepD.y -0.0008796  0.0027858  -0.316   0.7522    
## avgIndex_PEexp.c:pRepI.y  0.0010616  0.0035579   0.298   0.7654    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.204 on 2191 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.04548,    Adjusted R-squared:  0.0433 
## F-statistic: 20.88 on 5 and 2191 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRisk4 ~ avgIndex_PEexp.c * (pIndD.y + pIndR.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1842 -0.7866  0.1786  0.7852  2.3154 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.975079   0.062545  79.544  < 2e-16 ***
## avgIndex_PEexp.c          0.005502   0.002825   1.947   0.0516 .  
## pIndD.y                   0.313773   0.074642   4.204 2.73e-05 ***
## pIndR.y                  -0.159979   0.077058  -2.076   0.0380 *  
## avgIndex_PEexp.c:pIndD.y -0.001941   0.003327  -0.584   0.5596    
## avgIndex_PEexp.c:pIndR.y -0.001062   0.003558  -0.298   0.7654    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.204 on 2191 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.04548,    Adjusted R-squared:  0.0433 
## F-statistic: 20.88 on 5 and 2191 DF,  p-value: < 2.2e-16

C. avgRisk5

avgRisk5 ~ index * party

## 
## Call:
## lm(formula = avgRisk5 ~ avgIndex_PEexp.c * (pDem_Rep.y + pInd_Not.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3855 -1.3219 -0.1533  1.1043  4.6175 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  3.1285113  0.0381794  81.942  < 2e-16 ***
## avgIndex_PEexp.c             0.0230601  0.0017374  13.273  < 2e-16 ***
## pDem_Rep.y                  -0.1231845  0.0801547  -1.537    0.124    
## pInd_Not.y                  -0.4461117  0.0914910  -4.876 1.16e-06 ***
## avgIndex_PEexp.c:pDem_Rep.y  0.0003082  0.0036766   0.084    0.933    
## avgIndex_PEexp.c:pInd_Not.y  0.0045672  0.0041434   1.102    0.270    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.588 on 2187 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.1118, Adjusted R-squared:  0.1097 
## F-statistic: 55.03 on 5 and 2187 DF,  p-value: < 2.2e-16
## Warning: Removed 42 row(s) containing missing values (geom_path).

1. simple effects for dems

## 
## Call:
## lm(formula = avgRisk5 ~ avgIndex_PEexp.c * (pDemR.y + pDemI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3855 -1.3219 -0.1533  1.1043  4.6175 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.0428866  0.0538068  56.552  < 2e-16 ***
## avgIndex_PEexp.c          0.0244132  0.0023183  10.530  < 2e-16 ***
## pDemR.y                  -0.1231845  0.0801547  -1.537    0.124    
## pDemI.y                   0.3845195  0.0982832   3.912 9.42e-05 ***
## avgIndex_PEexp.c:pDemR.y  0.0003082  0.0036766   0.084    0.933    
## avgIndex_PEexp.c:pDemI.y -0.0044131  0.0043776  -1.008    0.314    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.588 on 2187 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.1118, Adjusted R-squared:  0.1097 
## F-statistic: 55.03 on 5 and 2187 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRisk5 ~ avgIndex_PEexp.c * (pRepD.y + pRepI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3855 -1.3219 -0.1533  1.1043  4.6175 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.9197022  0.0594104  49.145  < 2e-16 ***
## avgIndex_PEexp.c          0.0247213  0.0028535   8.663  < 2e-16 ***
## pRepD.y                   0.1231845  0.0801547   1.537    0.124    
## pRepI.y                   0.5077040  0.1014594   5.004 6.06e-07 ***
## avgIndex_PEexp.c:pRepD.y -0.0003082  0.0036766  -0.084    0.933    
## avgIndex_PEexp.c:pRepI.y -0.0047213  0.0046831  -1.008    0.313    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.588 on 2187 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.1118, Adjusted R-squared:  0.1097 
## F-statistic: 55.03 on 5 and 2187 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRisk5 ~ avgIndex_PEexp.c * (pIndD.y + pIndR.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3855 -1.3219 -0.1533  1.1043  4.6175 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.427406   0.082246  41.673  < 2e-16 ***
## avgIndex_PEexp.c          0.020000   0.003713   5.386 7.97e-08 ***
## pIndD.y                  -0.384520   0.098283  -3.912 9.42e-05 ***
## pIndR.y                  -0.507704   0.101459  -5.004 6.06e-07 ***
## avgIndex_PEexp.c:pIndD.y  0.004413   0.004378   1.008    0.314    
## avgIndex_PEexp.c:pIndR.y  0.004721   0.004683   1.008    0.313    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.588 on 2187 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.1118, Adjusted R-squared:  0.1097 
## F-statistic: 55.03 on 5 and 2187 DF,  p-value: < 2.2e-16

D. avgRiskSeverity

risk severity ~ index * party

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_PEexp.c * (pDem_Rep.y + 
##     pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7058 -0.7009 -0.0549  0.6830  3.3447 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  4.231401   0.025005 169.222   <2e-16 ***
## avgIndex_PEexp.c             0.015967   0.001137  14.042   <2e-16 ***
## pDem_Rep.y                  -0.614255   0.052431 -11.716   <2e-16 ***
## pInd_Not.y                  -0.058091   0.059965  -0.969   0.3328    
## avgIndex_PEexp.c:pDem_Rep.y  0.007069   0.002403   2.942   0.0033 ** 
## avgIndex_PEexp.c:pInd_Not.y -0.001023   0.002714  -0.377   0.7064    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.037 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1932, Adjusted R-squared:  0.1914 
## F-statistic: 104.4 on 5 and 2179 DF,  p-value: < 2.2e-16
## Warning: Removed 42 row(s) containing missing values (geom_path).

1. simple effects for dems

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_PEexp.c * (pDemR.y + 
##     pDemI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7058 -0.7009 -0.0549  0.6830  3.3447 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.519359   0.035196 128.406  < 2e-16 ***
## avgIndex_PEexp.c          0.012095   0.001516   7.980 2.35e-15 ***
## pDemR.y                  -0.614255   0.052431 -11.716  < 2e-16 ***
## pDemI.y                  -0.249037   0.064400  -3.867 0.000113 ***
## avgIndex_PEexp.c:pDemR.y  0.007069   0.002403   2.942 0.003299 ** 
## avgIndex_PEexp.c:pDemI.y  0.004557   0.002867   1.589 0.112120    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.037 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1932, Adjusted R-squared:  0.1914 
## F-statistic: 104.4 on 5 and 2179 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_PEexp.c * (pRepD.y + 
##     pRepI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7058 -0.7009 -0.0549  0.6830  3.3447 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.905104   0.038862 100.487  < 2e-16 ***
## avgIndex_PEexp.c          0.019165   0.001865  10.278  < 2e-16 ***
## pRepD.y                   0.614255   0.052431  11.716  < 2e-16 ***
## pRepI.y                   0.365218   0.066474   5.494 4.38e-08 ***
## avgIndex_PEexp.c:pRepD.y -0.007069   0.002403  -2.942   0.0033 ** 
## avgIndex_PEexp.c:pRepI.y -0.002512   0.003066  -0.819   0.4127    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.037 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1932, Adjusted R-squared:  0.1914 
## F-statistic: 104.4 on 5 and 2179 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_PEexp.c * (pIndD.y + 
##     pIndR.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7058 -0.7009 -0.0549  0.6830  3.3447 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.270322   0.053931  79.181  < 2e-16 ***
## avgIndex_PEexp.c          0.016653   0.002434   6.842 1.01e-11 ***
## pIndD.y                   0.249037   0.064400   3.867 0.000113 ***
## pIndR.y                  -0.365218   0.066474  -5.494 4.38e-08 ***
## avgIndex_PEexp.c:pIndD.y -0.004557   0.002867  -1.589 0.112120    
## avgIndex_PEexp.c:pIndR.y  0.002512   0.003066   0.819 0.412685    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.037 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1932, Adjusted R-squared:  0.1914 
## F-statistic: 104.4 on 5 and 2179 DF,  p-value: < 2.2e-16

E. avgVaxxAttitudes

avgVaxxAttitudes ~ positive emotion * party

## 
## Call:
## lm(formula = avgVaxxAttitudes ~ avgIndex_PEexp.c * (pDem_Rep.y + 
##     pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4872 -1.3324  0.1792  1.5757  3.4882 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.447258   0.045679   9.791  < 2e-16 ***
## avgIndex_PEexp.c             0.018230   0.002078   8.773  < 2e-16 ***
## pDem_Rep.y                  -0.543974   0.095784  -5.679 1.53e-08 ***
## pInd_Not.y                   0.496169   0.109543   4.529 6.23e-06 ***
## avgIndex_PEexp.c:pDem_Rep.y  0.011175   0.004391   2.545    0.011 *  
## avgIndex_PEexp.c:pInd_Not.y -0.003412   0.004960  -0.688    0.492    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.901 on 2197 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.08086,    Adjusted R-squared:  0.07876 
## F-statistic: 38.65 on 5 and 2197 DF,  p-value: < 2.2e-16
## Warning: Removed 60 row(s) containing missing values (geom_path).

1. simple effects for dems

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_PEexp.c * (pDemR.y + 
##     pDemI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7058 -0.7009 -0.0549  0.6830  3.3447 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.519359   0.035196 128.406  < 2e-16 ***
## avgIndex_PEexp.c          0.012095   0.001516   7.980 2.35e-15 ***
## pDemR.y                  -0.614255   0.052431 -11.716  < 2e-16 ***
## pDemI.y                  -0.249037   0.064400  -3.867 0.000113 ***
## avgIndex_PEexp.c:pDemR.y  0.007069   0.002403   2.942 0.003299 ** 
## avgIndex_PEexp.c:pDemI.y  0.004557   0.002867   1.589 0.112120    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.037 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1932, Adjusted R-squared:  0.1914 
## F-statistic: 104.4 on 5 and 2179 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_PEexp.c * (pRepD.y + 
##     pRepI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7058 -0.7009 -0.0549  0.6830  3.3447 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.905104   0.038862 100.487  < 2e-16 ***
## avgIndex_PEexp.c          0.019165   0.001865  10.278  < 2e-16 ***
## pRepD.y                   0.614255   0.052431  11.716  < 2e-16 ***
## pRepI.y                   0.365218   0.066474   5.494 4.38e-08 ***
## avgIndex_PEexp.c:pRepD.y -0.007069   0.002403  -2.942   0.0033 ** 
## avgIndex_PEexp.c:pRepI.y -0.002512   0.003066  -0.819   0.4127    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.037 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1932, Adjusted R-squared:  0.1914 
## F-statistic: 104.4 on 5 and 2179 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_PEexp.c * (pIndD.y + 
##     pIndR.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7058 -0.7009 -0.0549  0.6830  3.3447 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.270322   0.053931  79.181  < 2e-16 ***
## avgIndex_PEexp.c          0.016653   0.002434   6.842 1.01e-11 ***
## pIndD.y                   0.249037   0.064400   3.867 0.000113 ***
## pIndR.y                  -0.365218   0.066474  -5.494 4.38e-08 ***
## avgIndex_PEexp.c:pIndD.y -0.004557   0.002867  -1.589 0.112120    
## avgIndex_PEexp.c:pIndR.y  0.002512   0.003066   0.819 0.412685    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.037 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1932, Adjusted R-squared:  0.1914 
## F-statistic: 104.4 on 5 and 2179 DF,  p-value: < 2.2e-16

3. Negative emotion

A. avgRisk3

avgRisk3 ~ index * party

## 
## Call:
## lm(formula = avgRisk3 ~ avgIndex_NEexp.c * (pDem_Rep.y + pInd_Not.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9961 -0.9679  0.0931  0.9436  3.7259 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  4.556645   0.031698 143.750  < 2e-16 ***
## avgIndex_NEexp.c             0.031647   0.002163  14.628  < 2e-16 ***
## pDem_Rep.y                  -1.218168   0.066653 -18.276  < 2e-16 ***
## pInd_Not.y                   0.168852   0.075888   2.225   0.0262 *  
## avgIndex_NEexp.c:pDem_Rep.y  0.030989   0.004552   6.807 1.28e-11 ***
## avgIndex_NEexp.c:pInd_Not.y -0.010230   0.005177  -1.976   0.0483 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.317 on 2197 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:   0.28,  Adjusted R-squared:  0.2783 
## F-statistic: 170.8 on 5 and 2197 DF,  p-value: < 2.2e-16
## Warning: Removed 6 row(s) containing missing values (geom_path).

1. simple effects for dems

## 
## Call:
## lm(formula = avgRisk3 ~ avgIndex_NEexp.c * (pDemR.y + pDemI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9961 -0.9679  0.0931  0.9436  3.7259 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.221451   0.044667 116.898  < 2e-16 ***
## avgIndex_NEexp.c          0.012777   0.002861   4.466 8.39e-06 ***
## pDemR.y                  -1.218168   0.066653 -18.276  < 2e-16 ***
## pDemI.y                  -0.777936   0.081508  -9.544  < 2e-16 ***
## avgIndex_NEexp.c:pDemR.y  0.030989   0.004552   6.807 1.28e-11 ***
## avgIndex_NEexp.c:pDemI.y  0.025724   0.005460   4.711 2.61e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.317 on 2197 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:   0.28,  Adjusted R-squared:  0.2783 
## F-statistic: 170.8 on 5 and 2197 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRisk3 ~ avgIndex_NEexp.c * (pRepD.y + pRepI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9961 -0.9679  0.0931  0.9436  3.7259 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.003282   0.049472  80.920  < 2e-16 ***
## avgIndex_NEexp.c          0.043766   0.003541  12.361  < 2e-16 ***
## pRepD.y                   1.218168   0.066653  18.276  < 2e-16 ***
## pRepI.y                   0.440232   0.084237   5.226 1.89e-07 ***
## avgIndex_NEexp.c:pRepD.y -0.030989   0.004552  -6.807 1.28e-11 ***
## avgIndex_NEexp.c:pRepI.y -0.005264   0.005845  -0.901    0.368    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.317 on 2197 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:   0.28,  Adjusted R-squared:  0.2783 
## F-statistic: 170.8 on 5 and 2197 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRisk3 ~ avgIndex_NEexp.c * (pIndD.y + pIndR.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9961 -0.9679  0.0931  0.9436  3.7259 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.443515   0.068179  65.174  < 2e-16 ***
## avgIndex_NEexp.c          0.038501   0.004650   8.280  < 2e-16 ***
## pIndD.y                   0.777936   0.081508   9.544  < 2e-16 ***
## pIndR.y                  -0.440232   0.084237  -5.226 1.89e-07 ***
## avgIndex_NEexp.c:pIndD.y -0.025724   0.005460  -4.711 2.61e-06 ***
## avgIndex_NEexp.c:pIndR.y  0.005264   0.005845   0.901    0.368    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.317 on 2197 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:   0.28,  Adjusted R-squared:  0.2783 
## F-statistic: 170.8 on 5 and 2197 DF,  p-value: < 2.2e-16

B. avgRisk4

avgRisk4 ~ index * party

## 
## Call:
## lm(formula = avgRisk4 ~ avgIndex_NEexp.c * (pDem_Rep.y + pInd_Not.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1723 -0.7849  0.1785  0.7951  2.3290 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  5.028527   0.029013 173.320  < 2e-16 ***
## avgIndex_NEexp.c             0.007516   0.001981   3.794 0.000152 ***
## pDem_Rep.y                  -0.464094   0.060883  -7.623 3.67e-14 ***
## pInd_Not.y                   0.076128   0.069544   1.095 0.273782    
## avgIndex_NEexp.c:pDem_Rep.y  0.001895   0.004162   0.455 0.648950    
## avgIndex_NEexp.c:pInd_Not.y -0.002388   0.004744  -0.503 0.614697    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.203 on 2191 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.04675,    Adjusted R-squared:  0.04458 
## F-statistic: 21.49 on 5 and 2191 DF,  p-value: < 2.2e-16
## Warning: Removed 6 row(s) containing missing values (geom_path).

1. simple effects for dems

## 
## Call:
## lm(formula = avgRisk4 ~ avgIndex_NEexp.c * (pDemR.y + pDemI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1723 -0.7849  0.1785  0.7951  2.3290 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.285697   0.040829 129.458  < 2e-16 ***
## avgIndex_NEexp.c          0.005780   0.002624   2.203   0.0277 *  
## pDemR.y                  -0.464094   0.060883  -7.623 3.67e-14 ***
## pDemI.y                  -0.308175   0.074678  -4.127 3.82e-05 ***
## avgIndex_NEexp.c:pDemR.y  0.001895   0.004162   0.455   0.6490    
## avgIndex_NEexp.c:pDemI.y  0.003336   0.005006   0.666   0.5052    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.203 on 2191 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.04675,    Adjusted R-squared:  0.04458 
## F-statistic: 21.49 on 5 and 2191 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRisk4 ~ avgIndex_NEexp.c * (pRepD.y + pRepI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1723 -0.7849  0.1785  0.7951  2.3290 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.821602   0.045162 106.762  < 2e-16 ***
## avgIndex_NEexp.c          0.007675   0.003231   2.375   0.0176 *  
## pRepD.y                   0.464094   0.060883   7.623 3.67e-14 ***
## pRepI.y                   0.155919   0.077132   2.021   0.0434 *  
## avgIndex_NEexp.c:pRepD.y -0.001895   0.004162  -0.455   0.6490    
## avgIndex_NEexp.c:pRepI.y  0.001441   0.005349   0.269   0.7877    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.203 on 2191 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.04675,    Adjusted R-squared:  0.04458 
## F-statistic: 21.49 on 5 and 2191 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRisk4 ~ avgIndex_NEexp.c * (pIndD.y + pIndR.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1723 -0.7849  0.1785  0.7951  2.3290 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.977521   0.062528  79.605  < 2e-16 ***
## avgIndex_NEexp.c          0.009116   0.004263   2.139   0.0326 *  
## pIndD.y                   0.308175   0.074678   4.127 3.82e-05 ***
## pIndR.y                  -0.155919   0.077132  -2.021   0.0434 *  
## avgIndex_NEexp.c:pIndD.y -0.003336   0.005006  -0.666   0.5052    
## avgIndex_NEexp.c:pIndR.y -0.001441   0.005349  -0.269   0.7877    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.203 on 2191 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.04675,    Adjusted R-squared:  0.04458 
## F-statistic: 21.49 on 5 and 2191 DF,  p-value: < 2.2e-16

C. avgRisk5

avgRisk5 ~ index * party

## 
## Call:
## lm(formula = avgRisk5 ~ avgIndex_NEexp.c * (pDem_Rep.y + pInd_Not.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3242 -1.3234 -0.1411  1.1004  4.6048 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  3.129167   0.038356  81.582  < 2e-16 ***
## avgIndex_NEexp.c             0.033573   0.002617  12.827  < 2e-16 ***
## pDem_Rep.y                  -0.122029   0.080651  -1.513    0.130    
## pInd_Not.y                  -0.441556   0.091829  -4.808 1.62e-06 ***
## avgIndex_NEexp.c:pDem_Rep.y  0.001192   0.005512   0.216    0.829    
## avgIndex_NEexp.c:pInd_Not.y  0.006950   0.006260   1.110    0.267    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.592 on 2187 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.107,  Adjusted R-squared:  0.1049 
## F-statistic:  52.4 on 5 and 2187 DF,  p-value: < 2.2e-16
## Warning: Removed 6 row(s) containing missing values (geom_path).

1. simple effects for dems

## 
## Call:
## lm(formula = avgRisk5 ~ avgIndex_NEexp.c * (pDemR.y + pDemI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3242 -1.3234 -0.1411  1.1004  4.6048 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.044468   0.054111  56.263  < 2e-16 ***
## avgIndex_NEexp.c          0.035270   0.003475  10.148  < 2e-16 ***
## pDemR.y                  -0.122029   0.080651  -1.513 0.130412    
## pDemI.y                   0.380541   0.098663   3.857 0.000118 ***
## avgIndex_NEexp.c:pDemR.y  0.001192   0.005512   0.216 0.828811    
## avgIndex_NEexp.c:pDemI.y -0.006354   0.006609  -0.961 0.336433    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.592 on 2187 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.107,  Adjusted R-squared:  0.1049 
## F-statistic:  52.4 on 5 and 2187 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRisk5 ~ avgIndex_NEexp.c * (pRepD.y + pRepI.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3242 -1.3234 -0.1411  1.1004  4.6048 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.922440   0.059804  48.867  < 2e-16 ***
## avgIndex_NEexp.c          0.036462   0.004278   8.523  < 2e-16 ***
## pRepD.y                   0.122029   0.080651   1.513    0.130    
## pRepI.y                   0.502570   0.101897   4.932 8.75e-07 ***
## avgIndex_NEexp.c:pRepD.y -0.001192   0.005512  -0.216    0.829    
## avgIndex_NEexp.c:pRepI.y -0.007546   0.007064  -1.068    0.286    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.592 on 2187 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.107,  Adjusted R-squared:  0.1049 
## F-statistic:  52.4 on 5 and 2187 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRisk5 ~ avgIndex_NEexp.c * (pIndD.y + pIndR.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3242 -1.3234 -0.1411  1.1004  4.6048 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.425010   0.082501  41.515  < 2e-16 ***
## avgIndex_NEexp.c          0.028916   0.005621   5.144 2.93e-07 ***
## pIndD.y                  -0.380541   0.098663  -3.857 0.000118 ***
## pIndR.y                  -0.502570   0.101897  -4.932 8.75e-07 ***
## avgIndex_NEexp.c:pIndD.y  0.006354   0.006609   0.961 0.336433    
## avgIndex_NEexp.c:pIndR.y  0.007546   0.007064   1.068 0.285529    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.592 on 2187 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.107,  Adjusted R-squared:  0.1049 
## F-statistic:  52.4 on 5 and 2187 DF,  p-value: < 2.2e-16

D. avgRiskSeverity

risk severity ~ index * party +

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_NEexp.c * (pDem_Rep.y + 
##     pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6324 -0.6944 -0.0528  0.6862  3.3441 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  4.233772   0.025034 169.118  < 2e-16 ***
## avgIndex_NEexp.c             0.024118   0.001707  14.127  < 2e-16 ***
## pDem_Rep.y                  -0.604991   0.052578 -11.507  < 2e-16 ***
## pInd_Not.y                  -0.055875   0.059977  -0.932  0.35165    
## avgIndex_NEexp.c:pDem_Rep.y  0.011394   0.003591   3.173  0.00153 ** 
## avgIndex_NEexp.c:pInd_Not.y -0.001571   0.004087  -0.384  0.70078    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1945, Adjusted R-squared:  0.1927 
## F-statistic: 105.2 on 5 and 2179 DF,  p-value: < 2.2e-16
## Warning: Removed 6 row(s) containing missing values (geom_path).

1. simple effects for dems

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_NEexp.c * (pDemR.y + 
##     pDemI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6324 -0.6944 -0.0528  0.6862  3.3441 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.517829   0.035273 128.081  < 2e-16 ***
## avgIndex_NEexp.c          0.017902   0.002265   7.905 4.21e-15 ***
## pDemR.y                  -0.604991   0.052578 -11.507  < 2e-16 ***
## pDemI.y                  -0.246621   0.064423  -3.828 0.000133 ***
## avgIndex_NEexp.c:pDemR.y  0.011394   0.003591   3.173 0.001530 ** 
## avgIndex_NEexp.c:pDemI.y  0.007268   0.004313   1.685 0.092157 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1945, Adjusted R-squared:  0.1927 
## F-statistic: 105.2 on 5 and 2179 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_NEexp.c * (pRepD.y + 
##     pRepI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6324 -0.6944 -0.0528  0.6862  3.3441 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.912838   0.038990 100.354  < 2e-16 ***
## avgIndex_NEexp.c          0.029296   0.002787  10.513  < 2e-16 ***
## pRepD.y                   0.604991   0.052578  11.507  < 2e-16 ***
## pRepI.y                   0.358370   0.066531   5.386 7.96e-08 ***
## avgIndex_NEexp.c:pRepD.y -0.011394   0.003591  -3.173  0.00153 ** 
## avgIndex_NEexp.c:pRepI.y -0.004126   0.004609  -0.895  0.37074    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1945, Adjusted R-squared:  0.1927 
## F-statistic: 105.2 on 5 and 2179 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_NEexp.c * (pIndD.y + 
##     pIndR.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6324 -0.6944 -0.0528  0.6862  3.3441 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.271208   0.053909  79.230  < 2e-16 ***
## avgIndex_NEexp.c          0.025170   0.003671   6.856 9.18e-12 ***
## pIndD.y                   0.246621   0.064423   3.828 0.000133 ***
## pIndR.y                  -0.358370   0.066531  -5.386 7.96e-08 ***
## avgIndex_NEexp.c:pIndD.y -0.007268   0.004313  -1.685 0.092157 .  
## avgIndex_NEexp.c:pIndR.y  0.004126   0.004609   0.895 0.370735    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1945, Adjusted R-squared:  0.1927 
## F-statistic: 105.2 on 5 and 2179 DF,  p-value: < 2.2e-16

E. avgVaxxAttitudes

avgVaxxAttitudes ~ negative emotion * party

## 
## Call:
## lm(formula = avgVaxxAttitudes ~ avgIndex_NEexp.c * (pDem_Rep.y + 
##     pInd_Not.y), data = dm)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.513 -1.327  0.164  1.586  3.497 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.450183   0.045724   9.846  < 2e-16 ***
## avgIndex_NEexp.c             0.027922   0.003119   8.952  < 2e-16 ***
## pDem_Rep.y                  -0.529106   0.096032  -5.510 4.02e-08 ***
## pInd_Not.y                   0.498342   0.109544   4.549 5.68e-06 ***
## avgIndex_NEexp.c:pDem_Rep.y  0.017570   0.006560   2.678  0.00746 ** 
## avgIndex_NEexp.c:pInd_Not.y -0.004947   0.007466  -0.663  0.50766    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.899 on 2197 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.08252,    Adjusted R-squared:  0.08043 
## F-statistic: 39.52 on 5 and 2197 DF,  p-value: < 2.2e-16
## Warning: Removed 12 row(s) containing missing values (geom_path).
## geom_path: Each group consists of only one observation. Do you need to adjust
## the group aesthetic?

1. simple effects for dems

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_NEexp.c * (pDemR.y + 
##     pDemI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6324 -0.6944 -0.0528  0.6862  3.3441 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.517829   0.035273 128.081  < 2e-16 ***
## avgIndex_NEexp.c          0.017902   0.002265   7.905 4.21e-15 ***
## pDemR.y                  -0.604991   0.052578 -11.507  < 2e-16 ***
## pDemI.y                  -0.246621   0.064423  -3.828 0.000133 ***
## avgIndex_NEexp.c:pDemR.y  0.011394   0.003591   3.173 0.001530 ** 
## avgIndex_NEexp.c:pDemI.y  0.007268   0.004313   1.685 0.092157 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1945, Adjusted R-squared:  0.1927 
## F-statistic: 105.2 on 5 and 2179 DF,  p-value: < 2.2e-16

2. simple effects for reps

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_NEexp.c * (pRepD.y + 
##     pRepI.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6324 -0.6944 -0.0528  0.6862  3.3441 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.912838   0.038990 100.354  < 2e-16 ***
## avgIndex_NEexp.c          0.029296   0.002787  10.513  < 2e-16 ***
## pRepD.y                   0.604991   0.052578  11.507  < 2e-16 ***
## pRepI.y                   0.358370   0.066531   5.386 7.96e-08 ***
## avgIndex_NEexp.c:pRepD.y -0.011394   0.003591  -3.173  0.00153 ** 
## avgIndex_NEexp.c:pRepI.y -0.004126   0.004609  -0.895  0.37074    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1945, Adjusted R-squared:  0.1927 
## F-statistic: 105.2 on 5 and 2179 DF,  p-value: < 2.2e-16

3. simple effects for indep

## 
## Call:
## lm(formula = avgRiskSeverity ~ avgIndex_NEexp.c * (pIndD.y + 
##     pIndR.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6324 -0.6944 -0.0528  0.6862  3.3441 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.271208   0.053909  79.230  < 2e-16 ***
## avgIndex_NEexp.c          0.025170   0.003671   6.856 9.18e-12 ***
## pIndD.y                   0.246621   0.064423   3.828 0.000133 ***
## pIndR.y                  -0.358370   0.066531  -5.386 7.96e-08 ***
## avgIndex_NEexp.c:pIndD.y -0.007268   0.004313  -1.685 0.092157 .  
## avgIndex_NEexp.c:pIndR.y  0.004126   0.004609   0.895 0.370735    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.036 on 2179 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.1945, Adjusted R-squared:  0.1927 
## F-statistic: 105.2 on 5 and 2179 DF,  p-value: < 2.2e-16

F. Negative emotion + Risk Severity

1. riskSeverity + negemo + party
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ avgRiskSeverity.c + avgIndex_NEexp.c + 
##     (pDem_Rep.y + pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9693 -1.3331  0.1742  1.5488  3.4640 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.413634   0.044094   9.381  < 2e-16 ***
## avgRiskSeverity.c  0.144834   0.039264   3.689 0.000231 ***
## avgIndex_NEexp.c   0.022600   0.003044   7.425 1.61e-13 ***
## pDem_Rep.y        -0.446476   0.097998  -4.556 5.50e-06 ***
## pInd_Not.y         0.482646   0.107541   4.488 7.56e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.9 on 2178 degrees of freedom
##   (1286 observations deleted due to missingness)
## Multiple R-squared:  0.08538,    Adjusted R-squared:  0.0837 
## F-statistic: 50.83 on 4 and 2178 DF,  p-value: < 2.2e-16
## Warning: Removed 6 row(s) containing missing values (geom_path).

2. riskSeverity x negemo + party
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ avgRiskSeverity.c * avgIndex_NEexp.c + 
##     (pDem_Rep.y + pInd_Not.y), data = dm)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.432 -1.345  0.164  1.570  3.745 
## 
## Coefficients:
##                                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         0.463484   0.046316  10.007  < 2e-16 ***
## avgRiskSeverity.c                   0.140721   0.039185   3.591 0.000336 ***
## avgIndex_NEexp.c                    0.025486   0.003150   8.090 9.81e-16 ***
## pDem_Rep.y                         -0.408391   0.098383  -4.151 3.44e-05 ***
## pInd_Not.y                          0.484824   0.107277   4.519 6.53e-06 ***
## avgRiskSeverity.c:avgIndex_NEexp.c -0.007647   0.002226  -3.436 0.000602 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.895 on 2177 degrees of freedom
##   (1286 observations deleted due to missingness)
## Multiple R-squared:  0.09031,    Adjusted R-squared:  0.08822 
## F-statistic: 43.23 on 5 and 2177 DF,  p-value: < 2.2e-16
## Warning: Removed 6 row(s) containing missing values (geom_path).

3. riskSeverity + negemo x party
## 
## Call:
## lm(formula = avgVaxxAttitudes ~ avgRiskSeverity.c + avgIndex_NEexp.c * 
##     (pDem_Rep.y + pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7394 -1.3282  0.1539  1.5679  3.5249 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.445742   0.045911   9.709  < 2e-16 ***
## avgRiskSeverity.c            0.138169   0.039320   3.514  0.00045 ***
## avgIndex_NEexp.c             0.024765   0.003269   7.575 5.27e-14 ***
## pDem_Rep.y                  -0.447207   0.099230  -4.507 6.93e-06 ***
## pInd_Not.y                   0.508176   0.110053   4.618 4.11e-06 ***
## avgIndex_NEexp.c:pDem_Rep.y  0.015306   0.006596   2.321  0.02040 *  
## avgIndex_NEexp.c:pInd_Not.y -0.005132   0.007489  -0.685  0.49326    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.898 on 2176 degrees of freedom
##   (1286 observations deleted due to missingness)
## Multiple R-squared:  0.08797,    Adjusted R-squared:  0.08546 
## F-statistic: 34.98 on 6 and 2176 DF,  p-value: < 2.2e-16
## Warning: Removed 6 row(s) containing missing values (geom_path).

4. riskSeverity x negemo x party

## 
## Call:
## lm(formula = avgVaxxAttitudes ~ avgRiskSeverity.c * avgIndex_NEexp.c * 
##     (pDem_Rep.y + pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4085 -1.3503  0.1594  1.5730  3.8930 
## 
## Coefficients:
##                                                 Estimate Std. Error t value
## (Intercept)                                    0.4947760  0.0483010  10.244
## avgRiskSeverity.c                              0.1525497  0.0417285   3.656
## avgIndex_NEexp.c                               0.0247223  0.0034300   7.208
## pDem_Rep.y                                    -0.4366174  0.1020694  -4.278
## pInd_Not.y                                     0.5551539  0.1152886   4.815
## avgRiskSeverity.c:avgIndex_NEexp.c            -0.0045969  0.0024916  -1.845
## avgRiskSeverity.c:pDem_Rep.y                   0.2643292  0.0950976   2.780
## avgRiskSeverity.c:pInd_Not.y                  -0.1796278  0.0945028  -1.901
## avgIndex_NEexp.c:pDem_Rep.y                    0.0062102  0.0072653   0.855
## avgIndex_NEexp.c:pInd_Not.y                   -0.0023807  0.0081751  -0.291
## avgRiskSeverity.c:avgIndex_NEexp.c:pDem_Rep.y -0.0035282  0.0057823  -0.610
## avgRiskSeverity.c:avgIndex_NEexp.c:pInd_Not.y -0.0009905  0.0055597  -0.178
##                                               Pr(>|t|)    
## (Intercept)                                    < 2e-16 ***
## avgRiskSeverity.c                             0.000263 ***
## avgIndex_NEexp.c                              7.82e-13 ***
## pDem_Rep.y                                    1.97e-05 ***
## pInd_Not.y                                    1.57e-06 ***
## avgRiskSeverity.c:avgIndex_NEexp.c            0.065178 .  
## avgRiskSeverity.c:pDem_Rep.y                  0.005490 ** 
## avgRiskSeverity.c:pInd_Not.y                  0.057465 .  
## avgIndex_NEexp.c:pDem_Rep.y                   0.392766    
## avgIndex_NEexp.c:pInd_Not.y                   0.770917    
## avgRiskSeverity.c:avgIndex_NEexp.c:pDem_Rep.y 0.541811    
## avgRiskSeverity.c:avgIndex_NEexp.c:pInd_Not.y 0.858619    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.892 on 2171 degrees of freedom
##   (1286 observations deleted due to missingness)
## Multiple R-squared:  0.09645,    Adjusted R-squared:  0.09187 
## F-statistic: 21.07 on 11 and 2171 DF,  p-value: < 2.2e-16
## Warning: Removed 6 row(s) containing missing values (geom_path).

LONGITUDINAL WITH AVG(LIWC)

risk measures

analytic + affect

1. W2Risk3 ~ W1Risk3 * party + (avgAnalytic + avgAffect)

## 
## Call:
## lm(formula = risk3.x ~ risk3.y * (pDem_Rep.y + pInd_Not.y) + 
##     (avgIndex_ANexp.c + avgIndex_AFexp.c), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4861 -0.6956  0.0600  0.7343  4.0059 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.8490696  0.0787606  23.477  < 2e-16 ***
## risk3.y             0.6024059  0.0164483  36.624  < 2e-16 ***
## pDem_Rep.y         -1.1963501  0.1696665  -7.051 2.37e-12 ***
## pInd_Not.y          0.6333128  0.1760492   3.597 0.000329 ***
## avgIndex_ANexp.c   -0.0003036  0.0002677  -1.134 0.256841    
## avgIndex_AFexp.c    0.0097938  0.0056181   1.743 0.081425 .  
## risk3.y:pDem_Rep.y  0.1297214  0.0343447   3.777 0.000163 ***
## risk3.y:pInd_Not.y -0.1169409  0.0373164  -3.134 0.001749 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.112 on 2195 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.5428, Adjusted R-squared:  0.5413 
## F-statistic: 372.3 on 7 and 2195 DF,  p-value: < 2.2e-16

2. W2Risk4 ~ W1Risk4 * party + (avgAnalytic + avgAffect)

## 
## Call:
## lm(formula = risk4.x ~ risk4.y * (pDem_Rep.y + pInd_Not.y) + 
##     (avgIndex_ANexp.c + avgIndex_AFexp.c), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0995 -0.6020 -0.0214  0.8053  4.3327 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.178e+00  9.690e-02  22.477  < 2e-16 ***
## risk4.y             5.407e-01  1.826e-02  29.618  < 2e-16 ***
## pDem_Rep.y         -4.317e-01  2.090e-01  -2.066  0.03894 *  
## pInd_Not.y          6.466e-01  2.264e-01   2.856  0.00433 ** 
## avgIndex_ANexp.c   -6.857e-05  2.726e-04  -0.252  0.80140    
## avgIndex_AFexp.c    2.093e-03  5.702e-03   0.367  0.71360    
## risk4.y:pDem_Rep.y  2.360e-02  3.927e-02   0.601  0.54781    
## risk4.y:pInd_Not.y -1.068e-01  4.274e-02  -2.498  0.01256 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.136 on 2189 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.325,  Adjusted R-squared:  0.3229 
## F-statistic: 150.6 on 7 and 2189 DF,  p-value: < 2.2e-16

3. W2Risk5 ~ W1Risk5 * party + (avgAnalytic + avgAffect)

## 
## Call:
## lm(formula = risk5.x ~ risk5.y * (pDem_Rep.y + pInd_Not.y) + 
##     (avgIndex_ANexp.c + avgIndex_AFexp.c), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9877 -0.7739 -0.2404  0.8379  5.3938 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.1910128  0.0645361  18.455   <2e-16 ***
## risk5.y             0.5866334  0.0173800  33.753   <2e-16 ***
## pDem_Rep.y          0.0771920  0.1280792   0.603   0.5468    
## pInd_Not.y         -0.1395218  0.1539318  -0.906   0.3648    
## avgIndex_ANexp.c    0.0008506  0.0003314   2.566   0.0103 *  
## avgIndex_AFexp.c   -0.0119498  0.0069201  -1.727   0.0843 .  
## risk5.y:pDem_Rep.y -0.0520430  0.0360628  -1.443   0.1491    
## risk5.y:pInd_Not.y -0.0112945  0.0398655  -0.283   0.7770    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.381 on 2185 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.4325, Adjusted R-squared:  0.4307 
## F-statistic: 237.9 on 7 and 2185 DF,  p-value: < 2.2e-16

4. W2RiskSeverity ~ W1RiskSeverity * party + (avgAanalytic + avgAffect)

## 
## Call:
## lm(formula = dm$riskSeverity.x ~ riskSeverity.y * (pDem_Rep.y + 
##     pInd_Not.y) + (avgIndex_ANexp.c + avgIndex_AFexp.c), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7356 -0.5399 -0.0120  0.5341  4.1345 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                1.5946472  0.0739744  21.557  < 2e-16 ***
## riskSeverity.y             0.6068065  0.0166988  36.338  < 2e-16 ***
## pDem_Rep.y                -0.5280199  0.1562070  -3.380 0.000737 ***
## pInd_Not.y                 0.2901475  0.1662869   1.745 0.081150 .  
## avgIndex_ANexp.c           0.0002097  0.0002138   0.981 0.326852    
## avgIndex_AFexp.c          -0.0011882  0.0044801  -0.265 0.790862    
## riskSeverity.y:pDem_Rep.y  0.0500541  0.0355152   1.409 0.158868    
## riskSeverity.y:pInd_Not.y -0.0662540  0.0373326  -1.775 0.076088 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8886 on 2177 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.4883, Adjusted R-squared:  0.4867 
## F-statistic: 296.8 on 7 and 2177 DF,  p-value: < 2.2e-16

positive emotion

1. W2Risk3 ~ W1Risk3 * party + positive emotion

## 
## Call:
## lm(formula = risk3.x ~ risk3.y * (pDem_Rep.y + pInd_Not.y) + 
##     dm$avgIndex_PEexp.c, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4724 -0.6840  0.0594  0.7371  4.0266 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.837243   0.078257  23.477  < 2e-16 ***
## risk3.y              0.604798   0.016351  36.988  < 2e-16 ***
## pDem_Rep.y          -1.195010   0.169619  -7.045 2.47e-12 ***
## pInd_Not.y           0.633839   0.176094   3.599 0.000326 ***
## dm$avgIndex_PEexp.c  0.005782   0.001171   4.938 8.48e-07 ***
## risk3.y:pDem_Rep.y   0.129455   0.034347   3.769 0.000168 ***
## risk3.y:pInd_Not.y  -0.115807   0.037315  -3.104 0.001937 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.113 on 2196 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.5424, Adjusted R-squared:  0.5412 
## F-statistic: 433.9 on 6 and 2196 DF,  p-value: < 2.2e-16

2. W2Risk4 ~ W1Risk4 * party + positive emotion

## 
## Call:
## lm(formula = risk4.x ~ risk4.y * (pDem_Rep.y + pInd_Not.y) + 
##     avgIndex_PEexp.c, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0978 -0.6007 -0.0196  0.8085  4.3290 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.175662   0.096587  22.525  < 2e-16 ***
## risk4.y             0.541170   0.018207  29.724  < 2e-16 ***
## pDem_Rep.y         -0.431443   0.208845  -2.066  0.03896 *  
## pInd_Not.y          0.647288   0.226340   2.860  0.00428 ** 
## avgIndex_PEexp.c    0.001083   0.001162   0.933  0.35106    
## risk4.y:pDem_Rep.y  0.023357   0.039246   0.595  0.55181    
## risk4.y:pInd_Not.y -0.106644   0.042731  -2.496  0.01264 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.136 on 2190 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.325,  Adjusted R-squared:  0.3231 
## F-statistic: 175.7 on 6 and 2190 DF,  p-value: < 2.2e-16

3. W2Risk5 ~ W1Risk5 * party + positive emotion

## 
## Call:
## lm(formula = risk5.x ~ risk5.y * (pDem_Rep.y + pInd_Not.y) + 
##     avgIndex_PEexp.c, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8880 -0.7934 -0.2432  0.8414  5.3973 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.189227   0.064600  18.409  < 2e-16 ***
## risk5.y             0.588049   0.017384  33.826  < 2e-16 ***
## pDem_Rep.y          0.075779   0.128135   0.591    0.554    
## pInd_Not.y         -0.156502   0.153961  -1.017    0.310    
## avgIndex_PEexp.c    0.009754   0.001462   6.669 3.25e-11 ***
## risk5.y:pDem_Rep.y -0.050462   0.036091  -1.398    0.162    
## risk5.y:pInd_Not.y -0.010878   0.039900  -0.273    0.785    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.382 on 2186 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.4313, Adjusted R-squared:  0.4297 
## F-statistic: 276.3 on 6 and 2186 DF,  p-value: < 2.2e-16

4. W2RiskSeverity ~ W1RiskSeverity * party + positive emotion

## 
## Call:
## lm(formula = dm$riskSeverity.x ~ riskSeverity.y * (pDem_Rep.y + 
##     pInd_Not.y) + avgIndex_PEexp.c, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7232 -0.5354 -0.0139  0.5366  4.1481 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                1.5986915  0.0738348  21.652  < 2e-16 ***
## riskSeverity.y             0.6060130  0.0166730  36.347  < 2e-16 ***
## pDem_Rep.y                -0.5310260  0.1561545  -3.401 0.000684 ***
## pInd_Not.y                 0.2871290  0.1662678   1.727 0.084326 .  
## avgIndex_PEexp.c           0.0053750  0.0009427   5.702 1.35e-08 ***
## riskSeverity.y:pDem_Rep.y  0.0506375  0.0355097   1.426 0.154006    
## riskSeverity.y:pInd_Not.y -0.0664440  0.0373260  -1.780 0.075199 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8885 on 2178 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.4882, Adjusted R-squared:  0.4868 
## F-statistic: 346.2 on 6 and 2178 DF,  p-value: < 2.2e-16

negative emotion

1. W2Risk3 ~ W1Risk3 * party + positive emotion

## 
## Call:
## lm(formula = risk3.x ~ risk3.y * (pDem_Rep.y + pInd_Not.y) + 
##     dm$avgIndex_NEexp.c, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4637 -0.6818  0.0553  0.7352  4.0352 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.841720   0.078331  23.512  < 2e-16 ***
## risk3.y              0.603831   0.016368  36.891  < 2e-16 ***
## pDem_Rep.y          -1.188691   0.169658  -7.006 3.24e-12 ***
## pInd_Not.y           0.634808   0.176011   3.607 0.000317 ***
## dm$avgIndex_NEexp.c  0.008907   0.001757   5.069 4.32e-07 ***
## risk3.y:pDem_Rep.y   0.128856   0.034341   3.752 0.000180 ***
## risk3.y:pInd_Not.y  -0.116195   0.037299  -3.115 0.001862 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.112 on 2196 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.5427, Adjusted R-squared:  0.5414 
## F-statistic: 434.3 on 6 and 2196 DF,  p-value: < 2.2e-16

2. W2Risk4 ~ W1Risk4 * party + negative emotion

## 
## Call:
## lm(formula = risk4.x ~ risk4.y * (pDem_Rep.y + pInd_Not.y) + 
##     avgIndex_NEexp.c, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1045 -0.6033 -0.0187  0.8076  4.3303 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.177188   0.096646  22.527   <2e-16 ***
## risk4.y             0.540903   0.018216  29.694   <2e-16 ***
## pDem_Rep.y         -0.429255   0.208887  -2.055   0.0400 *  
## pInd_Not.y          0.646943   0.226318   2.859   0.0043 ** 
## avgIndex_NEexp.c    0.001792   0.001741   1.029   0.3035    
## risk4.y:pDem_Rep.y  0.023350   0.039244   0.595   0.5519    
## risk4.y:pInd_Not.y -0.106665   0.042728  -2.496   0.0126 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.136 on 2190 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.325,  Adjusted R-squared:  0.3232 
## F-statistic: 175.8 on 6 and 2190 DF,  p-value: < 2.2e-16

3. W2Risk5 ~ W1Risk5 * party + negative emotion

## 
## Call:
## lm(formula = risk5.x ~ risk5.y * (pDem_Rep.y + pInd_Not.y) + 
##     avgIndex_PEexp.c, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8880 -0.7934 -0.2432  0.8414  5.3973 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.189227   0.064600  18.409  < 2e-16 ***
## risk5.y             0.588049   0.017384  33.826  < 2e-16 ***
## pDem_Rep.y          0.075779   0.128135   0.591    0.554    
## pInd_Not.y         -0.156502   0.153961  -1.017    0.310    
## avgIndex_PEexp.c    0.009754   0.001462   6.669 3.25e-11 ***
## risk5.y:pDem_Rep.y -0.050462   0.036091  -1.398    0.162    
## risk5.y:pInd_Not.y -0.010878   0.039900  -0.273    0.785    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.382 on 2186 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.4313, Adjusted R-squared:  0.4297 
## F-statistic: 276.3 on 6 and 2186 DF,  p-value: < 2.2e-16

4. W2RiskSeverity ~ W1RiskSeverity * party + negative emotion

## 
## Call:
## lm(formula = dm$riskSeverity.x ~ riskSeverity.y * (pDem_Rep.y + 
##     pInd_Not.y) + avgIndex_NEexp.c, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7257 -0.5381 -0.0175  0.5428  4.1455 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                1.597593   0.073890  21.621  < 2e-16 ***
## riskSeverity.y             0.606240   0.016686  36.332  < 2e-16 ***
## pDem_Rep.y                -0.527435   0.156273  -3.375 0.000751 ***
## pInd_Not.y                 0.290542   0.166298   1.747 0.080757 .  
## avgIndex_NEexp.c           0.007925   0.001414   5.605 2.34e-08 ***
## riskSeverity.y:pDem_Rep.y  0.050049   0.035521   1.409 0.158974    
## riskSeverity.y:pInd_Not.y -0.067205   0.037336  -1.800 0.071996 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8888 on 2178 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.4879, Adjusted R-squared:  0.4865 
## F-statistic: 345.9 on 6 and 2178 DF,  p-value: < 2.2e-16

vaccine attitudes

1. W2VaxxAttitude ~ W1VaxxAttitudes * party + (avgAnalytic + avgAffect)

## 
## Call:
## lm(formula = vaxxAttitudes.x ~ vaxxAttitudes.y * (pDem_Rep.y + 
##     pInd_Not.y) + (avgIndex_ANexp.c + avgIndex_AFexp.c), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3097 -0.7195  0.0749  0.9873  5.4249 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                -0.1311435  0.0346598  -3.784 0.000159 ***
## vaxxAttitudes.y             0.7018399  0.0157699  44.505  < 2e-16 ***
## pDem_Rep.y                  0.1073852  0.0765619   1.403 0.160879    
## pInd_Not.y                  0.2302997  0.0822960   2.798 0.005180 ** 
## avgIndex_ANexp.c            0.0006602  0.0003424   1.928 0.053964 .  
## avgIndex_AFexp.c           -0.0119867  0.0071645  -1.673 0.094456 .  
## vaxxAttitudes.y:pDem_Rep.y  0.1199654  0.0324565   3.696 0.000224 ***
## vaxxAttitudes.y:pInd_Not.y  0.0401789  0.0373425   1.076 0.282065    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.429 on 2195 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.5402, Adjusted R-squared:  0.5388 
## F-statistic: 368.5 on 7 and 2195 DF,  p-value: < 2.2e-16

2. W2RiskSeverity ~ W1RiskSeverity * party + positive emotion

## 
## Call:
## lm(formula = vaxxAttitudes.x ~ vaxxAttitudes.y * (pDem_Rep.y + 
##     pInd_Not.y) + avgIndex_PEexp.c, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3932 -0.7179  0.0766  1.0059  5.3800 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                -0.129489   0.034668  -3.735 0.000192 ***
## vaxxAttitudes.y             0.700963   0.015768  44.454  < 2e-16 ***
## pDem_Rep.y                  0.111954   0.076496   1.464 0.143465    
## pInd_Not.y                  0.217592   0.082091   2.651 0.008092 ** 
## avgIndex_PEexp.c            0.002973   0.001478   2.011 0.044411 *  
## vaxxAttitudes.y:pDem_Rep.y  0.116295   0.032419   3.587 0.000342 ***
## vaxxAttitudes.y:pInd_Not.y  0.040581   0.037364   1.086 0.277565    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.43 on 2196 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.5395, Adjusted R-squared:  0.5382 
## F-statistic: 428.8 on 6 and 2196 DF,  p-value: < 2.2e-16

3. W2VaxxAttitude ~ W1VaxxAttitudes * party + negative emotion

## 
## Call:
## lm(formula = vaxxAttitudes.x ~ vaxxAttitudes.y * (pDem_Rep.y + 
##     pInd_Not.y) + avgIndex_NEexp.c, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3869 -0.7139  0.0753  1.0135  5.3776 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                -0.129783   0.034677  -3.743 0.000187 ***
## vaxxAttitudes.y             0.701176   0.015781  44.431  < 2e-16 ***
## pDem_Rep.y                  0.110538   0.076674   1.442 0.149542    
## pInd_Not.y                  0.218329   0.082097   2.659 0.007884 ** 
## avgIndex_NEexp.c            0.004184   0.002217   1.887 0.059231 .  
## vaxxAttitudes.y:pDem_Rep.y  0.116286   0.032424   3.586 0.000343 ***
## vaxxAttitudes.y:pInd_Not.y  0.040322   0.037367   1.079 0.280675    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.43 on 2196 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.5394, Adjusted R-squared:  0.5381 
## F-statistic: 428.6 on 6 and 2196 DF,  p-value: < 2.2e-16

LONGITUDINAL W1-W2

W2VaxxAttitude ~ party * (W1VaxxAttitudes + W1Analytic + W1Affect + W2Analytic + W2Affect)

## 
## Call:
## lm(formula = vaxxAttitudes.x ~ (vaxxAttitudes.y.c + index_ANexp.y.c + 
##     index_AFexp.y.c + index_ANexp.x.c + index_AFexp.x.c) * (pDem_Rep.y + 
##     pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3991 -0.7300  0.0603  0.9274  5.5702 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   0.2749155  0.0351416   7.823 7.96e-15 ***
## vaxxAttitudes.y.c             0.7009677  0.0158469  44.234  < 2e-16 ***
## index_ANexp.y.c              -0.0007565  0.0004264  -1.774  0.07613 .  
## index_AFexp.y.c               0.0144656  0.0088514   1.634  0.10235    
## index_ANexp.x.c               0.0012235  0.0004738   2.582  0.00988 ** 
## index_AFexp.x.c              -0.0223656  0.0099529  -2.247  0.02473 *  
## pDem_Rep.y                    0.1519954  0.0736273   2.064  0.03910 *  
## pInd_Not.y                    0.2106495  0.0843138   2.498  0.01255 *  
## vaxxAttitudes.y.c:pDem_Rep.y  0.1334135  0.0329956   4.043 5.45e-05 ***
## vaxxAttitudes.y.c:pInd_Not.y  0.0541473  0.0381608   1.419  0.15606    
## index_ANexp.y.c:pDem_Rep.y   -0.0007395  0.0008406  -0.880  0.37909    
## index_ANexp.y.c:pInd_Not.y    0.0003306  0.0010572   0.313  0.75450    
## index_AFexp.y.c:pDem_Rep.y    0.0112548  0.0175428   0.642  0.52123    
## index_AFexp.y.c:pInd_Not.y   -0.0091663  0.0218913  -0.419  0.67546    
## index_ANexp.x.c:pDem_Rep.y   -0.0005687  0.0009635  -0.590  0.55505    
## index_ANexp.x.c:pInd_Not.y    0.0007093  0.0011564   0.613  0.53970    
## index_AFexp.x.c:pDem_Rep.y    0.0125234  0.0202830   0.617  0.53701    
## index_AFexp.x.c:pInd_Not.y   -0.0153017  0.0242595  -0.631  0.52827    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.425 on 2185 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.5448, Adjusted R-squared:  0.5413 
## F-statistic: 153.9 on 17 and 2185 DF,  p-value: < 2.2e-16
## Warning: Removed 6 row(s) containing missing values (geom_path).

W2risk3 ~ party * (W1risk3 + W1Analytic + W1Affect + W2Analytic + W2Affect)

## 
## Call:
## lm(formula = risk3.x ~ (risk3.y.c + index_ANexp.y.c + index_AFexp.y.c + 
##     index_ANexp.x.c + index_AFexp.x.c) * (pDem_Rep.y + pInd_Not.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3742 -0.6844  0.0593  0.7604  3.9444 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 4.6099438  0.0278953 165.259  < 2e-16 ***
## risk3.y.c                   0.6000054  0.0166513  36.034  < 2e-16 ***
## index_ANexp.y.c            -0.0002308  0.0003315  -0.696  0.48636    
## index_AFexp.y.c             0.0046021  0.0068915   0.668  0.50434    
## index_ANexp.x.c            -0.0004951  0.0003672  -1.348  0.17769    
## index_AFexp.x.c             0.0144104  0.0077117   1.869  0.06181 .  
## pDem_Rep.y                 -0.5974422  0.0600522  -9.949  < 2e-16 ***
## pInd_Not.y                  0.1165935  0.0658083   1.772  0.07658 .  
## risk3.y.c:pDem_Rep.y        0.0983269  0.0355553   2.765  0.00573 ** 
## risk3.y.c:pInd_Not.y       -0.1252325  0.0394884  -3.171  0.00154 ** 
## index_ANexp.y.c:pDem_Rep.y -0.0004173  0.0006544  -0.638  0.52372    
## index_ANexp.y.c:pInd_Not.y  0.0008258  0.0008217   1.005  0.31498    
## index_AFexp.y.c:pDem_Rep.y  0.0054973  0.0136689   0.402  0.68760    
## index_AFexp.y.c:pInd_Not.y -0.0145451  0.0170377  -0.854  0.39337    
## index_ANexp.x.c:pDem_Rep.y -0.0009091  0.0007489  -1.214  0.22489    
## index_ANexp.x.c:pInd_Not.y  0.0002986  0.0008945   0.334  0.73858    
## index_AFexp.x.c:pDem_Rep.y  0.0266447  0.0157758   1.689  0.09137 .  
## index_AFexp.x.c:pInd_Not.y -0.0077729  0.0187576  -0.414  0.67863    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.108 on 2185 degrees of freedom
##   (1266 observations deleted due to missingness)
## Multiple R-squared:  0.5486, Adjusted R-squared:  0.5451 
## F-statistic: 156.2 on 17 and 2185 DF,  p-value: < 2.2e-16
## Warning: Removed 3 row(s) containing missing values (geom_path).

W2risk4 ~ party * (W1risk4 + W1Analytic + W1Affect + W2Analytic + W2Affect)

## 
## Call:
## lm(formula = risk4.x ~ (risk4.y.c + index_ANexp.y.c + index_AFexp.y.c + 
##     index_ANexp.x.c + index_AFexp.x.c) * (pDem_Rep.y + pInd_Not.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0659 -0.6014 -0.0158  0.8320  4.3620 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 4.960e+00  2.788e-02 177.944  < 2e-16 ***
## risk4.y.c                   5.411e-01  1.832e-02  29.542  < 2e-16 ***
## index_ANexp.y.c            -3.080e-04  3.418e-04  -0.901   0.3675    
## index_AFexp.y.c             5.522e-03  7.091e-03   0.779   0.4363    
## index_ANexp.x.c             1.287e-04  3.790e-04   0.340   0.7342    
## index_AFexp.x.c            -1.239e-03  7.953e-03  -0.156   0.8762    
## pDem_Rep.y                 -2.955e-01  5.832e-02  -5.067 4.37e-07 ***
## pInd_Not.y                  1.061e-01  6.694e-02   1.584   0.1133    
## risk4.y.c:pDem_Rep.y        2.540e-02  3.952e-02   0.643   0.5206    
## risk4.y.c:pInd_Not.y       -1.058e-01  4.315e-02  -2.453   0.0142 *  
## index_ANexp.y.c:pDem_Rep.y  1.346e-04  6.713e-04   0.201   0.8411    
## index_ANexp.y.c:pInd_Not.y  6.593e-04  8.490e-04   0.777   0.4375    
## index_AFexp.y.c:pDem_Rep.y -4.699e-03  1.401e-02  -0.335   0.7373    
## index_AFexp.y.c:pInd_Not.y -1.367e-02  1.757e-02  -0.778   0.4364    
## index_ANexp.x.c:pDem_Rep.y  2.586e-04  7.686e-04   0.336   0.7366    
## index_ANexp.x.c:pInd_Not.y  7.798e-05  9.262e-04   0.084   0.9329    
## index_AFexp.x.c:pDem_Rep.y -2.546e-03  1.618e-02  -0.157   0.8750    
## index_AFexp.x.c:pInd_Not.y  6.545e-05  1.940e-02   0.003   0.9973    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.137 on 2179 degrees of freedom
##   (1272 observations deleted due to missingness)
## Multiple R-squared:  0.3268, Adjusted R-squared:  0.3215 
## F-statistic: 62.22 on 17 and 2179 DF,  p-value: < 2.2e-16
## Warning: Removed 3 row(s) containing missing values (geom_path).

W2risk5 ~ party * (W1risk5 + W1Analytic + W1Affect + W2Analytic + W2Affect)

## 
## Call:
## lm(formula = risk5.x ~ (risk5.y.c + index_ANexp.y.c + index_AFexp.y.c + 
##     index_ANexp.x.c + index_AFexp.x.c) * (pDem_Rep.y + pInd_Not.y), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8416 -0.7913 -0.2289  0.8183  5.4268 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 3.108e+00  3.387e-02  91.763   <2e-16 ***
## risk5.y.c                   5.883e-01  1.745e-02  33.724   <2e-16 ***
## index_ANexp.y.c            -9.879e-05  4.128e-04  -0.239   0.8109    
## index_AFexp.y.c             3.204e-03  8.565e-03   0.374   0.7084    
## index_ANexp.x.c             6.880e-04  4.578e-04   1.503   0.1330    
## index_AFexp.x.c            -1.003e-02  9.611e-03  -1.043   0.2968    
## pDem_Rep.y                 -7.737e-02  7.064e-02  -1.095   0.2735    
## pInd_Not.y                 -1.744e-01  8.150e-02  -2.140   0.0325 *  
## risk5.y.c:pDem_Rep.y       -5.466e-02  3.759e-02  -1.454   0.1460    
## risk5.y.c:pInd_Not.y       -2.474e-02  4.114e-02  -0.601   0.5476    
## index_ANexp.y.c:pDem_Rep.y -1.804e-05  8.156e-04  -0.022   0.9824    
## index_ANexp.y.c:pInd_Not.y -2.687e-04  1.023e-03  -0.263   0.7928    
## index_AFexp.y.c:pDem_Rep.y  5.228e-04  1.701e-02   0.031   0.9755    
## index_AFexp.y.c:pInd_Not.y  6.698e-03  2.116e-02   0.317   0.7516    
## index_ANexp.x.c:pDem_Rep.y  2.726e-04  9.332e-04   0.292   0.7702    
## index_ANexp.x.c:pInd_Not.y  2.096e-03  1.116e-03   1.879   0.0604 .  
## index_AFexp.x.c:pDem_Rep.y -5.098e-03  1.965e-02  -0.260   0.7953    
## index_AFexp.x.c:pInd_Not.y -4.222e-02  2.339e-02  -1.805   0.0712 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.38 on 2175 degrees of freedom
##   (1276 observations deleted due to missingness)
## Multiple R-squared:  0.4355, Adjusted R-squared:  0.4311 
## F-statistic:  98.7 on 17 and 2175 DF,  p-value: < 2.2e-16
## Warning: Removed 6 row(s) containing missing values (geom_path).

W2riskSeverity ~ party * (W1riskSeverity + W1Analytic + W1Affect + W2Analytic + W2Affect)

## 
## Call:
## lm(formula = riskSeverity.x ~ (riskSeverity.y.c + index_ANexp.y.c + 
##     index_AFexp.y.c + index_ANexp.x.c + index_AFexp.x.c) * (pDem_Rep.y + 
##     pInd_Not.y), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7059 -0.5419 -0.0097  0.5291  4.1280 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  4.220e+00  2.201e-02 191.764  < 2e-16 ***
## riskSeverity.y.c             6.087e-01  1.679e-02  36.249  < 2e-16 ***
## index_ANexp.y.c             -2.208e-04  2.666e-04  -0.828   0.4076    
## index_AFexp.y.c              4.483e-03  5.535e-03   0.810   0.4180    
## index_ANexp.x.c              1.506e-04  2.962e-04   0.508   0.6112    
## index_AFexp.x.c              2.934e-05  6.217e-03   0.005   0.9962    
## pDem_Rep.y                  -2.989e-01  4.649e-02  -6.429 1.58e-10 ***
## pInd_Not.y                   1.360e-02  5.253e-02   0.259   0.7957    
## riskSeverity.y.c:pDem_Rep.y  3.844e-02  3.702e-02   1.038   0.2992    
## riskSeverity.y.c:pInd_Not.y -7.876e-02  3.898e-02  -2.020   0.0435 *  
## index_ANexp.y.c:pDem_Rep.y  -1.522e-04  5.245e-04  -0.290   0.7717    
## index_ANexp.y.c:pInd_Not.y   4.651e-04  6.618e-04   0.703   0.4823    
## index_AFexp.y.c:pDem_Rep.y   1.274e-03  1.095e-02   0.116   0.9074    
## index_AFexp.y.c:pInd_Not.y  -8.265e-03  1.370e-02  -0.603   0.5464    
## index_ANexp.x.c:pDem_Rep.y  -1.445e-04  6.008e-04  -0.240   0.8100    
## index_ANexp.x.c:pInd_Not.y   8.144e-04  7.238e-04   1.125   0.2606    
## index_AFexp.x.c:pDem_Rep.y   6.607e-03  1.265e-02   0.522   0.6017    
## index_AFexp.x.c:pInd_Not.y  -1.617e-02  1.516e-02  -1.066   0.2863    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8875 on 2167 degrees of freedom
##   (1284 observations deleted due to missingness)
## Multiple R-squared:  0.492,  Adjusted R-squared:  0.488 
## F-statistic: 123.5 on 17 and 2167 DF,  p-value: < 2.2e-16
## Warning: Removed 3 row(s) containing missing values (geom_path).

WAVE 1 VAXX POLICY

WAVE 2 VAXX POLICIES